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Abstract

This thesis develops a robotic exploration framework that allows for rapid and
communication-efficient mapping of subsurface environments with a team of
aerial robots.

Aerial robots can provide rapid and agile mobility in diverse environments
where ground mobility is either severely constrained or impossible. However,
high-speed flight with such robots poses challenges due to limited sensing
range, on-board computation, and constrained dynamics. For operation in
unknown environments, the planning subsystem must guarantee collision-free
operation, and for exploration tasks, the system should also select sensing
actions to maximize information gain with respect to the environment. To this
end, the first contribution of this thesis is a motion primitive-based, receding-
horizon planning approach that maximizes information gain, accounts for
platform dynamics, and ensures safe operation. Analysis of motions parallel
and perpendicular to frontiers given constraints on sensing and dynamics
leads to bounds on safe velocities for exploration. These bounds inform the
design of the motion primitive approach. Experimental results on a hexarotor
robot demonstrate rapid exploration at state-of-the-art speeds in an outdoor
environment.

Deploying a team of these robots can further improve the rate of exploration.
Challenges imposed by the communication bottlenecks in such deployments
towards human-robot and inter-robot coordination have been left largely
unaddressed in prior works. Effective coordination often requires high-quality
perceptual feedback, and the gap in the state of the art is the lack of efficiency
in the communication of such feedback. To this end, the second contribution
of this thesis is a distributed perceptual modeling approach that enables high-
fidelity mapping while remaining amenable to low-bandwidth communication
channels. The approach yields significant gains in exploration rate for multi-
robot teams as compared to state-of-the-art approaches. The approach is
evaluated through simulation studies and hardware experiments in a wild cave
in West Virginia, USA.
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Chapter 1

Introduction

Planetary subsurface voids are known to be of geological and astrobiological significance
for future planetary exploration [1]. In particular, exploration of planetary caves can
potentially provide records of geological, meteorological, and environmental history of
that planet [2]. Moreover, these cave environments provide shelter from ionizing space
radiation and stable climatic conditions as opposed to the surface thermal conditions.
Such buffered conditions may allow these environments to serve as future human space
habitats [3, 4, 5]. About 1036 potential cave entrances have been identified on Mars along
with several hundreds on other celestial bodies in our solar system [2, 6]. However, much
less is known about these subsurface environments beyond the entrances. This warrants
further investigation via robotic missions for data collection and scouting [5]. Robotic
precursor missions have engaged in surface exploration of Mars [7] but have not explored
subsurface environments. As a result, robotic subsurface exploration has been identified
as a key technology for future planetary exploration missions [2, 8, 9].

Autonomous navigation and high-resolution perceptual modeling are critical needs in
the context of robotic subsurface planetary exploration [11]. A challenge of operating in
subsurface environments is communicating to a surface station. Communication may be
limited or impossible due to the inability of radio waves to penetrate rock, impeding data
relay to Earth, so compact data transmission is essential. Operating on planets far from
Earth introduces additional restrictions on power and compute that may be mitigated by
leveraging multiple robots to increase coverage in spatially expansive environments [12].

Exploration frameworks cannot assume a priori knowledge about the structure of the
environment so the exploration system must operate with unknown locomotion constraints.
Aerial robots have recently been leveraged to mitigate these constraints in the subterranean
domain [13] and considered for subsurface mapping on Mars [10] (Fig. 1.1). In this thesis,
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CHAPTER 1. INTRODUCTION

Figure 1.1: (Left) Traversal and access difficulty for caves on Mars. (Right) Traversal and access capabilities
of existing robots. While the choice of the robot platform and the deployment site depend largely on the
scientific objectives of the mission, flying robots provide the most traversal and access capabilities and the
least EDL and general complexity. The robotic exploration framework developed in this thesis uses a team of
aerial robots. (Source: [10], NASA/JPL, Boston Dynamics)

we consider aerial robots operating in a cave on Earth (Fig. 1.2) as an analog scenario
for subsurface exploration on Mars. These robots are often limited by size, weight, and
power (SWaP) constraints [13]. Energy constraints on these platforms impose limits on
flight endurance necessitating rapid exploration, since the existence of a replenishment
infrastructure in the planetary exploration context cannot be guaranteed at these sites [11].
Several frameworks for rapid exploration have been proposed that either use a single
fast-moving aerial robot [14, 15, 16, 17] or multiple slow-moving aerial robots [18, 19];
however, a real-world deployable framework that combines the elements from both is
desirable. This thesis addresses a key challenge for planetary exploration: enabling rapid
multi-robot exploration in subsurface environments by leveraging a perceptual modeling
framework amenable to low-bandwidth communication while remaining high-fidelity.

1.1 Thesis Problem

1.1.1 Concept of Operations

This thesis is motivated by a concept of operations for a subsurface mapping mission
on Mars using a team of aerial robots, similar to the concept surface mission studied

2



CHAPTER 1. INTRODUCTION

Figure 1.2: Cave exploration with two aerial robots in West Virginia, USA. The robotic exploration framework
developed in this thesis is evaluated in Mars-analog caves on Earth. A video of the flight can be accessed at
the following link: https://youtu.be/osko8EKKZUM.

by Matthies [20] for Titan. It is assumed that the mission can be realized by sending
multiple aerial robots (“daughtercraft”) from a surface station (“mothership”) to perform
rapid, effective, and affordable high-resolution mapping of the subsurface environment.

Communication There are three communication channels available in this concept, as
shown in Fig. 1.3, with the following assumptions:

• Daughtercraft - Mothership: Whittaker et al. [11] suggest the use of either very low
frequency (VLF) radios or magneto-inductive (MI) links to achieve limited data rate
through thick layers of rock. The MI links in particular can provide approximately
20-25 m dry soil penetration at channel capacity ranging from 0.1-0.25 Mbit/s when
using small antennas (coils) [21]. In this thesis, it is assumed that the daughtercraft
are equipped with these MI links.

• Mothership - Orbiter: Orbiters can communicate at approximately 0.208-0.521 Mbit/s
with a surface station for 8 minutes per sol, or Martian day [22].

• Orbiter - Earth: To transmit from the orbiter to Earth, the communication rate
depends on which orbiter is above the lander to relay the data to Earth. This thesis
assumes the lowest data rate from the Mars Odyssey orbiter, which ranges from
0.128-0.256 Mbit/s [22].

The bottleneck in communication is between the subsurface aerial robot (daughtercraft)
and surface station (mothership) when the robot is transmitting at depths between 20–25 m
below ground, so an analysis of the exploration system is provided for both 0.1 Mbit/s and
0.25 Mbit/s rates.

3
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CHAPTER 1. INTRODUCTION

Figure 1.3: Illustration of the concept of operations for planetary subsurface exploration that motivates this
thesis. A surface station (“mothership”) deploys a team of aerial robots (“daughtercraft”) in the subsurface
environment for the exploration task. There are three low-bandwidth communication channels available:
daughtercraft - mothership (subsurface communication), mothership - orbiter (orbiter communication),
and orbiter - Earth (Earth communication). The daughtercraft are assumed to be energy-constrained with
respect to the mothership. The multi-robot exploration framework developed in this thesis can allow for
rapid navigation of energy-constrained robots in subsurface environments and communication-efficient map
transmission over low-bandwidth channels. (Original image: [2])

Sensing The subsurface aerial robots can be equipped with limited-range depth sensors
(for example, LiDARs and stereo-depth sensors). Such sensors can have different field-of-
view (FoV), for example, LiDAR sensors usually have a 360◦ FoV while depth cameras
have an FoV < 180◦. We assume that either kind of sensors can be equipped on the aerial
robots, as has been done on previous exploration systems.

1.1.2 Challenges

Within this concept of operations, the multi-robot exploration system should address the
following challenges:

• Safe motion planning for exploration at high speeds: Energy-constrained daugh-
tercraft need to explore the environment rapidly to avoid repeated replenishment,
while maintaining a collision-free operation. Since daughtercraft are aerial robots

4



CHAPTER 1. INTRODUCTION

Figure 1.4: Overview of the challenges addressed by the multi-robot exploration framework addressed in
this thesis. (Left) Safe informative motion planning at high speeds for both 360◦ and limited FoV sensing.
(Right) Communication-efficient distributed mapping that enables map transmission over low-bandwidth
communication channels.

equipped with limited-range depth sensors for mapping, safe informative planning
requires maximizing the information gained about the unknown space by operating
the robots at high speeds under dynamics and sensing constraints.

• Sensor-agnostic motion planning for exploration: Sensors with different FoV can
impact the strategy with which daughtercraft explore the subsurface environment.
Therefore, the motion planner must be sensor-agnostic and allow for a high rate of
information gain per unit time for both 360◦ LiDARs and limited-FoV depth sensors.

• Distributed, high-fidelity, and compact mapping: Communication limitations en-
force the requirement to create compact subsurface maps for real-time and low-latency
transmission. Scientific objectives require these maps to be of a high perceptual
detail. Thus, the multi-robot exploration system must allow for distributed mapping
operation that generates a compact and high-fidelity map for efficient transmission.

1.2 Thesis Contributions and Outline

To address these challenges, this thesis proposes a multi-robot exploration framework that
enables safe and rapid exploration via an information-theoretic receding horizon motion
planner, and leverages prior work in Gaussian Mixture Model (GMM)-based mapping to
create a compact distributed mapping system that represents the surface at a high-fidelity
and allows for occupancy modeling for information-theoretic exploration. The system
is evaluated in real Mars-analog caves on Earth, both in single-robot and multi-robot
experimental settings.

The contributions of this thesis are summarized below and are detailed in the subsequent
chapters.

5
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Chapter 4: Rapid Motion Primitives-based Single-Robot Exploration A motion primitives-
based, receding-horizon planning approach that maximizes information gain, accounts for
platform dynamics, and ensures safe operation. Simulation experiments in a complex 3D
environment demonstrate the utility of the motion primitive actions for rapid exploration
and provide a comparison to a reduced motion primitive library that is appropriate for
online planning. Experimental results on a hexarotor robot with the reduced library
demonstrate rapid exploration at speeds above 2.25 m/s under varying clutter in an
outdoor environment which is comparable to and exceeding the existing state-of-the-art
results [15].

Chapter 5: Communication-Efficient Single-Robot Exploration An information-theoretic
exploration strategy to explore cave environments that compactly represents sensor ob-
servations as Gaussian mixture models and maintains a local occupancy grid map for a
motion planner that greedily maximizes an information-theoretic objective function. The
approach accommodates both limited field of view depth cameras and larger field of view
LiDAR sensors and is extensively evaluated in long duration simulations on an embedded
PC. The system is deployed in Laurel Caverns, a commercially owned and operated cave
in southwestern Pennsylvania, USA, and a wild cave in West Virginia, USA [13].

Chapter 6: Rapid and Communication-Efficient Multi-Robot Exploration A multi-
robot exploration framework that leverages the work from the previous two chapters
to enable high-fidelity distributed mapping at high speeds while remaining amenable
to low-bandwidth communication channels. The approach yields significant gains in
exploration rate for multi-robot teams as compared to state-of-the-art approaches. The
system is evaluated through simulation studies and hardware experiments in a wild cave
in West Virginia [23].

6



Chapter 2

Related Work

This thesis develops a robotic exploration framework that allows for rapid and communication-
efficient mapping of subsurface environments with a team of aerial robots. The proposed
framework addresses research gaps in two subsystems of existing multi-robot exploration
frameworks (Section 2.1): (1) motion planning for rapid exploration (Section 2.2) and (2)
distributed mapping for exploration (Section 2.3).

2.1 Subsurface Multi-Robot Exploration Frameworks

With the ongoing DARPA Subterranean Challenge [24], there is an increased interest in
deploying a team of robots in subsurface environments [25, 26, 27]. At the time of writing
this thesis, research and development towards the last phase of the challenge is in progress.
This phase requires the teams to demonstrate multi-robot exploration capabilities in cave

Figure 2.1: Motivation to use aerial robots for cave exploration. Delicate formations (left) and challenging
terrain (right) in a subterranean cave. Aerial robots are promising robotic platforms that can enable rapid
autonomy in such domains [10]. Credit: C. Bassett

7



CHAPTER 2. RELATED WORK

Figure 2.2: Trade-offs in sizing of the aerial robots for cave exploration. (Left) Aerial robots developed
by Agha et al. [25] plotted with respect to their agility and flight time. (Right) During a cave exploration
experiment, Hudson et al. [26] observed that their aerial robot was able to explore a distant part of the cave
after passing through a narrow passage that the ground robots could not access (yellow trajectory). There
exists an accessibility versus flight time trade-off in aerial robot design for the cave exploration application.

networks, which is the domain of interest for this thesis. Various kinds of robotic platforms
have been proposed by the teams (legged, ground, aerial, etc.); we focus on the frameworks
that allow for operation with multiple aerial robots due to the reasons stated in Chapter 1.

Agha et al. [25] present the NeBula (Networked Belief-aware Perceptual Autonomy)
architecture for cave exploration. Specifically, towards using an aerial robot for exploration,
many platforms have been developed (Fig. 2.2) and field results have been reported for
mine environments. One representative experiment in the Beckley Mine, Morgan Town,
WV, shows the aerial robot being able to explore with an average speed of 1.0 m/s over
a flight duration of 45 s [28]. The robot is equipped with a 2D LiDAR for navigation
and planning via a discrete grid-based representation of the environment. Hudson et al.
[26] present cave exploration results using a heterogeneous team of robots (Fig. 2.2), one
of them being an Emesent1 drone with a custom sensor pack. The exploration strategy
uses a point cloud representation of the environment to drive the robot into previously
unexplored spaces. In the two cave experiments where this aerial robot was used, the
average distance traversed was 271.5 m over an average duration of 684 s (i.e., an average
speed of 0.39 m/s). Petracek et al. [27] propose a subsurface exploration system that can
use multiple aerial robots. Experiments with a single robot in the Bull Rock Cave system
demonstrate large-scale mapping with robot speeds reported up to 2.0 m/s. However, the
grid-based representation lacks perceptual detail as the maps built onboard the robot use
a 20 cm voxel size.

1Emesent: https://www.emesent.io/autonomy-level-2/

8
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Figure 2.3: Effects of dust on the depth sensor (Intel RealSense D435) data in a cave environment during
exploration with an aerial robot (extreme right) [13]. Such effects can have a significant impact on the
map accuracy in these environments. Thus, the planning strategy for exploration must account for a map
refinement objective in addition to a coverage objective.

Notably, all teams use a grid-based or a point cloud representation of the environment
and have identified that accounting for limited availability of communication resources
within the exploration framework is a key milestone for future work [29, 30, 31]. The
contributions in this thesis build upon these works to improve the rate of exploration and
allow for communication-efficient distributed mapping.

2.2 Planning for Rapid Exploration

A motion planner designed for exploration of a priori unknown and unstructured spaces
with an aerial robot must satisfy three key requirements: (1) reduce the amount of unknown
space (“Coverage”), (2) correct any inaccuracies in the known space (“Map Refinement”,
Fig. 2.3), and (3) return collision-free motion plans in real-time.

Many planners have been proposed towards meeting these objectives. Towards meeting
coverage objectives, geometric motion planning approaches have been proposed. Cieslewski
et al. [14] use a frontier-based motion planning strategy in which the planner biases the
motion plans towards frontiers while penalizing a change in direction of velocity. Recent
work by Cao et al. [32] improves upon frontier-based coverage strategies and proposes a
hierarchical planner that uses surface normals to generate informative viewpoints via a
geometric heuristic. These objectives can provide a rapid coverage of the environment
with low-noise sensors such as LiDARs. However, since the uncertainty in the map is not
explicitly accounted into motion planning, maximizing coverage alone might result in
degraded performance when using noisy data from depth sensors.

Towards incorporating uncertainty of the map explicitly into decision making, there
is a line of research that uses mutual information between projected measurements and
the current map as the objective to drive exploration. However, these methods are
computationally expensive when compared with coverage methods. Charrow et al. [33]
and Zhang et al. [34] propose a computationally tractable approximation of the Cauchy-
Schwarz Quadratic Mutual Information (CSQMI) and Shannon Mutual Information (FSMI)

9
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respectively, and use this information metric over a local lattice of feasible trajectories
to greedily maximize information in a local map. The problem with local and greedy
approaches is that they are susceptible to getting stuck in local extrema of information
distribution over the environment. To this end, modifications have been proposed to these
information-theoretic strategies that incorporate not only a local information maximization
objective, but also allows to reason over the global information distribution. Approaches
by Charrow et al. [35] and Tabib et al. [36] use frontiers to model this global information
spread, while the work by Corah et al. [19] uses a global library of informative views as
a succinct and more accurate representation of the global information content. In the
proposed motion planner, we use the sensing objectives proposed by Corah et al. to drive
the robot towards reducing uncertainty in the map while escaping local extremums in the
information distribution.

With the sensing objectives in place, the planner now needs to ensure the third
key requirement: return collision-free motion plans in real-time. Given the increasing
application of aerial robots as sensing platforms, recent works have begun to consider
the effects of system dynamics on high-speed exploration and navigation in unknown
environments. Cieslewski et al. [14] propose a strategy based on maintaining rapid forward
motion by driving the system toward frontier cells (cells on boundary of free and unknown
space [37]) within the camera field-of-view. While the authors note that reaction time for
obstacles avoidance can limit speeds in exploration, they provide little discussion of why
this happens or how it can be avoided. This thesis considers a broader variety of sensing
actions that can avoid these limitations and also incorporates sensing and planning time
into action design. Corah et al. [19] propose a receding horizon motion planning strategy
that optimizes the sensing objectives via a Monte Carlo tree search over concatenated
motion primitives. However, these concatenated primitives are constrained to limited
speeds and do not account for sensing constraints. Liu et al. [38] addressed sensing
constraints related issues in there navigation work by accounting for these constraints
in an optimization-based planning approach. However, the optimization-based action
generation strategy can be computationally expensive to use in an exploration scenario.
In contrast, forward-arc motion primitives have been proposed for high-speed assistive
teleoperation Spitzer et al. [39]. Forward-arc motion primitives are parameterized by a
maximum velocity parameter, and are computationally efficient to generate, as opposed
to an optimization-based approach. We build on these works and propose a receding-
horizon information-theoretic motion planner that uses forward-arc motion primitives for
action generation. Through simulated and hardware experiments using a multirotor we
demonstrate that the proposed planner allows the aerial robot to explore at high speeds
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while using a limited range depth sensor.

2.3 Distributed Mapping for Exploration

Ebadi et al. [29] state that the communication bottlenecks faced during mapping with a
multi-robot system due to the use of downsampled point clouds can be addressed by map
compression techniques or compact representations for motion planning. Dang et al. [30]
use the state-of-the-art, memory-efficient OctoMap [40] approach for map representation
but mention efficient map sharing as one of the future challenges. Rouček et al. [31] use ele-
vation maps for mapping but only on wheeled and ground robots because the transmission
of these maps requires a physically large communication module. These shared challenges
indicate a gap in the state-of-art for communication-efficient distributed mapping methods
in rapid aerial multi-robot exploration systems for subterranean domains. Corah et al. [19]
highlight the benefits of a distributed mapping strategy that exploits the compactness of
Gaussian Mixture Models (GMMs) relative to the occupancy grid approach [41]. However,
the approach is computationally prohibitive for real-world deployment, limits robot speeds,
and the effects of communication constraints on the exploration performance of the robot
team are not discussed. In contrast, this thesis proposes a distributed perceptual mod-
eling approach that enables real-time high-fidelity mapping while remaining amenable
to low-bandwidth communication channels. Evaluation using constrained bandwidth
experiments suggested that these maps can help in improving exploration performance
implicitly.
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Chapter 3

Background

This chapter provides an overview of two basic aspects used in the remainder of the thesis.
In Section 3.1, the exploration problem is defined for a typical multirotor exploration
scenario. In Section 3.2, preliminaries for GMM-based mapping are presented from prior
works [13, 36], and are used later in Chapters 5 and 6.

3.1 Exploration Problem

Figure 3.1 depicts a typical multirotor exploration scenario. Environment is modeled by
an occupancy grid map with independent Bernoulli occupancy probabilities for voxels.
Depending on user-specified thresholds for occupancy, the map is partitioned into three
subsets: free space (Xfree, white voxels in Fig. 3.1), unknown space (Xunk, black voxels
in Fig. 3.1), and occupied space (Xocc). The voxels at the boundary of Xfree and adjacent
to voxels in Xunk are called frontier voxels, denoted by the set Xfrt [37]. The objective of
a motion planner in such exploration scenarios is to minimize the amount of unknown
space Xunk in the minimum time possible. For information-theoretic techniques, this rate
is quantified as the rate of reduction of entropy of the occupancy map [42]. The entropy of
the map decreases as the occupancy values of previously unknown voxels are updated
based on sensor observations and become more certain, and there is at most one bit of
entropy per voxel.

3.2 Gaussian Mixture Models for Exploration

Gaussian Mixture Models (GMMs) can be leveraged to compactly encode sensor obser-
vations for transmission over low-bandwidth communications channels [13, 36]. The
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Figure 3.1: An ideal multirotor exploration scenario with no obstacles in the environment. The objective is to
design a planner that takes actions such that over time, all of the unknown space (black voxels) is explored
(white voxels) using a time-of-flight sensor while ensuring that the robot motion and planned trajectories are
always within the free space (white voxels).

GMM provides a generative model of the sensor observations from which occupancy
may be reconstructed by resampling from the distribution and raytracing through a local
occupancy grid map. Formally, the GMM is a weighted sum of " Gaussian probability
density functions (PDFs). The probability density of the GMM is expressed as

?(x |�) =
"∑
<=1

�<N(x |-< ,�<)

where ?(x |�) is the probability density for the D-dimensional random variable x and
is parameterized by � = {�< , -< ,�<}"<=1. �< ∈ R is a weight such that

∑"
<=1 �< = 1

and 0 ≤ �< ≤ 1, -< is a mean, and �< is a covariance matrix for the <th �-dimensional
Gaussian probability density function of the distribution. The multivariate probability
density for x is written as

N(x |-8 ,�8) =
|�8 |−1/2

(2�)�/2
exp

(
− 1

2(x − -8)
)�−1

8 (x − -8)
)
.

In this work, a depth observation taken at time C and consisting of # points, ZC =

{z1
C , . . . , z

=
C , . . . , z

#
C }, is used to learn a GMM. Estimating optimal GMM parameters �

remains an open area of research [43]. The Expectation Maximization (EM) algorithm
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(a) Color Image (b) Depth Image

(c) Point Cloud (d) Free Space Windows

(e) GMM (f) Resampled Data

Figure 3.2: Overview of the approach to transform a sensor observation into free and occupied GMMs. (a) A
color image taken onboard the robot exploring Laurel Caverns. (b) A depth image corresponding to the same
view as the color image with distance shown as a heatmap on the right hand side (in meters). (c) illustrates
the point cloud representation of the depth image. (d) In the mapping approach, points at a distance smaller
than a user-specified max range A3 (in this case A3 = 5 m) are considered to be occupied, and a GMM is
learned using the approach detailed in Section 3.2.1. Points at a distance further than A3 are considered
free, normalized to a unit vector, and projected to A3. The free space points are projected to image space
and windowed using the technique detailed in Section 3.2.2 to decrease computation time. Each window is
shown in a different color. (e) The GMM representing the occupied-space points is shown in red and the
GMM representing the free space points is shown in black. Sampling 2 × 105 points from the distribution
yields the result shown in (f). The number of points to resample is selected for illustration purposes and to
highlight that the resampling process yields a map reconstruction with an arbitrary number of points.
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is usually employed to solve the maximum-likelihood parameter estimation problem,
which is guaranteed to find a local maximum of the log likelihood function [44]. To
make the optimization tractable, EM introduces latent variables C = {2=<} for each point
z=C and cluster < and iteratively performs two steps: expectation (E) and maximization
(M) [44, 45, 46].

The E step calculates the expected value of the complete-data log-likelihood ln ?(ZC ,C|�)
with respect to the unknown variables C given the observed data ZC and current pa-
rameter estimates �8 , which is written as �[ln ?(ZC ,C|�)|ZC ,�8] [45]. This amounts to
evaluating the posterior probability, �=< , using the current parameter values �8 (shown in
Eq. (3.1)) [44]

�=< =
�<N(z=C |-8< ,�

8
<)

"∑
9=1

� 9N(z=C |-89 ,�
8
9)
, (3.1)

where �=< denotes the responsibility that component < takes for point z=C . The M step
maximizes the expected log-likelihood using the current responsibilities, �=< , to obtain
updated parameters, �8+1 via the following:

-8+1
< =

#∑
==1

�=<z=C∑#
==1 �=<

(3.2)

�8+1
< =

#∑
==1

�=<(z=C − -8+1
< )(z=C − -8+1

< ))∑#
==1 �=<

(3.3)

�8+1
< =

∑#
==1 �=<x=∑#
==1 �=<

. (3.4)

Every iteration of EM is guaranteed to increase the log likelihood and iterations are
performed until a local maximum of the log likelihood is achieved [44].

The E step is computationally expensive because a responsibility �=< is calculated for
each cluster < and point z=C , which amounts to #" responsibility calculations. In the M
step, every parameter must be updated by iterating over all # samples in the dataset. In
practice, a responsibility matrix B ∈ R#×" is maintained whose entries consist of the �=<
to estimate the parameters �.

Following the work of OMeadhra et al. [47], distinct occupied G(x) (detailed in
Section 3.2.1) and free ℱ (x) (detailed in Section 3.2.2) GMMs are learned to compactly
represent the density of points observed in the environment (Fig. 3.2). The process by
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which ℱ (x) and G(x) are created is illustrated in Figs. 3.2c and 3.2d. Because the GMM is
a generative model, one may sample from the distribution (Fig. 3.2f) to generate points
associated with the surface model and reconstruct occupancy (detailed in Section 3.2.3).

3.2.1 Occupied Space

For points with norms less than a user-specified maximum range A3, the EM approach is
adapted from [48] to accept points that lie within a Mahalanobis distance of �. Because
Gaussians fall off quickly, points far away from a given density will have a small effect on
the updated parameters for that density. By reducing the number of points, this decreases
the computational cost of the EM calculation. Only points that have a value smaller than �

are considered (i.e., points larger than � are discarded):

� >
√
(x= − -1

<))(�m
1)−1(x= − -1

<) (3.5)

where the superscript 1 denotes the initialized values for the mean, covariance, and
weight. This approach differs from our prior work Tabib et al. [36]; we utilize the approach
in [48] as it yields greater frame-to-frame registration accuracy in practice. Frame-to-frame
registration is not used in this work and is left as future work.

3.2.2 Free Space

To learn a free space distribution, points with norms that exceed the maximum range A3 are
projected to A3. The EM approach from Section 3.2.1 is used to decrease the computational
cost of learning the distribution. To further decrease the cost, the free space points are
split into windows in image space and GMMs consisting of = 5 components are learned
for each window. The windowing strategy is employed for learning distributions over
free space points because it yields faster results and the distributions cannot be used for
frame-to-frame registration. The number of windows and components per window is
selected empirically. Fig. 3.2d illustrates the effect of the windowing using colored patches
and Fig. 3.2e illustrates the result of this windowing technique with black densities. Once
the free space distributions are learned for each window the windowed distributions are
merged into a single distribution.

Let G8(x) be a GMM trained from #8 points in window 8 and let G9(x) be a GMM
trained from #9 points in window 9, where

∑,
F=1 #F = # for sensor observationZC and,

windows. G9(x) =
∑ 
:=1 �:N(x |.: ,
:)may be merged into G8(x) =

∑"
<=1 �<N(x |-< ,�<)

by concatenating the means, covariances, and weights. However, care must be taken when
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(a) (b) (c) (d)

Figure 3.3: Overview of the method by which occupancy is reconstructed. (a) The blue bounding box 1C+1 is
centered around XC+1 and red bounding box 1C is centered at XC . (b) illustrates the novel bounding boxes in
solid magenta, teal, and yellow colors that represent the set difference 1C+1 \ 1C . (c) Given a sensor origin
shown as a triad, resampled pointcloud, and novel bounding box shown in yellow, each ray from an endpoint
to the sensor origin is tested to determine if an intersection with the bounding box occurs. The endpoints
of rays that intersect the bounding box are shown in red. (d) illustrates how the bounding box occupancy
values are updated. Endpoints inside the yellow volume update cells with an occupied value. All other cells
along the ray (shown in blue) are updated to be free.

merging the weights as they must be renormalized to sum to 1 [49]. The weights are
renormalized via Eqs. (3.6) and (3.7):

# ∗ = #8 + #9 (3.6)

0∗ =
[
#8�1
#∗ . . . #8�<

#∗
#9�1
#∗ . . .

#9�:
#∗

] )
(3.7)

where< ∈ [1, . . . , "] and : ∈ [1, . . . ,  ]denote the mixture component in GMMsG8(x) and
G9(x), respectively. # ∗ ∈ R is the sum of the support sizes of G8(x) and G9(x). 0∗ ∈ R"+ 

are the renormalized weights. The means and covariances are merged by concatenation.

3.2.3 Local Occupancy Grid Map

The occupancy grid map [50] is a probabilistic representation that discretizes 3D space
into finitely many grid cells m = {<1, ..., <|m|}. Each cell is assumed to be independent
and the probability of occupancy for an individual cell is denoted as ?(<8 |X1:C ,Z1:C),
where X1:C represents all vehicle states up to and including time C andZ1:C represents the
corresponding observations. Unobserved grid cells are assigned the uniform prior of 0.5
and the occupancy value of the grid cell <8 at time C is expressed using log odds notation
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for numerical stability.

;C ,8 , log

(
?(<8 |Z1:C ,X1:C)

1 − ?(<8 |Z1:C ,X1:C)

)
−;0

When a new measurementZC is obtained, the occupancy value of cell <8 is updated as

;C ,8 , ;C−1,8 + !(<8 |ZC)

where !(<8 |ZC) denotes the inverse sensor model of the robot and ;0 is the prior of
occupancy [50].

Instead of storing the occupancy grid map m that represents occupancy for the entire
environment viewed since the start of exploration onboard the vehicle, a local occupancy
grid map m̄C is maintained centered around the robot’s pose XC . The local occupancy grid
map moves with the robot, so when regions of the environment are revisited, occupancy
must be reconstructed from the surface models G(x) and ℱ (x). To reconstruct occupancy
at time C + 1 given m̄C , the set difference of the bounding boxes 1C and 1C+1 for m̄C and
mC+1, respectively, are used to compute at most three non-overlapping bounding boxes
(see Figs. 3.3a and 3.3b for example). The intersection of the bounding boxes remains
up-to-date, but the occupancy of the novel bounding boxes must be reconstructed using
the surface models G(x) and ℱ (x). Raytracing is an expensive operation [51], so time is
saved by removing voxels at the intersection of 1C and 1C+1 from consideration.

The local occupancy grid map at time C + 1, m̄C+1, is initialized by copying the voxels
in local grid m̄C at the intersection of 1C+1 and 1C . In practice, the time to copy the local
occupancy grid map is very low (on the order of a few tens of milliseconds) as compared to
the cost of raytracing through the grid. Not all Gaussian densities will affect the occupancy
reconstruction so to identify the GMM components that intersect the bounding boxes a
KDTree [52] stores the means of the densities. A radius equal to twice the sensor’s max
range is used to identify the components that could affect the occupancy value of the
cells in the bounding box. A ray-bounding box intersection algorithm [53] checks for
intersections between the bounding box and the ray from the sensor origin to the density
mean. Densities that intersect the bounding box are extracted into local submaps Ḡ(x)
and ℱ̄ (x). Points are sampled from each distribution and raytraced to their corresponding
sensor origin to update the local grid map (example shown in Figs. 3.3c and 3.3d).

As the number of mixture components in the distribution increases over time in one
region, updating the occupancy becomes increasingly expensive as the number of points
needed to resample and raytrace increases. Tabib et al. [36] detail a method for limiting the
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potentially unbounded number of points from a 360° LiDAR sensor. However, this thesis
assumes robots that are equipped with a low-cost limited field-of-view depth sensor. A
geometric method to limit sensor observations for this case is described in Chapter 5.
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Chapter 4

Rapid Motion Primitives-based
Single-Robot Exploration

This chapter presents the motion primitives-based receding-horizon motion planner
developed in this thesis. The action space used by the motion planner is represented as a
collection of forward-arc motion primitives with velocity bounds derived from dynamics
and sensing constraints. Finite-horizon trajectory selection from this action space is
performed via Monte Carlo tree search (MCTS). This motion planner is later used in
Chapter 6 on each robot of a multi-robot exploration system that can rapidly explore a cave.

4.1 Approach

4.1.1 Steady-State Velocity Analysis

This section presents an analysis of the exploration performance for an aerial robot
operating for steady-state conditions such as continuous motion toward a frontier. This
analysis produces bounds on velocity and rates of entropy reduction, given the constraints
on dynamics and sensing. We leverage these insights in Section 4.1.2 to design motion
primitive actions for rapid exploration.

System Model and Safety Constraints

This work applies a simplified double-integrator quadrotor model with acceleration and
velocity constraints for analysis of limits on exploration performance, which can be thought
of as a relaxation of dynamics models that are commonly used for position and attitude
control of multirotor vehicles [54, 55]. Let r = [G, H, I]> be the position of the vehicle in
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an inertial world frameW = {xW , yW , zW}, and let the body frame be ℬ = {xℬ , yℬ , zℬ}.
Assuming small roll and pitch angles, and given the yaw angle #, the system state is
/ = [r>,#, ¤r>, ¤#]>. The derivatives of position and yaw satisfy bounds on velocity and
acceleration

| |¤r| |2 ≤ +max | |¥r| |2 ≤ �max | ¤# | ≤ Ω, (4.1)

where | | · | |2 is the !2-norm.
Further, the robot is equipped with a forward-facing depth sensor with range of Adepth

for use in mapping. However, while navigating the environment, the robot must also be
able to avoid collisions with obstacles.

The requirement for collision-free operation restricts the set of actions that a multirotor
can safely execute while navigating in an unknown environment. A planning policy can
ensure collision-free operation by guaranteeing that the robot is able to stop entirely within
unoccupied space Xfree, given an appropriate collision radius Acoll, such as in the work of
Janson et al. [56]. In the worst case, any voxel in the unknown space Xunk may be revealed
to be occupied and so possibly force the robot to stop within Xfree.

The robot plans once every ΔC? seconds, and there is also a latency ΔC< for acquiring
depth information and integrating it into the occupancy map. The sensor data is ΔC<

seconds old at the beginning of planning, and once the planner is done, the robot executes
the selected action for another ΔC? so that the total effective latency is no more than
ΔC; = ΔC< + 2ΔC? . Note that, although latency may be unpredictable in practice, the robot
will not depend on consistent latency to maintain safe operation.

Steady-State Exploration Scenarios

Figure 4.1 illustrates two possible scenarios for steady-state motion with respect to a frontier.
For the perpendicular case (Fig. 4.1a) the robot moves continuously toward a frontier and
may have to avoid obstacles at the edge of the sensor range. As discussed in Section 4.1.1,
the robot must be able to avoid collisions with obstacles in the unknown environment
even if there are not any there. This means that the the robot must always be prepared to
stop before reaching the frontier. For the parallel case (Fig. 4.1b) the robot moves along
the frontier through space that has already been mapped. When known space is free
of obstacles, the robot may continue to do so at the maximum allowable velocity. This
scenario can also be thought of as the limit for a spiral motion—which will arise later in
the experimental results—as the curvature becomes very small.
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(a) Perpendicular scenario (b) Parallel scenario (c) Sensor Cone

Figure 4.1: Steady-state exploration scenarios. Analysis in Section 4.1.1 presents upper bounds on velocities
are for a double integrator system (a) for motion perpendicular to a frontier (+⊥,max) and (b) for motion
parallel to it (+‖ ,max). To ensure safety in the perpendicular case, the robot has to stop within a user-specified
collision radius from the frontier (Xfrt), i.e. within Adepth − Acoll from the current state. For the parallel case,
no such restrictions exist since the robot is moving in the explored space which, ideally, is free (Xfree). (c)
Combining the area of the projection of the sensor cone in the direction of motion with the bounds on velocity
leads to upper bounds on rates of novel voxels observed during exploration.

Bounds on Velocity

Given the system model and constraints for exploration scenarios, we now proceed with
calculation of the velocity bounds for motion perpendicular and parallel to the frontier,
+⊥,max and+‖ ,max respectively. Maximum velocity toward the frontier is computed based on
motion at a constant velocity followed by stopping at maximum deceleration to satisfy the
safety constraint. The expression for +⊥,max is a function of acceleration (�max), maximum
sensing range (Adepth), the collision radius (Acoll), and the latency in planning ΔC; (see
Fig. 4.1a) and is given by

+⊥,max = min(+max, +
′
⊥,max)

+′⊥,max = �max ·
(√

ΔC2
;
+ 2

Adepth − Acoll

�max
− ΔC;

)
.

(4.2)

Fig. 4.2 shows the variation of this bound with Adepth and ΔC; for the parameters used
in this work. For motion parallel to a frontier (see Section 4.1.1 and Fig. 4.1b), there are
no obstacles in the direction of motion. Therefore, the steady-state upper bound on the
velocity moving parallel to the frontier is identical to the maximum achievable by the
system, i.e. +‖ ,max = +max.

The entropy reduction then can also be bounded for each scenario terms of the sensor
geometry (see Fig. 4.1c) and steady-state velocities by projecting the sensing volume in the
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Figure 4.2: Maximum achievable velocity moving toward a frontier (+⊥,max) according to Eq. (4.2) based on
parameters used in Table 4.1 and varying (a) sensor range and (b) total latency (which consists of latency for
the mapping system and time for planning). The circle marks the maximum velocity at which the robot can
move toward unknown space for the parameters used in this paper (see Table 4.1) which is less than half the
overall velocity bound. Approaching this velocity limit requires either sensor range exceeding 10 m, both
decreased planning time and mapping latency, or some combination of the two.

Table 4.1: Steady-state upper bounds on velocity and rate of entropy reduction for the scenarios described in
Section 4.1.1. All values are computed for a planning time of 1 Hz, mapping latency 0.4 s, sensor point cloud
of size 9.93 m × 5.68 m based on the Intel RealSense D435 depth sensor with image size 424px × 240px and a
maximum depth Adepth of 5 m. Occupancy grid resolution is 20 cm with an overall bound on top speed +max
at 4 m/s, and collision radius Acoll set at 0.6 m.

Value/Cases Area Velocity Volume rate Entropy rate
(m2) (m/s) (m3/s) (bits/s)

Perpendicular (⊥) 56.4 1.77 99.83 1.25 × 104

Parallel (‖) 57.19 4.00 228.8 2.86 × 104

⊥, rapid yaw 56.8 1.77 100.5 1.26 × 104

‖, rapid yaw 78.05 4.00 312.2 3.90 × 104

direction of motion. Here, we also introduce the possibility of rapid yaw motion during
either motion. Results are shown in Table 4.1. Note that moving parallel to the frontier can
provide significantly improved performance.

4.1.2 Action Representation

This section details the design of available actions for the proposed motion planning
framework. We define a trajectory generation scheme, related parameters and conventions,
and action design specifics leveraging insights gained in Section 4.1.1.
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(a) Variation in $ (b) Variation in Ez

Figure 4.3: Actions in xℬ − yℬ plane at the multirotor state /C , �
9:

/C
(blue), are generated using discretized

velocity bounds obtained from the analysis in Section 4.1.1. The set of such primitives at each state is termed
a motion primitive library (MPL) Γ/C . MPLs are sampled in directions perpendicular (xℬ) and parallel
(yℬ ,−yℬ) to the sensor scans with speeds bounded by +⊥,max and +‖ ,max respectively, see (a). Variation in
zℬ direction using a user-specified bound on vertical velocity, +z, yields the final action space shown in (b).
Dynamically feasible stopping trajectories �

stop
/C

are available for each primitive (green) for safety (only one
shown for brevity).

Motion Primitive Library Generation

Safe and accurate high-speed flight requires large and smooth linear acceleration and
angular velocity references. Smoothness for such references depends on higher derivatives
of position, jerk and snap [57]. For this work, the actions that are available to the robot
are snap-continuous, forward arc [58] motion primitives, which have previously been
applied to high-speed teleoperation of multirotors [39]. Given the differentially-flat state of
the multirotor at time C, /C = [G, H, I,#]>, denote an available action parameterization as
a = [Ex, Ez, $]where Ex and Ez are velocities in the body frame xℬ and zℬ directions, and
$ is the body yaw rate. Actions are discretized using user-specified maximum velocity
bounds in xℬ − yℬ plane ($ variation, #$ primitives) and in zℬ direction (Ez variation, #z

primitives) to obtain a motion primitive library (MPL) Γ/C given by (Fig. 4.3):

Γ/C = {�
9:

/C
| 9 ∈ [1, #$], : ∈ [1, #z], ‖[Ex, Ey]‖ ≤ +max, ‖Ez‖ ≤ +z, ‖$‖ ≤ Ω} (4.3)

where, ‖ · ‖ denotes !2-norm of a vector, +max and +z are the bounds on speed in xℬ − yℬ
plane and z direction respectively, and Ω is the bound on body yaw rate. For a given action
discretization, the motion primitive �

9:

/C
is an 8th order polynomial in time with fixed start

and end point velocities and unconstrained position at the end. The velocity at the end
point, at time �, follows by forward propagating unicycle kinematics using the current
state and the action parameterization while higher order derivatives up to snap, endpoints
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are kept zero:

¤/� = [Ex cos#, Ex sin#, Ez, $]>, # = $�, /
(9)
� = 0, for 9 ∈ {2, 3, 4} (4.4)

where /(9) denotes the 9th time derivative of /. The stopping trajectories at any /C (�stop
/C

,
Fig. 4.3) can be sampled by keeping ¤/C = 0. Further detail on forward-arc motion primitive
generation can be found in [59]. Dynamic feasibility check is based on pre-specified
empirically observed bounds on linear acceleration and linear jerk !2-norms. This search
achieves having the trajectory in the desired end point velocity ¤/C in the minimum time
possible from the current state.

Action Space for Fast Exploration

The action space for the proposed planner is a collection of MPLs, defined by Eq. (4.3),
generated using linear velocities based on bounds obtained in Section 4.1.1, +⊥,max and
+‖ ,max. The planner uses 6 MPLs to represent the action space, Xact = {Γ8/C | 8 ∈ [1, 6]},
and sets of upper bounds on linear velocities (Table 4.2) define each of these different
MPLs. These MPLs include both high-speed actions for navigating the environment and
actions that mimic steady-state conditions described Section 4.1.1. Later, in Section 4.2, we
highlight effects on exploration performance due to these components, especially the high
speed parallel and low speed perpendicular MPLs.

4.1.3 Action Selection

We formulate the action selection problem as a finite-horizon optimization seeking to
maximize cumulative information gain [33], and build upon previous work [19, 60, 61] on
robotic exploration using Monte Carlo tree search (MCTS).

Most MCTS-based planners follow four steps: selection, expansion, simulation playout,
and backpropagation of statistics [62, 63]. Such planners usually construct a search tree
iteratively by random rollout from a previously unexpanded node selected based on
upper-confidence bounds for trees (UCT) [63]. Prior works [19, 60] have applied MCTS in
planning for exploration using multirotors using a UCT-based selection policy, information
gain rewards, and random simulation playout over a finite horizon. We extend this
approach by adding considerations for model constraints into the node expansion phase of
MCTS.
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Information-Theoretic Exploration Objectives

Following a similar approach as our prior work [19], the planner optimizes an objective
with two components: a local information reward based on Cauchy-Schwarz quadratic
mutual information (CSQMI) [33], and a global reward for decrease the shortest path
distance to points in the state space that are expected to provide significant information
gain [19]. For any candidate action, �/C , we compute the local information gain ℐ� over
user-specified time intervals and treat the joint information gain as a reward for the MCTS
planner. The distance reward serves to direct the robot toward unexplored and possibly
distant regions of the environment once the local environment is exhausted of information
causing the local information reward to decrease.

Safety at High Speeds

Given the action representation described in Sect. 4.1.2, we require the planner to ensure
safety while expanding nodes. Specifically, the trajectory tracked by the controller should
both respect constraints on the dynamics and remain in known free space for all time. To
satisfy this condition, before sending any trajectory to the robot, we require knowledge of
a trajectory that will bring the robot to a stop—and potentially keep it there—afterward.
As such, the robot will avoid collision, even if the planner fails to provide any output. If
ever planning fails, the known stopping trajectory is sent to the robot, and the robot will
continue to replan from a future reference point.

4.2 Results and Analysis

This section describes hardware and simulation results for the proposed exploration
approach. The simulation results evaluate performance in a warehouse-like environment
which serves as a representative example of a large-scale exploration task. The hardware
results demonstrate exploration at high speeds using a hexarotor platform under various
degrees of clutter. Unless otherwise noted, the configuration of the robot for simulation
matches the hardware.

4.2.1 Aerial Platform

Platform used for experiments is a hexarotor aerial robot (Fig. 4.7a) with a forward-facing
depth camera for mapping (Realsense D435) with a 89.57° by 59.24° field of view and
a range of Adepth = 5.0 m. The robot itself weighs 55.37 N, has a thrust to weight ratio
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(a) C = 100 s (b) C = 500 s (c) C = 1000 s (d) C = 1500 s

Figure 4.4: Occupied map at different stages of exploration of a simulated three-dimensional 60 m×30 m×11 m
warehouse environment used for experiments. The map is colored based on Z height.

of 3.5, and has a diameter of 0.89 m from motor to motor. Limits on acceleration and
jerk are set to �max = 10 m/s2 and �max = 35 m/s3 respectively, based on empirical data
available for the platform. Unless otherwise stated, the planning horizon is kept at 4
seconds for all experiments. For both simulation and hardware experiments, mapping
and planning run on a computationally constrained quad-core embedded CPU Gigabyte
Brix 6500U. The robot obtains odometry estimates via a downward-facing camera and
IMU using a monocular Visual-Inertial Navigation System (VINS-Mono [64]), previously
used for high-speed teleoperation of a multirotor [39]. This state estimation component,
only present for hardware experiments, is executed on a quad-core NVIDIA Tegra TX2
on-board the vehicle. Contrary to perfect state estimation in simulation experiments, for
the hardware experiments the robot only has access to odometry for navigation and is
susceptible to drift. For the purpose of this work, we will continue to emphasize the
role of planning and speed in the exploration experiments and will comment briefly on
ramifications of drift on outcomes. Future iterations of this platform will seek to combine
a local mapping strategy [19] with a complete SLAM system.

4.2.2 Simulated Exploration of a Warehouse Environment

The simulations demonstrate exploration of a large warehouse environment (pictured in
Fig. 4.4). These trials are repeated for three system configurations which vary the motion
primitive library and the computational setting:

• High branching factor (BF), Sim-Time: The planner uses the large motion primitive
library (Table 4.2a) for exploration. The simulation and clock pause at the end of each
planning round until the MCTS planner completes a user-defined number (3000) of
iterations. The simulation time then does not include this additional time spent in
planning.

• High BF, Real-Time: The planner uses the large motion primitive library for explo-
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Table 4.2: Motion primitive libraries used to construct the action space using Eq. (4.3) from Section 4.1.2 and
the bounds obtained after applying analysis presented in Section 4.1.1. The vertical velocity bound (+z) and
the speed bound in xℬ − yℬ plane (+max) are kept at 0.3 m/s and 4.0 m/s respectively. The total number of
primitives for a MPL is #prim = #$ · #z.

(a) Large Library

ID Type Max.
Speed Dir. #$ #z #prim

1 Yaw 0 # 1 1 1
2 ⊥ +⊥,max xℬ 9 5 45
3 ⊥ +max xℬ 9 5 45
4 ‖ +max yℬ 9 5 45
5 ‖ +max −yℬ 9 5 45
6 Z +z z 1 5 5

(b) Minimal Library

ID Type Max.
Speed Dir. #$ #z #prim

1 Yaw 0 # 1 1 1
2 ⊥ +⊥,max xℬ 3 3 9
3 ⊥ +max xℬ 3 3 9
4 ‖ +max yℬ 3 3 9
5 ‖ +max −yℬ 3 3 9
6 Z +z z 1 3 3

ration, but the simulation of the multirotor runs in real time. The planner runs in
an anytime fashion on a computer comparable to the on-board computer used for
flight experiments presented in Section 4.2.3 while simulators for the camera and
dynamics run on a separate computer.

• Low BF, Real-Time: The planner uses the minimal motion library (Table 4.2b) for
exploration and the computational configuration is the same as the above.

These experiments first establish baseline performance (High BF, Sim-Time) given access to
a variety of motion primitives and a relatively large amount of planning time. The latter
two configurations demonstrate online planning in a configuration that closely matches the
hexarotor platform used in this paper. These experiments seek to demonstrate the role of
computational constraints in design of the motion primitive library. For each configuration,
we provide several trials, one for each of 5 given starting locations.

Each trial lasts 2500 seconds which provides ample time to explore the entire environ-
ment. For all trials, the perpendicular velocity +⊥,max is further limited to 1.25 m/s, below
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Figure 4.5: (top) Entropy reduction vs. time for each of the simulation trials. Transparent patches show
standard-error. (bottom) Average time to reach fractions of the maximum entropy reduction over all trials
(1.766 × 106 bits). While the High BF, Sim-Time case dominates in terms of entropy reduction, the Low BF,
Real-Time case is able to provide similar performance. Note that the different configuration are described at
the beginning of Section 4.2.2 and that BF denotes branching factor.

the value of 1.77 m/s obtained in Section 4.1.1 which we find admits forward motion at a
constant speed given the trajectory generation approach used for motion primitive design.
The maximum speed is set to more than three times greater at +max = 4.0 m/s.

Figure 4.5 summarizes exploration performance for each experiment. The high branch-
ing factory Sim-Time case which has access to extra planning time performs at least as
well or better than the other configurations in terms of entropy reduction. However, the
configuration with same motion primitive library and real time is significantly impaired
and requires between approximately 1.3 to 1.8 times as long to reach reported levels of
entropy reduction. The lower branching factor case matches the first configuration much
more closely. As such, this latter configuration is appropriate for deployment on the
compute-constrained hexarotor platform.

In addition to being able to explore an environment rapidly and completely, we
characterize the roles of the motion primitive actions in the exploration task. Figure 4.6
shows density estimates plots for speeds, yaw rates, and entropy rate labelled by the
type of action selected by the MCTS planner for execution for periods when the entropy
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reduction rate is significant (greater than 600 bits/s) so as to separate exploration actions
from traversal of the environment and time periods after exploration is effectively complete.
This threshold corresponds to a knee point in the overall distribution of entropy reduction
rates: 94.4% of all entropy reduction occurs above this threshold but during only 27.9% of
time during the trials. Interestingly, the time rate of entropy reduction is largely consistent
across action types. However, as expected, motions perpendicular to the frontier primarily

0 1 2 3 4
0

0.2

0.4

0.6

0.8

Speed (m/s)

D
en

si
ty

0 0.2 0.4 0.6
0

2

4

6

Yaw rate (rad/s)

2,000 4,000 6,000
0

1

2

3

4

·10−4

Entropy rate (bits/s)

D
en

si
ty

Perpendicular
Parallel
Z-motion
Yawing

Figure 4.6: Exploration performance by action. Plots provide estimates of probability densities (via kernel
density estimation) for speed, yaw rate, and entropy rate conditional on the type of action (Table 4.2) being
executed by the robot. All densities are also conditional on a significant entropy reduction rate (greater than
600 bits/s) in order to emphasize performance characteristics for actions that directly contribute to the map
rather than traversal of known space or time periods after exploration is effectively complete. Note that,
even though the option can has access to high-speed motions perpendicular to frontiers, entropy reduction
for perpendicular actions occurs primarily at lower speeds (1.25m/s) in accordance with the analysis in
Section 4.1.1.
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Table 4.3: Performance statistics for the high branching factor, Sim-Time simulation study. Unless otherwise
stated, rates refer to average performance over time-periods when tracking a given action type. All statistics
include any time the robot is tracking a given action, except for the entropy reduction rate in the last
row, which is conditional on a significant entropy reduction rate (greater than 600 bits/s). Best (or nearly
equivalent) values are bolded.

Actions: ⊥ ‖ Z Yaw Stop

Selection frequency 0.343 0.479 0.089 0.088 0.001
Total entropy red, norm. 0.40 0.41 0.06 0.12 0.01
Average speed (m/s) 2.163 2.778 0.959 1.114 1.611
Average yaw rate (rad/s) 0.286 0.234 0.170 0.381 0.080
Entropy red. rate (bits/s): 2425 2389 2020 2414 1283

contribute to entropy reduction at reduced speed despite both low-speed and high-speed
primitives being available. Table 4.3 shows provides further statistics for the different
kinds of actions. Even though entropy reduction rates are similar across actions when the
entropy reduction rate is significant, the planner selects motions parallel and perpendicular
to frontiers most frequently, and those actions account for more than 80% of all entropy
reduction.

4.2.3 Hardware Experiments under Varied Conditions

Real-world autonomous exploration experiments are conducted using the aerial platform
described in Section 4.2.1 (Fig. 4.7a) in two outdoor scenarios: (1) Open space (Fig. 4.7b),
and (2) Scattered obstacles (Fig. 4.7c). Total exploration duration is limited to 90 seconds to
minimize the effects of state estimation drift on the resulting map. During each scenario,
the robots explores while confined to 12 m × 24 m × 2 m bounding box. The robot starts
at the same position in the bounding box for each trial in both scenarios. The bounds on
the speed for perpendicular (+⊥,max) and parallel (+‖ ,max) motions, are set at 1.25 m/s and
2.25 m/s respectively. The explored maps and robot trajectory for two experiments, one
from each scenario, are shown in Figs. 4.7d and 4.7e. Speeds achieved by the vehicle during
the experiments are shown in Fig. 4.8 Fig. 4.9 provides plots of reduction of map entropy
as well as summary statistics. Even though the trials were relatively short, the odometry
often drifted significantly by the end This drift likely contributed to the robot getting stuck
behind an obstacle during the trial S2. For this reason, we only use the first for the first 40
seconds of each trial when computing summary statistics unless otherwise noted.

As shown in Fig. 4.8, the odometry system reports that the robot reaches and slightly
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(a) Multirotor with depth sensor (b) Open space scenario (c) Obstacles scenario

(d) Open space scenario exploration after 90 s (e) Obstacles scenario exploration after 90 s

Figure 4.7: Rapid exploration with a hexarotor in an outdoor environment. (a) Multirotor used for
hardware experiments in two real world scenarios: (b) open space and (c) space with scattered obstacles.
(d), (e) show the explored maps (color gradient based on Z height) and overall paths after 90 s of 3D
exploration using the proposed exploration approach. A video of the experiments can be accessed here:
https://youtu.be/YXt4yiTpOAc.

exceeds the maximum desired reference speed1 in each trial, primarily while executing
motions parallel to the frontier. Fig. 4.7d shows a particularly notable example of this
behavior where the robot executed an outward spiraling motion soon after the start of the
trial.

4.3 Summary

We have investigated how the dynamics of aerial platforms and the geometry of common
sensors impact selection of control actions in robotic exploration. We have obtained bounds
on the velocity for different kinds of motions and applied this analysis to the design of a
motion primitive library and information-based planner suitable for rapid exploration with
aerial robots. We have demonstrated this approach both in simulated exploration of a large
warehouse environment and in outdoor experiments with only on-board computation.

1The robot may exceed reference speeds due to error in tracking the position reference because of
environment disturbances and inaccuracies in the system model.
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Figure 4.8: Speeds attained during the hardware experiments. A video of the experiments can be accessed
here: https://youtu.be/YXt4yiTpOAc.

This system produces interesting and intuitive motions in practice such as outward spirals
for rapid coverage of open space. Further, the experimental results demonstrate speeds
exceeding 2.25 m/s for both open and cluttered environments, which matches and slightly
exceeds prior state-of-the-art results [14].

The analysis illuminates competing directions for improvements to speed and entropy
reduction performance. Decreasing planning time and latency, such as by improved
efficiency or reactive planning [14] or simply increasing sensor range, can improve speeds
moving perpendicular to frontiers which may be especially important in highly cluttered
environments where motion parallel to frontiers is not viable. At the same time, the ability
to safely and rapidly navigate known environments is also tightly coupled to exploration
performance both for motions parallel to frontiers and when traversing known space to
new unexplored regions. Thus, improvements to state-estimation, mapping, and planning
under uncertainty are also critical to incrasing speed and entropy reduction rates in
exploration.
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Trials: O1 O2 O3 S1 S2

Entropy red. at 40s (bits×105) 1.53 1.61 1.46 1.2 1.04
Entropy red. final (bits×105) 2.32 2.27 2.25 1.82 1.16
Average speed (m/s) 1.50 1.56 1.56 1.42 0.98
Average yaw rate (rad/s) 0.39 0.39 0.33 0.33 0.31
Max. speed (m/s) 2.39 2.38 2.38 2.40 2.29
Max. yaw rate (rad/s) 0.66 0.59 0.55 0.60 0.63

(b) Exploration Statistics

Figure 4.9: Entropy reduction for hardware trials and summary statistics. Except for the final entropy
reduction, all statistics are computed over the first 40 second of each trial (shown by the black bar in the
entropy reduction plot).
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Chapter 5

Communication-Efficient Single-Robot
Exploration

This chapter describes a communication-efficient robotic exploration system that uses
a single aerial robot equipped with a low-cost limited field-of-view (FoV) depth sensor
for cave mapping. Building upon prior work in communication-efficient GMM-based
occupancy modeling [36], the computational-efficiency of the occupancy update step is
extended to limited FoV sensors via a geometric approximation. Safe and informative path
planning with a limited FoV sensor is enabled via the action representation for exploration
developed in the previous chapter. Results for both planning and mapping subsystems are
presented in simulated and real cave environments using a single aerial robot.

5.1 Approach

The exploration system consists of mapping, information-theoretic planning, and a monoc-
ular visual-inertial navigation system (Fig. 5.1).

5.1.1 GMM-based Mapping with Limited-FoV Sensor

The limited FoV sensor model is directional, so it is approximated by two non-intersecting
tetrahedra such that their union forms a rectangular pyramid (shown in Fig. 5.2). For
two sensor FoVs the intersection between the four pairs of tetrahedra is calculated and
the intersection points found. The convex hull of the intersection points is converted to
a polyhedron mesh with triangular facets. The volume of the convex hull is found by
summing individual volumes of the tetrahedrons that make up the polyhedron [65]. The
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Figure 5.1: Overview of the autonomous exploration system presented in this chapter. Using pose estimates
from a visual-inertial navigation system (??) and depth camera observations, the mapping method (??
and Section 3.2.3) builds a memory-efficient approximate continuous belief representation of the environment
while creating local occupancy grid maps in real-time. A motion primitives-based information-theoretic
planner (Section 6.1.2) uses this local occupancy map to generate snap-continuous forward-arc motion
primitive trajectories that maximize the information gain over time.

overlap is estimated as a percentage of overlapping volume between two sensor FoVs and
a sensor observation is only stored if its overlap exceeds a user-defined threshold. In this
way, the number of components that represent a given location can be reduced while
ensuring that the environment is covered.

5.1.2 Planning for Exploration

This work utilizes an information-theoretic planning strategy using CSQMI as the primary
reward function, extending the prior work [36] to support limited FoV sensors in addition
to 360° FoV sensors. The proposed framework can be divided into two stages: (1) action
space generation and (2) action selection. At the start of any planning iteration, the planner
uses the action generation strategy (detailed in Section 5.1.3) to generate a set of candidate
actions up to a user-specified planning horizon using motion primitives. The action
selector evaluates the collision-free and dynamically feasible subset of the action space
using CSQMI as a reward function, returning the most informative plan to execute during
the next planning iteration (see Sections 5.1.4 and 5.1.5).
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Figure 5.2: For limited FoV sensors, the FoV is approximated by the illustrated blue and red rectangular
pyramids. These FoVs may also be represented as tetrahedra. To determine if a sensor position should be
stored, the overlapping volume between the two approximated sensor FoVs is found.

5.1.3 Action Space Generation

This section describes the design of the action space for the exploration planner and how it
can be modified for operation with different field-of-view sensors.

Designing the Action Space

The final action space, Xact, is a collection of MPLs selected according to three criteria: (1)
rate of information gain, (2) safety, and (3) limitations in compute. Prior work [36] provides
such a design for a 360° FoV sensor (LiDAR). Goel et al. [15] present an analysis on how
these three factors influence Xact for a limited FoV depth sensor. This work extends [36]
using the analysis in [15], yielding a motion planner amenable for exploration with either
a LiDAR or a depth sensor and that ensures similar exploration performance in either case
(see Section 4.2).
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(a) (b) (c)

Figure 5.3: Action space design for the proposed information-theoretic planner. (a) shows a single motion
primitive library generated using bounds on the linear velocity along {xℬ , zℬ} and the angular velocity
along {zℬ}. (b) and (c) show top-down views of the motion primitive library collections used when the
sensor model is a LiDAR [36] and a depth camera [15] respectively (off-plane primitives are not shown).
The proposed planner can be used with either of these sensors using the appropriate action space designs
explained in Section 5.1.3.

Action Space for 360° FoV Sensors 360° FoV sensors are advantageous in an exploration
scenario because of three factors: (1) 360° depth data from the sensor allows for visibility
in all azimuth directions, (2) a larger volume is explored per unit range when compared to
a limited FoV sensor, and (3) yaw in-place motion does not help gain information. The
first factor enables backward and sideways motion into the action space Xact without
sacrificing safety (Fig. 5.3b). The second factor influences the entropy reduction: for the
same trajectory, a sensor with a larger FoV will explore more voxels compared to the limited
FoV case. The third factor reduces the number of motion primitive libraries in the action
space to yield increased planning frequency. An example of an action space designed
while considering these factors is presented in [36] and the corresponding parameters are
shown in Table 5.1a.

These factors indicate that the same action space Xact cannot be used for limited FoV
cameras if comparable exploration performance is to be maintained. This motivates the
need for an alternate and informed action design for the limited FoV cameras.

Action Space for Limited FoV Sensors Goel et al. [15] show that for an exploration
planner using a limited FoV sensor, the design of the action space Xact can be informed by
the sensor model. The authors consider a depth sensor to design Xact by incorporating
the sensor range and FoV, among other factors. This work follows a similar approach
yielding an action space that contains MPLs in both the xℬ and yℬ directions (Fig. 5.3c).
The parameters to construct the MPL collection comprising Xact are shown in Table 5.1b.
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MPL
ID Vel., Time #$,

#z
#prim

1 Exℬ , � 3, 5 15
2 Exℬ , 2� 3, 5 15
3 −Exℬ , � 3, 5 15
4 −Exℬ , 2� 3, 5 15

(a) LiDAR

MPL
ID Vel., Time #$,

#z
#prim

1 Exℬ , � 3, 5 15
2 Exℬ , 2� 3, 5 15
3 Eyℬ , � 3, 5 15
4 Eyℬ , 2� 3, 5 15
5 −Eyℬ , � 3, 5 15
6 −Eyℬ , 2� 3, 5 15
7 $zℬ , � 1, 5 5

(b) Depth Camera

Table 5.1: Discretization used to construct the action space Xact for the simulation experiments for (a) LiDAR
and (b) depth camera cases. Total number of primitives for a MPL are denoted by #prim = #$ · #z. The base
duration � was kept at 3 s for all experiments.

Note that there is an additional MPL corresponding to a yaw-in-place motion, unlike the
360° FoV case, to compensate for the limited FoV of the depth camera. For further detail
on how to obtain these parameters, please refer to [15, 66].

5.1.4 Information-Theoretic Objective

The action selection policy uses CSQMI as the information-theoretic objective to maximize
the information gain over time. CSQMI is computed at : points along the primitive �/C , and
the sum is used as a metric to measure the expected local information gain for a candidate
action ℐ�. However, this design may result in myopic decision-making. Therefore, frontiers
are also incorporated to model the global spatial distribution of information [37]. This
global reward, denoted by V�, is calculated based on the change in distance towards a
frontier along a candidate action. Using the node state /0, end point state /�, and a distance
field constructed based on the position of the frontiers, this reward can be calculated as
V� = 3(/0) − 3(/�), where 3(/C) denotes the distance to the nearest voxel in the distance
field from state /C [19].

5.1.5 Action Selection

Using the rewards described in the preceding section, the objective for the motion planner
is defined as follows [15, 19]:

argmax
�/C

ℐ� + V�

s.t. �/C ∈ Xact

(5.1)
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Algorithm 1 Overview of Action Selection for Exploration
1: input: Xact, Xfree
2: output: �∗/C ⊲ best action
3: for Γ/C ∈ Xact do
4: for �/C ∈ Γ/C do
5: feasible← SafetyCheck(�/C , �

stop
/C

, Xfree)
6: if feasible then
7: ℐ� ← InformationReward(�/C )
8: V� ← FrontierDistanceReward(�/C )
9: else

10: ℐ� ← 0.0,V� ← 0.0
11: end if
12: end for
13: end for
14: return �∗/C

← argmax
�/C ∈Xact

[ℐ� +V�]

where  is a weight that adjusts the contribution of the frontier distance reward. Recall,
the goal is to maximize this reward function in real-time on a compute-constrained aerial
platform. Previous information-theoretic approaches that construct a tree and use a finite-
horizon planner either do not use a global heuristic [67] or are not known to be amenable
for operation on compute-constrained platforms [19]. In this work, a single-step planner
is used with the action space Xact consisting of motion primitives of varying duration for
real-time performance (see Table 5.1). Due to this choice, the planner computes rewards
over candidate actions that extend further into the explored map from the current position.
In this manner, longer duration candidate actions provide a longer lookahead than the
case when all candidate actions are of the same duration even in single-step planning
formulations (see Table 5.1).

The action selection procedure is detailed in Algorithm 1. For every candidate action �/C
in the action spaceXact, a safety check procedure is performed to ensure that this candidate
and the associated stopping action (�stop

/C
) are dynamically feasible and lie within free space

Xfree (Line 5). The free space check is performed using a Euclidean distance field created
from locations of occupied and unknown spaces in the robot’s local map given a fixed
collision radius [60]. Checking that the stopping action is also feasible ensures that the
planner never visits an inevitable collision state, which is essential for safe operation [56]. If
the action is feasible, the local information reward (ℐ�, Line 7) and frontier distance reward
(V�, Line 8) are determined as described in Section 5.1.4. The planner then returns the
action with the best overall reward (Line 14).

42



CHAPTER 5. COMMUNICATION-EFFICIENT SINGLE-ROBOT EXPLORATION

5.2 Results and Analysis

This section details the experiments to validate the approach. Results are reported for both
real-time simulation trials and field tests in caves. The following shorthand is introduced
for this section only: MCG will refer to the Monte Carlo GMM mapping approach and OG
mapping will refer to the Occupancy Grid mapping approach. The mapping and planning
software is run on an embedded Gigabyte Brix 8550U with eight cores and 32 GB RAM, for
both hardware and simulation experiments. Unless otherwise noted, the parameters for
simulation and hardware experiments are equal.

5.2.1 Comparison Metrics

To calculate the memory requirements for the OG mapping approach, the incremental
OG map is transmitted as a changeset pointcloud where each point consists of 4 floating
point numbers: {G, H, I, logodds}. The changeset is computed after insertion of every
pointcloud. A floating point number is assumed to be four bytes, or 32 bits. For the MCG
approach, the cumulative data transferred is computed by summing the cost of transmitted
GMMs. Each mixture component is transmitted as 10 floating point numbers: six numbers
for the symmetric covariance matrix, three numbers for the mean, and one number for the
mixture component weight. One additional number is stored per GMM that represents
the number of points from which the GMM was learned. The transform between the
sensor origin reference frame and the global reference frame is stored for each GMM using
six numbers to represent the three translational and three rotational degrees of freedom.
To ensure a fair comparison of exploration performance between the two approaches, a
global occupancy grid serves as a referee and is maintained in the background with a voxel
resolution of 0.2 m. This occupancy grid is used to compute map entropy over time [42],
thus measuring exploration progress during a simulation or a hardware experiment.

Table 5.2: Reconstruction error for Fig. 5.5. The error is calculated as the PointCloud-to-Mesh distance
between the environment reconstructions and mesh.

Mean (m) Std (m)

MCG 1.3 × 10−2 1.9 × 10−2

OG 6.3 × 10−2 3.9 × 10−2
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Figure 5.4: Exploration statistics for simulation experiments. (a) illustrates the map entropy over time for
80 trials (40 trials per mapping method), (b) illustrates the average map entropy over time. Although both
mapping methods achieve similar entropy reduction, MCG uses significantly less memory according to the
average cumulative data transferred shown in (c). The average cumulative data transferred at the end of
1500 s is 4.4 MB for the MCG approach and 153 MB for the OG approach. The MCG method represents a
decrease of approximately two orders of magnitude as compared to the OG method. The experiments are
conducted in the simulated cave environment shown in (d). The four starting positions are shown as orange
dots.
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(a) Simulated Cave Environment (b) Points from the PLY (c) GMM map (1� covariances)

(d) Resampled pointcloud (e) Dense voxel map

Figure 5.5: The colorized mesh used in simulation experiments is shown in (a) and produced from FARO
scans of a cave in West Virginia. (b) illustrates the pointcloud from the mesh shown in (a). (c) illustrates the
MCG map with 1� covariances, which is densely resampled with 1 × 106 points, to obtain the reconstruction
shown in (d). (e) illustrates the dense voxel map with 20 cm voxels after 1500 s of exploration with the depth
camera sensor model. The reconstruction accuracy for (d), and (e) are shown in Table 5.2. All pointclouds
shown are colored from red to purple according to z-height.

5.2.2 Simulation Experiments

The exploration strategy is evaluated with 80 real-time simulation trials over approximately
67 hours in a 30 m× 40 m× 6 m environment constructed from colorized FARO pointclouds
of a cave in West Virginia (see Fig. 5.5a). In each simulation, the multirotor robot begins
exploration from one of four pre-determined starting positions and explores for 1500 s. Ten
exploration tests for each of the four sensor configurations are run from each of the four
starting positions leading to a total of 80 trials. The end time of 1500 s is empirically set based
on the total time required to fully explore the cave. Note that ground truth state estimates
are used for these simulation experiments, while the hardware experiments in Section 5.2.3
rely on visual-inertial odometry [68]. The reconstruction error (Table 5.2 and Figs. 5.5d
and 5.5e) is computed as pointcloud-to-mesh distances between reconstructed pointclouds
from each trial and the environment mesh. In the case the MCG approach, the GMM map
is densely resampled to produce a pointcloud. For the OG case, the occupancy grid map is
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converted to a pointcloud by assuming the points to be at the center of each voxel.

Depth Camera Simulations

The depth camera sensor model also has a max range of 5.0 m and operates at 10 Hz for
all simulation experiments. For all simulation trials, the maximum speed in the xℬ − yℬ
plane is ‖+max‖ = 0.75 m/s, the maximum speed along the zℬ axis is +z = 0.5 m/s, and
the maximum yaw rate is Ω = 0.25 rad/s. CSQMI is computed at the end point of the
candidate action (: = 1). � = 5 and = 5 = 2 for all simulations and hardware trials.

The MCG approach outperforms OG in terms of memory efficiency while maintaining
similar exploration performance. Figure 5.4c depicts the cumulative amount of data
transfer in this case. After 1500 s, transferring the MCG map requires 4.4 MB an 153 MB
to incrementally transfer the OG map. Further, the MCG approach has lower average
reconstruction error as compared to the OG approach (see Fig. 5.5e) as shown in Table 5.2.

5.2.3 Hardware Experiments

Flight Arena Experiments

(a) (b)

Figure 5.6: Flight arena exploration scenario. (a) is a still image of the robot flying during one of the MCG
trials (full video of the trial may be found at https://youtu.be/egwjv7YwHPE) and (b) illustrates the live
map transmitted to the base station from the same trial.

Experiments were conducted in a flight arena with the aerial system. Each approach
(MCG and OG) was flown five times for 150 s. The results are shown in Fig. 5.7 and a
video of one MCG trial with the live map displayed on the base station may be found at
https://youtu.be/egwjv7YwHPE.
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Figure 5.7: Results of repeatability trials for the MCG and OG approaches in a flight arena. (a) plots the
mean entropy reduction (with the associated standard error) for five trials for the MCG and OG methods.
The mean and the standard error for the cumulative data transferred is provided for each approach in (c).
The theoretical (Th. OG and Th. MCG) communications is compared to actual (Ac. OG and Ac. MCG)
communications transmitted to the base station using UDP. (b) provides a plot of the number of feasible
actions in red with the planning time shown in blue. (d) Uses data from the MCG flights and generates an
Octomap in postprocessing to compare the communications required. The Octomap performance is similar
to that of the OG approach. More details about this analysis is provided in Section 5.2.3.

Figure 5.7a provides the mean and standard error for the map entropy over time for the
10 trials (5 for each approach). The communications plot shown in Fig. 5.7c illustrates the
theoretical cost to transmit the data (labeled as Th. OG and Th. MCG) that was calculated
during the simulation trials (shown in Fig. 5.4c) as well as the actual transmitted data
(labeled as Ac. OG and Ac. MCG in dashed lines). The actual transmitted data is calculated
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Trial Occ. GMM Free GMM Occ. Recon.
Mean Std. Mean Std. Mean Std.

(s) (s) (s) (s) (s) (s)

0 0.64 0.51 0.03 0.02 0.11 0.13
1 0.53 0.47 0.03 0.02 0.08 0.09
2 0.54 0.47 0.04 0.02 0.11 0.13
3 0.52 0.34 0.03 0.03 0.13 0.15
4 0.48 0.25 0.03 0.02 0.11 0.14

(a) Mapping statistics

Trial Autonomy Realsense
CPU Mem. CPU Mem.
(%) (B) (%) (B)

0 186.52 6.76 × 108 36.34 1.29 × 108

1 153.16 7.76 × 108 30.43 1.32 × 108

2 182.52 6.33 × 108 31.69 1.33 × 108

3 203.55 7.61 × 108 29.58 1.24 × 108

4 178.78 6.13 × 108 30.24 1.31 × 108

(b) Memory and compute usage on Gigabyte
Brix

Trial Feasible Actions Infeasible Actions Planning
Mean Std. Max. Min. Mean Std. Max. Min. Mean Std. Max. Min.

(#) (#) (#) (#) (#) (#) (#) (#) (s) (s) (s) (s)

0 7.60 3.82 19 0 37.89 5.59 46 9 0.40 0.20 1.03 0.09
1 6.47 2.72 16 1 39.29 3.86 45 12 0.34 0.14 1.03 0.09
2 8.01 3.94 20 1 37.84 4.39 45 13 0.43 0.19 1.05 0.10
3 10.52 5.18 24 1 35.41 5.40 45 12 0.50 0.22 1.03 0.08
4 7.26 4.54 24 2 38.38 5.98 44 3 0.38 0.22 1.05 0.12

(c) Planning statistics

Trial VINS BlueFox PX4 Control Comms
CPU Mem. CPU Mem. CPU Mem. CPU Mem. CPU Mem.
(%) (B) (%) (B) (%) (B) (%) (B) (%) (B)

0 154.84 1.03 × 108 27.98 8.50 × 107 16.98 2.16 × 107 16.10 3.15 × 107 0.19 2.10 × 107

1 155.15 1.05 × 108 27.82 8.37 × 107 16.92 2.14 × 107 15.96 3.12 × 107 0.18 1.91 × 107

2 153.76 1.02 × 108 27.86 8.55 × 107 16.88 2.15 × 107 16.04 2.91 × 107 0.19 1.91 × 107

3 154.45 1.01 × 108 27.85 8.59 × 107 16.87 2.14 × 107 15.99 3.12 × 107 0.19 2.10 × 107

4 151.46 1.03 × 108 27.46 8.56 × 107 16.88 1.93 × 107 16.02 2.91 × 107 0.20 2.10 × 107

(d) Memory and compute usage on Nvidia Jetson TX2

Figure 5.8: Comupational evaluation of the exploration framework. (c) and (b) provide timing, compute,
and memory statistics for each subsystem for each of the five MCG flights. The figures reported in Fig. 5.8b
are averages.

as the cumulative sum of the size of the UDP packets sent over the WiFi router to the base
station. This plot demonstrates that the theoretical estimate closely matches the actual
transmitted amount of data. No communications dropouts occurred in these trials because
the base station and router were stationary and close to the aerial system’s flight volume.
Section 5.2.3 analyzes the effect of the robot moving away from the base station and router
to force a communications dropout.

Figure 5.6a contains still images of the flight and Fig. 5.6b depicts a live map. Fig. 5.7b
plots the number of feasible actions available to the robot at a given time on the left and
the time to plan on the right.
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Figure 5.7d plots the theoretical data transferred and compares it to the OctoMap
volumetric map [40]. To generate this plot, a 0.2 m leaf size OctoMap that matches the
OG approach’s voxel size is created. For each scan added to the map, the set of voxels
whose occupancy values (note: not state) have changed are used to generate an OctoMap
submap (i.e., a new OctoMap that contains the change set). Submaps for this analysis are
created by storing the incremental change set as an OctoMap to enable the exact map to
be reconstructed on the receiving computer. The full probabilistic model is saved to disk
because occupancy probabilities must be preserved to enable calculation of the mutual
information [34] for information-theoretic exploration. The serialized stream does not
contain any 3D coordinates. Instead, the spatial relationships between the nodes are stored
in the encoding. Eight bits per node are used to specify whether a child node exists and an
additional floating point number stores the occupancy value for that node. Due to this
design there is some overhead to encode the multi-resolution nature of the data structure.
The results demonstrate that the MCG approach also outperforms the OctoMap approach
in terms of communication efficiency. Figure 5.8c provides statistics for the planning
and mapping components for the MCG trials. The planning times and statistics about
the planning actions are provided. Out of all the trials, the planning subsystem triggers
the stopping action only once (in Trial 0). Timing results for the generated occupied
and free GMMs as well as the time to reconstruct occupancy are provided. Figures 5.8b
and 5.8d provide mean memory and compute statistics for the autonomy subsystem, which
consists of mapping and planning. It also provides statistics for the realsense, bluefox,
and PX4 subsystems to quantify the memory and CPU utilization to stream images and
IMU measurements as well as transmitting cascaded commands to the flight controller.
Statistics are also provided for communication and state estimation.

Communication Dropout Experiment

A communication dropout was triggered by performing an experiment where the aerial
system is carried away from the WiFi router until it is out of range. Figures 5.9a and 5.9b
depict the data sent from the aerial system and received by the base station over time (note:
the clocks on the aerial system and base station are not synchronized). A view of the
operating environment and map is shown in Fig. 5.9c. While data is dropped at around
35 s, the communications are re-established at around 55 s when the robot reapproaches
the base station. A video at https://youtu.be/UVn2BbMQRJg illustrates the experiment.
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Laurel Caverns

The approach is tested in total darkness at Laurel Caverns1, a commercially operated
cave system in Southwestern Pennsylvania consisting of over four miles of passages2 4.
Figure 5.10a illustrates a composite image from several still images of the robot exploring
the Laurel Caverns Dining Room. Two experiments were conducted, one for each of the
MCG and OG approaches for a 95 s duration. The map entropy reduction over time is
shown in Fig. 5.11c and is similar for both approaches, while the cumulative data transferred
(Fig. 5.11d) to represent the maps is more than an order of magnitude lower for the MCG
approach as compared to the OG approach. Note, however, that the communication
reported for this experiment represents the theoretical, or estimated, communications
needed to transmit the data. The data was not transmitted to a base station. The data
transfer rate in Fig. 5.11e is calculated using Euler differentiation but note that the accuracy
is affected by the limited number of samples. During hardware trials, a bounding box was
used to constrain the exploration volume. To put the localization accuracy into perspective,
the drift in position is about 0.53 m during a 50.9 m cave flight and the rotation drift is
about 0.32 rad over 33.5 rad which is about a 1% drift in both translation and rotation.
Position drift may be approximated as the difference between the initial and final position
estimates because the robot takes off and lands at the same location.

West Virginia Cave

The approach was also tested in total darkness in a cave in West Virginia5. Figure 5.12a
illustrates the map entropy reduction over time with a maximum duration of 150 s. The
MCG and OG approaches perform similarly in these trials. The actual data transferred
between the robot and base station is shown in Fig. 5.12b. Figure 5.12c is a composite image

1http://laurelcaverns.com/
2The authors acknowledge that caves are fragile environments formed over the course of tens of thousands

to millions of years. Laurel Caverns was chosen as a test site because it has relatively few speleothems3due to
its sandstone overburden and the high silica content of the Loyalhanna limestone [71]. The authors worked
with cave management to select a test site that contained low speleothem growth to minimize risk of damage
to the cave. Cave management monitored all flights. No flights were executed near delicate formations.

3Speleothems are mineral formations found in limestone caves (e.g., stalagmites, stalagtites, and flowstone)
that are composed of calcium carbonate, precipated from groundwater that has percolated through adjacent
carbonate host rock [72].

4Bat populations in the northeastern U.S. have been decimated with the onset of White-nose Syndrome in
the winter of 2007-2008 [73]. Great care was taken not to disturb bats with the aerial systems during the
hibernating season.

5The region of the cave where flight experiments were conducted contained speleothems that have ceased
growing. Speleothems growth may terminate due to geologic, hydrologic, chemical, or climatic factors that
cause water percolation to cease at a particular drip site [72]. The authors worked with cave management to
select a test site that had neither actively growing speleothems or bats.
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from several still images of the robot exploring the cave. A video of one exploration run may
be found at the following link: https://youtu.be/H8MdtJ5VhyU. In these experiments a
bounding box was used to constrain the exploration volume. The drift in position is about
1.28 m during the 82.6 m flight and rotation drift is about 0.55 rad over 41.8 rad which is
about a 1.5% drift in position and 1.3% drift in rotation.

5.3 Summary

The results presented in this paper comprise the beginning of an promising line of research
for autonomous cave surveying and mapping by aerial systems. A high-fidelity model
amenable to transmission across low-bandwidth communications channels is achieved by
leveraging GMMs to compactly represent the environment. The method is demonstrated
with limited field of view sensors utilizing a motion primitives-based planning framework.
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Figure 5.9: Results of forcing a communication dropout on the system. The aerial system is carried through a
research lab and down a hallway away from the base station and router to force a communications dropout.
The accompanying video may be found at https://youtu.be/UVn2BbMQRJg. (a) illustrates the data sent
from the robot and (b) is the data received by the base station (note: the base station and robot do not have
their clocks synced). (c) illustrates the live map produced by the base station. (d) illustrates a view of the
aerial system at the start of the experiment from a camera mounted on the operator’s helmet.
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(a)

(b)

Figure 5.10: (a) A single aerial system explores the Dining Room of Laurel Caverns in Southwestern
Pennsylvania. Still images of the robot exploring the environment are super-imposed to produce this figure.
(b) The aerial system with dimensions 0.25 m × 0.41 m × 0.37 m including propellers carries a forward-facing
Intel Realsense D435 for mapping and downward-facing global shutter MV Bluefox2 camera (not shown).
The pearl reflective markers are used for testing in a motion capture arena but are not used during field
operations to obtain hardware results. Instead, a tightly-coupled visual-inertial odometry framework is used
to estimate state during testing at Laurel Caverns.
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Figure 5.11: Exploration statistics from the experiments at Laurel Caverns. (a) illustrates the reconstruction
error of the resampled GMM map as compared to the FARO map by calculating point-to-point distances.
The distribution of distances is shown on the right-hand side. The mean error is 0.14 m with a standard
deviation of 0.11 m. In particular, there is misalignment in the roof due to pose estimation drift. (b) A subset
of the resampled GMM map (shown in black) is overlaid onto the FARO map (shown in colors ranging from
red to purple) that displays the breakdown in the middle of the Dining Room. (c) The entropy reduction
and (d) cumulative data transferred for one trial for each of the Monte Carlo GMM mapping and OG
mapping approaches are shown. The communication is a theoretical calculation – not actual transmitted data.
While the map entropy reduction for each approach is approximately similar, the GMM mapping approach
transmits significantly less memory than the OG mapping approach (0.1 MB as compared to 7.5 MB). (e)
illustrates the bit rate for each approach in a semi-logarithmic plot where the vertical axis is logarithmic. The
black line illustrates how the approaches compare to 16kbps. For comparison, 16kbps is sufficient to transmit
a low resolution (176 × 144 at 5 fps compressed to 3200 bit/frame) talking heads video [69, 70].
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Figure 5.12: Overview of the results from experiments in a cave in West Virginia. (a) The map entropy over
time for three trials of the MCG and OG approaches. (b) The data transferred between a robot and base
station for each trial. The communication reported is actual transmitted data over UDP to a base station.
Note that while the exploration performance is similar for both approaches, the data transferred for the MCG
approach is substantially less. (c) A composite image of one exploration trial composed of still images.
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Chapter 6

Rapid and Communication-Efficient
Multi-Robot Exploration

This chapter extends the communication-efficient mapping strategy developed in Chapter 5
to distributed mapping. Using the rapid exploration planner from Chapter 4 on each robot,
the combined multi-robot system is experimentally evaluated in a real cave using two
aerial robots.

6.1 Approach

An overview of the system is shown in Fig. 6.1. Each robot is equipped with single-robot
exploration and inter-robot communication modules. The exploration module consists of
four major subsystems: GMM mapping, information-theoretic motion planning, visual-
inertial state estimation, and trajectory tracking. The inter-robot communication module
enables sharing information between robots or other computers on the network. The GMM
mapping and planning subsystems together with the communication module constitute
distributed mapping (Section 6.1.1) and multi-robot planning (Section 6.1.2), respectively.
In this section, the following mathematical notation is used: lower-case letters represent
scalar values, lower-case bold letters represent vectors, upper-case bold letters represent
matrices, and script letters represent sets.

6.1.1 GMM-based Distributed Mapping

This section details the distributed mapping approach to share environment models
between robots. Consider a team of # robots. At timestep C robot 8 ∈ # receives the depth
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(a) Multi-robot exploration framework

(b) Multirotors used in this work

Figure 6.1: (a) Overview of the rapid multi-robot exploration framework and (b) aerial systems used in
experiments in this work.

(a) (b) (c)

Figure 6.2: Overview of the distributed mapping approach. (a) Robot 8 shown in red, takes a sensor
observation shown in colors varying from red to purple and (b) learns a GMM (shown in red). If the GMM is
determined to be a keyframe both the GMM and sensor pose are transmitted to robot 9 (shown in green). (c)
The GMM and the sensor pose are transformed into the frame of robot 9 and used to update the occupancy.

sensor observation,Z 8
C , which represents a set of points. A Gaussian mixture model (GMM)

is learned from these points following the approach from [13]. The GMM is parameterized
by � = {�< , -< ,�<}"<=1 where -< ∈ R3 is a mean, �< ∈ R3×3 is a covariance, and �< ∈ R
is a weight such that

∑"
<=1 �< = 1. A GMM representing point setZ 8

C is denoted as �Z 8
C
.
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Keyframe GMMs

To reduce redundant observations, keyframe GMMs are identified for transmission to
other robots. A keyframe GMM, �̂Z 8

C
, is determined by approximating the field of view for

the current sensor observation as a rectangular pyramid and calculating the overlapping
volume with other keyframe fields of view. If the volume is smaller than a user-defined
threshold, �, the sensor observation is considered to be a keyframe. �̂Z 8

C
and the sensor

pose, S8C ∈ SE(3), are transmitted to the other robots or computers on the network.
Each robot maintains its own environment representation and relative initial transforms

between robots are assumed to be known. When robot 9 receives �̂Z 8
C
, it is received in

the frame of robot 8. To transform it into the frame of robot 9, the relative initial rotation
R98

0 ∈ R3×3 and translation x980 ∈ R3 parameters are applied to the means and covariances of
the distribution using the following equations.

-9 = R98

0 -
8 + x980 �9 = R98

0 �
8(R98

0 )
) , (6.1)

The transformed GMM is incorporated into robot 9’s existing GMM map following the
approach from [13, 36].

Occupancy Reconstruction

A local occupancy grid map m8
C is maintained and centered around the robot’s current

position x8C for use in information-theoretic motion planning. To generate m8
C , a number of

points z ∈ R3 equal to the support size, or number of points used to learn the distribution,
is sampled and raytraced to the sensor pose x8C . The probability of occupancy along the ray
is updated.

Multi-robot Map Updates

Care must be taken to update m9

C when receiving �̂Z 8
C
. In addition to applying the

transformation parameters so that �̂Z 8
C

is transformed into the frame of robot 9, m9

C must
also be updated by sampling points from the transformed �̂Z 8

C
and raytracing through

m9

C to the sensor pose, S8C , which must also be transformed into the frame of robot 9. This
ensures the occupancy is updated with observations from both robots. A visualization
of this is shown in Fig. 6.2. Robot 8 takes a sensor observation (Fig. 6.2a) and learns �̂Z 8

C

(Fig. 6.2b). This keyframe GMM is transmitted to robot 9, transformed into the frame of
robot 9, and then used to update m9

C (Fig. 6.2c).
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6.1.2 Planning for Rapid Multi-Robot Exploration

Robot 8 uses m8
C for information-theoretic receding-horizon planning via the strategy

presented in [15], which accounts for perception latencies and kinodynamic constraints
of the robot. The approach uses Monte Carlo tree search (MCTS) [62] to evaluate the
Cauchy-Schwarz Quadratic Mutual Information (CSQMI) [33] for a set of motion primitives
over a user-specified time horizon. An informative primitive sequence is selected that
maximizes the CSQMI over the MCTS tree. Safety is ensured by checking for collisions
with the environment.

The informative trajectories are shared with other robots and inter-robot collision
avoidance is enabled through a standard priority-based collision checker assuming a
cylindrical robot model [74]. The priorities are assigned manually before the exploration
run and remain constant throughout. To reduce the computational complexity for lower
priority robots, three optimizations are applied. First, the collision checking is only active
when a pair of robots are within a pre-specified radius. To enable this on each robot without
assuming a centralized oracle, the robots share odometry information at a sufficiently high
rate (10 Hz) compared to the planning frequency (1 Hz). Second, the number of cylinders
sampled over the planned trajectory is limited to a pre-specified maximum to cap the
number of cylinder-cylinder collision checks. This maximum value and the associated
cylinder collision radius are selected conservatively based on the length of the motion
primitive assuming the robot starts at hover and achieves a top speed at the endpoint.
Third, for each robot the collision checks are performed only with the candidate motion
primitive and the associated stopping motion primitive at the first depth of the MCTS tree
because each depth of the tree is of a sufficiently long duration (2 s) as compared to the
planning time (1 s). The inter-robot collision checker is used in the constrained-bandwidth
simulation study (Section 6.2.3).

6.2 Results and Analysis

The experimental evaluation is motivated through a concept of operations for a multi-robot
exploration mission in a Martian cave. Two robotic systems explore a Martian cave,
transmit their maps to a surface station, which serves as a relay to an orbiter, and the orbiter
transmits the data to operators on Earth. Three evaluations are conducted to quantify the
system performance through this concept of operations: first, the perceptual fidelity and
memory usage of the map is compared to state-of-the-art approaches in a representative
cave environment (Section 6.2.1); second, a hardware experiment is demonstrated with two
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rapidly exploring aerial systems and the communication requirement for each mapping
approach is compared (Section 6.2.2); and third, a simulation study is conducted to study
the effects of the bandwidth constraints on exploration performance (Section 6.2.3).

To correctly analyze the performance of the simulation study, the bottleneck in data
transmission rate is identified and bounds on the rates are determined for the concept of
operations presented in Section 1.1.1.Throughout this section the shorthand OG is used to
refer to the occupancy grid mapping approach [41] while OM refers to OctoMap [40].

(a) RGB Image (b) Point Cloud (c) Resampled GMM

(d) OM (0.025 m) (e) OM (0.05 m) (f) OM (0.1 m)

0.025 m 0.05 m 0.1 m
(bytes) (bytes) (bytes) (bytes)
GMM Occupancy Grid (OG)
4028 1.3 × 106 1.8 × 105 2.7 × 104

GMM OctoMap (OM)
4028 2.2 × 105 5.8 × 104 1.4 × 104

(g) Memory

Figure 6.3: Fidelity and memory usage evaluation of several mapping approaches. (a) and (b) illustrate data
from a representative environment the robot may encounter in the cave. A potential passage is circled in
cyan. (g) highlights significant reduction in memory usage required by the GMM approach as compared to
the OG and OM approaches. (c) Resampled points from the GMM are shown in red. (d)–(f) illustrate the
OctoMap representation with leaf sizes varying from 0.025 m to 0.1 m. Leaf voxels are shown in red and
larger voxels in yellow.
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6.2.1 Perceptual Detail Evaluation

The first evaluation compares the perceptual fidelity of different environment representa-
tions in the context of memory usage. An RGB image and point cloud of a crevice in the
cave are shown in Figs. 6.3a and 6.3b respectively. It is not clear from the image and depth
information if the passage continues or there is a lack of data due to insufficient accuracy in
the sensor observation. In either case, additional views are required to determine the exact
nature of the passage. Figure 6.3g demonstrates that as the resolution of the OG and OM
approaches increases, the memory demands also substantially increase. By comparison,
the GMM approach requires substantially less memory. When using the GMM approach,
the resulting resampled point cloud is shown in Fig. 6.3c, where a hole in the data is visible.
This approach is compared to OM with varying leaf sizes in Figs. 6.3d to 6.3f.

To obtain these results, a GMM was learned consisting of 100 components. Each
component requires 10 floating point numbers which includes six floating point numbers
to represent the symmetric covariance, three floating point numbers for the mean, and one
floating point number to represent the mixing weight. Additional memory was used to
represent the pose via six floating point numbers (three each for translation and rotation)
where each floating point number is assumed to be four bytes. A 32-bit unsigned integer
(four bytes) is also used to represent the support size of the GMM. In the OG case, one
floating point number is used to store the logodds value and one unsigned integer (four
bytes) is used to represent the index for each voxel in the change set. The total change set
of # voxels is transmitted along with meta-data to reconstruct the grid. The meta-data
consists of three unsigned integers to represent the dimensions of the grid in width, height,
and length as well as three floating point numbers to represent the origin for a total of 24
bytes. The total data required to represent the sensor observation with an OG is 8# + 24
bytes. For OM, the full probabilistic model is serialized and stored to disk. The size of
the file is reported in the table. The motivation for retaining the logodds values in the
OG and OM representations is to enable information-theoretic planning. The advantage
of the GMM approach is that the probability of occupancy can be reconstructed at an
arbitrary voxel resolution [36, 47], which significantly reduces the memory requirements
as compared to the OG and OM approaches. The OG and OM approaches must retain the
probability of occupancy to enable information-theoretic exploration [33, 34].

6.2.2 Hardware Experiments

The second evaluation consists of hardware experiments for two aerial systems exploring
the cave. The experiment demonstrates (1) each robot generates informative plans with
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(a) Robots (circled) deployed in a cave. Communication router shown via dotted line.

(b) Combined GMM map (c) Resampled points from the GMM map

0.5 1 1.5 2
0.0

0.2

0.4

0.6

Speeds (m/s)

Ya
w

Ra
te

(r
ad

/s
)

R1

0%

5%

10%

0.5 1 1.5 2
0.0

0.2

0.4

0.6

Speeds (m/s)

Ya
w

Ra
te

(r
ad

/s
)

R2

0%

15%

30%

(d) Speed bounds shown by dashed lines.

Figure 6.4: Rapid and communication efficient exploration of a cave with a team of two aerial robots. (a)
illustrates the environment with the two robots (R1 and R2) and the WiFi router used for communication. (b)
illustrates the final GMM maps generated on the base-station. (d) shows the percentage density plots for
linear speeds and yaw rates as measured by the visual-inertial navigation system during flight. A video of
the flight can be accessed here: https://youtu.be/osko8EKKZUM.

linear speeds up to 2.37 m/s and yaw rates up to 0.6 rad/s while maintaining safety and
(2) the communication required to transmit the map from robots to a base station is
substantially less as compared to the OG and OM approaches. For the purposes of this
experiment, the robots are deployed in disjoint bounding boxes and the coordination
between robots is not studied. What follows is a description of the experimental setup
(including the implementation details) and results.
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Table 6.1: This figure highlights that the GMM approach requires significantly less memory to represent the
combined map as compared to state-of-the-art approaches. In the context of transmitting this data using a
channel with capacity 0.25 Mbit/s, it would take significantly less time for the GMM approach as compared
to the other approaches.

Completion %: 45% 65% 85%

Map Size Time Map Size Time Map Size Time
Case (Mbit) (hours) (Mbit) (hours) (Mbit) (hours)

GMM 0.7 × 101 8.0 × 10−3 1.4 × 101 1.6 × 10−2 1.9 × 101 2.2 × 10−2

OG (0.1 m) 9.2 × 101 1.0 × 10−1 1.57 × 102 1.7 × 10−1 2.0 × 102 2.3 × 10−1

OG (0.05 m) 5.4 × 102 6.0 × 10−1 9.1 × 102 0.1 × 101 1.2 × 103 0.1 × 101

OG (0.025 m) 3.9 × 103 0.4 × 101 6.7 × 103 0.7 × 101 8.9 × 103 0.9 × 101

OM (0.1 m) 2.4 × 102 2.6 × 10−1 3.9 × 102 4.4 × 10−1 5.2 × 102 5.8 × 10−1

OM (0.05 m) 1.6 × 103 0.2 × 101 2.6 × 103 0.3 × 101 3.4 × 103 0.4 × 101

OM (0.025 m) 9.8 × 103 1.1 × 101 1.6 × 104 1.8 × 101 2.1 × 104 2.4 × 101

Each robot in the multi-robot system employs the navigation and control technique
outlined in prior work [13]. The robots communicate with other computers on the network
via WiFi and use the User Datagram Protocol (UDP) to transfer packets over the network.
Before the start of each experiment, the SE(3) transform between the takeoff positions of the
robots is measured manually using the navigation approach. The relative initial transform
is used by the distributed mapping subsystem to align the GMM map fragments in the
frames of other robots to the current robot’s local frame.

The maximum speed1 of the robots in the xy-plane is 2.0 m/s, the maximum speed
towards unknown space is 1.0 m/s, the maximum z-direction speed is 0.25 m/s, and
the maximum yaw rate is constrained to 0.5 rad/s. One of the metrics used to assess
the planning performance is quantifying the maximum speed and yaw rate achieved
by the robot while ensuring collision free operation. Both linear and yawing motions
are exploratory actions for an aerial robot equipped with a limited field of view depth
sensor [13, 15]. The data transmitted from the robots to the base station is used to quantify
the success of the mapping approach. The GMM results of Fig. 6.4 are generated in
flight during an actual trial in the cave. To enable a fair comparison, the depth images
collected from the GMM exploration trial in the cave are post-processed using the OG
and OM approaches. This ensures that variation in the other subsystems does not unduly
affect the results. An analysis to quantify the memory required for each approach similar

1The speed limits and the operational volumes were chosen based on the cave passage dimensions.
The authors worked with cave management to select a test site that contained neither actively growing
speleothems or bats. Possible effects of imperfect trajectory tracking and state estimation were also taken into
account.
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to Section 6.2.1 is presented. The OG and OM results are generated by updating the map
using the depth information for the current image and publishing the change set. For the
OM approach, the change set is serialized to file as the full probabilistic model to enable
the base station and other robot to exactly recreate the map for information-theoretic
exploration.

The two deployed robots are denoted by R1 and R2 in Fig. 6.4. The robots achieve
high exploration rates by selecting actions that enable safe operation at linear speeds up to
2.37 m/s and yaw rates up to 0.6 rad/s, which are of the same order as state-of-the-art fast
exploration works2 [15, 16, 17]. Moreover, note that since R1 operates in a relatively open
space compared to R2, a larger percentage of high speed actions are selected (Fig. 6.4d). In
contrast, the planner selects the yawing motion and slow linear actions towards frontiers
more often for R2 to allow for safe operation in a constrained space (Fig. 6.4d). Both of
these behaviors in the multi-robot system arise automatically due to the choice of the action
representation for single-robot planning in [15]. These behaviors show that the same action
representation can be used on every robot in the team without any change in parameters
and still allow for intelligent speed adaptation for rapid and safe exploration.

The combined map from R1 and R2 requires significantly less time to transmit under
the bandwidth constraint when measuring at various points during exploration (Table 6.1).
An implication of this in the context of the concept of operations is that at 100% exploration
completion it will take about 104.40 seconds to transmit the GMM map, 12.30 hours to
transmit the 0.025 m resolution OG map, and 1.25 days to transmit the 0.025 m resolution
OM map to Earth. It is important to note why the OM approach requires more memory
than the OG approach for this result while it required less memory than the OG approach
in Fig. 6.3g. The change set must be encoded as an OctoMap before serializing to file. The
approach presented by Hornung et al. [40] requires that the spatial relationships between
nodes be implicitly stored in the encoding. This means that the serialized stream does not
contain any 3D coordinates and additional data must be stored to preserve the structure of
the octree. This is in contrast to the OG approach that stores a logodds value and index
from which 3D coordinates can be recovered. Therefore, for small change sets, the OM
approach has much higher overhead than the OG approach.

6.2.3 Effects of Constrained Communication

For this study the assumption on the robots operating in disjoint spaces is relaxed and a
priority-based inter-robot collision checker is implemented for shared space operation. The

2The attained speeds exceed the limits slightly due to imperfect trajectory tracking and state estimation.
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Completion %: 45% 65% 85%

GMM OG Δ GMM OG Δ GMM OG Δ

Comm. Limit (s) (s) (%) (s) (s) (%) (s) (s) (%)
No limit 80.19 81.51 1.62 130.73 131.98 0.95 225.8 237.51 4.93

0.25 Mbit/s 79.91 92.38 13.5 129.1 160.15 19.39 214.86 282.11 23.84
0.1 Mbit/s 86.51 93.43 7.41 142.95 165.88 13.82 247.83 270.15 8.27

(g) Exploration completion times

Figure 6.5: Variation of exploration performance with inter-robot communication limits. (a) to (f) plot
the cumulative map data sent and received for the GMM and OG approaches under different data rate
constraints for the two robots. The received data is impacted significantly for the OG approach at 0.25 Mbit/s
while both approaches are affected at 0.1 Mbit/s. Note that in all experiments the planning and coordination
methodology is kept the same for a fair comparison. (g) compares the time to achieve a certain percentage
of environment coverage. We observe that at the 0.25 Mbit/s constraint, the GMM approach improves the
performance of the team by up to 23.84%.

simulation consists of a two-robot team that explores the cave environment. Two approaches
are tested: GMM and OG. The OM approach is not compared for this experiment because to
the best of our knowledge there is no existing open-source implementation of the Shannon
mutual information used for planning by Zhang et al. [34]. Further, this enables us to
retain the same planning subsystem for a fair comparison of the GMM and OG approaches.
The communication rate is varied among 0.1 Mbit/s, 0.25 Mbit/s, and unconstrained. Each
configuration is tested in 40 experiments with a 700 s duration. The duration of the
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exploration is chosen based on the top speed of the robots and the spatial dimensions of
the environment. The exploration software is run on separate computers in a distributed
fashion over a wired connection. The simulations are run on two desktop computers
running Ubuntu 18.04 with Intel i7-6700K CPUs. One computer has 32 GB RAM and
the other has 16 GB of RAM. For the wired connection, the data rate is limited via the
network traffic control tool in Linux that uses the Token Bucket Filter (TBF) to maintain
the specified rate value [75]. Figure 6.5 illustrates the results from the simulation study.
As the communication bandwidth is reduced from no limit in Fig. 6.5a to 0.25 Mbit/s the
OG approach begins to drop packets and the exploration performance of the multi-robot
approach decreases as compared to the GMM approach (see Fig. 6.5g). At this rate, the
GMM approach achieves 85% environment coverage in less than 80% of the time that it takes
the OG approach. However, as the communication rate decreases further to 0.1 Mbit/s the
GMM approach also suffers though it is able to outperform the OG approach.

6.3 Summary

This chapter leveraged the compactness of Gaussian mixture models for high-fidelity
perceptual modeling to increase the rate of multi-robot exploration in reduced bandwidth
scenarios such as autonomy in caves. The mapping approach enables retention of
environment details while remaining amenable to low-bandwidth transmission. The
advantage of this mapping strategy is that it enables a substantial increase in exploration
rate of the multi-robot team as compared to state-of-the-art mapping techniques even as
the communication bandwidth of the connection between robots decreases.
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Chapter 7

Conclusion

This thesis develops a robotic exploration framework that allows for rapid and communication-
efficient mapping of unknown environments with a team of aerial robots.

7.1 Summary of Contributions

Chapter 4: Rapid Motion Primitives-based Single-Robot Exploration A motion primitive-
based, receding-horizon planning approach that maximizes information gain, accounts for
platform dynamics, and ensures safe operation. Simulation experiments in a complex 3D
environment demonstrate the utility of the motion primitive actions for rapid exploration
and provide a comparison to a reduced motion primitive library that is appropriate for
online planning. Experimental results on a hexarotor robot with the reduced library
demonstrate rapid exploration at speeds above 2.25 m/s under a varying clutter in an
outdoor environment which is comparable to and exceeding the existing state-of-the-art
results [15].

Chapter 5: Communication-Efficient Single-Robot Exploration An information-theoretic
exploration strategy to explore cave environments that compactly represents sensor ob-
servations as Gaussian mixture models and maintains a local occupancy grid map for a
motion planner that greedily maximizes an information-theoretic objective function. The
approach accommodates both limited field of view depth cameras and larger field of view
LiDAR sensors and is extensively evaluated in long duration simulations on an embedded
PC. The system is deployed in Laurel Caverns, a commercially owned and operated cave
in southwestern Pennsylvania, USA, and a wild cave in West Virginia, USA [13].
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CHAPTER 7. CONCLUSION

Chapter 6: Rapid and Communication-Efficient Multi-Robot Exploration A multi-
robot exploration framework that leverages the work from the previous two chapters
to enable high-fidelity distributed mapping at high speeds while remaining amenable
to low-bandwidth communication channels. The approach yields significant gains in
exploration rate for multi-robot teams as compared to state-of-the-art approaches. The
system is evaluated through simulation studies and hardware experiments in a wild cave
in West Virginia [23].

7.2 Future Work

Future work will improve perceptual detail in the environment and develop hierarchical
strategies that adapt the fidelity of the model based on the sensor data. Multi-modal
mapping (for example, thermal, RGB, etc.) may also be beneficial in these scenarios. Finally,
coordination strategies can be developed to enable robots to share communication-efficient
policies and improve the rate of exploration.
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