
Wind Farm Yaw Optimization and

Real-Time Control using

Graph Neural Networks

Rockey Abram Hester V

CMU-RI-TR-21-49

August 19, 2021

The Robotics Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Thesis Committee:
Dr. Matthew Travers, chair
Professor Sebastian Scherer

Julian Whitman

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Robotics.

Copyright © 2021 Rockey Abram Hester V. All rights reserved.

Abstract

In order to mitigate the effects of climate change, it is important to
maximize the power output of our wind energy resources. Wind farm
control is typically greedy, with all turbines facing directly into the wind.
Due to wake interactions, this leads to reductions in power for downwind
turbines for some wind conditions. An alternative is wake steering control,
which involves misaligning the yaws of upwind turbines to deflect their
wakes away from downwind turbines. This reduces the power generated
by the upwind turbines but increases the power output of the farm as
a whole. Tools such as FLORIS exist to model wakes and compute
optimal wake steering yaw configurations for a given wind farm and
wind conditions, but their runtime scales quadratically in the number
of turbines, which prevents real-time control for large farms or quickly
changing wind conditions.

Using YawGNN, a graph neural network with wind turbines as nodes and
wake interactions between turbines as edges, we learn to approximate
the FLORIS model. YawGNN is able to find yaw configurations that
outperform the greedy solution and are comparable to FLORIS in linear
time for wind farms with the same number of turbines as it was trained
on. Relational inductive biases in graph neural networks also enable gen-
eralization to unseen wind farms, including those with different numbers
of turbines. YawGNN is able to accurately estimate the power output of
wind farms with ten times the number of turbines it was trained on, as
well as find yaw configurations for these examples that are on average of
higher quality than the greedy solution in linear time. Finally, we show
that YawGNN outperforms FLORIS and is applicable across a greater
range of farm sizes and wind direction rates of change when used as the
model in a model predictive controller for real-time, wake steering control.

iii

iv

Acknowledgments

First, I would like to thank my advisor, Dr. Matthew Travers, for his
guidance in the development of this thesis and confidence in the potential
of wind farm graph neural networks. I would also like to thank the
remaining members of my thesis committee, Professor Sebastian Scherer
and Julian Whitman, for their feedback and support, as well as B.J. Fecich
for her invaluable support on the program side and Casper Lyhne for his
lifesaving domain knowledge.

Next, I could never thank my friends and family enough for their love
and support as I have pursued my education over the years. Thanks
especially to George Cazenavette, Bill Peebles, Roshan Pradhan, and
Brandon Wang for their very direct support on this thesis, and to my
parents for welcoming me back home during a pandemic.

Finally, I have to thank my dog, Gus, for snapping me out of my graduate
student sleep schedule and always being there when I needed a break from
work or an excuse to get out of the house.

v

vi

Contents

1 Introduction 1
1.1 Background . 1

1.1.1 Climate Change and Renewable Energy 1
1.1.2 Wind Farm Modeling and Control 3
1.1.3 Machine Learning and Optimization 4

1.2 Related Work . 8
1.2.1 Wind Farm Control . 8
1.2.2 Wind Farm Modeling . 9
1.2.3 Wake Steering Control . 9
1.2.4 Graph Neural Networks . 11
1.2.5 Wind Farm Graph Neural Networks 12

1.3 Research Question . 13

2 Methods 15
2.1 Data . 15
2.2 Graph Neural Network Architecture 16
2.3 Training and Evaluation . 18
2.4 Power Estimation with Random Yaw Configurations 20
2.5 Yaw Optimization . 21
2.6 Combinatorial Generalization . 22
2.7 Real-Time Control . 22

3 Results 27
3.1 Power Estimation . 27

3.1.1 Power Estimation with Varying Yaw 27
3.1.2 Comparison to FLORIS . 32

3.2 Yaw Optimization . 37
3.2.1 Fixed Layout and Wind Conditions 37
3.2.2 Random Layout and Wind Conditions 37
3.2.3 Comparison to FLORIS . 39

3.3 Real-Time Control . 42

4 Discussion 49
4.1 Conclusions . 49

vii

4.2 Future Work . 50

Bibliography 53

When this dissertation is viewed as a PDF, the page header is a link to this Table of Contents.

viii

List of Figures

1.1 Laurel Mountain Wind Farm in West Virginia. If the wind flows over
the ridge (the blue arrow in the image), then the turbines will yaw
to align with the wind to generate maximum power. If instead the
wind flows along the ridge (the red arrow in the image), then yawing
to align with the wind causes the turbines to form a column, resulting
in wake interactions that reduce power greatly. Source: John Terry . 2

1.2 Two turbines in serial configuration relative to the wind, or aligned in
a column, with wakes shown . 3

1.3 A comparison between greedy and wake steering control of wind farms.
With greedy control, all turbines yaw to align with the incident wind.
In wake steering control, upwind turbines misalign their yaws from
the incident wind in order to deflect their wakes away from downwind
turbines. 4

1.4 Wind farm graph with turbines as nodes and wake interactions as edges 6

1.5 Wind farm graph for a sparse wind farm system. The clusters of
turbines and interactions between clusters are captured by the edges
of the graph. 6

1.6 Computation in a message passing graph neural network with edge,
node, and global multi-layer perceptrons (MLPs) 7

2.1 The downstream and radial distances between turbines are the key
edge features in YawGNN. Also pictured are the distance and angle
between turbines, which determine whether or not they share an edge. 16

2.2 Graph neural network architecture 17

2.3 Wind farm graphs with normalized powers for farms used in real-
time control experiments yawed to the middle of their respective wind
direction ranges as used in the experiments. Circles are turbines with
arrows pointing in the direction they’re facing, edges are between
turbines that within a threshold angle and distance defining wake
interaction, and the colors of the circles range from white for zero
power to dark blue for full power. 24

2.4 Normalized power versus wind direction for greedy control for the 60
degree ranges used in the real-time control experiments 25

ix

3.1 Toy example for power estimation and yaw optimization where the
incident wind direction is fixed and only the yaw of the upwind turbine
varies . 27

3.2 FLORIS and YawGNN power curves for a 2 turbine wind farm in 0°,
8 m/s wind as upwind yaw varies between ±45◦ 28

3.3 Toy example for power estimation where the yaw is fixed and the
incident wind direction varies between 0 and 360 degrees 29

3.4 FLORIS and YawGNN power curves for a 5 turbine wind farm with
varying wind direction . 30

3.5 FLORIS and YawGNN power curves for a randomly sampled 5 turbine
wind farm with varying wind direction 31

3.6 FLORIS and GNN power estimates for randomly sampled wind farms
as the number of turbines increases 33

3.7 Average error (in normalized power) between the YawGNN and FLORIS
power predictions for randomly sampled wind farms as the number of
turbines increases . 34

3.8 Average percent error between the YawGNN and FLORIS power
predictions for randomly sampled wind farms as the number of turbines
increases . 34

3.9 Runtimes for FLORIS and GNN power estimations for randomly
sampled wind farms as the number of turbines increases 35

3.10 FLORIS and GNN power curves for a wind farm with 20 turbines
where the GNN was only trained on wind farms with 2 to 10 turbines 36

3.11 FLORIS and GNN power curves for a wind farm with 100 turbines
where the GNN was only trained on wind farms with 2 to 10 turbines 36

3.12 Wind farm power output computed using FLORIS and our GNN as
optimization progresses for the 2 turbine case 37

3.13 Upwind yaw angle as optimization progresses for the 2 turbine case . 38
3.14 Power curves for optimal yaw configurations as computed by the greedy

method, YawGNN, and FLORIS . 39
3.15 Wind farm graphs with turbines yawed to the greedy yaws and

YawGNN optimal yaws for the same 5 turbine example from Fig-
ure 3.14 with wind coming from 126◦. In (b), note the decrease in
power (lighter color) relative to (a) for the upwind turbine and increase
in power (darker color) relative to (a) for the downwind turbines. . . 40

3.16 Average percent increase in power relative to greedy for optimal yaws
computed using FLORIS and YawGNN as number of turbines increase 41

3.17 Average runtime for FLORIS and YawGNN yaw optimization as num-
ber of turbines increase . 41

3.18 Average percent increase in power relative to greedy for optimal yaws
computed using YawGNN for farms with up to 100 turbines 42

x

3.19 Yaw optimization runtimes for FLORIS and YawGNN for farms with
up to 100 turbines . 43

3.20 Yaw optimization runtimes for only YawGNN for farms with up to 100
turbines; the sharp drop in runtime at 50 turbines is due to an increase
in the farm area to accommodate more turbines, which reduces the
number of edges in subsequent examples 43

3.21 Percent increase in power relative to greedy for YawGNN and FLORIS
real-time control algorithms for different wind direction frequencies
and farm sizes . 44

3.22 Increase in power in kilowatts relative to greedy for YawGNN and
FLORIS real-time control algorithms for different wind direction fre-
quencies and farm sizes . 45

3.23 Power curves for 5 turbine farm under greedy, FLORIS, and YawGNN
real-time control for wind directions from 100◦ to 160◦ at three different
rates of change . 45

3.24 Power curves for 10 turbine farm under greedy, FLORIS, and YawGNN
real-time control for wind directions from 170◦ to 230◦ at three different
rates of change . 46

3.25 Power curves for 15 turbine farm under greedy, FLORIS, and YawGNN
real-time control for wind directions from 60◦ to 120◦ at three different
rates of change . 46

3.26 Power curves for 20 turbine farm under greedy, FLORIS, and YawGNN
real-time control for wind directions from 130◦ to 190◦ at three different
rates of change . 46

xi

List of Tables

3.1 Average YawGNN power estimation percent error relative to FLORIS;
”Average” column gives the average percent error over all farm sizes;
”In Dist.” column gives the average percent error for farms of 10
turbines or less; ”Out of Dist.” column gives the average percent error
for farms with greater than 10 turbines 32

3.2 Number of additional houses powered per year by YawGNN control
under assumption that selected 60 degree ranges are representative of
10% of yearly wind conditions and remaining 90% are greedy-optimal 47

3.3 Number of additional houses powered per year by FLORIS control
under assumption that selected 60 degree ranges are representative of
10% of yearly wind conditions and remaining 90% are greedy-optimal 47

xii

Chapter 1

Introduction

1.1 Background

1.1.1 Climate Change and Renewable Energy

According to the Intergovernmental Panel on Climate Change (IPCC), if current

warming trends continue, then we will likely reach global warming of 1.5°C above pre-

industrial levels sometime between 2030 and 2052. Beyond just increases in average

temperature, this level of warming could also result in greater occurrences of extreme

heat waves, extreme rainfall, and extreme drought, which could have devastating

effects on human health, national security, and the global economy. Effects from

reaching global warming of 2°C are even more severe. In order to prevent surpassing

1.5°C of warming, global CO2 emissions must decrease by around 45% from 2010

levels by 2030 and reach net zero around 2050. In all viable paths to reaching this

goal, the portion of energy generated by renewable energy sources must increase to

around 60% by 2050 [34].

While the share of renewable energy is growing quickly, there is still a long way

to go to reach these goals. In 2016, the global share of renewable energy was 24%. In

2018, 17% of the United States’ energy was generated from renewable sources. Wind

energy makes up a large portion - 6.6% in the US and 5% globally in 2018 [12].

Wind energy is also growing rapidly, with global wind power capacity growing

from 591 GW in 2018 to 743 GW in 2020, but, according to the Global Wind Energy

1

CHAPTER 1. INTRODUCTION

Figure 1.1: Laurel Mountain Wind Farm in West Virginia. If the wind flows over
the ridge (the blue arrow in the image), then the turbines will yaw to align with the
wind to generate maximum power. If instead the wind flows along the ridge (the red
arrow in the image), then yawing to align with the wind causes the turbines to form a
column, resulting in wake interactions that reduce power greatly. Source: John Terry

2

CHAPTER 1. INTRODUCTION

Figure 1.2: Two turbines in serial configuration relative to the wind, or aligned in a
column, with wakes shown

Council, wind power capacity needs to be growing three times faster between now

and 2030 in order to reach net zero emissions by 2050 [8]. However, installing new

turbines is not the only way to increase the energy we receive from wind power. This

work is concerned with how to maximize the power output of the wind farms we

already have.

1.1.2 Wind Farm Modeling and Control

Wind farms are usually controlled by pointing every turbine in the direction of the

incident wind, which is defined as the steady state wind direction for the wind that is

flowing into, or is incident on, the wind farm. See Figure 1.1. This maximizes the

effective rotor area, but it is also a greedy and sometimes suboptimal solution. This

is because wind turbines interact with each other via their wakes. For example, if two

turbines are in a serial configuration relative to the wind, or one behind the other as

in Figure 1.2, then the wake of the upwind turbine acts to slow down the wind for

the downwind turbine [28]. This is a large problem as the power generated by a wind

turbine is proportional to the cube of the wind speed. On one offshore wind farm,

these kinds of wake losses reduced energy production by around 20%. Wake losses

also increase the variability of power output and, thus, the need for energy storage

and less variable energy production methods like fossil fuels. Spacing turbines far

enough apart to eliminate wake losses entirely would increase cost prohibitively, so

this problem must be managed via more sophisticated control [18].

In order to do more sophisticated control, we must model wind farm wake

interactions. Common approaches to modeling wind farms include high-fidelity,

finite-element and finite-volume computational fluid dynamics (CFD) simulations,

analytical wake models like the Jensen model [19], and parametric models like FLORIS

3

CHAPTER 1. INTRODUCTION

Figure 1.3: A comparison between greedy and wake steering control of wind farms.
With greedy control, all turbines yaw to align with the incident wind. In wake steering
control, upwind turbines misalign their yaws from the incident wind in order to deflect
their wakes away from downwind turbines.

[27] that are built from a variety of analytical wake models. While CFD enables

highly accurate forward simulation, it is not ideal for model-based control because

it is computationally expensive and not easily amenable to differentiation - one can

take finite differences, but this very quickly becomes computationally prohibitive as

well. Analytical and parametric wake models have been used to study wake steering

control, which is the idea that you can increase a farm’s overall power output by

intentionally misaligning the yaws of upwind turbines in order to deflect their wakes

away from downwind turbines. See Figure 1.3. However, most work thus far has

focused on simple serial farm configurations with very complex analytical models

in order to maintain differentiability [18]. FLORIS has been used to find optimal

yaw configurations for simulated farms with hundreds of turbines, but the runtime is

quadratic in the number of turbines, which prevents real-time control for large farms

or quickly changing wind conditions. In addition, anayltical models and FLORIS are

unable to capture some important real-world aerodynamic effects like speed-up and

blockage [7]. Thus, there is a need for a lightweight, differentiable forward-dynamics

model, and recent advances in the fields of robotics and machine learning enable us

to both build such a model and leverage it for real-time control.

1.1.3 Machine Learning and Optimization

Currently in robotics and machine learning, control policies for complex systems

are commonly derived by defining an optimization problem with a cost function

and policy parameters, and then using some variation of gradient descent to search

4

CHAPTER 1. INTRODUCTION

the state space for the optimal policy parameters. Over the last decade, neural

networks in particular have become extremely popular as models for complex systems

in part due to their suitability to automatic differentiation [5], which enables efficient

training and optimization with respect to policy parameters. Meanwhile, advances in

computing hardware have enabled the use of large quantities of data for training.

In this work, we focus specifically on graph neural networks (GNNs), which are

a class of neural networks that are specialized to operate on graph-structured data.

For example, we can represent a wind farm as a graph with turbines as nodes and

wake interactions as edges as shown in Figure 1.4. Then, our GNN model would

consist of multiple individual traditional neural networks, or multi-layer perceptrons

(MLPs), that take as input the node, edge, and global features of the graph separately

and in sequence rather than as one large feature vector. Computation in a GNN

is shown graphically in Figure 1.6 and covered in more detail in Chapter 2. By

posing our learning problem in this way, we encode relational inductive biases into

the architecture [3], which allow us to learn to reason about how a wind turbine

interacts with other wind turbines in general as opposed to how, for example, a wind

farm with five turbines operates. Put slightly differently, a GNN does not treat each

turbine as if its behavior is unique and attempt to learn the physics of how every

single turbine interacts with every single other turbine. Instead it uses data from

every wind turbine to learn a model of the physics of a wind turbine in general and

applies this knowledge across the farm. This also enables combinatorial generalization

- since a single GNN can operate on different graph sizes, we can use a wind farm

trained on wind farms of relatively small size to infer on wind farms with larger

numbers of turbines. Another benefit of graph computation is that it is decentralized.

The graph representation captures the natural sparsity present in wind farm systems

as shown in Figure 1.5, resulting in an increase in computational efficiency because

computation is only done between turbines that interact.

Graph neural networks have been applied to wind farms before, but focused

mainly on power estimation by approximating the Reynolds-Averaged Navier-Stokes

equations [6] or FLORIS [31]. To the author’s knowledge, graph neural networks

have never been applied to wind farms for the purpose of yaw optimization for wake

steering control.

5

CHAPTER 1. INTRODUCTION

Figure 1.4: Wind farm graph with turbines as nodes and wake interactions as edges

Figure 1.5: Wind farm graph for a sparse wind farm system. The clusters of turbines
and interactions between clusters are captured by the edges of the graph.

6

CHAPTER 1. INTRODUCTION

(a) Update the edge features by passing them through the edge MLP

(b) Aggregate updated edge features at nodes, typically via a mean or sum

(c) Update the node features by passing the node features and aggregated edge features
through the node MLPs

(d) Aggregate updated node features globally, typically via a mean or sum

(e) Update the global features by the passing the global features and aggregated node features
through the global MLP

(f) Summary of previous steps - a GNN uses message passing along edges and node and global
aggregations to update the graph’s edge, node, and global features

Figure 1.6: Computation in a message passing graph neural network with edge, node,
and global multi-layer perceptrons (MLPs)

7

CHAPTER 1. INTRODUCTION

1.2 Related Work

1.2.1 Wind Farm Control

Pao and Johnson summarize the dynamics and control of wind farms in [28]. Wind

farms have three controllable parameters - yaw, blade pitch, and generator torque.

Due to gyroscopic forces, wind turbines typically do not yaw faster than 1 degree per

second. As a result, yaw controllers are typically simple and do not receive much

research interest. Blade pitch and generator torque are able to operate on much

higher frequencies and are the primary actuators in traditional wind farm control.

Blade pitch rates range from between 18 degrees per second for smaller turbines to 8

degrees per second for larger turbines, while generator torque has a time constant on

the order of ten times the speed of the rotor.

Wind farm control is divided into three regimes depending on the wind speed. For

low wind speeds, called Region 1, the turbine is not run at all because the losses in the

system are high relative to the power that could be extracted. For high wind speeds,

called Region 3, the power extracted from the wind is kept constant by holding the

torque constant. This is to prevent surpassing limits on electrical and mechanical

loads. For speeds in between, Region 2, the wind turbine attempts to maximize its

power by varying the blade pitch to track an optimal ratio between the speed of the

blade tips and the wind speed, or tip-speed ratio. The exact wind speeds separating

Regions 1, 2, and 3 depend on the turbine in question [28].

In [21], the National Renewable Energy Laboratory (NREL) details the specifica-

tions of a theoretical 5-MW wind turbine that is representative of various industry

wind turbines called the “NREL offshore 5-MW baseline wind turbine.” This turbine

was developed for use as a reference in studies in wind farm modeling, design, control,

and evaluation and is used in all of the experiments in this work. It has a nominal

yaw rate of 0.3 degrees per second. Region 1 is defined as wind speeds less than 3

meters per second, and Region 3 is defined as wind speeds greater than 11.5 meters

per second.

8

CHAPTER 1. INTRODUCTION

1.2.2 Wind Farm Modeling

There are three primary modeling paradigms for wind farms - analytic wake models,

high-fidelity computational fluid dynamics (CFD) simulations, and parametric wake

models. Analytic wake models are derived from first principles and describe various

aspects of the wakes generated by turbines. Analytic wake models include the Jensen

model [19], the Jiménez model [20], the multizone model [14], the Gaussian model

[26], and the curled model [25]. Analytic models are naturally limited in their ability

to fully describe wake interactions between wind turbines, but are appealing for their

speed. Developing new analytic wake models is still a very active area of research.

High-fidelity CFD simulations such as SOWFA [10][11] are the industry standard

for modeling wind farms, but require supercomputers and multiple days to run, which

makes them unsuited for use in control and optimization.

FLORIS (FLOw Redirection and Induction in Steady-state) [27][13] is a parametric

wake model that implements the aforementioned analytic wake models in a toolbox

for the purpose of studying wind farm design and control. These wake models are

then parameterized using 15 parameters estimated using turbine power production

data describing the turbine power, wake deflection, wake expansion, and wake velocity.

While FLORIS ultimately has similar concerns with generalization to the real world

as analytic wake models, its combination of first principles methods and data makes

it appealing for studying wake steering control.

1.2.3 Wake Steering Control

The development of FLORIS and new analytic wake models, along with the fact that

larger wind turbines have become more common and suffer more severely from wake

interaction losses, have led to an increased amount of interest in wake steering control

[18].

Park and Law solve the cooperative control problem by using a Bayesian Ascent

algorithm to maximize an analytic wind farm power function [30]. This method is

able to increase power monotonically with each iteration. To deal with the increase

in computational complexity as the number of turbines in the farm increases, [30]

exploits the natural sparsity in wind farm systems by grouping turbines into clusters

based on their level of interaction and solves multiple problems in parallel. This

9

CHAPTER 1. INTRODUCTION

method is limited by its use of a purely analytic power function. In addition, while

the notion of exploiting sparsity is valuable, clustering turbines inevitably omits

important interactions between clusters as the farm layout becomes more complex

than just a grid.

Howland et. al. develop a wake steering control method that maximizes an

analytic power function using gradient ascent and demonstrates it on a wind farm in

Alberta, Canada [18]. Applying this wake steering control increased power for wind

directions with increased wake losses by between 7% and 13% for average wind speeds

and as much as 47% for low wind speeds. It also reduced the standard deviation

of the power production in these detrimental wind directions by as much as 72%.

This method is limited by its reliance on historical data for the optimization process,

making it too site-specific for use as a general tool. While most methods have not

been demonstrated on operational wind farms, it is important to note this wind farm

consisted of only 6 turbines aligned in a column.

Gebraad et. al. [13] use an early version of FLORIS based on the Jensen [19]

and Jiménez [20] wake models as the internal model in a wind farm controller. It

uses a model-based variation of a model-free, game theoretic optimization approach

introduced in [24] to compute optimal yaw configurations and uses SOWFA to validate

that the resulting yaws increase power production for the farm as well as reduce load

on the turbines.

Bay et. al. [4] extend the results from [13] by adding the curled wake model

[25] to FLORIS and demonstrating that optimal yaws found using FLORIS with the

curled wake model result in larger increases in power production than yaws found

using previous wake models such as FLORIS with the Gaussian wake model [26].

The yaws found using this method also differ qualitatively from previous methods,

decreasing in magnitude as you move downstream. The major limitation of this

method is that the optimization algorithm used, sequential least squares quadratic

programming (SLSQP), is quadratic in time complexity. For farms with 100 turbines,

computing an optimal yaw configuration can take on the order of an hour, which

greatly reduces the method’s applicability to real-time wind farm operations where

the wind can change direction in minutes.

10

CHAPTER 1. INTRODUCTION

1.2.4 Graph Neural Networks

Battaglia et. al. [3] review the development of graph neural networks (GNNs) and

argue that combinatorial generalization, or the ability for a model to generalize

to unseen combinations of seen elements, which GNNs are well suited for, should

be a key focus of future research. GNNs were first introduced in [32] and are a

class of neural networks that are specialized to learn relationships and perform

computations over graph-structured data by incorporating relational inductive biases

into the architecture of the model. An inductive bias is a set of assumptions that

cause a learning algorithm to favor some solutions over others using some outside

knowledge not found in the data. A relational inductive bias, then, is an inductive

bias that causes a learning process to enforce, rather than infer, relationships between

discrete entities. While convolutional and recurrent neural network layers both encode

relational inductive biases, the relational inductive bias encoded by graphs are much

stronger [3].

GNNs enforce relational inductive biases in three primary ways [3].

1. Since GNNs take graphs as input, the input rather than the architecture

determines whether or not two entities interact.

2. Graphs are represented as sets of nodes, edges, and global features, and since

sets are invariant to permutations, so, too, are GNNs.

3. Since a GNN’s per-edge and per-node functions are applied to all nodes and

edges in the same way, GNNs are predisposed to combinatorial generalization

GNNs’ aptitude for combinatorial generalization has become well-supported in

the literature. Battaglia et. al. [2] showed that GNNs trained to make one-step

predictions for complicated systems such as n-body problems, rigid-body collisions,

and non-rigid dynamics are able to accurately simulate thousands of steps into the

future, as well as generalize to systems with different numbers and layouts of entities

with no additional training. Hamrick et. al. [16] showed that a GNN trained using

reinforcement learning to glue blocks together to stabilize a tower could generalize

to unseen numbers of blocks. Wang et. al. [35] used a GNN to match state-of-

the-art performance in MuJoCo environments and demonstrate significantly more

generalizable policies than other state-of-the-art methods.

Additionally, GNNs trained to approximate particle-based fluid representations

11

CHAPTER 1. INTRODUCTION

have shown the ability to transfer to the modeling and manipulation of real fluids.

Schenck and Fox [33] developed Smooth Particle Networks (SPNets) - a fully differen-

tiable fluid dynamics framework which enables efficient forward dynamics simulation

of physical interactions among particles. The trained model is then used in trajectory

optimization to control and manipulate fluids. Li et. al. [22] similarly have developed

Dynamic Particle Interaction Networks (DPI-Nets) to model and manipulate rigid

bodies and deformable solids in addition to fluids.

1.2.5 Wind Farm Graph Neural Networks

This work is a direct extension of Physics-induced graph neural networks (PGNNs)

[31], which addresses the limitations of the aforementioned wind farm modeling

approaches by training a message passing GNN [15] to approximate the FLORIS

model for arbitrary turbine layouts and wind conditions. Wind farms are represented

as graphs with wind turbines as nodes and interactions between turbines as edges.

A key contribution is the use of an analytic wake model parameterized by the edge

features of the graph (the downstream and radial distances between turbines that

share an edge) [29] as a weighting function for the edge features during the edge

update portion of the GNN’s computation. This ”physics-induced bias” is comparable

in function to attention. It is shown that the version of the model including the

physics-induced bias outperforms a model with a purely data-driven edge weighting

function in estimating the power produced by unseen wind farm configurations with

size both in and out of the training distribution. The trained model is then used as a

differentiable surrogate wake model for optimizing wind farm layouts. However, wind

turbine yaw and wake deflections are not modeled, so PGNN is unable to be used for

wake steering control.

Bleeg [6] also demonstrates GNNs being used to model wind farm wake interactions.

However, in this work the GNN is trained to approximate the Reynolds-Averaged

Navier-Stokes (RANS) model (a high-fidelity flow model) rather than FLORIS in

order to model more complicated aerodynamic effects like blockage [7] more efficiently

than typical high-fidelity approaches. The trained GNN achieves good agreement

with RANS, but extensions to be able to optimize wind farm layouts or yaws for

maximum power production were left to future work.

12

CHAPTER 1. INTRODUCTION

1.3 Research Question

This work aims to answer four primary questions:

1. Can we use a GNN to approximate the FLORIS wake modeling util-

ity for arbitrary turbine layout, turbine yaws, wind direction, and

wind speed?

Park and Park showed that a GNN can approximate the FLORIS wake modeling

utility for arbitrary turbine layout, wind direction, and wind speed in [31]. The

ability to additionally model yaw is essential to doing control.

2. Can a trained wind farm GNN be used to compute optimal yaw con-

figurations more efficiently than FLORIS without sacrificing solution

quality?

3. How well is a trained wind farm GNN able to generalize to farms

of larger size than it was trained on - both in power estimation and

yaw optimization?

4. How well does a trained wind farm GNN perform when used as the

model in a model predictive controller for real-time wake steering

control of wind farms?

Additionally, are there farm sizes (in number of turbines) or wind direction

rates of change where YawGNN is able to be used for real-time control but

FLORIS is not? Does YawGNN outperform FLORIS in cases where both are

usable for real-time control?

13

CHAPTER 1. INTRODUCTION

14

Chapter 2

Methods

2.1 Data

To train our GNN, which we call YawGNN, we use synthetic data generated by

randomly sampling wind farm configurations (number of turbines, turbine positions,

and turbine yaws) and wind conditions (speed and direction). The number of

turbines, turbine positions, wind speed, and wind direction are all sampled from

uniform distributions. Yaws are sampled from a normal distribution centered at 0

with a standard deviation of 20.

These parameters are then used to generate a wind farm graph (as pictured in

Figure 1.4) using the graph data structure from the Deep Graph Library [9], which is

an open source, framework agnostic library for building graph neural networks. Each

node in the graph represents a turbine. Edges are directed, and determining whether

or not two turbines share an edge for a given wind direction and yaw angle is done

by computing if the downwind turbine lies in the ”influential region” of the upwind

turbine as defined by a threshold distance and threshold angle. We use the same

thresholds as [31], which are conservative - a distance of 6300 meters and an angle of

90 degrees.

At each node in the graph, we store the wind speed, the wind direction, the x-y

position of the turbine, the x-y position of the turbine rotated to align with the wind

direction, the yaw angle of the turbine in radians, and the power of the turbine as

computed using FLORIS and normalized by the power produced by a single-turbine

15

CHAPTER 2. METHODS

Figure 2.1: The downstream and radial distances between turbines are the key edge
features in YawGNN. Also pictured are the distance and angle between turbines,
which determine whether or not they share an edge.

wind farm at that wind speed. The maximum power produced by a turbine, then, is

1, and the maximum total power produced by a wind farm is equal to the number of

turbines in the farm. We use the default settings for FLORIS for the NREL 5MW

reference turbine [21].

At each edge in the graph, we store the x-y positions of the source and destination

turbines and the x and y distances between the source and destination turbines, both

in the world frame and in the wind direction-aligned frame. The x and y distances

in the wind direction-aligned frame are referred to as the downstream and radial

distances and are shown in Figure 2.1.

Finally, we also store some global information in the graph, namely the wind

speed and wind direction.

2.2 Graph Neural Network Architecture

To investigate our research questions, we build off of the Physics-Induced Graph

Neural Network (PGNN) defined in [31]. The original PGNN does not incorporate

yaw, which is necessary for control. We can incorporate yaw in our model by including

it as one of the node features. However, to properly include the physics-induced bias

16

CHAPTER 2. METHODS

Figure 2.2: Graph neural network architecture

we would need to formulate a new weight function that computes the wake deficit

factor as a function of downstream distance, radial distance, and yaw. As such, we

omit the physics-induced bias and use a purely data-driven model.

Our model (outlined in Figure 2.2) is implemented using PyTorch, with the

PyTorch Geometric MetaLayer class forming the basis of our graph layers. The input

to the model is the aforementioned wind farm graph, specifically a subset of the node,

edge, and global features stored in the data structure.

Referring to Figure 2.2, the input is first passed through the GNN portion of the

model (three graph layers are pictured, but we tested with up to five). Each graph

layer consists of an edge MLP, two node MLPs (one for aggregated incoming edge

features and one for aggregated outgoing edge features), and a global MLP, each with

a single hidden layer with 256 hidden units and Leaky ReLU activation. There are

residual connections between all graph layers except for between the first and second

layers. Compared to PGNN, our model is simpler as it has only a single hidden layer

in its GNN MLPs rather than three.

Computation in each graph layer proceeds as in Algorithm 1. Note that the node

update is implemented in PyTorch Geometric using a scatter mean. Computation in

each graph layer is summarized as follows:

1. Pass edge features through edge MLP

2. Aggregate updated edge features at nodes

17

CHAPTER 2. METHODS

3. Pass node features and aggregated updated edge features through node MLPs

4. Aggregate updated node features globally

5. Pass global features and aggregated updated node features through global MLP

6. Return updated edge, node, and global features

These steps are analogous to computation in an analytical wake model. Updating

the edge features is analogous to computing the wake deficit factor between each pair

of interacting turbines. Updating the node features is analogous to computing the

average wind speed at each turbine. Finally, updating the global feature is analogous

to computing the steady state wind speed for the farm.

Again referring to Figure 2.2, the final block of our model is just another MLP.

We use three hidden layers with 256, 256, and 128 hidden units and ReLU activation.

The MLP is implemented such that the input to the first layer is of size equal to

the number of node features (as opposed to the number of node features times the

number of turbines). This is so that the model will be agnostic to the number of

turbines in the wind farm and can be used for combinatorial generalization. Applying

the final MLP weights on the wind farm graph is analogous to computing the power

as a function of average wind speed in an analytical wake model. Finally, the output

of the model is the estimated average, normalized power at each turbine.

For the node features, we use wind speed and yaw angle in radians. For the edge

features, we use the x and y distances between the source and destination turbines

and the downstream and radial distances between the source and destination turbines.

The downstream and radial distances are key as they implicitly encode the wind

direction for the farm. There is no need to explicitly encode the wind direction,

because changing the wind direction can be thought of as equivalent to changing the

layout of the wind farm in this representation. For the global feature, we use just the

steady state wind speed. We divide the distance features by 1000 so that all features

are of a similar magnitude.

2.3 Training and Evaluation

To train our GNN, we formulate our training objective as a supervised node regression

problem. Our loss function is the sum of mean squared error (MSE) between the

18

CHAPTER 2. METHODS

Algorithm 1 Graph Neural Network Layer Computation

input initial wind farm graph G
set of edge features E
set of node features N
set of global features g
edge indices U
node indices I
incoming edge indices for node i Riin

outgoing edge indices for node i Riout

edge MLP MLPE
incoming edge node MLP MLPNin

outgoing edge node MLP MLPNout

global MLP MLPg
edge aggregating function fe
node aggregating function fn

output updated wind farm graph G ′
for (i, j) in U do

e′ij ←MLPE(eij, ni, nj, g)

end
for i in I do
E ′i ← eji ∀j ∈ Riin

e′i ← fe(E ′i)
n′i ←MLPNin

(ni, e
′
i)

E ′′i ← eij ∀j ∈ Riout

e′′i ← fe(E ′′i)
n′′i ←MLPNout(n

′
i, e
′′
i , g)

end
E ′′ ← e′′ij ∀(i, j) ∈ U
N ′′ ← n′′i ∀i ∈ I
n′′ ← fn(N ′′)
g′ ←MLPg(n

′′, g)
G ′ ← (N ′′, E ′′, g′)

19

CHAPTER 2. METHODS

predicted powers output by our model and the powers stored in the node data of

our example graphs. To solve the optimization problem, we use AdamP [17], a

variation of the popular Adam algorithm that prevents gradient step sizes from

decaying prematurely. We choose an arbitrary batch size of 32 and generate 32 new

example wind farm graphs for every gradient step. We are able to do this because

randomly sampling wind farm layouts and estimating their powers using FLORIS is

very inexpensive for small farms (less than one tenth of a second for a farm with 10

turbines).

We experimented with many different values for hyperparameters and settled

on 5000 gradient steps, five GNN layers, an initial learning rate of 0.001, no L2

regularization, and a Cosine Annealing learning rate scheduler [23]. These models are

all fairly lightweight - all were trained on a Thinkpad P50 laptop and it only took a

few hours to complete 5000 gradient steps.

To evaluate our model during training, we generate validation and test datasets

with 200 examples each prior to runtime and record the MSE losses for the power

predictions from our model. We also evaluate performance qualitatively by visually

comparing the estimated powers computed by our model to those computed by

FLORIS for a given wind farm example over the full range of wind directions.

2.4 Power Estimation with Random Yaw

Configurations

To answer our first research question, we begin by training our model on small

numbers of turbines (first two, then five) where the farm layout is the same in every

example. Once we are able to accurately estimate powers for fixed farm layouts and

random wind speeds, wind directions, and turbine yaws, we move to the case where

the farm layout differs in every example. Then, we compare our model’s performance

on power estimation to FLORIS in both accuracy and runtime. Finally, in order to

evaluate the effect of modeling varying yaw on the accuracy of the model for power

estimation, we compare our model’s power estimation accuracy to that of a model

trained only on examples where all yaws were 0 degrees relative to the wind direction.

20

CHAPTER 2. METHODS

Algorithm 2 YawGNN Yaw Optimization via Gradient Descent

input initial turbine yaw ψi ∀i ∈ I
initial wind farm graph G
node indices I
node features N
number of updates T
step size η

output updated turbine yaw ψi ∀i ∈ I
for t← 1 to T do
P ← Y awGNN(G)
δP
δψ

= autograd(P ,N)ψ

for i in I do
ψi ← ψi + η δP

δψi

end
G ← Assign the updated yaws ψi ∀i ∈ I

end

2.5 Yaw Optimization

To answer our second research question, we take a similar approach - first testing

how well models trained on only a single wind farm layout are able to compute

optimal yaw configurations, then expanding to optimize yaw configurations for models

trained on random wind farm layouts. Our yaw optimization algorithm, shown

in Algorithm 2, performs 250 steps of gradient descent using PyTorch’s built-in

automatic differentiation feature to compute the gradient of the network output

(power) with respect to the yaw features. Four different initial conditions are tested

- all zero yaws (the greedy solution), the optimal yaws computed using FLORIS,

random yaws sampled from a normal distribution centered at zero, and yaws ±20

degrees away from zero. We evaluate our solutions against FLORIS’s built-in yaw

optimization tool, which utilizes Sequential Least Squares Quadratic Programming

(SLSQP) with an iteration limit of 50.

21

CHAPTER 2. METHODS

2.6 Combinatorial Generalization

To answer our third research question, we evaluate how well models trained on

examples with between 2 and 10 turbines are able to predict the power output and

compute optimal yaw configurations for wind farms with up to 100 turbines. An

important variable is the farm length and width, or the grid size. If the grid size is

too small, then more wind farms will be crammed into the same area and the overall

power output will drop. There are two approaches to making sure the trained model

is able to generalize to these cases. First, we can make the assumption that the

density of turbines in a real farm will be roughly constant regardless of the number

of turbines and evaluate the combinatorial generalization performance of our model

only on cases that are physically realistic. Alternatively, we can include the grid size

(or some other feature describing the grid size, such as the aforementioned farm area

and turbine density features) as a feature in the model and vary the grid size in the

training data. We take the former approach and leave the latter to future work.

2.7 Real-Time Control

Finally, to answer our fourth research question, we evaluate how well our model

performs compared to FLORIS when each is used as the model in a model predictive

controller for real-time, wake steering control of wind farms. We also compare the

two model predictive controllers to the greedy control method. We simulate real-time

control in two parts for a wind farm where the wind direction is changing 60 degrees

at a given rate.

In the first part, we compute the target yaws. We compute the optimal yaw

configuration for the current wind direction using the given model (YawGNN or

FLORIS) and record the resulting yaws and the runtime of the optimization. Then,

we advance the wind direction by the amount it would have changed during the

runtime of the optimization and compute the optimal yaw configuration for the new

wind direction, repeating this process until the wind direction has finished its 60

degrees of change. Target yaws for the greedy controller are simply 0 degrees (relative

to the wind direction).

In the second part, we simulate the control of the wind farm using the previously

22

CHAPTER 2. METHODS

computed target yaws as the wind direction changes 60 degrees at the given rate with

a step size of 1 second. The wind farm is given the next target yaw at the time step

corresponding to when it was finished being computed during the first part. Control

commands are computed as the difference between the target yaw configuration and

the current yaw configuration. Each wind turbine is able to yaw a maximum of 0.3

degrees per second [21]. At the end of the simulation, we compute the power total

power produced by each control method and the change in power relative to greedy

control for YawGNN and FLORIS.

We experiment with four different farm sizes (5, 10, 15, and 20 turbines) and five

different rates of change for the wind direction (1, 2, 3, 4, and 5 degrees per minute).

The rates of change were chosen based on operational wind farm data [1] with datasets

from multiple different days. We computed the average 10 minute change in wind

direction for each dataset, and then computed the minimum, average, and maximum

average 10 minute change in wind direction as 0.5, 7, and 14 degrees per minute,

respectively. However, our initial experiments showed that neither YawGNN nor

FLORIS were able to improve power for rates of change above 5 degrees per minute for

any of the chosen farm sizes, so we limited our final experiments to the aforementioned

subset.

Figure 2.3 shows the wind farm graphs of the farms used in the experiments, and

Figure 2.4 shows the power curves for the 60 degree wind direction ranges used in the

experiments. We chose these ranges due to their high variability and local minima,

which would both pose a difficult control problem and increase the chance of wake

steering control yielding improvement over the greedy solution.

23

CHAPTER 2. METHODS

(a) Layout of 5 turbine farm with turbines yawed
to align with wind from 130 degrees

(b) Layout of 10 turbine farm with turbines yawed
to align with wind from 200 degrees

(c) Layout of 15 turbine farm with turbines yawed
to align with wind from 90 degrees

(d) Layout of 20 turbine farm with turbines yawed
to align with wind from 160 degrees

Figure 2.3: Wind farm graphs with normalized powers for farms used in real-time
control experiments yawed to the middle of their respective wind direction ranges as
used in the experiments. Circles are turbines with arrows pointing in the direction
they’re facing, edges are between turbines that within a threshold angle and distance
defining wake interaction, and the colors of the circles range from white for zero power
to dark blue for full power.

24

CHAPTER 2. METHODS

(a) Normalized power for 5 turbine farm as wind
direction varies between 100 and 160 degrees

(b) Normalized power for 10 turbine farm as wind
direction varies between 170 and 230 degrees

(c) Normalized power for 15 turbine farm as wind
direction varies between 60 and 120 degrees

(d) Normalized power for 20 turbine farm as wind
direction varies between 130 and 190 degrees

Figure 2.4: Normalized power versus wind direction for greedy control for the 60
degree ranges used in the real-time control experiments

25

CHAPTER 2. METHODS

26

Chapter 3

Results

3.1 Power Estimation

3.1.1 Power Estimation with Varying Yaw

First, we demonstrate power estimation for the simplest case - two turbines in series

with constant wind conditions where only the yaw of the upwind turbine varies as

shown in Figure 3.1. Figure 3.2 shows that our model is able to match FLORIS

nearly exactly and, more importantly for our purposes, that the yaw that maximizes

the farm’s power output is not zero, but rather a yaw in which the upwind turbine

deflects its wake away from the downwind turbine.

Next, we test our model’s ability to estimate power output when trained on a

Figure 3.1: Toy example for power estimation and yaw optimization where the incident
wind direction is fixed and only the yaw of the upwind turbine varies

27

CHAPTER 3. RESULTS

Figure 3.2: FLORIS and YawGNN power curves for a 2 turbine wind farm in 0°, 8
m/s wind as upwind yaw varies between ±45◦

slightly more complicated case, shown in Figure 3.3 - five wind turbines with constant

layout and varying wind direction and speed. As shown in Figure 3.4, the GNN is

able to accurately estimate the power output of the farm across the full range of wind

directions.

Finally, we use our model to estimate power output in the general case - five

wind turbines with random layout, yaws, wind direction, and wind speed. Figure 3.5

demonstrates that our model is able to approximate FLORIS nearly as well as in the

toy examples, with some slight disagreement in high frequency regions. Importantly,

the trends remain the same between the two models even where the power predictions

disagree.

To quantitatively evaluate the impact of varying turbine yaws on our model’s

power estimation performance, we estimate the power for wind farms with between 5

and 100 turbines (100 randomly sampled examples for each increment of 5 turbines)

using a GNN trained on examples with between 2 and 10 turbines. Then, we compute

the percent error of our model’s prediction relative to the FLORIS prediction. We

perform this process for a model trained on examples where the yaw was random

and for a model trained on examples where the yaw was fixed. For each model, we

28

CHAPTER 3. RESULTS

Figure 3.3: Toy example for power estimation where the yaw is fixed and the incident
wind direction varies between 0 and 360 degrees

29

CHAPTER 3. RESULTS

Figure 3.4: FLORIS and YawGNN power curves for a 5 turbine wind farm with
varying wind direction

30

CHAPTER 3. RESULTS

Figure 3.5: FLORIS and YawGNN power curves for a randomly sampled 5 turbine
wind farm with varying wind direction

31

CHAPTER 3. RESULTS

Average Power Estimation Percent Error
Train on Yaw? Test on Yaw? Average In Dist. Out of Dist.
Yes Yes 1.35 1.44 1.34
Yes No 1.23 0.61 1.30
No Yes 11.71 10.96 11.79
No No 2.19 0.24 2.40

Table 3.1: Average YawGNN power estimation percent error relative to FLORIS;
”Average” column gives the average percent error over all farm sizes;
”In Dist.” column gives the average percent error for farms of 10 turbines or less;
”Out of Dist.” column gives the average percent error for farms with greater than 10
turbines

evaluate its performance on examples where the yaw is random and on examples

where the yaw is fixed. Results are shown in Table 3.1.

As expected, the model not trained on examples with misaligned yaws performs

terribly when it is shown examples with misaligned yaws, having an overall average

percent error of 11.71%. Interestingly, the model trained on random yaws and

evaluated on random yaws has roughly the same performance whether examples

are in distribution (10 turbines or fewer) or out of distribution (greater than 10

turbines) with percent errors relative to FLORIS of 1.44% and 1.34%, respectively.

The model trained on fixed yaws and evaluated on fixed yaws has significantly better

in distribution performance and significantly worse out of distribution performance

relative to the model trained on random yaws and evaluated on random yaws, with

percent errors relative to FLORIS of 0.24% and 2.40%, respectively. The model

trained on random yaws and evaluated on fixed yaws has better in distribution

performance, 0.61%, and roughly the same out of distribution performance, 1.30%,

as the same model evaluated on random yaws.

3.1.2 Comparison to FLORIS

To more directly compare the power estimation performance of our model to FLORIS,

we train a GNN on wind farms with between 2 and 10 turbines with random turbine

layouts, turbine yaws, and wind directions. Then, we randomly sample wind farms

with between 5 and 100 turbines (100 examples for each increment of 5 turbines),

use FLORIS and YawGNN to estimate the power of each wind farm, and record the

32

CHAPTER 3. RESULTS

Figure 3.6: FLORIS and GNN power estimates for randomly sampled wind farms as
the number of turbines increases

respective power estimates and runtimes. Figure 3.6 shows that our GNN power

estimates track well with the FLORIS estimate all the way up to 100 turbines even

though the model had never seen a wind farm with more than 10 turbines. Looking

more closely, Figure 3.7 shows that the average error in normalized power between the

YawGNN prediction and the FLORIS prediction stabilizes around 1 turbine equivalent.

Figure 3.8 shows the average percent error between the YawGNN prediction and

the FLORIS prediction. The average percent error in distribution is 1.41% and the

average percent error out of distribution is 1.34%. The variability in Figure 3.8 is

explained by discrete increases in the physical area of the farm at 10, 20, and 50

turbines in order to accommodate the increasing number of turbines. Figure 3.9

shows that while both models’ power estimation scale linearly with the number of

turbines, the FLORIS power estimation takes around two orders of magnitude longer

to compute.

Next, we show more qualitative power estimation results for combinatorial gen-

eralization of a GNN trained on 2 to 10 turbines with random layouts, yaws, and

wind directions. Figure 3.10 shows the FLORIS and GNN power curves for a 20

turbine farm and Figure 3.11 shows the FLORIS and GNN power curves for a 100

turbine farm. In both cases, the trends match nearly exactly, although there is some

33

CHAPTER 3. RESULTS

Figure 3.7: Average error (in normalized power) between the YawGNN and FLORIS
power predictions for randomly sampled wind farms as the number of turbines
increases

Figure 3.8: Average percent error between the YawGNN and FLORIS power predic-
tions for randomly sampled wind farms as the number of turbines increases

34

CHAPTER 3. RESULTS

Figure 3.9: Runtimes for FLORIS and GNN power estimations for randomly sampled
wind farms as the number of turbines increases

disagreement between the models about the extent of the peaks and troughs.

However, in order to achieve this level of agreement, the grid size was increased.

The GNN was trained on examples with a grid size of 3,000 meters, while the 20

turbine example has a grid size of 10,000 meters and the 100 turbine example has a

grid size of 50,000 meters. When the model attempts to predict the power for a 20

turbine example with a grid size of 3,000 meters, it correctly predicts the shape of

the power curve but overestimates the power produced. It seems that its features

and experience are insufficient to inform it that placing more turbines in the physical

same area reduces the power due to increased wake interactions. As the grid size is

gradually increased to 10,000 meters, the GNN power prediction comes more and

more into alignment with the FLORIS power curve. This is a limitation of the current

features and training data.

35

CHAPTER 3. RESULTS

Figure 3.10: FLORIS and GNN power curves for a wind farm with 20 turbines where
the GNN was only trained on wind farms with 2 to 10 turbines

Figure 3.11: FLORIS and GNN power curves for a wind farm with 100 turbines
where the GNN was only trained on wind farms with 2 to 10 turbines

36

CHAPTER 3. RESULTS

Figure 3.12: Wind farm power output computed using FLORIS and our GNN as
optimization progresses for the 2 turbine case

3.2 Yaw Optimization

3.2.1 Fixed Layout and Wind Conditions

For yaw optimization, we again started with the simplest case - two turbines in

series with constant wind conditions where only the yaw of the upwind turbine varies.

Figures 3.12 and 3.13 show the progress of our auto differentiation gradient descent

algorithm on this example. Throughout the optimization, the power predicted by

our model nearly exactly matches the power computed by FLORIS, which indicates

that the local optima discovered by our model should coincide with a local optima

according to FLORIS as well. The algorithm also converges smoothly to an optima.

Referring back to Figure 3.2, we see that the power is indeed greatest at the yaw

angle of around −22◦ computed by our algorithm.

3.2.2 Random Layout and Wind Conditions

When the model is trained on random layouts, and wind directions, we are able

to optimize much more interesting scenarios. Figure 3.14 shows the power curves

37

CHAPTER 3. RESULTS

Figure 3.13: Upwind yaw angle as optimization progresses for the 2 turbine case

associated with the optimal yaw configurations as computed by the greedy method

(just point all turbines directly into the wind), FLORIS, and our auto differentiation

gradient descent method. Our algorithm is able to consistently find solutions of

comparable quality to the FLORIS optimal solution, but only when the initial

conditions are yaws far from zero (we use both ±20◦ and then take the solution

that gives the higher power as computed using FLORIS). Initializing from zero yaw

or random yaws normally distributed about zero often results in suboptimal yaw

configurations due to poor local minima because zero is the greedy solution and

comprises a local minima in the objective function.

We can clearly see that for most wind directions, the greedy solution is in fact

optimal, in which case FLORIS and our algorithms simply converge to the greedy

solution. However, in certain wind directions (namely, 0◦, 126◦, 180◦, and 306◦), the

greedy solution is highly suboptimal because there are a lot of wake losses resulting

from the geometry at that wind direction. In these cases, FLORIS and our algorithms

find much higher quality solutions.

Figure 3.15 shows the layout of the same farm from Figure 3.14 with wind coming

from 126◦, one of the wind directions where the greedy solution is highly suboptimal.

Even though the difference between the greedy yaws and optimal yaws appears slight,

the yaws computed using YawGNN result in an 8% increase in power over the greedy

38

CHAPTER 3. RESULTS

Figure 3.14: Power curves for optimal yaw configurations as computed by the greedy
method, YawGNN, and FLORIS

yaws. If we assume that these wind conditions are present for 1% of the year, then

using the YawGNN yaws would result in a yearly increase in power of 47.87 MWh,

which is equivalent to powering an additional 4.39 houses per year.

We evaluate the performance of our yaw optimization algorithm more generally

using 5 farms for each increment of 5 between 5 and 100 turbines. We train a model

only on wind farms with between 2 and 10 turbines, then compute the optimal yaws

for 20 evenly spaced wind directions between 0 and 360 degrees. For in distribution

examples, the computed yaws increase power relative to the greedy yaws by an average

of 1.03%. For out of distribution examples, the computed yaws increase power relative

to the greedy yaws by an average of 0.21%.

3.2.3 Comparison to FLORIS

To evaluate the combinatorial generalization abilities of our yaw optimization algo-

rithm and compare its performance and runtime to FLORIS, we repeat the experiments

that we ran for power estimation for yaw optimization. We use the same GNN trained

on wind farms with between 2 and 10 turbines with random turbine layouts, turbine

yaws, and wind directions and generate two datasets. The first dataset consists of

39

CHAPTER 3. RESULTS

(a) Greedy yaws (b) YawGNN optimal yaws

Figure 3.15: Wind farm graphs with turbines yawed to the greedy yaws and YawGNN
optimal yaws for the same 5 turbine example from Figure 3.14 with wind coming
from 126◦. In (b), note the decrease in power (lighter color) relative to (a) for the
upwind turbine and increase in power (darker color) relative to (a) for the downwind
turbines.

5 farms each for 2, 4, 6, 8, and 10 turbines. We run the FLORIS and YawGNN

yaw optimization algorithms on them for 20 different wind directions evenly spaced

between 0 and 360 degrees and record the runtime and the percent increase in power

relative to greedy. Figure 3.16 shows the average percent increases in power relative

to greedy for the FLORIS and YawGNN yaws on this dataset. Figure 3.17 shows the

average runtimes for the FLORIS and YawGNN yaw optimization algorithms. We

see that there is a tradeoff between runtime and solution quality even for these in

distribution examples. The average percent increase in power for FLORIS is 0.89%,

while YawGNN is significantly faster but only increases power by 0.65% on average.

The second dataset consists of 5 farms each for farm sizes of between 5 and 100

turbines in increments of 5. We run the YawGNN yaw optimization algorithm on all

of them for 20 different wind directions evenly spaced between 0 and 360 degrees and

record the runtime and percent increase in power relative to greedy. We also run the

FLORIS yaw optimization algorithm on only one farm and one wind direction per

number of turbines and record the runtime. Figure 3.18 shows the average percent

increase in power for yaws computed using YawGNN on this dataset. Figure 3.19

shows the YawGNN and FLORIS runtimes on this dataset, while Figure 3.20 shows

only the YawGNN runtimes because the difference in runtime between FLORIS and

YawGNN becomes so great as the number of turbines increases that the runtime for

YawGNN appears in Figure 3.19. While the FLORIS SLSQP optimization method

40

CHAPTER 3. RESULTS

Figure 3.16: Average percent increase in power relative to greedy for optimal yaws
computed using FLORIS and YawGNN as number of turbines increase

Figure 3.17: Average runtime for FLORIS and YawGNN yaw optimization as number
of turbines increase

41

CHAPTER 3. RESULTS

Figure 3.18: Average percent increase in power relative to greedy for optimal yaws
computed using YawGNN for farms with up to 100 turbines

scales quadratically in the number of turbines, our GNN auto differentiation gradient

descent method is functionally linear in time (in theory, the number of edges in the

wind farm graph scales quadratically with the number of turbines, but we never

see any examples with enough edges for this to make an impact). It takes FLORIS

40 minutes to compute a solution for 100 turbines, while taking our GNN only 25

seconds - a difference of two orders of magnitude. We will see that this difference in

runtime enables real-time control of wind turbines for farm sizes and wind direction

rates of change that were not possible using FLORIS, even for farm sizes where the

difference in runtime is not so stark.

3.3 Real-Time Control

Finally, we demonstrate real-time wake steering control of wind farms using the

greedy, FLORIS, and YawGNN methods. Figures 3.21 and 3.22 show the percent

increases in power relative to greedy and the raw increases in power in kilowatts,

respectively, for our experiments. We see that FLORIS’s applicability to real-time

control degrades quickly with increasing numbers of turbines and increasing wind

direction frequency. It is only able to improve the power output of the farm for wind

42

CHAPTER 3. RESULTS

Figure 3.19: Yaw optimization runtimes for FLORIS and YawGNN for farms with
up to 100 turbines

Figure 3.20: Yaw optimization runtimes for only YawGNN for farms with up to 100
turbines; the sharp drop in runtime at 50 turbines is due to an increase in the farm
area to accommodate more turbines, which reduces the number of edges in subsequent
examples

43

CHAPTER 3. RESULTS

Figure 3.21: Percent increase in power relative to greedy for YawGNN and FLORIS
real-time control algorithms for different wind direction frequencies and farm sizes

conditions changing at a rate greater than 1 degree per minute for the example with

5 turbines. Due to its slower runtime, the increase in power that FLORIS provides is

lower than YawGNN for every example. In contrast, YawGNN is able to improve

the power output for every farm size tested with the wind direction changing up to 3

degrees per minute, and is able to improve power for faster wind direction frequencies

for farms with 5 and 10 turbines.

Figures 3.23, 3.24, 3.25, and 3.26 show the power curves for the four example

wind farms being controlled by the greedy, FLORIS, and YawGNN methods at wind

direction rates of change of 1, 3, and 5 degrees per minute. FLORIS’s slower runtime

is apparent in these figures as it reacts slower and slower to changes in the wind

direction as the number of turbines increases. The response time of the YawGNN

controller is much more consistent in comparison. While the FLORIS controller

is able to reach yaws that generate more power than the YawGNN for some wind

directions for some examples, the YawGNN controller always generates more total

power in the experiment.

44

CHAPTER 3. RESULTS

Figure 3.22: Increase in power in kilowatts relative to greedy for YawGNN and
FLORIS real-time control algorithms for different wind direction frequencies and
farm sizes

(a) Control for 1◦/min (b) Control for 3◦/min (c) Control for 5◦/min

Figure 3.23: Power curves for 5 turbine farm under greedy, FLORIS, and YawGNN
real-time control for wind directions from 100◦ to 160◦ at three different rates of
change

45

CHAPTER 3. RESULTS

(a) Control for 1◦/min (b) Control for 3◦/min (c) Control for 5◦/min

Figure 3.24: Power curves for 10 turbine farm under greedy, FLORIS, and YawGNN
real-time control for wind directions from 170◦ to 230◦ at three different rates of
change

(a) Control for 1◦/min (b) SControl for 3◦/min (c) Control for 5◦/min

Figure 3.25: Power curves for 15 turbine farm under greedy, FLORIS, and YawGNN
real-time control for wind directions from 60◦ to 120◦ at three different rates of change

(a) Control for 1◦/min (b) Control for 3◦/min (c) Control for 5◦/min

Figure 3.26: Power curves for 20 turbine farm under greedy, FLORIS, and YawGNN
real-time control for wind directions from 130◦ to 190◦ at three different rates of
change

46

CHAPTER 3. RESULTS

Additional Houses Powered per Year by YawGNN
5 turbines 10 turbines 15 turbines 20 turbines

1 deg/min 6.85 10.52 15.73 28.58
2 deg/min 4.79 8.08 9.33 17.88
3 deg/min 3.02 4.57 2.48 8.92
4 deg/min 1.61 2.25 -4.64 -2.40
5 deg/min 0.53 -0.48 -9.74 -13.86

Table 3.2: Number of additional houses powered per year by YawGNN control under
assumption that selected 60 degree ranges are representative of 10% of yearly wind
conditions and remaining 90% are greedy-optimal

Additional Houses Powered per Year by FLORIS
5 turbines 10 turbines 15 turbines 20 turbines

1 deg/min 6.25 6.29 12.74 16.04
2 deg/min 2.93 -1.19 -18.06 -40.66
3 deg/min 0.05 -9.36 -41.28 -90.86
4 deg/min -2.26 -16.97 -70.53 -122.12
5 deg/min -4.10 -23.06 -68.93 -144.75

Table 3.3: Number of additional houses powered per year by FLORIS control under
assumption that selected 60 degree ranges are representative of 10% of yearly wind
conditions and remaining 90% are greedy-optimal

Tables 3.2 and 3.3 show the additional houses that could be powered by the

YawGNN and FLORIS controllers, respectively, for each farm and wind direction

frequency in the experiments under the assumption that the 60 degree ranges used

in the experiments are representative of 10% of the year’s wind conditions and that

greedy control is optimal for the remainder. These results show that there is a tangible

benefit to using YawGNN for control as, for example, a wind farm with 20 turbines

could power an additional 28.58 houses per year in wind conditions varying at 1

degree per minute, while FLORIS powers an additional 16.04 houses. With double

the rate of change in the wind direction, YawGNN is still able to power an additional

17.88 houses relative to greedy, while FLORIS is no longer usable for real-time control

at all.

47

CHAPTER 3. RESULTS

48

Chapter 4

Discussion

4.1 Conclusions

To conclude, we return to answer our research questions:

1. Can we use a GNN to approximate the FLORIS wake modeling util-

ity for arbitrary turbine layout, turbine yaws, wind direction, and

wind speed?

We have shown that we are able to estimate power for wind farms with random

yaws with comparable accuracy to those with fixed yaws. We have further

shown that power estimation using our GNN is significantly faster than power

estimation using FLORIS.

2. Can a trained wind farm GNN be used to compute optimal yaw con-

figurations more efficiently than FLORIS without sacrificing solution

quality?

For wind farms with the same number of turbines as trained on, we have shown

that we can use our GNN to compute optimal yaw configurations that are of

comparable FLORIS. More importantly, while the runtime of using FLORIS to

compute optimal yaw configurations is quadratic in the number of turbines due

to its use of SLSQP, our GNN is able to compute optimal yaw configurations

in functionally linear time.

3. How well is a trained wind farm GNN able to generalize to farms

49

CHAPTER 4. DISCUSSION

of larger size than it was trained on - both in power estimation and

yaw optimization?

We have shown that a GNN trained on wind farms with between 2 and 10

turbines is able to accurately estimate power for wind farms with up to 100

turbines as long as the grid size is increased to accommodate the additional

turbines. Yaw optimization with this GNN is able to improve upon the greedy

solution on average, but has not been shown to be able to compute the FLORIS

optimal solution.

4. How well does a trained wind farm GNN perform when used as the

model in a model predictive controller for real-time wake steering

control of wind farms?

We have shown that YawGNN is able to be used for real-time wake steering

control of wind farms. While FLORIS is unable to be used for frequencies greater

than 3 degrees per minute for wind farms with 5 turbines or for frequencies

greater than 1 degree per minute for wind farms with 20 turbines, YawGNN can

improve power relative to the greedy solution for wind farms with 5 turbines

at frequencies up to 5 degrees per minute and wind farms with 20 turbines at

frequencies up to 3 degrees per minute. YawGNN outperformed FLORIS in

every example where both methods were applicable.

4.2 Future Work

There are many possible directions for future research. First and foremost, it would

be beneficial to expand beyond just approximating the FLORIS model and instead

(or additionally) train on real-world or CFD data. This would enable the modeling

of more complex phenomena such as speed-up and blockage effects, which has never

been done in the context of control and optimization.

To improve the performance of both YawGNN and FLORIS on real-time control,

work could be done to predict how the wind direction will change rather than just

reacting to it.

It would also be useful to couple [31]’s use as a design tool with our GNN’s use

as a control tool and perform simultaneous control and design optimization. This is

50

CHAPTER 4. DISCUSSION

feasible since our model can be differentiated with respect to the downstream and

radial distances between turbines (or with respect to the x and y positions directly) in

addition to yaw. This could greatly open up the design space for wind farm designers

since they would be able to quickly compute wake steering controllers for proposed

wind farm layouts, making layouts that were previously unappealing potentially

optimal.

To improve the yaw optimization solutions found by YawGNN, we could experiment

with different optimization techniques or with optimizing from many different initial

conditions in parallel.

While we demonstrated the ability of our model to compute optimal yaw con-

figurations, further work could be done using our model to find optimal paths from

initial to final yaw configurations that minimize wake losses in transition when, for

example, wind conditions change rapidly.

To improve the combinatorial generalization of power estimation using YawGNN,

we could include features representing the physical farm size, such as the length,

width, area, or turbines per square meter and train on examples where the physical

size of the farm varies.

Finally and most simply, to make these results more directly applicable to industry,

one could train our GNN using wind farms with much larger numbers of turbines

from the beginning. While it is good that a model trained on wind farms with 2 to 10

turbines can estimate power accurately and compute yaw configurations that improve

upon the greedy solution, given more time and computational resources there is no

reason not to train on wind farms with 20 or 100 turbines from the beginning in

order to potentially compute comparable solutions to FLORIS for much larger farms

orders of magnitude faster. This would also potentially enable modeling and control

of the largest wind farms with thousands of turbines.

51

CHAPTER 4. DISCUSSION

52

Bibliography

[1] A2e Data Archive, Office of Energy Efficiency Portal for U.S. Department of
Energy, and Renewable Energy. Atmosphere to electrons (a2e) wfip2/lidar.z03.b0,
2016. 2.7

[2] Peter W. Battaglia, Razvan Pascanu, Matthew Lai, Danilo Rezende, and Koray
Kavukcuoglu. Interaction networks for learning about objects, relations and
physics, 2016. 1.2.4

[3] Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez,
Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam
Santoro, Ryan Faulkner, Caglar Gulcehre, Francis Song, Andrew Ballard, Justin
Gilmer, George Dahl, Ashish Vaswani, Kelsey Allen, Charles Nash, Victoria
Langston, Chris Dyer, Nicolas Heess, Daan Wierstra, Pushmeet Kohli, Matt
Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pascanu. Relational inductive
biases, deep learning, and graph networks, 2018. 1.1.3, 1.2.4

[4] Christopher Bay, Jennifer King, Paul Fleming, Rafael Mudafort, and Luis
Mart́ınez Tossas. Unlocking the full potential of wake steering: Implementation
and assessment of a controls-oriented model. Wind Energy Science Discussions,
pages 1–20, 05 2019. doi: 10.5194/wes-2019-19. 1.2.3

[5] Atilim Gunes Baydin, Barak A. Pearlmutter, and Alexey Andreyevich Radul.
Automatic differentiation in machine learning: a survey. CoRR, abs/1502.05767,
2015. URL http://arxiv.org/abs/1502.05767. 1.1.3

[6] James Bleeg. A graph neural network surrogate model for the prediction of
turbine interaction loss. Journal of Physics: Conference Series, 1618:062054,
sep 2020. doi: 10.1088/1742-6596/1618/6/062054. URL https://doi.org/10.

1088/1742-6596/1618/6/062054. 1.1.3, 1.2.5

[7] James Bleeg, Mark Purcell, Renzo Ruisi, and Elizabeth Traiger. Wind farm
blockage and the consequences of neglecting its impact on energy production.
Energies, 11:1609, 06 2018. doi: 10.3390/en11061609. 1.1.2, 1.2.5

[8] Global Wind Energy Council. Global wind report 2021, 2021. URL https:

//gwec.net/global-wind-report-2021/. 1.1.1

53

http://arxiv.org/abs/1502.05767
https://doi.org/10.1088/1742-6596/1618/6/062054
https://doi.org/10.1088/1742-6596/1618/6/062054
https://gwec.net/global-wind-report-2021/
https://gwec.net/global-wind-report-2021/

Bibliography

[9] DGL. Deep graph library. URL https://www.dgl.ai/. 2.1

[10] Paul Fleming, Pieter M.O. Gebraad, Sang Lee, Jan-Willem van Wingerden,
Kathryn Johnson, Matt Churchfield, John Michalakes, Philippe Spalart, and
Patrick Moriarty. Simulation comparison of wake mitigation control strategies
for a two-turbine case. Wind Energy, 18(12):2135–2143, 2015. doi: https://doi.
org/10.1002/we.1810. URL https://onlinelibrary.wiley.com/doi/abs/10.

1002/we.1810. 1.2.2

[11] Paul A. Fleming, Pieter M.O. Gebraad, Sang Lee, Jan-Willem van Wingerden,
Kathryn Johnson, Matt Churchfield, John Michalakes, Philippe Spalart, and
Patrick Moriarty. Evaluating techniques for redirecting turbine wakes using
sowfa. Renewable Energy, 70:211–218, 2014. ISSN 0960-1481. doi: https://
doi.org/10.1016/j.renene.2014.02.015. URL https://www.sciencedirect.com/

science/article/pii/S0960148114000950. Special issue on aerodynamics of
offshore wind energy systems and wakes. 1.2.2

[12] Center for Climate and Energy Solutions. Renewable energy. URL https:

//www.c2es.org/content/renewable-energy/. 1.1.1

[13] P. Gebraad, F. Teeuwisse, J. Wingerden, P. Fleming, S. Ruben, Jason R. Marden,
and L. Pao. Wind plant power optimization through yaw control using a
parametric model for wake effects—a cfd simulation study. Wind Energy, 19:
95–114, 2016. 1.2.2, 1.2.3

[14] Pieter Gebraad and J. W. Wingerden. A control-oriented dynamic model for
wakes in wind plants. Journal of Physics: Conference Series, 524:012186, 06
2014. doi: 10.1088/1742-6596/524/1/012186. 1.2.2

[15] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and
George E. Dahl. Neural message passing for quantum chemistry, 2017. 1.2.5

[16] Jessica B. Hamrick, Kelsey R. Allen, Victor Bapst, Tina Zhu, Kevin R. McKee,
Joshua B. Tenenbaum, and Peter W. Battaglia. Relational inductive bias for
physical construction in humans and machines, 2018. 1.2.4

[17] Byeongho Heo, Sanghyuk Chun, Seong Joon Oh, Dongyoon Han, Sangdoo Yun,
Gyuwan Kim, Youngjung Uh, and Jung-Woo Ha. Adamp: Slowing down the
slowdown for momentum optimizers on scale-invariant weights, 2021. 2.3

[18] Michael Howland, Sanjiva Lele, and John Dabiri. Wind farm power optimization
through wake steering. Proceedings of the National Academy of Sciences, 116:
201903680, 07 2019. doi: 10.1073/pnas.1903680116. 1.1.2, 1.1.2, 1.2.3

[19] N. Jensen. A note on wind generator interaction. 1983. 1.1.2, 1.2.2, 1.2.3

[20] Ángel Jiménez, Antonio Crespo, and Emilio Migoya. Application of a les
technique to characterize the wake deflection of a wind turbine in yaw. Wind

54

https://www.dgl.ai/
https://onlinelibrary.wiley.com/doi/abs/10.1002/we.1810
https://onlinelibrary.wiley.com/doi/abs/10.1002/we.1810
https://www.sciencedirect.com/science/article/pii/S0960148114000950
https://www.sciencedirect.com/science/article/pii/S0960148114000950
https://www.c2es.org/content/renewable-energy/
https://www.c2es.org/content/renewable-energy/

Bibliography

Energy, 13(6):559–572, 2010. doi: https://doi.org/10.1002/we.380. URL https:

//onlinelibrary.wiley.com/doi/abs/10.1002/we.380. 1.2.2, 1.2.3

[21] J. Jonkman, S. Butterfield, W. Musial, and G. Scott. Definition of a 5-mw
reference wind turbine for offshore system development, 2009. URL https:

//digital.library.unt.edu/ark:/67531/metadc894033/. 1.2.1, 2.1, 2.7

[22] Yunzhu Li, Jiajun Wu, Russ Tedrake, Joshua B. Tenenbaum, and Antonio
Torralba. Learning particle dynamics for manipulating rigid bodies, deformable
objects, and fluids, 2019. 1.2.4

[23] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm
restarts, 2017. 2.3

[24] Jason R. Marden, Shalom D. Ruben, and Lucy Y. Pao. A model-free approach to
wind farm control using game theoretic methods. IEEE Transactions on Control
Systems Technology, 21(4):1207–1214, 2013. doi: 10.1109/TCST.2013.2257780.
1.2.3

[25] Luis Mart́ınez Tossas, Jennifer Annoni, Paul Fleming, and Matthew Churchfield.
The aerodynamics of the curled wake: A simplified model in view of flow control.
Wind Energy Science Discussions, pages 1–17, 08 2018. doi: 10.5194/wes-2018-57.
1.2.2, 1.2.3

[26] Amin Niayifar and Fernando Porté-Agel. A new analytical model for wind
farm power prediction. Journal of Physics: Conference Series, 625:012039, jun
2015. doi: 10.1088/1742-6596/625/1/012039. URL https://doi.org/10.1088/

1742-6596/625/1/012039. 1.2.2, 1.2.3

[27] NREL. Floris. version 2.4, 2021. URL https://github.com/NREL/floris.
1.1.2, 1.2.2

[28] Lucy Y. Pao and Kathryn E. Johnson. A tutorial on the dynamics and control
of wind turbines and wind farms. In 2009 American Control Conference, pages
2076–2089, 2009. doi: 10.1109/ACC.2009.5160195. 1.1.2, 1.2.1

[29] Jinkyoo Park and Kincho H. Law. Layout optimization for maximizing wind
farm power production using sequential convex programming. Applied Energy,
151:320–334, 2015. ISSN 0306-2619. doi: https://doi.org/10.1016/j.apenergy.
2015.03.139. URL https://www.sciencedirect.com/science/article/pii/

S0306261915004560. 1.2.5

[30] Jinkyoo Park, Soon-Duck Kwon, and Kincho H. Law. A data-driven approach
for cooperative wind farm control. In 2016 American Control Conference (ACC),
pages 525–530, 2016. doi: 10.1109/ACC.2016.7524967. 1.2.3

[31] Junyoung Park and Jinkyoo Park. Physics-induced graph neural network: An
application to wind-farm power estimation. Energy, 187:115883, 2019. ISSN 0360-

55

https://onlinelibrary.wiley.com/doi/abs/10.1002/we.380
https://onlinelibrary.wiley.com/doi/abs/10.1002/we.380
https://digital.library.unt.edu/ark:/67531/metadc894033/
https://digital.library.unt.edu/ark:/67531/metadc894033/
https://doi.org/10.1088/1742-6596/625/1/012039
https://doi.org/10.1088/1742-6596/625/1/012039
https://github.com/NREL/floris
https://www.sciencedirect.com/science/article/pii/S0306261915004560
https://www.sciencedirect.com/science/article/pii/S0306261915004560

Bibliography

5442. doi: https://doi.org/10.1016/j.energy.2019.115883. URL https://www.

sciencedirect.com/science/article/pii/S0360544219315555. 1.1.3, 1.2.5,
1, 2.1, 2.2, 4.2

[32] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and
Gabriele Monfardini. The graph neural network model. IEEE Transactions on
Neural Networks, 20(1):61–80, 2009. doi: 10.1109/TNN.2008.2005605. 1.2.4

[33] Connor Schenck and Dieter Fox. Spnets: Differentiable fluid dynamics for deep
neural networks, 2018. 1.2.4

[34] H. O. Pörtner D. Roberts J. Skea P.R. Shukla A. Pirani W. Moufouma-Okia C.
Péan R. Pidcock S. Connors J. B. R. Matthews Y. Chen X. Zhou M. I. Gomis E.
Lonnoy T. Maycock M. Tignor T. Waterfield (eds.) V. Masson-Delmotte, P. Zhai.
Ipcc, 2018: Global warming of 1.5°c. an ipcc special report on the impacts of
global warming of 1.5°c above pre-industrial levels and related global greenhouse
gas emission pathways, in the context of strengthening the global response to
the threat of climate change, sustainable development, and efforts to eradicate
poverty, 2018. 1.1.1

[35] Tingwu Wang, Renjie Liao, Jimmy Ba, and S. Fidler. Nervenet: Learning
structured policy with graph neural networks. In ICLR, 2018. 1.2.4

56

https://www.sciencedirect.com/science/article/pii/S0360544219315555
https://www.sciencedirect.com/science/article/pii/S0360544219315555

	1 Introduction
	1.1 Background
	1.1.1 Climate Change and Renewable Energy
	1.1.2 Wind Farm Modeling and Control
	1.1.3 Machine Learning and Optimization

	1.2 Related Work
	1.2.1 Wind Farm Control
	1.2.2 Wind Farm Modeling
	1.2.3 Wake Steering Control
	1.2.4 Graph Neural Networks
	1.2.5 Wind Farm Graph Neural Networks

	1.3 Research Question

	2 Methods
	2.1 Data
	2.2 Graph Neural Network Architecture
	2.3 Training and Evaluation
	2.4 Power Estimation with Random Yaw Configurations
	2.5 Yaw Optimization
	2.6 Combinatorial Generalization
	2.7 Real-Time Control

	3 Results
	3.1 Power Estimation
	3.1.1 Power Estimation with Varying Yaw
	3.1.2 Comparison to FLORIS

	3.2 Yaw Optimization
	3.2.1 Fixed Layout and Wind Conditions
	3.2.2 Random Layout and Wind Conditions
	3.2.3 Comparison to FLORIS

	3.3 Real-Time Control

	4 Discussion
	4.1 Conclusions
	4.2 Future Work

	Bibliography

