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Abstract
Many applications in real life involve collecting and aggregating evaluation from

people, such as in hiring, peer grading and conference peer review. In this thesis, we
focus on three sources of biases that arise in such problems: people, estimation
and policies. Specifically, people provide evaluation data; estimation procedures
perform inference and draw conclusions from the provided data; policies specify all
the details that are needed in order to execute the entire process. We model and
analyze these biases, and subsequently propose methods to mitigate them.

First, we study human bias, that is, the bias in the evaluation data introduced
by human evaluators. We consider the miscalibration aspect, meaning that differ-
ent people have different calibration scales. We propose randomized algorithms that
provably extract useful information under a general model we propose for arbitrary
miscalibration. Building upon these results, we also propose a heuristic that is appli-
cable to a broader range of settings. In addition to miscalibration, we also consider
the bias induced by the “outcome” experienced by people. As an example, when stu-
dents rate their course instructors, the students’ ratings are influenced by the grades
that the students receive in these courses. We make mild assumptions to model such
biases, and propose an adaptive algorithm that corrects this bias using knowledge
about the “outcomes”.

Second, we study estimation bias, that is, when algorithms exhibit different be-
haviors on different subgroups of the population. We consider the problem of esti-
mating the quality of individual items from pairwise comparison data. We analyze
the statistical bias (defined as the expectation of the estimated value minus the true
value) when using the maximum-likelihood estimator, and then propose a simple
modification to the estimator to reduce the bias.

Third, we study policy bias, that is, when the rules dictating the evaluation pro-
cess induce undesirable outcomes. We examine large-scale multi-attribute evalu-
ation tasks. As an example, in graduate admissions, the evaluation criteria often
consist of multiple attributes, such as school GPAs, standardized test scores, recom-
mendation letters, research experience, etc. The number of applications is large, and
therefore the evaluation task needs to be divided and assigned to many reviewers in a
distributed fashion. It is common practice to assign each reviewer a subset of the ap-
plications, and ask them to assess all relevant information for their assigned subset.
In contrast, we propose an alternative approach where each reviewer evaluates more
applicants but fewer attributes per applicant. We establish various tradeoffs between
these two approaches, and identify conditions under which our proposed approach
results in better evaluation.

Finally, we briefly describe our outreach efforts to improve the peer review pro-
cess – reducing the bias caused by the alphabetical-ordering authorship in scientific
publications, and analyzing the gender distribution of the recipients of conference
paper awards.
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Chapter 1

Introduction

1.1 Background and motivation

Many applications in real life involve some form of evaluation and selection – given a pool of
items (or applicants), the goal is to evaluate the quality of items, and potentially make down-
stream decisions about the items based on the evaluation. As a qualifying note, we focus on
applications where the evaluation involves both an objective and a subjective component. To un-
derstand the spectrum, a math exam of all multiple-choice questions is an objective task, where
there is a clear correct answer to each question. On the other hand, voting for elections is a
subjective task, where different political views cannot be simplified classified as correct or incor-
rect. Many evaluation tasks include both an objective and subjective components. For example,
in graduate admissions, consensus may be reached relatively easily on a small fraction of very
outstanding applicants. However, for a large number of applicants who do not clearly make the
cut but still are above-average, whom to admit depends on subjective interpretation of their track
records and what specific caliber the committee puts more weight on. In addition to education
(admissions), many applications in this regime are also high-stakes decision-making problems,
such as healthcare (what treatments to give to the patients, and which patients to prioritize), bank-
ing (which applications are approved for a loan, and what the interest rates are) and law (which
defendants are released on bail, and what the associated bail amounts are). It is self-evident that
these decisions have long-lasting influence on the individuals involved, and for these applications
we as a society desire the decisions to be equitable.

In this thesis, we consider three major components that play a role in such evaluation pro-
cesses: people (expressing opinions and providing data), estimation (performing inference and
making conclusions based on the provided data) and policies (specifying the evaluation rules and
the guidelines). To understand the definitions and connections between these components, we
consider the following two more examples:

• In conference peer review, the goal is to identify and accept the top papers submitted to the
conference. Reviewers (people) read the papers and provide their scores and comments
about the papers. Given these reviews, the program chairs or area chairs form summarized
views of the papers and make the acceptance decisions accordingly (estimation). The
program chairs also need to decide on different aspects of the review process (policy), such
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as how to assign papers to reviewers (e.g., whether to use automated matching algorithms
such as Toronto Paper Matching System [35]; whether to use bidding), what types of data
to elicit in the review forms (e.g., on what scale the reviewers provide numerical scores;
how to instruct the reviewers to write free-form text reviews), how the chairs make paper
decisions based on the reviews (e.g., how many chairs are involved in making the final
decision of each paper; what the conference puts emphasis on, if a paper has both clear
strengths and weaknesses), whether the conference is single- or double-blind, etc.

• In grading, the goal is to assign accurate scores to students that reflect their performance in
a homework assignment or an exam (e.g., writing an essay). The graders (people) can be
the instructors, the TAs or the students themselves (termed “peer grading”). The graders
read and give scores to the assignments. Let us consider the case where each assignment
is graded by two graders to ensure accuracy. Then one natural approach to deriving a final
score to each student is to take the mean (estimation) of the two scores given by the two
graders. In the case where each assignment is graded by only one grader for efficiency, one
approach to estimating a final score for each student is to trivially just take this score given
by the reviewer. The instructors specify the rules (policy) for the grading process, such
as how to define the grading rubrics for each question in the homework, how to distribute
the assignments to the graders (e.g., whether to combine instructor/TA/student graders;
whether to alternate graders so that each student is assigned different graders for different
homeworks they submit), and whether to allow regrading requests or not.

The three components of people, estimation and policies also naturally apply to other appli-
cations, such as admissions and hiring. The high-level ideas are very similar, so we omit further
details.

Many sources of biases are involved in such evaluation process. In this thesis, we use the
term “bias” to refer to, broadly speaking, systematic errors that are based on external factors
independent of the true quality that we want to evaluate. We analyze the biases associated with
each of the three components. Specifically, we consider

• Human bias: People are biased, and the bias can be conscious or subconscious. For ex-
ample, people are miscalibrated; they do not always map their scores to the pre-defined
scale that they are instructed to calibrate to. People are noisy; they lose attention to the
evaluation task and give scores that are different from what they would have given if they
paid attention. People are subjective; their scores reflect their personal opinions and value
systems. People are strategic; they may intentionally manipulate their evaluation due to
self interests. There are also well-known types of biases that are of a discriminative nature,
including gender bias [125, 175] and racial bias [20, 55]. Moreover, there are also biases
that apply to more specific contexts. For example, in peer review, the reviewers tend to
be in favor of the papers whose perspectives align with the reviewers’ own perspectives,
termed the “confirmation bias” [112]; people also tend to put more emphasis on the quan-
tity than the quality of the papers when perceiving the success of universities or individual
researchers [148], etc.
So far we have described many types of biases inherited by a single reviewer. Notably,
the issue with human bias is further exacerbated by the fact that in many applications, the
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evaluation is done in a distributed fashion. That is, the number of items under evaluation
is large, and therefore the items are distributed to multiple evaluators in parallel. The
discrepancy between reviewers’ evaluation due to bias translates to the discrepancy of how
the items are reviewed and treated differently. This potentially leads to unfairness in the
evaluation process, and therefore calls for a need to carefully address human bias.

• Estimation bias: Estimators and algorithms may be biased, that is, they may yield differ-
ent performance on different subgroups of the population. For example, in machine learn-
ing, the objective is often to minimize the average loss. As a result, algorithms trained to
minimize the average loss may optimize their performance on frequently-seen samples, but
do not work as well on the less common samples, termed “sample size disparity” (e.g., [13,
Chapter 2]). Another example is the definition of bias in statistics – the (statistical) bias of
an estimator is defined as the expectation of the estimated value minus the true value. A
non-zero bias means that the estimator systematically overestimates or underestimates the
parameter of interest.

• Policy bias: We broadly interpret “policies” as the design of rules associated with the
evaluation process. Inappropriate policies, rules and practices may lead to undesirable out-
comes and inequity against certain subgroups of the population. Reasons for the policies
to induce undesirable outcomes include: introducing misaligned incentives of the partici-
pating agents, suboptimally using evaluators’ ability and expertise, and triggering specific
forms of human bias. On the other hand, appropriate policies can also be established to re-
duce bias. Some well-known policies include the affirmative action in college admissions
and Rooney rule in hiring.

On these three sources of biases, we combine tools from statistics (for establishing theoretical
guarantees), computer science (for designing algorithms) and policies (for outreach efforts). We
provide theoretical and experimental results that aim to answer the following questions:

• What is the bias? To what extent is the bias? Why does the bias exist? (understanding)
• What approach can we take to reduce or correct the bias? What is the outcome of the

approach? (mitigation)
In summary, this thesis aims to

understand and mitigate biases arising from human, estimation and policies in evaluation
and decision-making problems.

1.2 Organization of thesis
The thesis is organized into three parts. Each part discusses one of the three sources of biases.
Each problem is presented with a motivating application, but the models are intended to be
general and not restrictive to any particular application.

Human Bias
Chapter 2 studies the miscalibration of people. Specifically, we assume that the miscalibration of
people can be arbitrary, and make minimal assumptions on the nature of miscalibration. We con-
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sider a general assumption of monotonicity, where people can essentially give arbitrary scores,
as long as they are “somewhat reasonable” – being more likely to give higher scores to items
of higher quality. The proposed calibration methods provably extract useful information from
people’s scores that are arbitrarily miscalibrated, hence making the evaluation more fair. This
chapter is based on joint work with Nihar Shah [186].

Chapter 3 builds upon the results in Chapter 2, and proposes a heuristic to address miscali-
bration in more general settings compared to the algorithms in Chapter 2. In this problem, we
continue to characterize miscalibration as a monotonic constraint, and consider its least-squares
estimator which is known to have various desirable statistical guarantees. No computationally-
efficient methods for computing the least-squares estimator is known up to date, and the prior
work primarily focuses on alternative estimators that are computationally more efficient but have
weaker statistical guarantees. Instead, we provide a new perspective to the problem by comput-
ing an approximate solution to the least-squares estimator. We capture the monotonic constraint
by incorporating a new regularizer term in the optimization objective. We present desirable prop-
erties focused on the stationary points of the optimization problem, and conduct simulation to
demonstrate the effectiveness of our method. This chapter is based on joint work with Komal
Dhull, Nihar Shah, Yuanzhi Li, and R. Ravi [53].

Chapter 4 studies the bias induced by people’s experience. One prevalent example is teach-
ing evaluation, where universities survey students at the end of each semester to evaluate the
teaching quality of their instructors. However, prior studies have shown that instructors’ grading
practices have a significant influence on the end-of-course teaching evaluations: students who
receive higher grades in a course often give higher ratings, and the students who receive lower
grades often give lower ratings. We again make mild monotonic assumptions on the correlation
between the student ratings and the grades they receive. We propose a cross-validation debiasing
algorithm that provably adapts to different extents of the bias in the data without prior knowl-
edge. The algorithm is also shown to perform favorably compared to standard baselines, in a
semi-synthetic experiment using real grading statistics from the Indiana University Blooming-
ton [90]. This chapter is based on joint with Ivan Stelmakh, Yuting Wei and Nihar Shah [188].

Estimation Bias

Chapter 5 considers the problem of estimating the quality of individual items from pairwise
comparison data, and studies the bias introduced by the maximum-likelihood (ML) estimator on
this problem. Here the term “bias” refers to the standard definition in statistics, which is defined
as the expectation of the estimated value minus the true value. While prior work has shown that
the ML estimator is minimax-optimal in terms of the squared Euclidean error, we show that the
ML estimator incurs a suboptimal rate in terms of its bias. Moreover, by a simple modification
to the ML estimator, we derive a class of estimators that achieve a significantly better rate on the
bias and at the same time maintain minimax-optimality in the squared Euclidean error. Hence,
our modified estimator provably improves fairness while maintaining estimation accuracy. This
chapter is based on joint work with Nihar Shah and R. Ravi [187].
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Policy Bias
Chapter 6 studies large-scale multi-attribute evaluation problems. In applications such as hiring
and educational admissions, the number of applicants is often large, thereby making it infeasible
for a single reviewer to evaluate all applications. The common practice is to assign the evalua-
tion task to multiple reviewers in a distributed fashion. Specifically, each reviewer is assigned
a subset of the applications, and asked to assess all relevant information for their assigned sub-
set. We propose an alternative approach to assigning applicants to reviewers. Our approach is
based on the observation that the evaluation criteria often consist of multiple attributes, such as
– in admissions – student GPAs, standardized test scores, recommendation letters and essays.
Our approach requires each reviewer to evaluate more applicants but fewer attributes per appli-
cant. We compare our proposed approach to the traditional aforementioned approach on several
dimensions via theoretical and experimental methods. We establish various tradeoffs between
these two approaches, and identify conditions under which our proposed approach has an advan-
tage. This chapter is based on joint work with Carmel Baharav, Nihar Shah, Anita Woolley, and
R. Ravi.

Chapter 7 discusses the bias arising from the alphabetical-ordering of the authorship in sci-
entific publications, and describes an outreach work to mitigate the bias by using appropriate
citation styles and ordering of individuals. This chapter is based on joint work 1 with Nihar
Shah.

Chapter 8 provides an analysis on the gender statistics of the authors of award-winning con-
ference papers. Our results suggest a notable discrepancy between men and women, providing
a complementary evidence point in addition to prior work in understanding gender bias in peer
review, and more generally in academia. This chapter is based on joint work 2 with Nihar Shah.

Finally, we conclude with a discussion on directions for future work.

1https://researchonresearch.blog/2018/11/28/theres-lots-in-a-name/
2https://researchonresearch.blog/2019/06/18/gender-distributions-of-paper-awards/
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Part I

Human Bias

6



Chapter 2

Handling Arbitrary Miscalibrations in
Ratings

Cardinal scores (numeric ratings) collected from people are well known to suffer from mis-
calibrations. A popular approach to address this issue is to assume simplistic models of mis-
calibration (such as linear biases) to de-bias the scores. This approach, however, often fares
poorly because people’s miscalibrations are typically far more complex and not well understood.
In the absence of simplifying assumptions on the miscalibration, it is widely believed by the
crowdsourcing community that the only useful information in the cardinal scores is the induced
ranking. In this chapter, inspired by the framework of Stein’s shrinkage, empirical Bayes, and
the classic two-envelope problem, we contest this widespread belief. Specifically, we consider
cardinal scores with arbitrary (or even adversarially chosen) miscalibrations which are only re-
quired to be consistent with the induced ranking. We design estimators which despite making
no assumptions on the miscalibration, strictly and uniformly outperform all possible estimators
that rely on only the ranking. Our estimators are flexible in that they can be used as a plug-in for
a variety of applications, and we provide a proof-of-concept for A/B testing and ranking. Our
results thus provide novel insights in the eternal debate between cardinal and ordinal data.

2.1 Introduction
“A raw rating of 7 out of 10 in the absence of any other information is potentially use-
less.” [123]
“The rating scale as well as the individual ratings are often arbitrary and may not be consis-
tent from one user to another.” [7]

Consider two items that need to be evaluated (for example, papers submitted to a conference)
and two reviewers. Suppose each reviewer is assigned one distinct item for evaluation, and this
assignment is done uniformly at random. The two reviewers provide their evaluations (say, in
the range [0, 1]) for the respective item they evaluate, from which the better item must be chosen.
However, the reviewers’ rating scales may be miscalibrated. It might be the case that the first
reviewer is lenient and always provides scores in [0.6, 1] whereas the second reviewer is more
stringent and provides scores in the range [0, 0.4]. Or it might be the case that one reviewer
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is moderate whereas the other is extreme – the first reviewer’s 0.2 is equivalent to the second
reviewer’s 0.1 whereas the first reviewer’s 0.3 is equivalent to the second reviewer’s 0.9. More
generally, the miscalibration of the reviewers may be arbitrary and unknown. Then is there any
hope of identifying the better of the two items with any non-trivial degree of certainty?

A variety of applications involve collection of human preferences or judgments in terms of
cardinal scores (numeric ratings). A perennial problem with eliciting cardinal scores is that
of miscalibration – the systematic errors introduced due to incomparability of cardinal scores
provided by different people (see [77] and references therein).

This issue of miscalibration is sometimes addressed by making simplifying assumptions
about the form of miscalibration, and post-hoc corrections under these assumptions. Such mod-
els include one-parameter-per-reviewer additive biases [10, 65, 111, 135], two-parameters-per-
reviewer scale-and-shift biases [135, 147] and others [61]. The calibration issues with human-
provided scores are often significantly more complex causing significant violations to these sim-
plified assumptions (see [77] and references therein). Moreover, the algorithms for post-hoc
correction often try to estimate the individual parameters which may not be feasible due to low
sample sizes. For instance, John Langford notes from his experience as the program chair of the
ICML 2012 conference [105]:

“We experimented with reviewer normalization and generally found it significantly harmful.”
This problem of low sample size is exacerbated in a number of applications such as A/B testing
where every reviewer evaluates only one item, thereby making the problem underdetermined
even under highly restrictive models.

It is commonly believed that when unable or unwilling to make any simplifying assumptions
on the bias in cardinal scores, the only useful information is the ranking of the scores [7, 64, 80,
123, 126, 146]. This perception gives rise to a second approach towards handling miscalibrations
– that of using only the induced ranking or otherwise directly eliciting a ranking and not scores
from the use. As noted by Freund et al. [64]:

“[Using rankings instead of ratings] becomes very important when we combine the rank-
ings of many viewers who often use completely different ranges of scores to express identical
preferences.”

These motivations have spurred a long line of literature on analyzing data that takes the form of
partial or total rankings of items [7, 15, 44, 126, 141, 154, 156].

In this chapter, we contest this widely held belief with the following two fundamental ques-
tions:

• In the absence of simplifying modeling assumptions on the miscalibration, is there any
estimator (based on the scores) that can outperform estimators based on the induced rank-
ings?

• If only one evaluation per reviewer is available, and if each reviewer may have an arbi-
trary (possibly adversarially chosen) miscalibration, is there hope of estimation better than
random guessing?

We show that the answer to both questions is “Yes”. One need not make simplifying assumptions
about the miscalibration and yet guarantee a performance superior to that of any estimator that
uses only the induced rankings.

In more detail, we consider settings where a number of people provide cardinal scores for
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one or more from a collection of items. The calibration of each reviewer is represented by
an unknown monotonic function that maps the space of true values to the scores given by this
reviewer. These functions are arbitrary and may even be chosen adversarially. We present a class
of estimators based on cardinal scores given by the reviewers which uniformly outperforms any
estimator that uses only the induced rankings. A compelling feature of our estimators is that they
can be used as a plug-in to improve ranking-based algorithms in a variety of applications, and
we provide a proof-of-concept for two applications: A/B testing and ranking.

The techniques used in our analyses draw inspiration from the framework of Stein’s shrink-
age [91, 166] and empirical Bayes [145]. Moreover, our setting with 2 reviewers and 2 papers
presented subsequently in the chapter carries a close connection to the classic two-envelope prob-
lem (for a survey of the two-envelope problem, see [71]), and our estimator in this setting is sim-
ilar in spirit to the randomized strategy [45] proposed by Thomas Cover. We discuss connections
with the literature in more detail in Section 2.3.1.

Our work provides a new perspective on the eternal debate between cardinal scores and ordi-
nal rankings. It is often believed that ordinal rankings are a panacea for the miscalibration issues
with cardinal scores. Here we show that ordinal estimators are not only inadmissible, they are
also strictly and uniformly beaten by our cardinal estimators. Our results thus uncover a new
point on the bias-variance tradeoff for this class of problems: Estimators that rely on simplified
assumptions about the miscalibration incur biases due to model mismatch, whereas the absence
of such assumptions in our work eliminates the modeling bias. Moreover, in this minimal-bias
regime, our cardinal estimators incur a strictly smaller variance as compared to estimators based
on ordinal data alone.

Finally, a note qualifying the scope of the problem setting considered here. In applications
such as crowdsourced microtasks where workers often spend very little time answering every
question, the cardinal scores elicited may not necessarily be consistent with the ordinal rankings,
and moreover, ordinal rankings are often easier and faster to provide. These differences cease
to exist in a variety of applications such as peer-review or in-person laboratory A/B tests which
require the reviewers to spend a non-trivial amount of time and effort in the review process, and
these applications form the motivation of this work.

2.2 Preliminaries

Consider a set of n items denoted as {1, . . . , n} or [n] in short.1 Each item i ∈ [n] has an unknown
value xi ∈ R. For ease of exposition, we assume that all items have distinct values. There are
m reviewers {1, . . . ,m} and each reviewer evaluates a subset of the items. The calibration of
any reviewer j ∈ [m] is given by an unknown, strictly-increasing function fj : R → R. (More
generally, our results hold for any non-singleton intervals on the real line as the domain and range
of the calibration functions). When reviewer j evaluates item i, the reported score is fj(xi). We
make no other assumptions on the calibration functions f1, . . . , fm. We use the notation � to
represent a relative order of any items, for instance, we use “1 � 2” to say that item 1 has a
larger value (ranked higher) than item 2. We assume that m and n are finite.

1We use the standard notation of [κ] to denote the set {1, . . . , κ} for any positive integer κ.
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Every reviewer is assigned one or more items to evaluate. We denote the assignment of items
to reviewers as A = (S1, . . . , Sm), where Sj ⊆ [n] is the set of items assigned to reviewer
j ∈ [m]. We use the notation Π to represent the set of all permutations of n items. We let π∗ ∈ Π
denote the ranking of the n items induced by their respective values (x1, . . . , xn), such that
xπ∗(1) > xπ∗(2) > · · · > xπ∗(n). The goal is to estimate this ranking π∗ from the evaluations of the
reviewers. We consider two types of settings: an ordinal setting where estimation is performed
using the rankings induced by each reviewer’s reported scores, and a cardinal setting where the
estimation is performed using the reviewers’ scores (which can have an arbitrary miscalibration
and only need to be consistent with the rankings). Formally:

• Ordinal: Each reviewer j reports a total ranking among the items in Sj , that is, the rank-
ing of the items induced by the values {fj(xi)}i∈Sj . An ordinal estimator observes the
assignment A and the rankings reported by all reviewers.

• Cardinal: Each reviewer j reports the scores for the items in Sj , that is, the values of
{fj(xi)}i∈Sj . A cardinal estimator observes the assignment A and the scores reported by
all reviewers.

Observe that the setting described above considers “noiseless” data, where each reviewer
reports either the scores {fj(xi)} or the induced rankings. We provide an extension to the noisy
setting in Section 2.5.1.

In order to compare the performance of different estimators, we use the notion of strict uni-
form dominance. Informally, we say that one estimator strictly uniformly dominates another if
it incurs a strictly lower risk for all possible choices of the miscalibration functions and the item
values.

In more detail, suppose that you wish to show that an estimator π̂1 is superior to estimator π̂2

with respect to some metric for estimating π∗. However, there is a clever adversary who intends
to thwart your attempts. The adversary can choose the miscalibration functions of all reviewers
and the values of all items, and moreover, can tailor these choices for different realizations of
π∗. Formally, the adversary specifies a set of values {fπ1 , . . . , fπm, xπ1 , . . . , xπn}π∈Π. The only con-
straints in this choice are that the miscalibration functions fπ1 , . . . , f

π
m must be strictly monotonic

and that the item values xπ1 , . . . , x
π
n should induce the ranking π. In the sequel, we consider two

ways of choosing the true ranking π∗: In one setting, π∗ can be chosen by the adversary, and
in the second setting π∗ is drawn uniformly at random from Π. Once this ranking π∗ is chosen,
the actual values of the miscalibration functions and the item values are set as fπ∗1 , . . . , fπ

∗
m and

xπ
∗

1 , . . . , x
π∗
n . The items are then assigned to reviewers according to the (possibly random) as-

signment A. The reviewers now provide their ordinal or cardinal evaluations as described earlier,
and these evaluations are used to compute and evaluate the two estimators π̂1 and π̂2. We say
that estimator π̂1 strictly uniformly dominates π̂2, if π̂1 is always guaranteed to incur a strictly
smaller (expected) error than π̂2. Formally:
Definition 2.1 (Strict uniform dominance). Let π̂1 and π̂2 be two estimators for the true ranking
π∗. Estimator π̂1 is said to strictly uniformly dominate estimator π̂2 with respect to a given loss
L : Π× Π→ R if

E[L(π∗, π̂1)] < E[L(π∗, π̂2)] for all permissible {fπ1 , . . . , fπm, xπ1 , . . . , xπn}π∈Π. (2.1)

The expectation is taken over any randomness in the assignment A and the estimators. If the true
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ranking π∗ is drawn at random from a fixed distribution, then the expectation is also taken over
this distribution; otherwise, inequality (2.1) must hold for all values of π∗.

Note that strict uniform dominance is a stronger notion than comparing estimators in terms
of their minimax (worst-case) or average-case risks. Moreover, if an estimator π̂2 is strictly
uniformly dominated by some estimator π̂1, then the estimator π̂2 is inadmissible.

Finally, for ease of exposition, we focus on the 0-1 loss in the main text:

L(π∗, π) = 1{π∗ 6= π},

where we use the standard notation 1{A} to denote the indicator function of an event A, where
1{A} = 1 if the event A is true, and 0 otherwise. Extensions to other metrics of Kendall-tau
distance and Spearman’s footrule distance are provided in Section 2.5.2.

2.3 Main results
In this section we present our main theoretical results. All proofs are provided in Chapter 9.

2.3.1 A canonical setting
We begin with a canonical setting that involves two items and two reviewers (that is, n = 2, m =
2), where each reviewer evaluates one of the two items. Our analysis for this setting conveys the
key ideas underlying our general results. These ideas are directly applicable towards designing
uniformly superior estimators for a variety of applications, and we subsequently demonstrate this
general utility with two applications.

In this canonical setting, each of the two reviewers evaluates one of the two items chosen
uniformly at random without replacement, that is, the assignment A is chosen uniformly at ran-
dom from the two possibilities (S1 = 1, S2 = 2) and (S1 = 2, S2 = 1). Since each reviewer
is assigned only one item, the ordinal data is vacuous. Then the natural ordinal baseline is an
estimator which makes a guess uniformly at random:

π̂can(A, {}) =

{
1 � 2 with probability 0.5

2 � 1 with probability 0.5.

In the cardinal setting, let y1 denote the score reported for item 1 by its respective reviewer,
and let y2 denote the score for item 2 reported by its respective reviewer. Since the calibration
functions are arbitrary (and may be adversarial), it appears hopeless to obtain information about
the relative values of x1 and x2 from just this data. Indeed, as we show below, standard esti-
mators such as the sign test — ranking the items in terms of their reviewer-provided scores —
provably fail to achieve this goal. More generally, the following theorem holds for the class of
all deterministic estimators, that is, estimators given by deterministic mappings from {A, y1, y2}
to the set {1 � 2, 2 � 1}.
Theorem 2.2. No deterministic (cardinal or ordinal) estimator can strictly uniformly dominate
the random-guessing estimator π̂can.
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This theorem demonstrates the difficulty of this problem by ruling out all deterministic esti-
mators. Our original question then still remains: is there any estimator that can strictly uniformly
outperform the random-guessing ordinal baseline?

We show that the answer is yes, with the construction of a randomized estimator for this
canonical setting, denoted as π̃our

can. This estimator is based on a function w : [0,∞) → [0, 1)
which may be chosen as any arbitrary strictly-increasing function. For instance, one could choose
w(x) = x

1+x
or w as the sigmoid function. Given the scores y1, y2 reported for the two items, let

î(1) ∈ argmaxi∈{1,2} yi denote the item which receives the higher score, and let î(2) denote the
remaining item (with ties broken uniformly). Then our randomized estimator outputs:

π̃our
can(A, y1, y2) =

{
î(1) � î(2) with probability 1+w(|y1−y2|)

2

î(2) � î(1) otherwise.
(2.2)

Note that the the output of this estimator is independent of the assignment A, so in the remainder
of this chapter we also denote this estimator as π̃our

can(y1, y2).
The following theorem now proves that our proposed estimator indeed achieves the stated

goal.
Theorem 2.3. The randomized estimator π̃our

can strictly uniformly dominates the random-guessing
baseline π̂can.

While this result considers a setting with “noiseless” observations (that is, where y = f(x)),
in Section 2.5.1 we show that the guarantee for π̃our

can continues to hold when the observations are
noisy.

Having established the positive result for this canonical setting, we now discuss some con-
nections and inspirations in the literature.

Connections to the literature

The canonical setting has a close connection to the randomized version of the two-envelope prob-
lem [45]. In the two-envelope problem, there are two arbitrary numbers. One of the two numbers
is observed uniformly at random, and the other remains unknown. The goal is to estimate which
number is larger. This problem can also be viewed from a game-theoretic perspective [71] as
ours, where one player picks an estimator and the other player picks the two values. Cover [45]
proposed a randomized estimator whose probability of success is strictly larger than 0.5 uni-
formly across all arbitrary pairs of numbers. The proposed estimator samples a new random
variable Z whose distribution has a probability density function p with p(z) > 0 for all z ∈ R.
Then if the observed number is smaller than Z, the estimator decides that the observed number
is the smaller number; if the observed number is larger than Z, the estimator decides that the
observed number is the larger number.

Our canonical setting can be reduced to the two-envelope problem as follows. Consider the
two values f1(x1) − f2(x2) and f1(x2) − f2(x1). Since the two items are assigned to the two
reviewers uniformly at random, we observe one of these two values uniformly at random. By
the assumption that f1 and f2 are monotonically increasing, we know that these two values are
distinct, and furthermore, f1(x1)− f2(x2) > f1(x2)− f2(x1) if and only if x1 > x2. Hence, the
relative ordering of these two values is identical to the relative ordering of x1 and x2, reducing
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our canonical setting to the two-envelope problem. Our estimator π̃our
can also carries a close con-

nection to Cover’s estimator to the two-envelope problem. Specifically, Cover’s estimator can be
equivalently viewed as being designated by a “switching function” [121]. This switching func-
tion specifies the probability to “switch” (that is, to guess that the unobserved value is larger),
and is a monotonically-decreasing function in the observed value. The use of the monotonic
function w in our estimator in (2.2) is similar in spirit.

The two-envelope problem can also be alternatively viewed as a secretary problem with two
candidates. Negative results have been shown regarding the effect of cardinal vs. ordinal data
when there are more than two candidates [72, 165], and positive result has been shown on exten-
sions of the secretary problem to different losses [73].

Our original inspiration for our proposed estimator arose from Stein’s phenomenon [166]
and empirical Bayes [145]. This inspiration stems for the fact that the two items are not to
be estimated in isolation, but in a joint manner. That said, a significant fraction of the work
(e.g., [11, 22, 91, 145, 166, 178]) in these areas is based on deterministic estimators. In compar-
ison, our negative result for all deterministic estimators (Theorem 2.2) and the positive result for
our randomized estimator (Theorem 2.3) provide interesting insights in this space.

2.3.2 A/B testing
We now demonstrate how to use the result in the canonical setting as a plug-in for more general
scenarios. Specifically, we construct simple extensions to our canonical estimator, as a proof-
of-concept for the superiority of cardinal data over ordinal data in A/B testing (this section) and
ranking (Section 2.3.3). A/B testing is concerned with the problem of choosing the better of
two given items, based on multiple evaluations of each item, and is used widely for the web and
e-commerce (e.g. [103]). In many applications of A/B testing, the two items are rated by disjoint
sets of individuals (for example, when comparing two web designs, each user sees one and only
one design). It is therefore important to take into account the different calibrations of different
individuals, and this problem fits in our setting with n = 2 items andm reviewers. For simplicity,
we assume that m is even. We consider the assignment obtained by assigning item 1 to some
m/2 reviewers chosen uniformly at random (without replacement) from the set of m reviewers,
and assigning item 2 to the remaining m/2 reviewers.2

As in the canonical setting we studied earlier, in the absence of any direct comparison be-
tween the two items, a natural ordinal estimator in the A/B testing setting is a random guess:

π̂ab(A, {}) =

{
1 � 2 with probability 0.5

2 � 1 with probability 0.5.

For concreteness, we consider the following method of performing the random assignment
of the two items to the m reviewers. We first perform a uniformly random permutation of the
m reviewers, and then assign the first m/2 reviewers in this permutation to item 1; we assign
the last m/2 reviewers in this permutation to item 2. We let y(1)

1 , . . . , y
(m/2)
1 denote the scores

2Our results also hold in the following settings: (a) Each reviewer is assigned one of the two items independently
and uniformly at random. (b) Reviewers are grouped (in any arbitrary manner) into m/2 pairs, and within each pair,
the two reviewers are assigned one distinct item each uniformly at random.
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given by the m/2 reviewers to item 1, and let y(1)
2 , . . . , y

(m/2)
2 denote the scores given by the

m/2 reviewers assigned to item 2. Namely, the reviewers (in the permuted order) provide the
scores [y

(1)
1 , . . . , y

(m/2)
1 , y

(1)
2 , . . . , y

(m/2)
2 ]. Now consider the following standard (deterministic)

estimators:
• Sign estimator: The sign estimator outputs the item which has more pairwise wins:
∑m/2

j=1 1{y
(j)
1 > y

(j)
2 }

1�2

≷
2�1

∑m/2
j=1 1{y

(j)
2 > y

(j)
1 }.

• Mean estimator: The mean estimator outputs the item with the higher mean score:

mean(y
(1)
1 , . . . , y

(m/2)
1 )

1�2

≷
2�1

mean(y
(1)
2 , . . . , y

(m/2)
2 ).

• Median estimator: The median estimator outputs the item with the higher median score

(upper median if there are multiple medians)3: median(y
(1)
1 , . . . , y

(m/2)
1 )

1�2

≷
2�1

median(y
(1)
2 , . . . , y

(m/2)
2 ).

In each estimator, ties are assumed to be broken uniformly at random.
We now show that despite using the scores given by allm reviewers, wherem can be arbitrar-

ily large, these natural estimators fail to uniformly dominate the naı̈ve random-guessing ordinal
estimator.
Theorem 2.4. For any (even) number of reviewers, none of the sign, mean, and median estima-
tors can strictly uniformly dominate the random-guessing estimator π̂ab.

The negative result of Theorem 2.4 demonstrates the challenges even when one is allowed to
collect an arbitrarily large number of scores for each item. Intuitively, the more reviewers there
are, the more miscalibration functions they introduce. Even if the statistics used by these estima-
tors converge as the number of the reviewers m grows large, these values are not guaranteed to
be informative towards comparing the values of the items due to the miscalibrations.

The failure of these standard estimators suggests the need of a novel approach towards this
problem of A/B testing under arbitrary miscalibrations. To this end, we build on top of our
canonical estimator π̃our

can from Section 2.3.1, and present a simple randomized estimator π̃our
ab as

follows:

(1) For every j ∈ [m/2], use the canonical estimator π̃our
can on the jth pair of scores (y

(j)
1 , y

(j)
2 )

and obtain the estimate rj := π̃our
can(y

(j)
1 , y

(j)
2 ) ∈ {1 � 2, 2 � 1}.

(2) Set the output π̃our
ab as the outcome of the majority vote among the estimates {rj}j∈[m/2]

with ties broken uniformly at random.

The following theorem now shows that the results for the canonical setting from Section 2.3.1
translate to this A/B testing application.
Theorem 2.5. For any (even) number of reviewers, the estimator π̃our

ab strictly uniformly domi-
nates the random guessing estimator π̂ab.

This result thus illustrates the use of our canonical estimator π̃our
can as a plug-in for A/B testing.

So far we have considered settings where there are only two items and where each reviewer is

3For values a1 ≥ · · · ≥ an, we define the median function as the upper median, median(a1, . . . , an) =
ab(n+1)/2c. Theorem 2.4 also holds instead for the lower median ab(n+2)/2c, and the median defined as the mean of
the two middle values, (ab(n+1)/2c + ab(n+2)/2c)/2.
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assigned only one item, thereby making the ordinal information vacuous. We now turn to an
application that is free of these restrictions.

2.3.3 Ranking

It is common in practice to estimate the partial or total ranking for a list of items by soliciting
ordinal or cardinal responses from individuals. In conference reviews or peer-grading, each
reviewer is asked to rank [54, 155, 159] or rate [65, 136, 159] a small subset of the papers,
and this information is subsequently used to estimate a partial or total ranking of the papers
(or student homework). Other applications for aggregating rankings include voting [139, 193],
crowdsourcing [154, 156], recommendation systems [64] and meta-search [56].

Formally, we let n > 2 denote the number of items and m denote the number of reviewers.
For simplicity, we focus on a setting where each reviewer reports noiseless evaluations of some
pair of items, and the goal is to estimate the total ranking of all items. We consider a random
design setup where the pairs compared are randomly chosen and randomly assigned to reviewers.
We assume 1 < m <

(
n
2

)
so that the problem does not degenerate. Each reviewer evaluates a

pair of items, and these pairs are drawn uniformly without replacement from the
(
n
2

)
possible

pairs of items. We let A = (S1, . . . , Sm) denote these m pairs of items to be evaluated by the
m respective reviewers, where Sj ∈ [n] × [n] denotes the pair of items evaluated by reviewer
j ∈ [m]. For each pair Sj = (i, i′), denote the cardinal evaluation as y(Sj) = (fj(xi), fj(xi′)),
and the ordinal evaluation as the induced ranking b(Sj) ∈ {i � i′, i′ � i}. Denote the set of
ordinal observations as B = {b(Sj)}mj=1, and the set of cardinal observations as Y = {y(Sj)}mj=1.
The input to an ordinal estimator is the ordinal information B. The input to a cardinal estimator
is the reviewer assignment A and the set of cardinal observations Y . Finally, let G(B) denote
a directed acyclic graph (DAG) with nodes comprising the n items and with an edge from any
node i to any other node i′ if and only if {i � i′} ∈ B. A topological ordering on G is any total
ranking of its vertices which does not violate any pairwise comparisons indicated by B.

We now present our (randomized) cardinal estimator π̃our
rank(A,Y) in Algorithm 1. In words,

this algorithm start from any topological ordering of the items as the initial estimate of the true
ranking. Then the algorithm scans one-by-one over the pairs with adjacent items in the initial
estimated ranking. If a pair can be flipped (that is, if the ranking after flipping this pair is also a
topological ordering), we uniformly sample a pair of scores for these two items from the cardinal
observations Y , and use the randomized estimator π̃our

can to determine the relative order of the pair.
After π̃our

can is called, the positions of this pair are finalized. We remove all scores of these two
reviewers from future use, and jump to the next pair that does not contain these two items.

The following theorem now presents the main result of this section.
Theorem 2.6. Suppose that the true ranking π∗ is drawn uniformly at random from the collection
of all possible rankings, and consider any ordinal estimator π̂rank for π∗. Then the cardinal
estimator π̃our

rank strictly uniformly dominates the ordinal estimator π̂rank.
We note that Algorithm 1 runs in polynomial time (in the number of items n) because the two

major operations of this estimator – finding a topological ordering, and checking if a ranking is
a topological ordering on the DAG – can be implemented in polynomial time [50]. Theorem 2.6
thus demonstrates again the power of the canonical estimator π̃our

can as a plug-in component to be
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Algorithm 1: Our cardinal ranking estimator π̃our
rank(A,Y).

1 Deduce the ordinal observations B from the cardinal observations Y .
2 Compute a topological ordering π̂ on the graph G(B), with ties broken in order of the

indices of the items.
3 t← 1.
4 while t < n do
5 Let π̂flip be the ranking obtained by flipping the positions of the tth and the (t+ 1)th

items in π̂.
6 if π̂flip is a topological ordering on G(B), and both the tth and (t+ 1)th items are

evaluated by at least one reviewer each in Y then
7 From all of the scores of the tth item in Y , sample one uniformly at random and

denote it as yπ̂(t). Likewise denote yπ̂(t+1) as a randomly chosen score of the
(t+ 1)th item from Y .

8 Consider the two reviewers reporting the scores yπ̂(t) and yπ̂(t+1). Remove from
Y all scores provided by these two reviewers.

9 if π̃our
can(yπ̂(t), yπ̂(t+1)) outputs π̂(t+ 1) � π̂(t) then

10 π̂ ← π̂flip.
11 end
12 t← t+ 2.
13 else
14 t← t+ 1.
15 end
16 end
17 Output π̃our

rank(A,Y) = π̂.

used in a variety of applications. An extension of our results to the setting where π∗ can be
arbitrary (adversarially chosen) is presented in Section 2.5.3.

2.4 Simulations

We now experimentally evaluate our proposed estimators for A/B testing and ranking. Since
the performance of the ordinal estimators vary significantly in different problem instances, we
use the notion of “relative improvement”. The relative improvement ρπ̂(π̃) of an estimator π̃
as compared to a baseline estimator π̂ is defined as: ρπ̂(π̃) = E[L(π∗,π̂)]−E[L(π∗,π̃)]

E[L(π∗,π̂)]
× 100%. A

positive value of the relative improvement ρπ̂(π̃) indicates the superiority of estimator π̃ over
the estimator π̂. A relative improvement of zero indicates an identical performance of the two
estimators. In our proposed estimators, the function w is set as w(x) = x

1+x
.
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Figure 2.1: Relative improvement in exact recovery of various estimators as compared to the
random-guessing ordinal estimator π̂ab for A/B testing. Each point is an average over 10, 000
trials. The error bars are too small to display.

2.4.1 A/B testing

We now present simulations to evaluate various points on the bias-variance tradeoff. For A/B
testing, we compare our estimator π̃our

ab with other standard estimators — the sign, mean and me-
dian estimators introduced in Section 2.3.2. The item values x1 and x2 are chosen independently
and uniformly at random from the interval [0, 1]. The calibration functions are linear and given
by:

(a) One biased reviewer: One reviewer gives an abnormally (high or low) score. Formally,
fj(x) = x for j ∈ [m− 1], and fm(x) = x+m.

(b) Incremental biases: Calibration functions of reviewers are shifted from each other. For-
mally, fj(x) = x+ j for j ∈ [m].

(c) Incremental biases with one biased reviewer: A combination of setting (a) and setting (b).
Formally, fj(x) = x+ (j − 1) for j ∈ [m− 1], and fm(x) = x+ m(m−1)

2
.

We simulate and compute the relative improvement of the different estimators as compared to
the random-guessing estimator π̂ab. The results are shown in Figure 2.1. While the performance
of the estimators vary with respect to each other, our estimator consistently beats the baseline
whereas every other estimator fails. Our estimator thus indeed operates at a unique point on
the bias-variance tradeoff with a low (zero) bias and a variance strictly smaller than the ordinal
estimators, whereas all other estimators incur a non-zero error due to bias.

2.4.2 Ranking

Next, we evaluate the performance of our ranking estimator π̃our
rank when the true ranking π∗ is

drawn from a uniform prior. We compare this estimator with an optimal ordinal estimator π̂rank

which outputs a topological ordering with ties broken in order of the indices of the items (this
ordinal estimator is optimal regardless of the tie-breaking strategy).

For any number of items n, we generate the values x1, . . . , xn of the items i.i.d. uniformly
from the interval [0, n]. We set m = b1

2

(
n
2

)
c. We assume that the jth reviewer has a linear
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Figure 2.2: Relative improvement in Kendall-tau distance of our ranking estimator π̃our

rank as
compared to an optimal ordinal estimator π̂rank for ranking. Each point is an average over 100
trials, where in each trial the quantities E[L(π∗, π̃our

rank)] and E[L(π∗, π̂rank)] are approximated by
an empirical average over 1000 samples.

calibration function fj(x) = kjx + bj , where we sample kj and bj i.i.d. uniformly from the
interval [0, 1].

We have previously proved that our estimator π̃our
rank based on cardinal data can strictly uni-

formly outperform the optimal ordinal estimator for the 0-1 loss. We use these simulations to
evaluate the efficacy of our approach for a different loss function – Kendall-tau distance. Specif-
ically, Figure 2.2 compares these two estimators in terms of Kendall-tau distance (Section 2.5.2
provides a formal definition of this distance and associated theoretical results). We observe that
our estimator π̃our

rank is able to consistently yield improvements even for this loss. The reason that
the improvement becomes smaller when the number of items is large is that by flipping pairs,
our estimator only modifies the ranking in the neighborhood of the initial estimate. We strongly
believe that it should be possible to design better estimators for the large n regime using the tools
developed in this chapter. Having met our stated goal of outperforming ordinal estimators to
handle arbitrary miscalibrations, we leave this interesting problem for future work.

2.4.3 Tradeoff between estimation under perfect calibration vs. miscali-
bration

In this section, we present a preliminary experiment showing the tradeoff between estimation
under perfect calibration (all reviewers reporting the true values of the papers) and estimation
under miscalibration. For simplicity, we consider the canonical setting from Section 2.3.1. We
evaluate the performance of our estimator under two scenarios: (1) perfect calibration, where
fj(x) = x for each j ∈ {1, 2}; (2) miscalibration with one biased reviewer, where f1(x) = x
and f2(x) = x + 1. We consider the function w in our estimator as w(x) = γx

1+γx
, where

γ ∈ {2k | −10 ≤ k ≤ 10, k ∈ Z}. We sample x1 and x2 uniformly at random from the interval
[0, 1].

Figure 2.3 shows the relative improvement of our estimator over the random-guessing base-
line under perfect calibration and under miscalibration, where γ increases from left to right. Let
us focus on a few regimes in this plot. First, on the left end of the curve, when γ is close to 0, we
have w(x) close to 0. The estimator is close to random-guessing. At the other extreme, on the
right end of the curve, when γ goes to infinity, we have w(x) close to 1. The estimator always
outputs the item with the higher score, and hence gives perfect estimation under perfect calibra-
tion. Under miscalibration, this estimator always chooses the biased reviewer giving the higher
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score and hence performs the same as random guess. Past the maximum point of the function
at approximately (25%, 9%) when γ = 1, the value of the curve starts decreasing, suggesting
a tradeoff of estimation accuracy under perfect calibration and under miscalibration. It is clear
that points to the left of the maximum point are not Pareto-efficient, since there exist other points
with the same accuracy under miscalibration but improved accuracy under perfect calibration.

We thus see that robustness under arbitrary miscalibration comes at a cost of lower accuracy
under perfect calibration. Establishing a formal understanding of this tradeoff and designing
estimators that are provably Pareto-efficient are important open problems.

2.5 Extensions
We now present three extensions of our problem setting and results from the main text.

2.5.1 Noisy data
In this section, we show that even when the scores given by the reviewers are noisy, our esti-
mator in (2.2) continues to strictly uniformly dominate random guessing in the canonical setting
(Section 2.3.1). We focus on the canonical estimator.

In the noisy setting, when reviewer j ∈ [m] evaluates item i ∈ [n], the reported score is

fj(xi) + εij,

where εij is a noise term. We assume that the noise terms {εij}i∈[n],j∈[m] are drawn i.i.d. from an
unknown distribution. In this setting of noisy reported scores, we modify Definition 2.1 of strict
uniform dominance, and let the expectation include the randomness in the noise.

The following theorem establishes the strict uniform dominance in the noisy setting for the
cardinal estimator π̃our

can in (2.2) (cf. Theorem 2.3 for the noiseless setting).
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Figure 2.3: Relative improvement of our canonical estimator π̃our
can under perfect calibration and

under miscalibration of one biased reviewer, with w(x) = γx
1+γx

and γ ∈ {2k | −10 ≤ k ≤
10, k ∈ Z}, where γ increases from left to right in the plot. Each point is an average over 5×105

trials. The error bars are too small to display.
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Theorem 2.7. The canonical estimator π̃our
can strictly uniformly dominates the random-guessing

estimator π̂can in the presence of noise.
The proof of this theorem is in Section 9.6. Observe that this result is quite general, since the

noise distribution can be arbitrary and unknown.

2.5.2 Ranking under Kendall-tau and Spearman’s footrule distance
In addition to the 0-1 exact recovery loss considered in Theorem 2.6, Kendall-tau distance and
Spearman’s footrule distance are also common metrics for ranking. Recall that a ranking of n
items is defined by a function π : [n]→ [n], such that π(t) is the index of the tth ranked item for
each t ∈ [n]. Equivalently, we can define a ranking by the function σ : [n]→ [n], such that σ(i)
is the rank of each item i ∈ [n]. With this notation, we have the relation σ = π−1.

The Kendall-tau distance and the Spearman’s footrule distance are usually defined in terms
of the ranking σ. Hence for consistency with these definitions, throughout this section we focus
on the rankings as defined by σ (instead of π as done throughout the remainder of the chapter).
Kendall-tau distance and Spearman’s footrule distance between any two rankings σ1 and σ2 of n
items are defined as:

Kendall-tau distance: LKT(σ1, σ2) =
∑

i∈[n],i′∈[n]:
σ1(i)<σ1(i′)

1{σ2(i) > σ2(i′)}

Spearman’s footrule distance: LSF(σ1, σ2) =
∑

i∈[n]

|σ1(i)− σ2(i)|.

The following theorem states that given any arbitrary ordinal estimator, there exists a cardinal
estimator that performs strictly uniformly better than this ordinal estimator, simultaneously on
Kendall-tau distance and Spearman’s footrule distance (cf. Theorem 2.6 for 0-1 loss).
Theorem 2.8. Suppose that the true ranking σ∗ is drawn uniformly at random from the collection
of all possible rankings. For any arbitrary ordinal estimator σ̂rank, there exists a cardinal esti-
mator with access to one call to the ordinal estimator σ̂rank that strictly uniformly dominates the
ordinal estimator σ̂rank with respect to Kendall-tau distance and Spearman’s footrule distance.
The computatinal complexity of this cardinal estimator is polynomial in the number of items n,
in addition to the time taken by one call to the ordinal estimator σ̂rank.

The proof of this result is in Section 9.7. This result demonstrates the generality of our results
in the main text with respect to various (not only 0-1) loss functions.

2.5.3 Ranking under arbitrary true ranking
Theorem 2.6 in Section 2.3.3 compared our cardinal estimator with arbitrary ordinal estimators
under a uniform prior over the true ranking. In this section, we present a result for ranking under
any arbitrary true ranking. This setting is more similar to our results on the canonical setting
(Theorem 2.3) and A/B testing (Theorem 2.5) in the main text. When the true ranking is arbi-
trary, a minimax-optimal ordinal estimator outputs uniformly at random a topoglocial ordering
consistent with the pairwise comparisons. We denote this optimal ordinal estimator as π̂rank-unif.
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Given this ordinal estimator, we then construct a cardinal estimator π̃our
rank-unif by simply setting

the initial estimate π̂ = π̂rank-unif(B) in Line 2 of Algorithm 1 (instead of executing the current
Line 2). The following theorem states the desired result for strict uniform dominance of this
cardinal estimator over the optimal ordinal estimator π̂rank-unif.
Theorem 2.9. When the true ranking is arbitrary, the cardinal estimator π̃our

rank-unif strictly uni-
formly dominates the minimax-optimal ordinal estimator π̂rank-unif.

The proof of this Theorem is in Section 9.9. Importantly, we can think of this cardinal
estimator as a post-processing step which builds on the output of the optimal ordinal estimator.
This cardinal estimator takes polynomial time in the number of items n, in addition to the time
taken by one call to the ordinal estimator π̂rank-unif.

2.6 Discussion
Breaking the barrier of using only ranking data in the presence of arbitrary (and potentially
adversarial) miscalibrations, we show that cardinal scores can yield strict and uniform improve-
ments over rankings. This result uncovers a novel, strictly-superior point on the tradeoff between
cardinal scores and ordinal rankings, and provides a new perspective on this eternally-debated
tradeoff. Our estimator allows for easily plugging into a variety of algorithms, thereby yielding
it a wide applicability.

The results of this chapter lead to several useful open problems. First, while our estimators
indeed uniformly outperform ordinal estimators, in the future, a more careful design in our esti-
mators (e.g. how to choose the function w in the canonical estimator, and how to design better
estimators for A/B testing and ranking) may yield even better results. Second, it is of interest to
obtain statistical bounds on the relative errors of the cardinal and ordinal estimators in terms of
the unknown miscalibration functions. Third, a promising direction of future research is to de-
sign estimators that achieve the guarantees of our proposed estimator under arbitrary/adversarial
miscalibrations while simultaneously being able to adapt and yield stronger guarantees when the
calibration functions follow one of the popular simpler models of miscalibration (à la “win-win”
models and estimators in prior work [162, Part I] [84, 154, 157, 158, 160]). Fourth, although
we consider the rating scales as continuous intervals, it is not hard to see that our results extend
to discrete scales (but with the strict inequality in Equation (2.1) sometimes replaced by a non-
strict inequality to account for ties). Using our results to guide the choice of the scale used for
elicitation is an open problem of interest. And finally, practical applications such as peer-review
do not suffer from the problem of miscalibration in isolation. It is a useful and challenging
open problem to address miscalibration simultaneously with other issues such as noise [167],
subjectivity [130], strategic behavior [192] and others.
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Chapter 3

Calibration in General Settings: A
Heuristic for Statistical Seriation

The estimators presented in Chapter 2 provide fundamental insights on the benefits of cardinal
scores even in the presence of arbitrary miscalibration. However, these estimators do not straight-
forwardly generalize to settings. For example, the ranking estimator presented in Algorithm 1 of
Section 2.3.3 starts with the assumption that there exists at least one topological ordering that is
consistent with the scores given by all the reviewers. However, this assumption may not hold in
real-life scenarios: it is natural to expect that some reviewers may not agree on the comparison
of some pair of papers. In this chapter, we study calibration in general settings under the statis-
tical seriation framework, where the goal is to estimate a matrix whose columns are assumed to
satisfy an unknown permutation. This is a important classical problem, with close connections
to statistical literature in permutation-based models. In addition to calibration, it also has wide
applications ranging from archaeology to biology. Past work has shown that the least-squares
estimator is optimal up to logarithmic factors, but efficient algorithms for computing the least-
squares estimator remain unknown to date. We approach this important problem from a heuristic
perspective. Specifically, we replace the combinatorial permutation constraint by a continuous
regularization term, and then use projected gradient descent to obtain a local minimum of the
non-convex objective. We show that the attained local minimum is the global minimum in cer-
tain special cases under the noiseless setting and preserves desirable properties under the noisy
setting. Simulation results reveal that our proposed algorithm outperforms prior algorithms when
(1) the underlying model is more complex than simplistic parametric assumptions such as low-
rankedness, or (2) the signal-to-noise ratio is high. Under partial observations, the proposed
algorithm requires an initialization, and different initializations may lead to different local min-
ima. We empirically observe that the proposed algorithm yields consistent results regardless of
intialization, even though different initializations start with different levels of quality.

3.1 Introduction

Seriation refers to the problem of identifying a sequential ordering of the data such that “the
position of each unit reflects its similarity to other units” [118]. For example, in archaeology
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seriation is used to identify the chronological ordering of historical artifacts (see [118] and refer-
ences therein). Other applications include ecology (identifying ages of fossil sites [114]), biology
(discovering gene expression patterns [31]), and operations research (understanding the interac-
tions between organizations [120]), just to name a few. From the statistical perspective, termed
“statistical seriation”, seriation is formulated as a matrix estimation problem, where the rows of
the matrix are assumed to satisfy the same shape constraint after an unknown permutation of the
columns [62]. One common shape constraint is that the rows are monotonically increasing after
the permutation of the columns, and in this chapter we focus on this monotonic case. We refer
the reader to the papers [62, 107] for surveys of (statistical) seriation in various applications.

Statistical seriation also forms a fundamental building block for many other problems, and
ideas on solving statistical seriation may be applicable to estimation under closely-related “permutation-
based” models, which involve matrices that are monotonic up to unknown permutations of rows
and/or columns. Permutation-based models arise in a variety of applications including estimating
pairwise comparison probabilities [108, 117, 158], crowdsourced labeling [161], matrix comple-
tion [160], passive [84] and active ranking [154]. A key challenge in these applications, as well
as in the statistical seriation problem, is the presence of unknown permutations.

An additional application of statistical seriation is miscalibration in peer review [186]. This
application involves a collection of reviewers and papers, where each reviewer provides ratings
to their assigned subset of papers. In this context, the ratings of each reviewer is represented
by a row in a matrix, and the papers represented by the columns inherit an ordering. The goal
is to estimate an underlying ordering of the papers. A key challenge is that reviewers may
be miscalibrated, that is, different reviewers may have different rating scales. One model for
miscalibration is to assume that there exists an underlying true value for each paper, and each row
of the matrix (respresenting a reviewer) is some monotonic transformation of these true values
combined with noise. In such applications, one prominent benefit of the statistical seriation
model is that the permutation-based assumption is general, and does not impose overly-simplistic
assumptions such as the matrix being low rank or having a specific parameter-based form. Hence,
the seriation model is robust in modeling a broad class of true matrices and has low bias in
estimation compared to specialized models that make parameter-based assumptions.

3.1.1 Problem formulation
We now introduce the formulation of statistical seriation. Let n and d be positive integers, and
let Y ∈ Rn×d be a real-valued matrix. Let Πd be the set of all permutations of size d. For
any permutation π ∈ Πd, letMπ ⊆ Rn×d be the set of all matrices whose columns satisfy the
ordering given by π. That is, for every matrixA ∈Mπ, we haveAi,π(1) ≤ Ai,π(2) ≤ . . . ≤ Ai,π(d)

for every i ∈ [n]. LetM := ∪π∈ΠdMπ denote the set of all (n× d) matrices whose columns can
be permuted such that every row is non-decreasing from left-to-right after some permutation of
the columns. Statistical seriation assumes that observations are made in the form of

Y = A∗ + Z, (3.1)

where we have an unknown true matrix A∗ ∈M, and the unknown matrix Z is a zero-mean sub-
Gaussian random matrix that represents the noise. The goal of statistical seriation is to estimate
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the matrix A∗ (and/or the ordering π∗ ∈ Πd associated with it). A natural estimator for this
problem is the least-squares estimator [62]

ÂLS ∈ argmin
A∈M

‖A− Y ‖2
F . (3.2)

The aforementioned description assumed that the matrix Y was fully observed, but this is rarely
the case especially in applications such as peer grading or peer review, where each reviewer
only evaluates a small subset of the items. Therefore, we also consider the setting of partial
observations, where only a subset of entries Ω ⊆ [n] × [d] in Y is observed. To this end, for
any matrix X ∈ Rn×d, let ‖X‖Ω denote the Frobenius norm restricted to the set Ω, defined as
‖X‖2

Ω =
∑

(i,j)∈Ω X
2
ij . Then the least-squares estimator under the case of partial observations

finds the matrix within the domainM that best fits the observed entries:

ÂLS ∈ argmin
A∈M

‖A− Y ‖2
Ω. (3.3)

The least-squares estimators (3.2) and (3.3) have desirable statistical properties. When the noise
is i.i.d. normal, then they correspond to the maximum likelihood estimator (MLE). Further-
more, Flammarion et al. [62] shows that the least-squares estimator (3.2) is optimal up to log-
arithmic factors and adapts to matrices with a certain natural structure. However, despite the
generality of the seriation model and the strong theoretical guarantees of the least-squares esti-
mator, the unknown permutation π in (3.2) imposes computational challenges in solving (3.2)
efficiently. If the permutation π were known, then A can be solved by isotonic regression taking
O(nd) time [12]. However, in (3.2) the permutation π is unknown, and naively brute-forcing
all possible choices of π takes exponential time in d. Computationally efficient algorithms for
computing (3.2) are not known to date [62]. Moreover, no algorithms have been found that are
both efficient and statistically optimal (whether using the least-squares formulation (3.2) or not),
showing an unclosed statistical-computation gap for the statistical seriation problem.

3.1.2 Our contributions
In this section, we outline the main contributions of this chapter and summarize our results.

Approach: A Heuristic Approximation The goal of our work is to provide a practical algo-
rithm that heuristically approximates the solution to (3.3). Specifically, we approach the prob-
lem by replacing the combinatorial permutation constraint in (3.3) by a continuous regularization
term while still capturing the permutation constraint. Formally, we define the following objective
function L : Rn×d → R, parameterized by a tuning parameter λ ≥ 0:

L(A) = LY,Ω,λ(A) := ‖A− Y ‖2
Ω + λR(A). (3.4)

where R : Rn×d → R≥0 is a carefully-designed regularizer term to be explained in Section 3.2.
Then our solution is computed by minimizing the objective as

argmin
A∈[0,1]n×d

L(A). (3.5)
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Following Shah et al. [158], we assume Bernoulli noise Z in (3.1), and therefore restrict the
domain of optimization (3.5) to [0, 1]n×d. Now that the objective is continuous and the domain
is a closed bounded set, we use projected gradient descent to obtain a local minimum of this
non-convex objective. Our approach is quite different from past work – past work has primarily
focused on designing efficient algorithms that reduce the gap from the optimal estimator in terms
of the statistical rates. On the other hand, we directly provide a heuristic for approximating the
optimal estimator. We thus provide a new point of comparison in terms of the statistical and
computational trade-off. Our approach thus provides new insights in terms of possible research
directions to understand and address this statistical-computational gap.

Theoretical results We first theoretically analyze the stationary points of (3.5), and show that
projected gradient descent converges to a stationary point (Section 3.4). Specifically, the attained
stationary point recovers the exact input data in the noiseless case (Theorem 3.2) and has other
desirable theoretical properties in the noisy case (Proposition 3.3 and Theorem 3.4). These theo-
retical results hold generally for any λ ≥ 0. The theoretical results thus provide insights into our
approach (3.5) to approximating statistical seriation, and provide justification for its validity.

Simulation results We then empirically evaluate our algorithm by simulation. Specifically, we
examine the following aspects:

• Accuracy-computational tradeoff of λ We first observe that the tuning parameter λ in-
duces an accuracy-computational tradeoff (Section 3.5.2). Specifically, when the value of
λ increases, estimation achieves higher accuracy but gradient descent takes more iterations
to converge.

• Advantage under non-parametric models and high SNR We then compare our esti-
mator with various baselines under various models (Section 3.5.2). We observe that our
estimator performs well when the true data violates simplistic parametric assumptions.
This is because our estimator inherits the general formulation of statistical seriation, giv-
ing low bias in estimation. On the other hand, although the parametric baselines perform
well when the true data is generated from such parametric models, they incur a large bias
when the true data is not. In addition, our estimator especially performs well when the
SNR is high. This is also expected, as noise is of low-rank in nature. Therefore, when the
signal level relative to the noise is low, the noise overshadows the non-parametric structure
of the true matrix.

• Partial observations and initialization of gradient descent Finally, we consider the case
when the data is only partially observed (Section 3.5.3). In this case, the gradient descent
algorithm requires an initialization on the unobserved entries of the matrix. Since the ob-
jective (3.4) is non-convex, gradient descent may converge to different local optima based
on the initialization. We empirically observe that our algorithm consistently improves the
estimation accuracy for different choices of initialization, although the amounts of error at
the beginning of gradient descent are different for different initializations.

Putting the theoretical and empirical results together, our work demonstrates the effectiveness
of our approach to approximating the solution of the least-squares estimator, and the generality
of the approach inherited by the generality of the seriation model.
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3.2 Our proposed algorithm
We propose the following regularizer R for the objective (3.4):

R(A) =
∑

i,i′∈[n]j,j′∈[d]

Ri,i′,j,j′(A), (3.6)

where Rii′jj′(A) is defined as

Ri,i′,j,j′(A) :=

{
0 if (Aij − Aij′)(Ai′j − Ai′j′) ≥ 0

(Aij − Aij′)2(Ai′j − Ai′j′)2 otherwise.
(3.7)

The goal of the regularizer R is to capture the permutation constraint of the matrix. The main
challenge with the constraint is that the permutation is unknown. In (3.7), we consider the four
matrix entries in rows {i, i′} ⊆ [n] and columns {j, j′} ⊆ [d] of the matrix. We call these four
entries as the “quadruple” (i, i′, j, j′). We observe thatA ∈M if and only if the terms (Aij−Aij′)
and (Aij−Aij′) have the same sign (or one or both of the terms equal 0) for all the quadruples in
the matrix (including quadruples where some or all of the four entries are unobserved). Hence,
the regularizer Rii′jj′ is designed to penalize the difference in the sign between the pairs of terms
(Aij−Aij′) and (Ai′j−Ai′j′). The quadratic form (3.7) ofRii′jj′ can be viewed as a differentiable
approximation to the step function 1{(Aij − Aij′)(Ai′j − Ai′j′) < 0}. Finally, the regularizer R
takes a summation over all the quadruples (i, i′, j, j′). It can be verified that we have A ∈ M if
and only if R(A) = 0.

Putting (3.4), (3.5) and (3.6) together, our estimator is defined as

argmin
A∈[0,1]n×d

‖A− Y ‖2
Ω + λ

∑

i,i′∈[n],j,j′∈[d]

Rii′jj′(A), (3.8)

where ties are broken arbitrarily. Equivalently, our estimator can be viewed as first reformulating
the original problem (3.3) to an equivalent problem:

argmin
A∈[0,1]n×d

Rii′jj′ (A)=0 ∀i,i′∈[n],j,j′∈[d]

‖A− Y ‖2
Ω. (3.9)

Then optimization (3.8) can be considered as the Lagrangian of the optimization problem (3.9).
Intuitively, a large value of λ corresponds to stricter enforcement of the permutation structure on
the matrix A.

To solve (3.8) we use projected gradient descent. The projected gradient descent algorithm
consists of two steps in each iteration. In the gradient step, the algorithm updates its current
estimate by computing gradient of the objective and moving the current estimate in its objective-
improving direction for a stepsize. In the projection step, the algorithm projects the current
estimate back to the domain [0, 1]n×d. Formally, we denote γt ∈ R as the stepsize in each
iteration t ≥ 1. We have

Gradient step: At = At−1 − γt∇LA(A). (3.10a)

Projection step:
At ← max{0, At},
At ← min{1, At}. (3.10b)
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Note that we choose a quadratic form in (3.7) instead of a linear form such as the hinge loss,
because the quadratic form is differentiable, and hence its gradient can be computed straightfor-
wardly.

3.3 Related work

Seriation and estimation under monotonicity Flammarion et al. [62] proposes the statisti-
cal model for seriation, and then shows that the least-squares estimator (3.2) is optimal up to
logarithmic factors when the underlying constraint is either monotonic or unimodal. More gen-
erally, there is a rich line of literature on estimation under permutation constraints, where the
data obeys certain underlying orderings, but the orderings are unknown. For example, Mao et al.
[117] consider the class of bivariate isotonic matrices, where the matrix follows an unknown row
permutation and an unknown column permutation, and a subclass where one of the two permu-
tations is known. Shah et al. [158] analyze the class of stochastic transitivity (SST) matrices,
which are bivariate isotonic matrices that are (shifted) skew-symmetric. A multivariate gener-
alization is considered in Pananjady and Samworth [132]. For such problems, the least-squares
estimators are considered (e.g., [62, 158, 161]more citations here). However, efficient algorithms
for computing such least-squares estimators are not known [62, 108, 117]. Due to the compu-
tational inefficency of the least-squares estimator, other computational efficient estimators are
proposed [62, 108, 117]. Many of these efficient estimators are statistically suboptimal, with the
exception of Liu and Moitra [108] and Pananjady and Samworth [132]. Specifically, Liu and
Moitra [108] considers bivariate isotonic matrix estimation where one of the two permutations
is known, and proposes an estimator that runs in linear time achieving the optimal rate up to
an no(1) factor. Pananjady and Samworth [132] proposes an estimator that is optimal when the
dimension of the problem is d ≥ 3 (but not d = 2). For statistical seriation, positive or negative
results on efficient estimators achieving the optimal rate remains unknown [62].

Landscape design and properties of local optima Optimization-based approaches are widely
used for many problems, where the solution is posed as the minimizer to an objective function
and computed by standard techniques such as gradient descent. The objective often includes
regularization terms. Designing proper regularization (also termed “landscape design”) that has
desirable properties has been considered problems such as low-rank approximation [66] and
neural networks [67]. In particular, Ge et al. [66] considers low-rank approximation under a
random design setting and proves that all local minima are global minima. Ma et al. [110] con-
siders a specific crowdsourced labeling setting with a rank-1 (Dawid-Skene) model, and shows
that under arbitrary fixed design, all local minima are global minima for rank-1 matrix com-
pletion [110]. These theoretical results suggest that gradient descent converges to the global
optimum for their problems. [110] further proposes an exponentiated gradient descent algorithm
to achieve polynomial-rate convergence. Since a rank-1 matrix is monotonic by definition (where
the permutation is unknown), our theoretical results (Section 3.4) can be considered as a gener-
alized setting of Ma et al. [110]. Our idea of using projected gradient descent is also inspired
by Ma et al. [110].
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On using regularization for permutation constraints, Tibshirani et al. [179] proposes a reg-
ularizer to captures the permutation constraint in isotonic regression, where the permutation is
known. On the other hand, we consider the case where the permutation is unknown.

Data imputation In the partial observation setting, our algorithm starts with an initialization.
This initialization is related to data imputation, which is used in domains such as clustering.
Methods such as naively taking the mean, nearest-neighbor (NN) [19] and MICE [9] are pro-
posed. In the simulation results, we consider initializing the missing data by the mean and the
nearest-neighbor methods.

3.4 Theoretical properties
In this section, we present theoretical properties of our algorithm. Specifically, we analyze the
stationary points of the non-convex objective (3.8). We show desirable properties of any station-
ary point under the noiseless and the noisy settings. These results provide theoretical backing
that the regularized objective proposed in (3.8) provides a natural approach to approximating the
solution of (3.2).

The following result connects stationary points and gradient descent, stating that the gradient
of the iterates obtained by projected gradient descent converges to 0.
Theorem 3.1. Consider any matrix Y ∈ [0, 1]n×d, any non-empty observation set Ω ⊆ [n]× [d],
and any value of the parameter λ ≥ 0. With any initialization, the gradient of the iterates given
by projected gradient descent on objective (3.8) converges to 0. Specifically, with a proper choice
of a constant stepsize (dependent on n, d and λ), for any ε > 0, the solution of projected gradient
descent satisfies limt→∞‖∇L(Ât)‖2

F < ε.
The proof of this theorem is provided in Section 10.2. In what follows, we present properties

of the stationary points of the objective (3.8). Note that the objective (3.8) is continuous and
over a closed bounded set (that is, [0, 1]n×d). Therefore, there always exists at least one global
minimum [149, Theorem 4.16], and hence at least one local minimum. In Lemma 10.2 of Sec-
tion 10.1.2 , we show that all local minima on the boundary of the domain [0, 1]n×d are stationary
points, so there exists at least one stationary point.

3.4.1 The noiseless setting

We first consider the noiseless setting where we have Y ∈ M. Our approach is inspired by the
work of Ma et al. [110]. Specifically, Ma et al. [110] considers rank-1 matrix completion under
any fixed-design, and shows that their proposed algorithm can perfectly recover the rank-1 matrix
in the noiseless case. Without a second thought, one may be tempted to write off this result –
there is a straightforward algorithm to perfectly recover noiseless rank-1 matrices, that is, picking
any non-zero row of the matrix, and writing each remaining row as the product of a multiplicative
factor and this row. However, the theoretical results in Ma et al. [110] still provide non-trivial
theoretical contributions and useful insights – the straightforward algorithm is heavily tailored to
the noiseless case, and quickly becomes inapplicable when the data deviates from being rank-1.
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On the contrary, the theoretical guarantees by Ma et al. [110] are shown on a much more general
algorithm with any initialization, applicable to any arbitrary matrix Y .

In our problem, under the noiseless setting, the set of global minima to (3.8) is the set of
monotonic matrices whose entries equal to Y on the observed set Ω. The following result shows
that all stationary points are global minima. Since rank-1 matrices are monotonic by defini-
tion, our result supplements the result of Theorem 2 in Ma et al. [110] by considering general
monotonic matrices in small matrix sizes.
Theorem 3.2. Consider any Y ∈ M, any non-empty observation set Ω ⊆ [n] × [d] and any
value of the parameter λ ≥ 0. Consider n = 2 or d ≤ 3. Then any stationary point to the
objective (3.8) is a global minimum.

The proof of this theorem is provided in Section 10.3. The proof relies on the first-order
optimality condition, and uses combinatorial arguments to derive contradictions if any stationary
point were not a global minimum.

Similar to the setting in Ma et al. [110], under the noiseless setting, there also exists a straight-
forward algorithm to obtain all the global minima of (3.8) – by first finding the total ordering of
the columns (or the set of all such total orderings) induced by the entries within each row, and
filling each unobserved entry to be any value subject to this total ordering. On the contrary,
our algorithm is applicable to any arbitrary matrix Y . With its generality, it is even unclear if the
original noiseless matrix can be recovered under any arbitrary initialization without Theorem 3.2.
Furthermore, the property of perfectly recovering noiseless data is not only natural but also im-
portant – given the generality of the seriation model, Theorem 3.2 contrasts our algorithm with
prior approaches in matrix estimation and completion such as using parameter-based models or
low-rank matrix decomposition, where a non-zero bias is incurred in this noiseless case.

3.4.2 The noisy setting
Now we move to consider the noisy setting where the matrix Y is not guaranteed to be monotonic.
A quadruple (i, i′, j, j′) is called a “disagreement quadruple” if the signs of (Aij − Aij′) and
(Ai′j−Ai′j′) are different. The following result shows that the set of disagreement quadruples at
any stationary point to (3.8) is a subset of the disagreement quadruples in the original matrix Y .
Proposition 3.3. Consider any matrix Y ∈ [0, 1]n×d, any non-empty observation set Ω ⊆ [n]×[d]

and any value of the parameter λ ≥ 0. Consider n = 2. Let Â be any stationary point of the
objective (3.8). For every {i, i′} = {1, 2} and any j, j′ ∈ [d] such that

Âi,j < Âi,j′ and Âi′,j > Âi′,j′ ,

we have the same relation holds at the corresponding entries of the matrix Y :

Yi,j < Yi,j′ , if (i, j), (i, j′) ∈ Ω

and Yi′,j > Yi′,j′ , if (i′, j), (i′, j′) ∈ Ω.

The proof of this result is provided in Section 10.4. In words, this result shows that our
estimator only reduces the disagreement quadruples in the observations Y and never introduces
new ones that do not exist in Y , thus revealing another natural desirable property of our estima-
tor (3.8).
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Using Proposition 3.3 as a building block, the following result considers the case where there
is a partition of the columns, and there is a total ordering describing the dominance relation of
these columns in the matrix Y . Specifically, a set of columns S ⊆ [d] is said to “dominate”
another set of columns S ′ ⊆ [d], if we have Yij > Yij′ , for every i ∈ [n], j ∈ S and j′ ∈ S ′ such
that (i, j), (i, j′) ∈ Ω. The following theorem shows that any stationary point to (3.8) retains this
dominance relation.
Theorem 3.4. Consider any matrix Y ∈ [0, 1]n×d, any non-empty observation set Ω ⊆ [n]× [d]
and any value of the parameter λ ≥ 0. Consider n = 2. Assume there exists a partition of
columns [d] = S1 ∪ . . . ∪ Sm, such that Sk+1 dominates Sk for each k ∈ [m − 1]. Assume that
for each k ∈ [m− 1], and each j ∈ Sk, j′ ∈ Sk+1, we have

∃i ∈ {1, 2} such that (i, j), (i, j′) ∈ Ω. (3.11)

Then at any stationary point Â to the objective (3.8), we have Âij < Âij′ for any i ∈ {1, 2} and
any j ∈ Sk, j′ ∈ Sk+1 with any k ∈ [m− 1].

The proof of this result is provided in Section 10.5. In words, the condition (3.11) in The-
orem 3.4 requires that the ordering of two columns are directly comparable. Note that in the
noiseless case, we can write the partition as [d] = {1}∪ . . .∪{d}. Hence, this result is a general-
ization of our result from the noiseless case (Theorem 3.2). Proposition 3.3 and Theorem 3.4 thus
together show that in the noisy setting, any stationary point to the objective (3.8) has desirable
properties under certain special cases. These theoretical properties are natural but at the same
time non-trivial, providing theoretical insights and validation to our proposed estimator (3.8).

3.5 Simulations
In this section, we evaluate the performance of gradient descent on the objective (3.8) in different
settings1. We first discuss the simulation set-up for a full-observation setting (Ω = [n] × [d]))
in Section 3.5.1. We provide the associated results in Section 3.5.2. In a nutshell, our algorithm
performs better than the baselines when the underlying models do not satisfy specialized para-
metric assumptions, and also when the signal-to-noise (SNR) is high so that the noise does not
overshadow the non-parametric structure of the data. We then simulate settings with only partial
observations in Section 3.5.3. We consider several natural methods to initialize the matrix Y and
we find that our algorithm consistently improves the performance as compared to the various
common initialization methods. We also find that our algorithm is quite robust to the choice
of the initialization method, although the choice of initialization could in theory lead to very
different local minima.

3.5.1 Simulation etup

We now describe the design choices made for our estimator (3.8) and the simulation settings.

1The code for the implementation of our estimator and for evaluation is provided at https://github.com/
jingyanw/heuristic-seriation.
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Reparameterizing the hyperparameter λ Instead of the objective (3.8) that weighs the two
terms by 1 and λ, we reparametrize the hyperparameter λ and now weigh the two terms by (1−λ̃)

and λ̃ with λ̃ ∈ [0, 1). That is, we consider the objective

argmin
A∈[0,1]n×d

(1− λ̃) · ‖Y − A‖2
Ω + λ̃R(A). (3.12)

Note that this objective (3.12) is equivalent to the previous objective (3.8), with a one-to-one
correspondence between the values of λ and λ̃. The reparameterized objective (3.12) reduces
the variation on the magnitude of the objective through the range λ̃ ∈ [0, 1), making it easier to
choose a simple constant stepsize for gradient descent independent of the specific choice of λ̃.
For all the subsequent simulation results, we consider this reparameterized objective (3.12).

Gradient descent For simplicity, we choose a constant stepsize of 0.1 with a momentum of
0.9. We use the initialization A0 = Y under full observations. The choice of the initialization
under partial observations is further discussed in Section 3.5.3. We terminate the algorithm
when the normalized squared Frobenius norm of the gradient is smaller than 10−8, that is, when
1
nd
‖∇AL̃(A)‖2

F < 10−8, where L̃ denotes the reparameterized objective (3.12). We implement
our objective (3.12) and run gradient descent in PyTorch [134].

Models We follow the observation models studied in Shah et al. [158], but with an additional
parameter that controls the relative levels of signal and noise. We consider square matrices with
n = d. Let A∗ ∈ [0, 1]n×n represent the true matrix whose value is specified later for different
models. Bernoulli observations Y are generated2 from A∗, that is, we have P(Yij = 1) = A∗ij for
each i, j ∈ [n]. We use the five SST models of A∗ described in Shah et al. [158, Section 4]; we
also include the descriptions below for completeness.

(a) Uniform: The diagonal entries are 0.5. Then
(
n
2

)
values are drawn independently and

uniformly at random from [β, 1], for a fixed choice of β ∈ [0.5, 1] , and sorted in the
increasing order. The entries immediately above the diagonal are filled with the smallest
(n− 1) values uniformly at random. Then the entries in the next diagonal above are filled
uniformly at random with the smallest (n − 2) of the remaining values, and so on. The
entries below the diagonal are filled in to make A∗ skew symmetric.

(b) Thurstone: A vector w∗ ∈ Rn is chosen uniformly at randomly from the set of w∗ such
that 〈w∗, 1〉 = 0 and all entries of w∗ are between −0.5− β and 0.5 + β, for a fixed choice
of β. Then the matrix A∗ is filled in via A∗ij = F (w∗i − w∗j ) for each i, j ∈ [n], where F is
the CDF of the standard normal distribution.

(c) BTL: Identical to the Thurstone model, except that F is given by the sigmoid function.

(d) Noisy sorting: The diagonal entries are 0.5. All entries above the diagonal are β, and all
entries below the diagonal are 1 − β, for a fixed choice of β ∈ [1

2
, 1]. This is a classic

model proposed by Braverman and Mossel [27] and studied subsequently in the literature
(e.g., [116]).

2Note that Shah et al. [158] only generates i.i.d. Bernoulli observations in the upper diagonal with i ≤ j, and
set the entries in the lower diagonal as Yji = 1 − Yij . This is because Shah et al. [158] requires the matrix to be
skew-symmetric whereas with the seriation model we do not have this restriction.
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(e) Independent bands: The diagonal entries are 0.5. The entries immediately above the
diagonal are chosen i.i.d. uniformly at random from [β, 1], for a fixed choice of β ∈
[0.5, 1]. The entries in the next diagonal is chosen uniformly randomly from the range
lower bounded by the entries to its left and below. The entries below the diagonal are filled
in a manner that makes A∗ skew symmetric.

Metrics For any estimator Â, we consider its risk in terms of the normalized squared Frobenius
norm, 1

nd
‖Â− A∗‖2

F .

Baselines We compare our algorithm to the following baselines:
1. Rank-1: The estimate Â is computed as the rank-1 approximation of Y .

2. Singular-value thresholding (SVT): This estimator is studied in Shah et al. [158, Sec-
tion 3.2] (and also in various other works such as Chatterjee [36]), with a parameter α
denoting the threshold level applied on the singular values of Y . The value of α is re-
quired to be strictly greater than 2

√
n, and Shah et al. [158] uses α = 2.01

√
n. For our

settings, we consistently observe that a smaller value of α gives better performance, so we
set α = 2.0000001

√
n.We consistently observe that the hard-thresholding performs better

than the soft-thresholding, so we use the hard-thresholding in our simulation.

3.5.2 Results for full observations

We now present the results from our simulations pertaining to the full-observation setting.

Accuracy-computation tradeoff induced by λ̃

We first inspect the performance of our algorithm for different choices of λ̃ ∈ [0, 1), in terms
of the accuracy (measured by the Frobenius error of estimation) and the computational time
(measured by the number of iterations taken till convergence of gradient descent), shown in
Figure 3.1. We use n = 64 and β = 0.5 (which matches the setting in [158]).The error bars in
Figure 3.1 and all subsequent results represent the standard error of the mean, computed over 10
trials. In Figure 3.1 and subsequent plots, the error bars are small and therefore not visible.

We observe from Figure 3.1 that there is a tradeoff between accuracy and the computational
time. As the value of λ̃ increases, our algorithm attains a lower error (Figure 3.1(a)), but takes
more time (Figure 3.1(b)). This tradeoff is expected, because the original least-square estimator
intuitively corresponds to setting λ̃ = 1, which is known to be optimal in estimation and conjec-
tured computationally inefficient. On the other hand, setting λ̃ = 0 is equivalent to outputting
the observation matrix Y without any computation. For clarity, only a few models are shown
in Figure 3.1, but we consistently observe these trends for numerous settings not shown.larger
legend

Consequently, for all subsequent simulations we set λ̃ = 0.9, which is a reasonably large
value that attains low error without excessively slowing down the convergence. We now provide
simulation results for the 5 models under the set-up described in Section 3.5.1.
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Figure 3.1: Tradeoff between accuracy (estimation error) and time (number of iterations) for
different values of λ̃ ∈ [0, 1).
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Figure 3.2: Estimation error of different algorithms for different models of A∗.

Comparison to baselines

We run simulations comparing the performance of our algorithm with the baselines on the afore-
mentioned models in two ways: varying the matrix size n (for fixed β = 0.5) and varying the
signal relative to noise, β (for fixed n = 64). The results are shown in Figure 3.2 and Figure 3.3,
respectively (overlapping curves are slightly shifted horizontally for better readability). The key
findings from these simulations are as follows:

• The baselines work well when the underlying model is parametric or similar (Figure 3.2(b)(c)),
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Figure 3.3: Estimation error of different algorithms under different levels of signal relative to
noise.

but are inconsistent when such parametric assumptions do not hold (Figure 3.2(d)(e)). A
similar observation about the Thurstone MLE is made in [158]. The rank-1 estimator and
the (hard)-SVT estimator yield similar performance.

• Our estimator outperforms the baselines when the underlying model is more complex.
• When the noise level is high relative to the signal (smaller values of β in Figure 3.3), the

baselines perform well. This is because the estimation error dominates, and the baselines
trim off a lot of noise.

• When the noise level is low relative to the signal (larger values of β in Figure 3.3), our
estimator offers substantial improvements. In this regime, the approximation error is the
dominating source of error, and the baselines incur a large approximation error since they
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also trim off a large part of the signal.

3.5.3 Partial observations

In what follows, we simulate settings where Y has missing entries, which is important in prac-
tice but has received much less attention in the literature. We consider our algorithm (3.8) and
evaluate various initializations for gradient descent, as well as compare it to the baselines. The
initialization potentially affects the performance of gradient descent, because gradient descent
may converge to different local optima depending on the initialization.

Simulation setup

As before, we choose n = 64, and β = 0.5, matching the setting in Shah et al. [158].

Random-design observations We consider a random design to construct Ω so that each matrix
entry is observed with probability 0.3 independent of all else.

Initialization methods We consider the following initialization methods:
• Row mean: Each unobserved entry is initialized to the mean of the observed entries in its

row.
• Column mean: Each unobserved entry is initialized to the mean of the observed entries

in its column.
• Row kNN: Each unobserved entry is imputed as the mean of the 5 nearest rows among

the rows. The distance between rows is measured in terms of the normalized Euclidean
distance.

• Column kNN: Each unobserved entry is imputed as the mean of the 5 nearest columns
among the columns. The distance between columns is measured in terms of the normalized
Euclidean distance.

Results for partial observations

The simulation results for partial observations are shown in Figure 3.4, where the bars for the
same initialization before and after running our algorithm are coded in a pair of similar colors.
We also compare the performance of our algorithm with the baselines described earlier in Sec-
tion 3.5.1. The figure shows the performance of each baseline with the initialization method
for which it performs the best (which happens to be both row and column kNNs for both base-
lines).what does prev sentence mean The salient findings from the simulations are as follows:

• The choice of the initialization method does not have strong influence on the performance
of our algorithm.

• Our algorithm consistently improves upon different initialization methods.
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• Similar to the full-observation setting, our method outperforms the baselines when the un-
derlying model is more complex, whereas the baselines perform well when the underlying
model is simpler.

3.6 Conclusion and discussion
In this work, we contribute a heuristic-based perspective with respect to the spectrum of the
statistical-computational gap in the statistical seriation problem. In terms of open problems, on
the theory front, it is still certainly of interest to accurately characterize the statistical-computational
gap. On the applied side, a wide range of applications have application-specific characteristics.
For example, in peer review, reviewers’ behaviors may not be entirely monotonic due to subjec-
tivity, so that the true matrix may have only a partially monotonic structure. Our heuristic-based
approach can provide a useful tool to tackle such challenges that are even more complex than the
open problem of statistical seriation.
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Chapter 4

Debiasing Evaluations That Are Biased by
Evaluations

It is common to evaluate a set of items by soliciting people to rate them. For example, universities
ask students to rate the teaching quality of their instructors, and conference organizers ask authors
of submissions to evaluate the quality of the reviews. However, in these applications, students
often give a higher rating to a course if they receive higher grades in a course, and authors often
give a higher rating to the reviews if their papers are accepted to the conference. In this work,
we call these external factors the “outcome” experienced by people, and consider the problem
of mitigating these outcome-induced biases in the given ratings when some information about
the outcome is available. We formulate the information about the outcome as a known partial
ordering on the bias. We propose a debiasing method by solving a regularized optimization
problem under this ordering constraint, and also provide a carefully designed cross-validation
method that adaptively chooses the appropriate amount of regularization. We provide theoretical
guarantees on the performance of our algorithm, as well as experimental evaluations.

4.1 Introduction
It is common to aggregate information and evaluate items by collecting ratings on these items
from people. In this work, we focus on the bias introduced by people’s observable outcome
or experience from the entity under evaluation, and we call it the “outcome-induced bias”. Let
describe this notion of bias with the help of two common applications – teaching evaluation and
peer review.

Many universities use student ratings for teaching evaluation. However, numerous studies
have shown that student ratings are affected by the grading policy of the instructor [23, 75, 95].
For instance, as noted in Johnson [95, Chapter 4]:

“...the effects of grades on teacher-course evaluations are both substantively and statistically
important, and suggest that instructors can often double their odds of receiving high evalua-
tions from students simply by awarding A’s rather than B’s or C’s.”

As a consequence, the association between student ratings and teaching effectiveness can become
negative [23], and student ratings serve as a poor predictor on the follow-on course achievement
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of the students [25, 33]:
“...teachers who are associated with better subsequent performance receive worst evaluations
from their students.” [25]

The outcome we consider in teaching evaluation is the grades that the students receive in the
course under evaluation1 and the goal is to correct for the bias in student evaluations induced by
the grades given by the instructor.

An analogous issue arises in conference peer review, where conference organizers survey
authors to rate their received reviews in order to understand the quality of the review process. It
is well understood that authors are more likely to give higher ratings to a positive review than a
to negative review [97, 133, 189]:

“Satisfaction had a strong, positive association with acceptance of the manuscript for pub-
lication... Quality of the review of the manuscript was not associated with author satisfac-
tion.” [189]

Due to this problem, an author feedback experiment [133] conducted at the PAM 2007 confer-
ence concluded that:

“...some of the TPC members from academia paralleled the collected feedback to faculty
evaluations within universities... while author feedback may be useful in pinpointing extreme
cases, such as exceptional or problematic reviewers, it is not quite clear how such feedback
could become an integral part of the process behind the organization of a conference.”

With this motivation, for the application of peer review, the outcome we consider is the review
rating or paper decision received by the author, and the goal is to correct for the bias induced by
it in the feedback provided by the author.

Although the existence of such bias is widely acknowledged, student and author ratings are
still widely used [17], and such usage poses a number of issues. First, these biased ratings can
be uninformative and unfair for instructors and reviewers who are not lenient. Second, instruc-
tors, under the possible consideration of improving their student-provided evaluation, may be
incentivized to “teach to the test”, raising concerns such as inflating grades and reducing con-
tent [33]. Furthermore, author-provided ratings can be a factor for selecting reviewer awards [97],
and student-provided ratings can be a heavily-weighted component for salary or promotion and
tenure decision of the faculty members [17, 23, 33]. If the ratings are highly unreliable and
sometimes even follow a trend that reverses the true underlying ordering, then naı̈vely using
these ratings or simply taking their mean or median will not be sufficient. Therefore, interpreting
and correcting these ratings properly is an important and practical problem.

The goal of this work is to mitigate such outcome-induced bias in ratings. Incidentally, in
teaching evaluation and peer review, the “outcome” that people (students or authors) encounter
in the process is the evaluation they receive (grades from instructors or reviews from reviewers),
and hence we call this bias “evaluations that are biased by evaluations”. That said, we note that
the general problem we consider here is applicable to other settings with outcomes that are not
necessarily evaluations. For example, in evaluating whether a two-player card game is fair or
not, the outcome can be whether the player wins or loses the game [124].

1We use the term “grades” broadly to include letter grades, numerical scores, and rankings. We do not distinguish
the difference between evaluation of a course and evaluation of the instructor teaching the course, and use them
interchangeably.
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The key insight we use in this work is that the outcome (e.g., grades and paper decisions) is
naturally available to those conduct the evaluation (e.g., universities and conference organizers).
These observed outcomes provide directional information about the manner that evaluators are
likely to be biased. For example, it is known [23, 75, 95] that students receiving higher grades
are biased towards being more likely to give higher ratings to the course instructor than students
receiving lower grades. To use this structural information, we model it as a known partial order-
ing constraint on the biases given people’s different outcomes. This partial ordering, for instance,
is simply a relation on the students based on their grades or ranking, or on the authors in terms
of acceptance decisions of their papers.

4.1.1 Our contributions
We identify and formulate a problem of mitigating biases in evaluations that are biased by evalu-
ations (Section 4.2). Specifically, this bias is induced by observable outcomes, and the outcomes
are formulated as a known partial ordering constraint. We then propose an estimator that solves
an optimization jointly in the true qualities and the bias, under the given ordering constraint
(Section 4.3). The estimator includes a regularization term that balances the emphasis placed on
bias versus noise. To determine the appropriate amount of regularization, we further propose a
cross-validation algorithm that chooses the amount of regularization in a data-dependent manner
by minimizing a carefully-designed validation error (Section 4.3.2).

We then provide a theoretical analysis of the performance of our proposed algorithm (Sec-
tion 4.4). First, we show that our estimator, under the two extremal choices of the regular-
ization hyperparameter (0 and ∞), converges to the true value in probability under only-bias
(Section 4.4.2) and only-noise (Section 4.4.3) settings respectively. Moreover, our estimator re-
duces to the popular sample-mean estimator when the regularization hyperparameter is set to∞,
which is known to be minimax-optimal in the only-noise case. We then show (Section 4.4.4)
that the cross-validation algorithm correctly converges to the solutions corresponding to hyper-
parameter values of 0 and ∞ in probability in the two aforementioned settings, under various
conditions captured by our general formulation. We finally conduct synthetic and semi-synthetic
experiments that establish the effectiveness of our proposed approach via numerical experiments
in more general settings not covered by the theoretical results (Section 4.5).

4.1.2 Related work
In terms of correcting rating biases, past work has studied the problem of adjusting student
GPAs due to different grading policies across courses and disciplines. Proposed models include
introducing a single parameter for each course and each student solved by linear regression [34],
and more complicated parametric generative models [94]. Though grade adjustment seems to be
a perfect counterpart of teaching evaluation adjustment, the non-parametric ordering constraint
we consider is unique to teaching evaluation, and do not have obvious counterpart in grade
adjustment. For the application of peer review, there are many works [59, 65, 93, 106, 115,
130, 167, 168, 180, 186] addressing various biases and other issues in the review process, but to
the best of our knowledge none of them addresses biases in author-provided feedback. It is of
interest in the future to design schemes that combine our present work with these past works in
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order to jointly address multiple problems such as simultaneous existence of outcome-dependent
bias and miscalibration.

In terms of the models considered, one statistical problem related to our work is the isotonic
regression, where the goal is to estimate a set of parameters under a total ordering constraint
(see, e.g. 12, 78, 113, 196). Specifically, our problem becomes isotonic regression, if in our
exact formulation (4.2) to be presented, we set λ = 0, x = 0 and the partial ordering to a total
ordering.

Another type of related models in statistics literature concerns the semiparametric additive
models (e.g. 49, 82, 191, 194) with shape constraints [39]. In particular, one class of semi-
parametric additive models involves linear components and components with ordering (isotonic)
constraints [42, 87, 122, 150]. Our optimization (4.2) falls within this class of semiparametric
models, if we set the second term of `2-regularization to 0. To see the connection, we write the
first term of (4.2) in a linearized form as ‖y−Ax−b‖2

2, where y, b ∈ Rdn, x ∈ Rd andA ∈ Rdn×d

is a 0/1 matrix that specifies the course membership of each rating: if a rating is from course
i, then in corresponding of row of A, the ith entry is 1 and all other entries are 0. Past work
has studied the least-squares estimator for this problem, but the results such as consistency and
asymptotic normality rely on assumptions such as A being random design or each coordinate of
x being i.i.d., which are not applicable to our setting. The special 0/1 structure of A makes our
problem unique and differ from past work in terms of the theoretical analysis.

In terms of the technical approach, our estimator (Equation 4.2) is partly inspired by permutation-
based models [158, 162] which focuses only on shape constraints rather than parameters, but with
the key difference that here we can exploit the crucial information pertaining to the ordering of
the bias.

The idea of adopting cross-validation to select the right amount of penalization is classical
in statistics literature (see, e.g. [81, 102, 171]). Yet, this generic scheme cannot be directly
applied to models where training samples are not exchangeable—in which case, both the sub-
sampling step and the test-error estimation are highly non-trivial. Therefore caution needs to
be exercised when order restrictions, therefore non-exchangeability, are involved. The cross-
validation algorithm proposed in this work is partly inspired by the cross-validation used in
nearly-isotonic regression [179]. In nearly-isotonic regression, the hard ordering constraint is
replaced by a soft regularization term, and the extent of regularization is determined by cross-
validation. However, introducing the linear term of x as the quantity of interest significantly
changes the problem. Thus, our cross-validation algorithm and its analysis are quite different.

4.2 Problem formulation
For ease of exposition, throughout the chapter we describe our problem formulation using the
running example of course evaluation, but we note that our problem formulation is general and
applies to other problems under outcome-induced bias as well. Consider a set of d courses.
Each course i ∈ [d] has an unknown true quality value x∗i ∈ R to be estimated. Each course is
evaluated by n students.2 Denote yij ∈ R as the rating given by the jth student in course i, for

2For ease of exposition, we assume that each course is evaluated by n students, but the algorithms and the results
extend to regimes where the number of students is different across courses.
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each i ∈ [d] and j ∈ [n]. Note that we do not require the same set of n students to take all d
courses; students in different courses are considered different individuals. We assume that each
rating yij is given by:

yij = x∗i + bij + zij, (4.1)

where bij represents a bias term, and zij represents a noise term. We now describe these terms in
more detail.

The term zij captures the noise involved in the ratings, assumed to be i.i.d. across i ∈ [d] and
j ∈ [n]. The term bij captures the bias that is induced by the observed “outcome” of student j ex-
perienced in course i. In the example of teaching evaluation, the outcome can be the grades of the
students that are known to the university, and the bias captures the extent that student ratings are
affected by their received grades. Given these observed outcomes (grades), we characterize the
information provided by these outcomes as a known partial ordering, represented by a collection
of ordering constraints O ⊆ ([d]× [n])2. Each ordering constraint is represented by two pairs of
(i, j) indices. An ordering constraint ((i, j), (i′, j′)) ∈ O indicates that the bias terms obey the
relation bij ≤ bi′j′ . We say that this ordering constraint is on the elements {(i, j)}i∈[d],j∈[n] and
on the bias {bij}i∈[d],j∈[n] interchangeably. We assume the terms {bij}i∈[d],j∈[n] satisfy the partial
ordering O. In teaching evaluations, the partial ordering O can be constructed by, for example,
taking ((i, j), (i′, j′)) ∈ O if and only if student j′ in course i′ receives a strictly higher grade
than student j in course i.

For ease of notation, we denote Y ∈ Rd×n as the matrix of observations whose (i, j)th entry
equals yij for every i ∈ [d] and j ∈ [n]. We define matrices B ∈ Rd×n and Z ∈ Rd×n likewise.
We denote x∗ ∈ Rd as the vector of {x∗i }i∈[d].

Goal. Our goal is to estimate the true quality values x∗ ∈ Rd. For model identifiability, we
assume E[zij] = 0 and

∑
i∈[d],j∈[n] E[bij] = 0. An estimator takes as input the observations Y

and the partial ordering O, and outputs an estimate x̂ ∈ Rd. We measure the performance of any
estimator in terms of its (normalized) squared `2 error 1

d
‖x̂− x∗‖2

2.

4.3 Proposed estimator
Our estimator takes as input the observations Y and the given partial ordering O. The estimator
is associated with a tuning parameter λ ≥ 0, and is given by:

x̂(λ) ∈ argmin
x∈Rd

min
B∈Rd×n
B satisfiesO

‖Y − x1T −B‖2
F + λ‖B‖2

F , (4.2)

where 1 denotes the all-one vector of dimension n. We let B̂(λ) denote the value of B that attains
the minimum of the objective (4.2), so that the objective (4.2) is minimized at (x̂(λ), B̂(λ)). Ties
are broken by choosing the solution (x,B) such that B has the minimal Frobenius norm ‖B‖2

F .
We show that the estimator under this tie-breaking rule defines a unique solution in Proposi-
tion 11.1 in Section 11.2.1. Furthermore, as explained in Section 4.7.1, the optimization (4.2) is
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a convex quadratic programming (QP) in (x,B), and therefore can be solved in polynomial time
in terms of (d, n).

While the first term ‖Y − x1T − B‖2
F of (4.2) captures the squared difference between the

bias-corrected observations (Y − B) and the true qualities x1T , the second term ‖B‖2
F captures

the magnitude of the bias. Since the observations in (4.1) include both the biasB and the noise Z,
there is fundamental ambiguity pertaining to the relative contributions of the bias and noise to the
observations. The penalization parameter λ is introduced to balance the bias and the variance,
and at the same time preventing overfitting to the noise. More specifically, consider the case
when the noise level is relatively large and the partial orderingO is not sufficiently restrictive —
in which case, it is sensible to select a larger λ to prevent B overly fitting the observations Y .

For the rest of this section, we first describe intuition about the tuning parameter λ by consid-
ering two extreme choices of λ which are by themselves of independent interest. We then pro-
pose a carefully-designed cross-validation algorithm to choose the value of λ in a data-dependent
manner.

4.3.1 Behavior of our estimator under some fixed choices of λ
To facilitate understandings of the estimator (4.2), we discuss its behavior for two important
choices of λ — 0 and∞— that may be of independent interest.

λ = 0: When λ = 0, intuitively the estimator (4.2) allows the bias term B to be arbitrary in
order to best fit the data, as long as it satisfies the ordering constraint O. Consequently with this
choice, the estimator attempts to explain the observations Y as much as possible in terms of the
bias. One may use this choice if domain knowledge suggests that bias considerably dominates the
noise. Indeed, as we show subsequently in Section 4.4.2, our estimator with λ = 0 is consistent
in a noiseless setting (when only bias is present), whereas common baselines are not.

λ = ∞: We now discuss the other extremity, namely when λ approaches infinity. Intuitively,
this case sets the bias term to zero in (4.2) (note that B̂ = 0 trivially satisfies any partial ordering
O). Therefore, it aims to explain the observations in terms of the noise. Formally we define
(x̂(∞), B̂(∞)) = limλ→∞(x̂(λ), B̂(λ)). In the subsequent result of Proposition 4.7, we show that
this limit exists, where we indeed have B̂(∞) = 0 and our estimator simply reduces to the sample
mean as [x̂(∞)]i = 1

n

∑n
j=1 yij for every i ∈ [d]. We thus see that perhaps the most commonly

used estimator for such applications — the sample mean — also lies in our family of estimators
specified in (4.2). Given the well-known guarantees of the sample mean in the absence of bias
(under reasonable conditions of the noise), one may use this choice if domain knowledge suggests
that noise is highly dominant as compared to the bias.

λ ∈ (0,∞): More generally, the estimator interpolates between the behaviors at the two
extremal values λ = 0 and∞ when both bias and noise is present. As we increase λ from 0, the
magnitude of the estimated bias B̂(λ) gradually decreases and eventually goes to 0 at λ = ∞.
The estimator hence gradually explains the observations less in terms bias, and more in terms
of noise. Our goal is to choose an appropriate value for λ, such that the contribution of bias
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versus noise determined by the estimator approximately matches the true relative contribution
that generates the observations. The next subsection presents a principled method to choose the
value for λ.

4.3.2 A cross-validation algorithm for selecting λ

We now present a carefully designed cross-validation algorithm to select the tuning parameter
λ in a data-driven manner. Our cross-validation algorithm determines an appropriate value of
λ from a finite-sized set of candidate values Λ ⊆ [0,∞] that is provided to the algorithm. For
any matrix A ∈ Rd×n, we define its squared norm restricted to a subset of elements Ω ⊆ [d] ×
[n] as ‖A‖2

Ω =
∑

(i,j)∈Ω A
2
ij . Let T denote the set of all total orderings (of the dn elements)

that are consistent with the partial ordering O. The cross-validation algorithm is presented in
Algorithm 2. It consists of two steps: a data-splitting step (Lines 1-8) and a validation step
(Lines 9-19).

Data-splitting step In the data-splitting step, our algorithm splits the observations {yij}i∈[d],j∈[n]

into a training set Ωt ⊆ [d] × [n] and a validation set Ωv ⊆ [d] × [n]. To obtain the split, our
algorithm first samples uniformly at random a total ordering π0 from T (Line 2). For every
course i ∈ [d], we find the sub-ordering of the n elements within this course (that is, the ordering
of the elements {(i, j)}j∈[n]) according to π0 (Line 4). For each consecutive pair of elements in
this sub-ordering, we assign one element in this pair to the training set and the other element
to the validation set uniformly at random (Lines 5-7). We note that in comparison to classical
cross-validation methods, our algorithm uses the total ordering π0 to guide the split, instead of
independently assigning each individual element to either the training set or the validation set
uniformly at random. This splitting procedure ensures that for each element in the validation set
there is an element that is “close” in the training set with respect to the partial ordering O. This
property is useful for interpolation in the subsequent validation step.

Validation step Given the training set and the validation set, our algorithm iterates over the
choices of λ ∈ Λ as follows. For each value of λ, the algorithm first computes our estimator with
penalization parameter λ on the training set Ωt to obtain (x̂(λ), B̂(λ)). The optimization (Line 10)
is done by replacing the Frobenius norm on the two terms in the original objective (4.2) by
the Frobenius norm restricted to Ωt. Note that this modified objective is independent from the
parameters {bij}(i,j)∈Ωv . Therefore, by the tie-breaking rule of minimizing ‖B̂(λ)‖F , we have
[B̂(λ)]ij = 0 for each (i, j) ∈ Ωv.

Next, our algorithm evaluates these choices of λ by their corresponding cross-validation (CV)
errors. The high-level idea is to evaluate the fitness of (x̂(λ), B̂(λ)) to the validation set Ωv, by
computing 1

|Ωv|‖Y − x̂(λ)1T − B̂(λ)‖2
Ωv . However, recall that the estimate B̂(λ) only estimates

the bias on the training set meaningfully, and we have B̂(λ)
ij = 0 for each element (i, j) in the

validation set Ωv. Therefore, we “synthesize” the estimated bias B̃(λ) on the validation from the
estimated bias B̂(λ) on the training set via an interpolation procedure (Lines 11-16), as explained
below.
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Algorithm 2: Cross-validation. Inputs: observations Y , partial ordering O, and set Λ.
/* Step 1: Split the data */

1 Initialize the training and validation sets as Ωt ← {}, Ωv ← {}.
2 Sample a total ordering of π0 uniformly at random from the set T of all total orderings

(of the dn elements) consistent with the partial ordering O.
3 foreach i ∈ [d] do
4 Find the sub-ordering of the n elements in course i according to π0, denoted in

increasing order as (i, j(1)), . . . , (i, j(n)).
5 for t = 1, . . . , n

2
do

6 Assign (i, j(2t−1)), (i, j(2t)) to Ωt and Ωv, one each uniformly at random. If n is
odd, assign the last element (i, j(n)) to the validation set.

7 end
8 end
/* Step 2: Compute validation error */

9 foreach λ ∈ Λ do
10 Obtain (x̂(λ), B̂(λ)) as a solution to the following optimization problem:

(x̂λ, B̂
(λ)) ∈ argmin

x∈Rd, B∈Rd×n,
B satisfiesO

‖Y − x1T −B‖2
Ωt + λ‖B‖2

Ωt ,

where ties are broken by minimizing ‖B̂(λ)‖F .
11 foreach (i, j) ∈ Ωv do
12 foreach π ∈ T do
13 Find the element (iπ, jπ) ∈ Ωt that is closest to (i, j) with respect to π, and

set [̃b
(λ)
π ]ij = b̂

(λ)
iπjπ . There may be two closest elements at equal distance to

(i, j), in which case call them (iπ1 , j
π
1 ) and (iπ2 , j

π
2 ) and set

[̃b
(λ)
π ]ij =

b̂
(λ)

iπ1 j
π
1

+b̂
(λ)

iπ2 j
π
2

2
.

14 end
15 Interpolate the bias as B̃(λ) = 1

|T |
∑

π∈T B̃
(λ)
π .

16 end
17 Compute the CV error e(λ) := 1

|Ωv|‖Y − x̂λ1T − B̃(λ)‖2
Ωv .

18 end
19 Output λcv ∈ argminλ∈Λ e

(λ). (Ties are broken arbitrarily)
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Interpolation We now discuss how the algorithm interpolates the bias b̃(λ)
ij at each element

(i, j) ∈ Ωv from B̂(λ). We first explain how to perform interpolation with respect to some given
total ordering π (Line 13), and then compute a mean of these interpolations by iterating over
π ∈ T (Line 15).

• Interpolating with respect to a total ordering (Line 13): Given some total ordering π,
we find the element in the training set that is the closest to (i, j) in the total ordering π.
We denote this closest element from the training set as (iπ, jπ), and simply interpolate the
bias at (i, j) with respect to π (denoted [̃b

(λ)
π ]ij) using the value of b̂iπjπ . That is, we set

[̃b
(λ)
π ]ij = b̂

(λ)
iπjπ . If there are two closest elements of equal distance to (i, j) (one ranked

higher than (i, j) and one lower than (i, j) in π), we use the mean of the estimated bias
B̂(λ) of these two elements. This step is similar to the CV error computation in [179].

• Taking the mean over all total orderings in T (Line 15): After we find the interpolated
bias B̃(λ)

π on the validation set with respect to each π, the final interpolated bias b̃(λ) is
computed as the mean of the interpolated bias over all total orderings π ∈ T . The reason
for taking the mean over π ∈ T is as follows. When we interpolate by sampling a single
ordering π ∈ T , this sampling of the ordering introduces randomness in terms of which
training elements are chosen for which validation elements, and hence increasing the vari-
ance of the CV error.3 Taking the mean over all total orderings eliminates this source of
the variance of the CV error due to sampling, and therefore leads to a better choice of λ.

After interpolating the bias B̃(λ) on the validation set, the CV error is computed as 1
|Ωv|‖Y −

x̂(λ)1T − B̃(λ))‖Ωv (Line 17). Finally, the value of λcv ∈ Λ is chosen by minimizing the CV error
(with ties broken arbitrarily). This completes the description of the cross-validation algorithm.

Implementation Now we comment on two important operations in Algorithm 2: sampling a
total ordering from the set T of total orderings consistent with the partial ordering O (Line 2),
and iterating over the set T (Line 12). For sampling a total ordering from T uniformly at random,
many algorithms have been proposed that are approximate [29, 119] or exact [88]. For iterating
over T which can be computationally intractable, we approximate the true mean over T by
sampling from T multiple times, and take their empirical mean. In many practical settings,
the partial ordering contains a structure on which these two operations are simple to implement
and run in polynomial time – we discuss a subclass of such partial orderings termed “group
orderings” in the theoretical results (Section 4.4.1); this subclass of partial orderings is also
evaluated in the experiments (Section 4.5).

3In more detail, this variance on the CV error due to sampling causes the algorithm to choose an excessively
large λ to underestimate the bias. A large λ shrinks the the magnitude of the estimated bias towards 0, and therefore
the estimated bias becomes closer to each other, reducing this variance – in the extreme case, if the estimated bias is
0 on all elements from the training set, then the interpolated bias is 0 in the validation set regardless of the ordering
π, giving no variance due to sampling π.
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4.4 Theoretical guarantees

We now present theoretical guarantees for our proposed estimator (cf. (4.2)) along with our
cross-validation algorithm (Algorithm 2). In Section 4.4.2 and 4.4.3, we establish properties of
our estimator at the two extremal choices of λ (λ = 0 and λ = ∞) for no noise and no bias
settings respectively. Then in Section 4.4.4, we analyze the cross-validation algorithm. The
proofs of all results are in Chapter 11.

4.4.1 Preliminaries

Model assumptions: To introduce our theoretical guarantees, we start with several model as-
sumptions that are used throughout the theoretical result of this chapter. Specifically, we make
the following assumptions on the model (4.1):
(A1) Noise: The noise terms {zij}i∈[d],j∈[n] are i.i.d. N (0, η2) for some constant η ≥ 0.

(A2) Bias: The bias terms {bij}i∈[d],j∈[n] are marginally distributed as N (0, σ2) for some con-
stant σ ≥ 0 unless specified otherwise, and obey one of the total orderings (selected uni-
formly at random from the set of total orderings) consistent with the partial ordering O.
That is, we first sample dn values i.i.d. from N (0, σ2), and then sample one total ordering
uniformly at random from all total orderings consistent with the partial ordering O. Then
we assign these dn values to {bij} according to the sampled total ordering.

(A3) Number of courses: The number of courses d is assumed to be a fixed constant.
All theoretical results hold for any arbitrary x∗ ∈ Rd. It is important to note that the esti-
mator (4.2) and the cross-validation algorithm (Algorithm 2) requires no knowledge of these
distributions or standard deviation parameters σ and η.

Throughout the theoretical results, we consider the solution x̂(λcv) as solution at λ = λcv on
the training set.

Our theoretical analysis focuses on a general subclass of partial orderings, termed “group
orderings”, where each rating belongs to a group, and the groups are totally ordered.
Definition 4.1 (Group ordering). A partial ordering O is called a group ordering with r groups
if there is a partition G1, . . . , Gr ⊆ [d] × [n] of the dn ratings such that ((i, j), (i′, j′)) ∈ O if
and only if (i, j) ∈ Gk and (i′, j′) ∈ Gk′ for some 1 ≤ k < k′ ≤ r.

Note that in Definition 4.1, if two samples are in the same group, we do not impose any
relation restriction between these two samples.

Group orderings arise in many practical settings. For example, in course evaluation, the
groups can be letter grades (e.g., {A,B,C,D,F} or {Pass,Fail}), or numeric scores (e.g., in the
range of [0, 100]) of the students. The group ordering intuitively says that a student receiving a
strictly higher grade is more positively biased in rating than a student receiving a lower grade. A
total ordering is also group ordering, with the number of groups equal to the number of samples.
We assume that the number of groups is r ≥ 2 since otherwise groups are vacuous.

Denote `ik as the number of students of group k ∈ [r] in course i ∈ [d]. We further introduce
some regularity conditions used in the theoretical results. The first set of regularity conditions is
motivated from the case where students receive a discrete set of letter grades.
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Definition 4.2 (Group orderings with the single constant-fraction assumption). A group ordering
is said to satisfy the single c-fraction assumption for some constants c ∈ (0, 1) if there exists some
group k ∈ [r] such that `ik > cn ∀ i ∈ [r].
Definition 4.3 (Group orderings with the all constant-fraction assumption). A group ordering of
r groups is said to satisfy the all c-fraction assumption for some constant c ∈ (0, 1

r
), if `ik ≥

cn ∀ i ∈ [d], k ∈ [r].
Note that group orderings with all c-fractions is a subset of group orderings with single c-

fraction. The final regularity condition below is motivated from the scenario where student per-
formances are totally ranked in the course.
Definition 4.4 (Total orderings with the constant-fraction interleaving assumption). Let O be
a total ordering (of the dn elements {(i, j)}i∈[d],j∈[n]). We define an interleaving point as any
number t ∈ [dn− 1], such that the tth and the (t+ 1)th highest-ranked elements according to the
total ordering O belong to different courses. A total ordering O is said to satisfy the c-fraction
interleaving assumption for some constant c ∈ (0, 1), if there are at least cn interleaving points
in O.

With these preliminaries in place, we now present our main theoretical results.

4.4.2 λ = 0 is consistent when there is no noise
We first consider the extremal case where there is only bias but no noise involved. The following
theorem states that our estimator with λ = 0 is consistent in estimating the underlying quantity
x∗, that is x̂(0) → x∗ in probability.
Theorem 4.5. [Consistency in estimating x∗] Suppose the assumptions (A1), (A2) and (A3) hold.
Suppose there is no noise, or equivalently suppose η = 0 in (A1). Consider any x∗ ∈ Rd. Suppose
the partial ordering is one of:

(a) any group ordering of r groups satisfying the all c-fraction assumption, where c ∈ (0, 1
r
] is

a constant, or
(b) any group ordering with d = 2 courses and 2 groups, or
(c) any total ordering.

Then for any ε > 0 and δ > 0, there exists an integer n0 (dependent on ε, δ, c, d, η), such that for
every n ≥ n0 and every partial ordering satisfying at least one of the conditions (a), (b) or (c):

P
(
‖x̂(0) − x∗‖2 < ε

)
≥ 1− δ.

The proof of this result is provided in Section 11.3. The convergence of the estimator to
the true qualities x∗ implies the following corollary on ranking the true qualities x∗. In words,
our estimator x̂(0) is consistent in comparing the true qualities x∗i and x∗i′ of any pair of courses
i, i′ ∈ [d] with i 6= i′, as long as their values are distinct.
Corollary 4.6 (Consistency on the ranking of x∗). Suppose the assumptions (A1), (A2) and (A3)
hold. Consider any x∗ ∈ Rd. Assume there is no noise, or equivalently assume η = 0 in (A1).
Then for any δ > 0, there exists an integer n0 (dependent on x∗, δ, c, d, η), such that for all n ≥ n0

and every partial ordering satisfying at least one of the conditions (a), (b) or (c) in Theorem 4.5:

P
(

sign(x̂i − x̂i′) = sign(x∗i − x∗i′)
)
≥ 1− δ for all i, i′ ∈ [d] such that i 6= i′ and x∗i 6= x∗i′ .
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In Section 4.6.1, we also evaluate the mean estimator. We show that under the conditions of
Theorem 4.5, the mean estimator is provably not consistent. This is because the mean estimator
does not account for the biases and only tries to correct for the noise. In order to obtain a baseline
that accommodates the outcome-dependent bias (since to the best of our knowledge there is no
prior literature on it), in Section 4.6.2 we then propose a reweighted mean estimator. It turns out
that our estimator at λ = 0 also theoretically outperforms this reweighted mean estimator (see
Proposition 4.13 in Section 4.6.2).

4.4.3 λ =∞ is minimax-optimal when there is no bias
We now move to the other extremity of λ =∞, and consider the other extremal case when there
is only noise but no bias. Recall that we define the estimator at λ = ∞ as x̂(∞) = limλ→∞ x̂

(λ).
The following proposition states that this limit is well-defined, and our estimator reduces to
taking the sample mean at this limit.
Proposition 4.7 (Estimator at λ = ∞). The limit of (x̂(∞), B̂(∞)) := limλ→∞(x̂(λ), B̂(λ)) exists
and is given by

[x̂(∞)]i =
1

n

n∑

j=1

yij, for each i ∈ [d], and

B̂(∞) = 0.

(4.3)

The proof of this result is provided in Section 11.4. With no bias, estimating the true quality
x∗ reduces to estimating the mean of a multivariate normal distribution with the covariance matrix
η2Id, where Id denotes the identity matrix of size d×d. Standard results in the statistics literature
imply that taking the sample mean is minimax-optimal in this setting if d is a fixed dimension,
formalized in the following proposition for completeness.
Proposition 4.8 (Implication of Example 15.8 in 185). Let d ≥ 1 be a fixed constant. Let
Y = x∗1T + Z, where x∗ ∈ Rd is an unknown vector and each entry of Z is i.i.d. N (0, η2)
with unknown η. Then the sample mean estimator x̂ = 1

n
Y 1 is minimax-optimal for the squared

`2-risk 1
d
E‖x̂− x∗‖2

2, up to a constant factor that is independent of d.
This concludes the properties of our estimator at the two extremal cases.

4.4.4 Cross-validation effectively selects λ
This section provides the theoretical guarantees for our proposed cross-validation algorithm.
Specifically, we show that in the two extremal cases, cross-validation outputs a solution that
converges in probability to the solutions at λ = 0 and λ = ∞, respectively. Note that the cross-
validation algorithm is agnostic to the values of σ and η, or any specific shape of the bias or the
noise.

The first result considers the case when there is only bias and no noise, and we show that
cross-validation obtains a solution that is close to the solution using a fixed choice of λ = 0.
The intuition for this result is as follows. The CV error ‖Y − x̂(λ)1T − B̃(λ)‖2

Ωv measures the
difference between the bias-corrected observations Y − B̃(λ) and the estimated qualities x̂(λ)1T .
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By construction, the values in x̂(λ)1T are identical within each row. Hence, to minimize the CV
error we want B̃(λ) to capture as much variance as possible within each row of Y . Now consider
λ = 0. In this case B̂(λ) correctly captures the intra-course variance of the bias on the training
set due to the noiseless assumption. Due to the nearest-neighbor interpolation, we expect that
the interpolated B̃(λ) captures most of the intra-course variance of the bias on the validation set,
giving a small CV error. However, for larger λ > 0, the bias estimated from the training set
shrinks in magnitude due to the regularization term. The bias B̂(λ) and hence B̃(λ) only capture
a partial extent of the actual bias in the observations. The rest of the uncaptured bias within
each course contributes to the residue ‖Y − x̂(λ)1T − B̃(λ)‖2

Ωv , giving a larger CV error. Hence,
cross-validation is likely to choose λ = 0 (or some sufficiently small value of λ). The following
theorem shows that cross-validation is consistent in estimating x∗ under the only-bias setting.
Theorem 4.9. Suppose the assumptions (A1), (A2) and (A3) hold. Consider any x∗ ∈ Rd.
Suppose there is no noise, or equivalently suppose η = 0 in (A1). Suppose c ∈ (0, 1) is a
constant. Suppose the partial ordering is either:

(a) any group ordering satisfying the all c-fraction assumption, or
(b) any total ordering with d = 2.

Let 0 ∈ Λ. Then for any δ > 0 and ε > 0, there exists some integer n0 (dependent on ε, δ, c, d, σ),
such that for every n ≥ n0 and every partial ordering satisfying (a) or (b):

P
(
‖x̂(λcv) − x∗‖2 < ε

)
≥ 1− δ.

The proof of this result is provided in Section 11.5. From Theorem 4.5 we have that the esti-
mator x̂(0) (at λ = 0) is also consistent under the only-bias setting. Combining Theorem 4.5 with
Theorem 4.9, we have x̂(λcv) approaches x̂(0). Formally, under the conditions of Theorem 4.9,
we have

P
(
‖x̂(λcv) − x̂(0)‖2 < ε

)
≥ 1− δ.

The next result considers the case when there is only noise and no bias, and we show that
cross-validation obtains a solution that is close to the solution using a fixed choice of λ = ∞
(sample mean). Intuitively, at small values of λ the estimator still tries to estimate a non-trivial
amount of the interpolated bias B̃(λ). However, any such non-trivial interpolated bias is erroneous
since there is no bias in the observations to start with, increasing the CV error ‖Y − x̂(λ)1T −
B̃(λ)‖2

Ωv by doing a wrong bias “correction”. On the other hand, at λ = ∞ (or some λ that is
sufficiently large), the interpolated bias B̃(λ) is zero (or close to zero), which is the right thing
to do and hence gives a smaller CV error. The following theorem shows that cross-validation is
consistent in estimating x∗ under the only-noise setting.
Theorem 4.10. Suppose the assumptions (A1), (A2) and (A3) hold. Consider any x∗ ∈ Rd.
Suppose there is no bias, or equivalently assume σ = 0 in (A2). Suppose c1, c2 ∈ (0, 1) are
constants. Suppose the partial ordering is either:

(a) any group ordering satisfying the single c1-fraction assumption, or
(b) any total ordering satisfying the c2-fraction interleaving assumption with d = 2.
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Let ∞ ∈ Λ. Then for any δ > 0 and ε > 0, there exists some integer n0 (dependent on
ε, δ, c1, c2, d, η), such that for every n ≥ n0 and every partial ordering satisfying (a) or (b):

P
(
‖x̂(λcv) − x∗‖2 < ε

)
≥ 1− δ.

The proof of this result is provided in Section 11.6. By the consistency of x̂(∞) implied
from Proposition 4.8 under the only-noise setting, this result implies that the estimator x̂(λcv)

approaches x̂(∞). Formally, under the conditions of Theorem 4.10, we have

P
(
‖x̂(λcv) − x̂(∞)‖2 < ε

)
≥ 1− δ.

Recall that the sample mean estimator is commonly used and minimax-optimal in the absence
of bias. This theorem suggests that our cross-validation algorithm, by adapting the amount of
regularization in a data-dependent manner, recovers the sample mean estimator under the setting
when sample mean is suitable (under only noise and no bias).

These two theorems, in conjunction to the properties of the estimator at λ = 0 and λ =
∞ given in Sections 4.4.2 and 4.4.3 respectively, indicate that our proposed cross-validation
algorithm achieves our desired goal in the two extremal cases. The main intuition underlying
these two results is that if the magnitude of the estimated bias from the training set aligns with
the true amount of bias, the interpolated bias from the validation set also aligns with the true
amount of bias and hence gives a small CV error. Extending this intuition to the general case
where there is both bias and noise, one may expect cross-validation to still able to identify an
appropriate value of λ.

4.5 Experiments
We now conduct experiments to evaluate our estimator and our cross-validation algorithm under
various settings. We consider the metric of the squared `2 error. To estimate the qualities using
our cross-validation algorithm, we first use Algorithm 2 to obtain a value of the hyperparameter
λcv; we then compute the estimate x̂(λcv) as the solution to (4.2) at λ = λcv (that is, we solve (4.2)
on the entire data combining the training set and the validation set).4 Implementation details
for the cross-validation algorithm (Algorithm 2) are provided in Section 4.7.1. Throughout the
experiments, we use Λ = {2i : −9 ≤ i ≤ 5, i ∈ Z} ∪ {0,∞}. We also plot the error incurred
by the best fixed choice of λ ∈ Λ, where for each point in the plots, we pick the value of λ ∈ Λ
which minimizes the empirical `2 error over all fixed choices in Λ. Note that this best fixed
choice is not realizable in practice since we cannot know the actual value of the `2 error.

We compare our cross-validation algorithm with the mean, median, and also the reweighted
mean estimator introduced in Section 4.6.2. The mean estimator is the sample mean for each
course (same as our estimator at λ = ∞) defined as [x̂mean]i = 1

n

∑
j∈[n] yij for each i ∈ [d],

and the median estimator is defined as [x̂med]i = median(yi1, . . . , yin) for each i ∈ [d]. The
reweighted mean estimator is not applicable to total orderings.

4Note that this is different from the theoretical results in Section 4.4.4, where we solve (4.2) at λ = λcv only on
the training set.
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In the model (4.1), we assume that the noise terms {zij}i∈[d],j∈[n] and the bias terms {bij}i∈[d],j∈[n]

follow the assumptions (A1) and (A2) respectively for our theoretical results in Section 4.4.1. In
our simulations, we consider three cases for the amounts of bias and noise: only bias (σ = 1, η =
0), only noise (σ = 0, η = 1), and both bias and noise (σ = 0.5, η = 0.5). Throughout the exper-
iments we use x∗ = 0, and as explained in Proposition 11.5 in Section 11.2.1, the results remain
the same for any value of x∗.

Each point in all the plots is computed as the empirical mean over 250 runs. Error bars in all
the plots represent the standard error of the mean.

4.5.1 Dependence on n
We first focus on group orderings. We evaluate the performance of our estimator under different
values of n, under the following types of group orderings.

• Non-interleaving total ordering: We call a total ordering a “non-interleaving” total
ordering, if the total ordering is b11 ≤ . . . ≤ b1n ≤ b21 ≤ . . . ≤ b2n ≤ . . . ≤ bd1 ≤ . . . bdn.
In the non-interleaving total ordering, the values of the bias terms vary quite significantly
across courses. Our goal is to evaluate whether our estimator provides good estimates
under such imbalanced bias.

• Interleaving total ordering: We call a total ordering an “interleaving” total ordering, if
the total ordering is b11 ≤ b21 ≤ . . . ≤ bd1 ≤ b12 ≤ . . . ≤ bd2 ≤ b1n ≤ . . . ≤ bdn. In
contrast to the non-interleaving total ordering, in the interleaving total ordering the bias
terms are more balanced across different courses, and we expect the mean and the median
baselines to work well in this setting. Our goal is to evaluate whether the cross-validation
algorithm deviates much from the baselines when the baselines work well.

• Binary ordering: We call a group ordering a “binary” ordering, if there are r = 2 groups.
Specifically, we consider a group distribution where (`i1, `i2) = (0.9n, 0.1n) for half of the
courses i, and (`i1, `i2) = (0.1n, 0.9n) for the other half of the courses i.

We consider d = 3 courses for the non-interleaving and interleaving total orderings, and con-
sider d = 4 for the binary ordering. The results are shown in Fig. 4.1. In the non-interleaving
case (Fig. 4.1a) and the binary case (Fig. 4.1c) where the distribution of the bias is quite im-
balanced, our estimator performs better than the mean and median baselines when there is bias
(with or without noise). The improvement is the most significant in the case when there is only
bias and no noise. In the case where there is only noise, our estimator still performs reasonably
as compared to the the baselines – the performance of our estimator is worse, but this is not
unexpected, because while our algorithm tries to compensate for possible bias, the mean and
median baselines do not. Indeed, as the theory (Proposition 4.8) suggests, the mean estimator
is ideal for the only-noise setting, but in practice we do not know whether we operate in this
only-noise setting a priori. In the interleaving case where the bias is more balanced (Fig. 4.1b),
our estimator performs on par with the baselines, and is still able to correct the small amount of
bias in the only-bias case.

We also compare our estimator with the reweighted mean estimator in the binary case. Recall
that the reweighted mean estimator is more specialized and not applicable to total orderings or
more general partial orderings. Our estimator performs slightly better than the reweighted mean
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(c) Binary ordering

Figure 4.1: The performance of our estimator (with cross-validation and with the best fixed λ)
for various values of n, compared to the mean, median and reweighted mean estimators.
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Figure 4.2: The histogram on the fraction of times each value of λ is chosen by cross-validation.
Cross-validation is able to choose the value of λ adaptive to different amounts of bias and noise.

estimator in the two extremal (only-bias and only-noise) cases. In the noisy case, the best fixed
λ is better than the reweighted mean estimator but the cross-validation algorithm is worse. In
general, we observe that there remains a non-trivial gap between the best fixed λ and cross-
validation in the noisy case (also see the non-interleaving total ordering in the noisy case). If
prior knowledge about the relative amounts of bias and noise is given, we may be able to achieve
better performance with our estimator by setting the value of λ manually.

4.5.2 Choices of λ by cross-validation

We inspect the choices of the hyperparameter λ made by our cross-validation algorithm. We use
the binary setting from Section 4.5.1, with n = 50. The histograms in Fig. 4.2 plot the fraction of
times that each value of λ ∈ Λ is chosen by cross-validation. When there is only bias, the chosen
value of λ is small (with λ = 0 as the most chosen); when there is only noise, the chosen value
of λ is large (with λ =∞ as the most chosen). When there is both bias and noise, the value of λ
lies in the middle of the two extremal cases. These trends align with our intuition and theoretical
results about cross-validation in Section 4.4.4, and show that cross-validation is indeed able to
adapt to different amounts of bias and noise present in the data.

4.5.3 The regime of d > n

In our theoretical results from Section 4.4, we restricted our attention to the case where the
number of courses d is a fixed constant. We now evaluate the regime where the number of courses
d becomes large compared to the number of students n, in order to test the general applicability
of our estimator. We again consider the three types of group orderings from Section 4.5.1. We
set n = 10 for the non-interleaving and interleaving total orderings, and n = 20 for the binary
ordering.

The results with different choices of d are shown in Fig. 4.3. The mean baseline has a flat
curve (except for the small sample-size regime of small values of d) and converges to some
non-zero constant in all of the settings. The flat curves come from the fact that the number of
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parameters (i.e., the number of courses d) grows linearly in the number of observations. The
median baseline also has a relatively flat curve, with the exception that in the only-bias case
for the interleaving ordering, the error decreases rapidly for small values of d, and eventually
converges to a very small constant (not shown), because the median observations across courses
have very close bias due to the interleaving ordering). Again, our estimator performs better
than the mean and median baselines when there is bias. In the binary case, our estimator also
performs better than the reweighted mean estimator for large values of d. One notable setting
where our estimator does not perform as well is the only-noise case for the non-interleaving
ordering. Note that this is a case not covered by the theory in Theorem 4.10(b) because the non-
interleaving ordering does not satisfy the constant-fraction interleaving assumption. In this case,
our estimator at λ = 0 (or small values of λ) incurs a large error. Therefore, despite the fact that
we empirically observe that cross-validation still chooses large values of λ for a large fraction
of times, due to the very large error when small values of λ are chosen, the overall error is still
large. The reason that our estimator at λ = 0 (or small values of λ) gives a large error is that our
estimator attempts to explain the data (that has no bias and only noise) as much as possible by
the bias. Since in the non-interleaving ordering, course i has smaller bias than course (i + 1),
our estimator at λ = 0 mistakenly estimates that x̂i is about a constant larger than x̂i+1 for each
i ∈ [d− 1], incurring a large error.

4.5.4 General partial orderings
In our theoretical results from Section 4.4, we restricted our attention to group orderings. While
group orderings cover a large range of common cases in practice, there may exist other types of
partial orderings. We now consider the following two types of general partial orderings that are
not group orderings to test the general applicability of our estimator.

• Total binary tree: We consider a binary tree, and denote the number of levels (depth)
of the tree as `. Each node in the tree represents a single element from the observations.
Each node has a direct edge to both of its children, and the partial ordering is the set of
all directed edges. Specifically, we consider d = 2 courses. In this case, the total number
of observations dn is even. Therefore, we construct a binary tree with one (arbitrary)
leaf node removed. We assign all the 2`−1 − 1 nodes from levels 1 to (` − 1) to the first
course, and assign all the 2`−1 − 1 nodes from level ` (leaf nodes) to the second course.
This construction is conceptually similar to total orderings in group orderings, where each
element takes a distinct role in the partial ordering. In this construction we have the relation
dn = 2` − 2.

• Binary tree of 3 levels: We consider a binary tree of 3 levels and therefore 7 nodes in total.
Each node contains k elements. There is an ordering constraint between two elements if
and only if there is an edge between the corresponding nodes they belong to. We have the
relation dn = 7k. We consider d = 3, and therefore we have n = 7

3
k. The three courses

have the following assignment, where the elements in each level are sampled uniformly at
random from all elements in this level:

Course 1: all k elements from level 1; k elements from level 2; k
3

elements from level
3,
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Figure 4.3: The performance of our estimator (with cross-validation and with the best fixed λ)
for various values of d, compared to the mean, median, and reweighted mean estimators.

55



Course 2: k elements from level 2; 4
3
k elements from level 3,

Course 3: 7
3
k elements from level 3.

This construction is conceptually similar to a group ordering with a constant number of
groups.

We evaluate our estimator under these two types of tree partial orderings for various values of
n (setting the values of ` and k accordingly). Given that the reweighted mean estimator is defined
only for group orderings, we also consider its two extensions that are tailored to tree orderings,
termed “reweighted mean (node)” and “reweighted mean (level)” as explained in Section 4.7.2.
Similar to the case of group orderings, these two reweighted mean estimators are applicable to
the binary tree of 3 levels but not the total binary tree.

The results are shown in Fig. 4.4. Again, when there is noise, we observe that our estimator
performs better than the mean and median baselines in both of these two tree orderings. In the
binary tree of 3 levels, the construction procedure specifies the number of elements in each course
from each level, but there is randomness in which nodes in the level these elements from belong
to. Due to this randomness, the reweighted mean (node) estimator is not always applicable, and
we use hollow squares to indicate these settings and only compute the error across the runs where
the estimator is applicable. We observe that our cross-validation algorithm performs better than
the two reweighted mean estimators in the only-bias case. When there is noise (with or without
bias), our cross-validation algorithm performs on par while the best fixed λ performs better than
the reweighted mean estimators.

4.5.5 Semi-synthetic grading data

In this section we conduct a semi-synthetic experiment using real grading statistics. We use the
grading data from Indiana University Bloomington [90], where the possible grades that students
receive are A+ through D-, and F. We consider three ways to construct the group orderings:

• Fine grades: The 13 groups correspond to the grades of A+ through D-, and F.
• Coarse grades: The fine grades are merged to 5 groups of A, B, C, D and F, where grades

in {A+,A,A-} are all considered A, etc.
• Binary grades: The grades are further merged to 2 groups of P and F (meaning pass and

fail), where all grades except F are considered P. According to the university’s policies, D-
is the lowest passing grade.

We use the grading data from the course “Business Statistics” from Spring 2020. This course
consists of 10 sessions taught by multiple instructors. The average number of students per ses-
sion is 50. We choose this course because this course has multiple sessions, so that the grading
distributions across different sessions are more balanced. Therefore, many common grades (A+
through B) appear in all sessions, allowing the reweighted mean estimator to use more observa-
tions and perform well. Instead, if we consider all 31 statistics courses taught in the semester,
then the only grade appearing in all courses is A, and the reweighted mean estimator has to
discard the data from all other grades.

We use the number of students and the grade distribution from this course, and synthesize
the observations using our model (4.1) under the Gaussian assumptions (A2) and (A1). The
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Figure 4.4: The performance of our estimator (with cross-validation and with the best fixed λ)
compared to the mean, median, and two reweighted mean estimators, under two types of partial
orderings that are not group orderings.

true quality is set as x∗ = 0 (again the results are independent from the value of x∗); the bias is
generated according to the group ordering induced by the fine grades, with a marginal distribution
of N (0, σ2), and the noise is generated i.i.d. from N (0, η2). We set η = 1 − σ, and consider
different choices of σ. The estimators are given one of the three group orderings listed above.

Note that the number of students is unequal in different sessions of the course. The mean
and median baselines are still defined as taking the mean and median of each course respectively.
The precise definitions of the reweighted mean estimator and our estimator are in Section 4.7.3.
We estimate the quality of the 10 sessions of the course individually, even if some sessions are
taught by the same instructor.

The results are shown in Fig 4.5. As in previous simulations, the mean and median baselines
do not perform well when there is considerable bias (corresponding to a large value of σ). As the
number of groups increases from the binary grades to coarse grades and then to the fine grades,
the performance of both our estimator and the reweighted mean estimator improves, because the
finer orderings provide more information about the bias. Our estimator performs slightly better
than the reweighted mean estimator for the fine grades (Fig. 4.5b), and slightly better on a subset
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Figure 4.5: The performance of our estimator (with cross-validation) on semi-synthetic grading
data, compared to the mean, median and reweighted mean estimators.

of values of σ for the coarse grades (Fig. 4.5c). For the binary grades, the error of both our
estimator and the reweighted mean estimator increases as the relative amount of bias increases
(Fig. 4.5d). This increase is likely due to the model mismatch as the data is generated from fine
grades. In this case our estimator performs better than the reweighted mean estimator for large
values of σ.

4.6 Auxiliary results
In this section, we present auxiliary theoretical results on comparing our estimator with the mean
estimator (Section 4.6.1) and a reweighted mean estimator that we introduce (Section 4.6.2).

4.6.1 Comparison with the mean estimator
Recall from Section 4.5 that the mean estimator for estimating x∗ is defined as [x̂mean]i =
1
n

∑
j∈[n] yij for each class i ∈ [d]. Taking the mean ignores the bias, and hence it is natural

to expect that this estimator does not perform well when the bias in the data is distributed un-
equally across classes. Intuitively, let us consider two classes of different quality. If students in
a stronger class receive lower grades than students in a weaker class, then the bias induced by
this distribution of grades may result in the mean estimator ranking the classes incorrectly. The
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following proposition formalizes this intuition and shows that the mean estimator indeed fails to
compare the qualities of courses in the only-bias setting.
Proposition 4.11. Suppose the assumptions (A1), (A2) and (A3) hold and there is no noise, or
equivalently η = 0 in (A1). Suppose the partial ordering satisfies any one of the conditions in
Theorem 4.5:

(a) any group ordering of r groups with all c-fractions, where c ∈ (0, 1
r
) is a constant, or

(b) any group ordering with d = 2 courses and r = 2 groups, or
(c) any total ordering.

Then there exist a partial ordering that satisfies any one of the conditions (a) (with any number
of groups r ≥ 2), (b) or (c), true qualities x∗ ∈ Rd, a pair of courses i, i′ ∈ [d], and an integer n0

(dependent on the standard parameter σ of the distribution of the bias and the number of groups
r in condition (a)), such that for all n ≥ n0, we have

P
(

sign ([x̂mean]i − [x̂mean]i′) = sign(x∗i − x∗i′)
)
< 0.01.

The proof of this result is provided in Section 11.7. Note that in condition (a) we require
c 6= 1

r
. This requirement is necessary because if c = 1

r
, then the number of students in any course

i ∈ [d] and any group k ∈ [r] has to be exactly cn. In this case, the bias is evenly distributed
across all courses, and in this case the mean estimator is consistent. This negative result on
comparing pairs of courses (combined with the fact that both model (4.1) and the mean estimator
are shift invariant) implies the following negative result on estimation – the mean estimator x̂mean

does not converge to the true x∗ in probability.
Corollary 4.12. Suppose the assumptions (A1), (A2) and (A3) hold and there is no noise, or
equivalently η = 0 in (A1). Consider any x∗ ∈ Rd. Suppose the partial ordering satisfies Then
there exist a partial ordering that satisfies any one of the conditions (a), (b) or (c), and there
exists a constant ε > 0 such that for all n ≥ 1 we have

P
(
‖x̂mean − x∗‖2

2 < ε
)
< 0.01.

Recall that our estimator at λ = 0 is consistent in both comparing the quality of any pair
of courses (Corollary 4.6) and estimating the qualities (Theorem 4.5). In contrast, the negative
results in Proposition 4.11 and Corollary 4.12 show that the mean estimator is not consistent
in comparison or estimation. Moreover, these negative results are stronger, in that they show
the probability of correct comparison or estimation not only does not converge to 1, but also
can be arbitrarily small. The negative results on the mean estimator stem from the fact that the
mean estimator completely ignores the fact that the bias is not evenly distributed across different
courses. We remedy this issue by proposing a second baseline – termed a reweighted mean
estimator in the following subsection.

4.6.2 A reweighted mean estimator
The second baseline, defined on group orderings only, re-weighs the observations to make the
bias evenly distributed across courses, allowing to then take the mean. For each group k ∈ [r],
denote `k,min := mini∈[d] `ik as the minimum number of students in group k among all courses.
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DenoteR = {k ∈ [r] : `k,min > 0} as the set of groups that appear in all courses. The reweighted
mean estimator consists of the following two steps.

Reweighting step The estimator computes a weighted mean of each course i ∈ [d] as

[x̂rw]i =
∑

k∈R

`k,min∑
k′∈R `k′,min

∑

j:(i,j)∈Gk

yij
`ik
. (4.4)

Intuitively, the observations are reweighted in a way such that the bias distribution is balanced
among courses. Specifically, for each course i ∈ [d] and each group k ∈ [r], this reweighted
mean estimator computes its group mean

∑
j:(i,j)∈Gk

yij
`ik

, and weighs the contribution of this

group mean to the overall mean by the factor of `k,min∑
k′∈R `k′,min

. This reweighting can bee seen as
the expected version of a sampling procedure, where for each course i ∈ [d] and each group
k ∈ [r], we sample `k,min out of `ik observations so that the number of observations in group
k is equal across all courses, and then take the mean on the sampled observations. Note that
there are an infinite number choices for the weights to balance the biases, and the choice in (4.4)
motivated by sampling is quite natural. It has the property that if all courses have the same group
distribution, then the reweighted mean reduces to sample mean.

Recentering step We use the assumption that the bias and noise are centered, that is,
∑

i∈[d]j∈[n] E[bij] =

0 and
∑

i∈[d],j∈[n] E[zij] = 0. Under this assumption, we have

1

n

∑

i∈[d],j∈[n]

E[yij] =
1

n

∑

i∈[d],j∈[n]

E[x∗i + bij + zij] =
∑

i∈[d]

x∗i . (4.5)

Hence, we shift x̂rw by a constant such that the empirical version of (4.5) holds, that is,
∑

i∈d[x̂rw]i =
1
n

∑
i∈[d],j∈[n] yij .

x̂rw ← x̂rw +


−1

d

∑

i∈[d]

[x̂rw]i +
1

dn

∑

i∈[d],j∈[n]

yij


1 (4.6)

This recentering step is necessary, because the expected mean of the bias over all courses after
the reweighting step may not be 0, as the reweighting step only aligns the bias across courses,
but not necessarily to 0. From (11.16b) in Lemma 11.4, our estimator also satisfies

∑
i∈[d] x̂i =

1
n

∑
i∈[d],j∈[n] yij for all λ ∈ [0,∞], so this recentering also ensures a fair comparison with our

estimator. Empirically we observe that the reweighted mean estimator always performs better
after the recentering step.

Note that reweighted mean is undefined for total orderings. For group orderings with all
constant fractions, reweighted mean is also consistent. In this case, we present a simple example
below, where our estimator at λ = 0 still performs better than reweighted mean by a constant
factor (uniform bias is assumed for analytical tractability).
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Proposition 4.13. Suppose the number of courses is d = 2. Suppose the number of groups is
r = 2, with a grade distribution of (`11, `12) = ((rn, (1 − r)n) and (`21, `22) = ((1 − r)n, rn)
for some r ∈ (0, 1). Suppose there is no noise. Suppose bias in group 1 is generated i.i.d. from
Unif[−1, 0], and bias in group 2 is generated i.i.d. from Unif[0, 1]. Then the squared `2-risk for
the reweighted mean estimator is x̂rw and for our estimator x̂(0) at λ = 0 is respectively

1

2
E‖x̂rw − x∗‖2

2 =
1

24n
+

1

96r(1− r)n ≥
1

12n

1

2
E‖x̂(0) − x∗‖2

2 =
1

24n
+O

(
1

n2

)
.

The proof of this result is provided in Section 11.8. Note that the risk of our estimator is at
most half of the error of reweighted mean, if ignoring the higher-order term O

(
1
n2

)
.

4.7 Additional experimental details
In this section, we provide additional details for the experiments in Section 4.5.

4.7.1 Implementation
We now discuss the implementation of our estimator.

Solving the optimization (Line 10 in Algorithm 2): We describe the implementation of solv-
ing the optimization (4.2) depending on the value of λ.

• λ = ∞: The estimator is computed as taking the mean of each course according to
Proposition 4.7.

• λ ∈ (0,∞): In the proof of Proposition 11.1 we show that the objective 4.1 is strictly
convex in (x,B) on a convex domain. Hence, the problem is a QP with a unique solution.
We solve for the QP using the CVXPY package.

• λ = 0: It can be shown that the objective (4.1) is still convex, but there may exist multiple
solutions before the tie-breaking. We first obtain one solution of the QP using CVXPY,
denoted (x0, b0). The optimization (4.2) only has the first term, which is an `2-projection
from y to the convex domain {x1T +b : x ∈ Rd, b ∈ Rd×n, b satisfies O}. Hence, the value
of (x1T + b) is unique among all solutions (x, b), and the set of solutions can be written as
{(x, b) : x = x0 + u, b = b0 − u1T , u ∈ Rd}. We implement the tie-breaking by solving
u using CVXPY, minimizing ‖b‖2

F = ‖b0 − u1T‖2
F subject to the ordering constraints on

b = b0 − u1T .

Finally, we discuss a speed-up technique for solving the QP. For total orderings, the number
of constraints in O is linear in the number of samples, whereas for general group orderings,
the number of constraints in O can become quadratic, making the QP solver slow. To speed
up the optimization, it can be shown that for all elements within any course and any group, the
ordering of the estimated bias B̂ at these elements is the same as the ordering of the observations
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Y at these elements. Therefore, among the constraints in O involving these elements, we only
keep the constraints that involve the maximum and the minimum elements in this course and
this group. Then we add the ordering of Y at these elements to the partial ordering O. This
replacement reduces the number of constraints in O and speeds up the QP solver.

Sampling a total ordering from the partial orderingO (Line 2 in Algorithm 2): WhenO is
a group ordering, sampling a total ordering uniformly at random is implemented by first sorting
the elements according to their group, and then permuting the them uniformly at random within
each group.

When O is a tree or a group tree, we sample a total ordering using the following procedure.
We first take all elements at the root of the tree, and place them in the total ordering as the
lowest-ranked elements (if there are multiple elements at the root, then permute them uniformly
at random in the total ordering). Consider each sub-tree consisting of a child node of the root and
all its descendants. For the remaining positions in the total ordering, we assign these positions
to the sub-trees uniformly at random. Then we proceed recursively to sample a total ordering for
each sub-tree, and fill them back to their positions in the total ordering.

Interpolation (Line 15 in Algorithm 2): We sample 100 total orderings to approximate the
interpolation.

4.7.2 Extending the reweighted mean estimator to tree orderings
We introduce the definitions of the two reweighted mean estimators on tree orderings used in the
simulation in Section 4.5.4. Note that the reweighted mean estimator defined in Section 4.6.2 is
with respect to the groups {Gk}k∈[r]. We replace the groups in the reweighted mean estimator
by the following two partitions of the elements.
Reweighted mean (node): Each subset in the partition consists of all elements in the same node
of the tree.
Reweighted mean (level): Each subset in the partition consists of all elements on the same
level of the tree.

4.7.3 Extending our estimator and the reweighted mean estimator to an
unequal number of students per course

In the semi-synthetic experiment in Section 4.5.5, the number of students is unequal in different
courses. We describe a natural extension of the reweighted mean estimator and our estimator to
this case.

First, we explain how to format the observations back to a matrix form. Denote ni as the
number of students in course i ∈ [d]. Let n = maxi∈[d] ni. Construct a matrix Y ∈ Rd×n,
where the first ni elements in each row i ∈ [d] correspond to the observations in this course,
and the values of the remaining elements are set arbitrarily. Construct the set of observations
Ω ∈ [d] × [n], where the first ni elements in each row i ∈ [d] are in Ω. Estimation under an
unequal number of students per course is equivalent to estimation given Y (and its corresponding
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partial ordering O) restricted to the set Ω. It remains to define the reweighted mean estimator
and our estimator restricted to any set Ω ∈ [d]× [n].

The reweighted mean estimator: In the definition of the the reweighted mean estimator in
Section 4.6.2, the reweighting step is the same (only using the observations in Ω). The recentering
step restricted to Ω is defined as:

x̂rw ← x̂rw +


−

∑

i∈[d]

ni
|Ω| [x̂rw]i +

1

|Ω|
∑

i∈[d],j∈[n]

yij


1

Similar to Section 4.6.2, after this recentering step, the reweighted mean estimator satisfies the
empirical version of an equality (Eq. (11.15b) in Section 11.2.1) that our estimator also satisfies.

Our estimator: We extend Algorithm 2 naturally to being restricted to a set Ω as follows. In
the data-splitting step, in Line 2, we replace the number of elements from dn to

∑
i∈[d] ni; in

Lines 4-7, we replace the number of students from n to ni, and only find the sub-ordering of the
ni elements in Ω. The validation step remains the same.

4.8 Discussion
Evaluations given by participants in various applications are often spuriously biased by the evalu-
ations received by the participant. We formulate the problem of correcting such outcome-induced
bias, and propose an estimator and a cross-validation algorithm to address it. The cross-validation
algorithm adapts to data without prior knowledge of the relative extents of bias and noise. Access
to any such prior knowledge can be challenging in practice, and hence not requiring such prior
knowledge provides our approach more flexibility.

Open problems There are a number of open questions of interest resulting out of this work.
An interesting and important set of open questions pertains to extending our theoretical analysis
of our estimator and cross-validation algorithm to more general settings: in the regime where
there is both bias and noise, under other types of partial orderings, in a non-asymptotic regime,
and in a high-dimensional regime with d� n. In addition, while our work aims to correct biases
that already exist in the data, it is also helpful to mitigate such biases during data elicitation
itself. This may be done from a mechanism design perspective where we align the users with
proper incentives to report unbiased data, or from a user-experience perspective where we design
multitude of questions that jointly reveal the nature of any bias.

Limitations There are several caveats that need to be kept in mind when interpreting or using
our work. First, our work only claims to address biases obeying the user-provided information
such as biases associated with the grading practice of the instructor (which follow the ordering
constraints), and does not address biases associated with aspects such as the demographics of the
instructor (which may not align with the ordering constraints). Second, the user should be careful
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in supplying the appropriate ordering constraints to the algorithm, ensuring these constraints have
been validated separately. Third, our theoretical guarantees hold under specific shape assump-
tions of the bias and the noise. Our algorithm is designed distribution-free, and we speculate
similar guarantees to hold under other reasonable, well-behaved shape assumptions; however,
formal guarantees under more general models remain open. Our algorithm consequently may be
appropriate for use as an assistive tool along with other existing practices (e.g., sample mean)
when making decisions, particularly in any high-stakes scenario. Aligned results between our
algorithm and other practices give us more confidence that the result is correct; different results
between our algorithm and other practices suggests need for additional information or delibera-
tion before drawing a conclusion.
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Part II

Estimation Bias
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Chapter 5

Bias Reduction in Estimation from
Pairwise Comparisons

A number of applications (e.g., AI bot tournaments, sports, peer grading, crowdsourcing) use
pairwise comparison data and the Bradley-Terry-Luce (BTL) model to evaluate a given collection
of items (e.g., bots, teams, students, search results). Past work has shown that under the BTL
model, the widely-used maximum-likelihood estimator (MLE) is minimax-optimal in estimating
the item parameters, in terms of the mean squared error. However, another important desideratum
for designing estimators is fairness. In this work, we consider fairness modeled by the notion
of bias in statistics. We show that the MLE incurs a suboptimal rate in terms of bias. We then
propose a simple modification to the MLE, which “stretches” the bounding box of the maximum-
likelihood optimizer by a small constant factor from the underlying ground truth domain. We
show that this simple modification leads to an improved rate in bias, while maintaining minimax-
optimality in the mean squared error. In this manner, our proposed class of estimators provably
improves fairness represented by bias without loss in accuracy.

5.1 Introduction

A number of applications involve data in the form of pairwise comparisons among a collection
of items, and entail an evaluation of the individual items from this data. An application gaining
increasing popularity is competition between pairs of AI bots (e.g., [131]). Here a number of
AI bots compete with each other in pairwise matchups for a certain task, where each bot plays
every other bot a certain number of times in a round robin fashion, with the goal of evaluating
the quality of each bot. A second example is the evaluation of self-play of AI algorithms in
their training phase [164], where again, different copies of an AI bot play against each other a
number of times. Applications involving humans include sports and online games such as the
English Premier League of football [3, 98] (unofficial ratings) and official world rankings for
chess (e.g., FIDE [1] and USCF [69] ratings). The influence of scientific journals has also been
analyzed in this manner, where citations from one journal to another are modeled by pairwise
comparisons [169].

A common method of evaluating the items based on pairwise comparisons is to assume that
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the probability of an item beating another equals the logistic function of the difference in the
true quality of the two items, and then infer the true quality from the observed outcomes of
the comparisons (e.g., the Elo rating system). Various applications employ such an approach to
rating from pairwise comparisons, with some modifications tailored to that specific application.
Our goal is not to study the application-specific versions, but the foundational underpinnings of
such rating systems.

In this chapter, we study the pairwise-comparison model that underlies [5, 70] these rating
systems, namely the Bradley-Terry-Luce (BTL) model [24, 109]. The BTL model assumes that
each item is associated to an unknown real-valued parameter representing the quality of that
item, and assumes that the probability of an item beating another is the logistic function applied
to the difference of the parameters of these two items. The BTL model is also employed in the
applications of peer grading [104, 155] (where the grades of the students are set as the BTL
parameters to be estimated), crowdsourcing [37, 137], and understanding consumer choice in
marketing [74].

5.1.1 BTL model and maximum likelihood estimation
Now we present a formal definition of the BTL model. Let d ≥ 2 denote the number of items.
The d items are associated to an unknown parameter vector θ∗ ∈ Rd whose ith entry represents
the underlying quality of item i ∈ [d]. When any item i ∈ [d] is compared with any item j ∈ [d]
in the BTL model, the item i beats item j with probability

1

1 + e−(θ∗i−θ∗j )
, (5.1)

independent of all other comparisons. The probability of item j beating i is one minus the
expression (5.1) above. We consider the “league format” [5] of comparisons where every pair of
items is compared k times.

We follow the usual assumption [79, 156] under the BTL model that the true parameter vector
θ∗ lies in the set ΘB parameterized by a constant B > 0 and satisfy:

ΘB = {θ ∈ Rd | ‖θ‖∞ ≤ B and
d∑

i=1

θi = 0}. (5.2)

The first constraint requires that the magnitude of the parameters is bounded by some constant
B. We call this constraint the “box constraint”. A box constraint is necessary, because otherwise
the estimation error can diverge to infinity [156, Appendix G]. The second constraint requires
the parameters to sum to 0. This is without loss of generality due to the shift-invariance property
of the BTL model.

A large amount of both theoretical [79, 89, 127, 156, 173] and applied [37, 137, 163, 169]
literature focuses on the goal of estimating the parameter vector θ∗ of the BTL model. A standard
and widely-studied estimator is the maximum-likelihood estimator (MLE):

θ̂(B) = argmin
θ∈ΘB

`(θ), (5.3)
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where ` is the negative log-likelihood function. Letting Wij denote a random variable represent-
ing the number of times that item i ∈ [d] beats item j ∈ [d], the log-likelihood function ` is given
by:

`(θ) := `({Wij}; θ) = −
∑

1≤i<j≤d

[
Wij log

(
1

1 + e−(θi−θj)

)
+Wji log

(
1

1 + e−(θj−θi)

)]
.

5.1.2 Metrics
Accuracy. A common metric used in the literature on estimating the BTL model is the accu-
racy of the estimate, measured in terms of the mean squared error. Formally, the accuracy of any
estimator θ̂ is defined as:

α(θ̂) := sup
θ∗∈ΘB

E[‖θ̂ − θ∗‖2
2].

Importantly, past work [79, 156] has shown that the MLE (5.3) has the appealing property of
being minimax-optimal in terms of the accuracy.

Bias. Another important desideratum for designing and evaluating estimators is fairness. For
example, in sports or online games, we do not want to assign scores in such a way that it sys-
tematically gives certain players higher scores than their true quality, but at the same time gives
certain other players lower scores than their true quality. In this chapter, we use the standard
definition of bias in statistics as the notion of fairness. For any estimator, the bias incurred by
this estimator on a parameter is defined as the difference between the expected value of the es-
timator and the true value of the parameter. Since our parameters are a vector, we consider the
worst-case bias, that is, the maximum magnitude of the bias across all items. Formally, the bias
of any estimator θ̂ is defined as:

β(θ̂) := sup
θ∗∈ΘB

‖E[θ̂]− θ∗‖∞.

With this background, we now provide an overview of the contributions of this chapter.

5.1.3 Contribution I: performance of MLE
Our first contribution is to analyze the widely-used MLE (5.3) in terms of its bias. Let us be-
gin with a visual illustration through simulation. Consider d = 25 items with parameter values
equally spaced in the interval [−1, 1], where k = 5 pairwise comparisons are observed between
each pair of items under the BTL model. We estimate the parameters using the MLE, and plot
the bias on each item across 5000 iterations of the simulation in Figure 5.1 (striped red). The
MLE shows a systematic bias: it induces a negative bias (under-estimation) on the large posi-
tive parameters, and a positive bias (over-estimation) on the large negative parameters. In the
applications of interest, the MLE thus systematically underestimates the abilities of the top play-
ers/students/items and overestimates the abilities of those at the bottom.

In this chapter, we theoretically quantify the bias incurred by the MLE.
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Figure 5.1: Biases on items of different parameters, induced by the MLE and our stretched-MLE
(with A = 2). Our estimator significantly reduces the maximum magnitude of the bias across
the items. Note that this figure plots the bias including its sign: A positive bias means over-
estimation of the parameter, and a negative bias means under-estimation of the parameter. Each
bar is a mean over 5000 iterations.

Theorem 5.1 (MLE bias lower bound; Informal). The MLE (5.3) incurs a bias β(θ̂(B)) lower
bounded as Ω( 1√

dk
).

As shown by our results to follow, this bias is suboptimal. Our proof for this result indicates
that the bias is incurred because the MLE operates under the accurately specified model with
the box constraint at B. That is, the MLE “clips” the estimate to lie within the set ΘB. This
issue is visible in the simulation of Figure 5.1 where the bias is the largest when the true values
of the parameters are near the boundaries ±B. For example, consider a true parameter whose
value equals B. The estimate of this parameter sometimes equals the largest allowed value B
(due to the box constraint), and sometimes is smaller than B (due to the randomness of the data).
Therefore, in expectation, the estimate of this parameter incurs a negative bias. An analogous
argument explains the positive bias when the true parameter equals or is close to −B.

5.1.4 Contribution II: proposed stretched estimator and its theoretical guar-
antees

Our goal is to design an estimator with a lower bias while maintaining high accuracy. Since the
MLE (5.3) is already widely studied and used, it is also desirable from a practical and compu-
tational standpoint that the new estimator is a simple modification of the MLE (5.3). With this
motivation in mind, an intuitive approach is to consider the MLE but without the box constraint
“‖θ‖∞ ≤ B”. We call the estimator without the box constraint as the “unconstrained MLE”, and
denote it by θ̂(∞), because removing the box constraint is equivalent to setting the box constraint
to∞:

θ̂(∞) = argmin
θ∈Θ∞

`(θ), (5.4)
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Estimator Bias Mean squared
error

Standard
MLE θ̂(B)

Ω( 1√
dk

)

(Thm. 5.4(a))

O( 1
k )

minimax-optimal
[79, 156]

Unconstrained
MLE θ̂(∞) Undefined ∞

Stretched
MLE θ̂(A)

Õ( 1
dk )

(Thm. 5.4(b))

O( 1
k )

minimax-optimal
(Thm. 5.5(b))

Table 5.1: Theoretical guarantees for the MLE θ̂(B), unconstrained MLE θ̂(∞) and the proposed
stretched-MLE θ̂(A) (with a constantA such thatA > B). The proposed stretched-MLE achieves
a better rate on bias, while retaining minimax optimality in terms of accuracy. Recall that d
denotes the number of items and k denotes the number of comparisons per pair.

where Θ∞ := {θ ∈ Rd | ∑d
i=1 θi = 0}. The unconstrained MLE θ̂(∞) incurs an unbounded

error in terms of accuracy. This is because with non-zero probability an item beats all others, in
which case the unconstrained MLE estimates the parameter of this item as∞, thereby inducing
an unbounded mean squared error.

Consequently, in this work, we propose the following simple modification to the MLE which
is a middle ground between the standard MLE (5.3) and the unconstrained MLE. Specifically,
we consider a “stretched-MLE”, which is associated to a parameter A such that A > B. Given
the parameter A, the stretched-MLE is identical to (5.3) but “stretches” the box constraint to A:

θ̂(A) = argmin
θ∈ΘA

`(θ), (5.5)

where ΘA := {θ ∈ Rd | ‖θ‖∞ ≤ A and
∑d

i=1 θi = 0}. That is, ΘA simply replaces the box
constraint ‖θ‖∞ ≤ B in (5.2) by the “stretched” box constraint ‖θ‖∞ ≤ A.

The bias induced by the stretched-MLE (with A = 2) in the previous experiment is also
shown in Figure 5.1 (solid blue). Observe that the maximum bias (incurred at the leftmost item
with the largest negative parameter, or the rightmost item with the largest positive parameter) is
significantly reduced compared to the MLE. Moreover, the bias induced by the stretched-MLE
looks qualitatively more evened out across the items.

Our second main theoretical result proves that the stretched-MLE indeed incurs a signifi-
cantly lower bias.
Theorem 5.2 (Stretched-MLE bias upper bound; Informal). The stretched-MLE (5.5) withA = 2
incurs a bias β(θ̂(A)) upper bounded as Õ( 1

dk
).

Given the significant bias reduction by our estimator, a natural question is about the accu-
racy of the stretched-MLE, particularly given the unbounded error incurred by the unconstrained
MLE. We prove that our stretched-MLE is able to maintain the same minimax-optimal rate on
the mean squared error as the standard MLE.
Theorem 5.3 (Stretched-MLE accuracy upper bound; Informal). The stretched-MLE (5.5) with
A = 2 incurs a mean squared error α(θ̂(A)) upper bounded as O( 1

k
), which is minimax-optimal.
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This result shows a win-win by our stretched-MLE: reducing the bias while retaining the
accuracy guarantee. The comparison of the MLE and the stretched-MLE in terms of accuracy
and bias is summarized in Table 5.1. Another attractive feature of our result is that the proposed
stretched-MLE is a simple modification of the standard MLE, which can easily be incorporated in
any existing implementation. It is important to note that while our modification to the estimator
is simple to implement, our theoretical analyses and the proofs are non-trivial.

5.1.5 Related work

The logistic nature (5.1) of the BTL model relates our work to studies of logistic regression
(e.g., [58, 83, 138, 172]), among which the paper [172] is the most closely related to ours. The
paper [172] considers an unconstrained MLE in logistic regression, and shows its bias in the
opposite direction as compared to our results on the standard MLE (constrained) in the BTL
model. Specifically, the paper [172] shows that the large positive coefficients are overestimated,
and the large negative coefficients are underestimated. There are several additional key differ-
ences between the results in [172] as compared to the present chapter. The paper [172] studies
the asymptotic bias of the unconstrained MLE, showing that the unconstrained MLE is not con-
sistent. On the other hand, we operate in a regime where the MLE is still consistent, and study
finite-sample bounds. Moreover, the paper [172] assumes that the predictor variables are i.i.d.
Gaussian. On the other hand, in the BTL model the probability that item i beats item j can be
written as 1

1+e
−xT

ij
θ∗ , where each predictor variable xij ∈ Rd has entry i equal to 1, entry j equal

to −1, and the remaining entries equal to 0.
A common way to achieve bias reduction is to employ finite-sample correction, such as Jack-

knife [140] and other methods [8, 48, 60] to the MLE (or other estimators). These methods
operate in a low-dimensional regime (small d) where the MLE is asymptotically unbiased. Infor-
mally, these methods use a Taylor expansion and write the expression for the bias as an infinite
sum f1(θ∗)

n
+ f2(θ∗)

n2 + . . ., where n is the number samples, for some functions f1, f2, . . .. These
works then modify the estimator in a variety of ways to eliminate the lower-order terms in this
bias expression. However, since the expression is an infinite sum, eliminating the first term does
not guarantee a low rate of the bias. Moreover, since the functions fi are implicit functions of θ∗,
eliminating lower-order terms does not directly translate to explicit worst-case guarantees.

Returning to the pairwise-comparison setting, in addition to the mean squared error, some
past work has also considered accuracy in terms of the `1 norm error [4] and the `∞ norm er-
ror [40, 41, 92]. The `∞ bound for a regularized MLE is analyzed in [41]. Our proof for bounding
the bias of the standard MLE (unregularized) relies on a high-probability `∞ bound for the un-
constrained MLE (unregularized). It is important to note that the bound for regularized MLE
from [41] does not carry to unregularized MLE, because the proof from [41] relies on the strong
convexity of the regularizer. On the other hand, our intermediate result provides a partial an-
swer to the open question in [41] about the `∞ norm for the unregularized MLE (Lemma 12.5 in
Section 12.1): We establish an `∞ bound for unregularized MLE when pobs = 1, which has the
same rate as that of the regularized MLE in [41].

Another common occurrence of bias is the phenomenon of regression towards the mean [170].
Regression towards the mean refers to the phenomenon that random variables taking large (or
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small) values in one measurement are likely to take more moderate (closer to average) values in
subsequent measurements. On the contrary, we consider items whose indices are fixed (and are
not order statistics). For fixed indices, our results suggest that under the BTL model, the bias
(under-estimation of large true values) is in the opposite direction as that in regression towards
the mean (over-estimation of large observed values).

Finally, the paper [98] models the notion of fairness in Elo ratings in terms of the “variance”,
where an estimator is considered fair if the estimator is not much affected by the underlying
randomness of the pairwise-comparison outcomes. The paper [98] empirically evaluates this
notion of fairness on the English Premier League data, but presents no theoretical results.

5.2 Main results
In this section, we formally provide our main theoretical results on bias and on the mean squared
error.

5.2.1 Bias
Recall that d denotes the number of items and k denotes the number of comparisons per pair of
items. The true parameter vector is θ∗ ∈ ΘB for some pre-specified constant B > 0. The follow-
ing theorem provides bounds on the bias of the standard MLE θ̂(B) and that of our stretched-MLE
θ̂(A) with parameter A. In particular, it shows that if A is a finite constant strictly greater than
B, then our stretched-MLE has a much smaller bias than the MLE when d and k are sufficiently
large.
Theorem 5.4. (a) There exists a constant c > 0 that depends only on the constant B, such

that

β(θ̂(B)) ≥ c√
dk
, (5.6a)

for all d ≥ d0 and all k ≥ k0, where d0 and k0 are constants that depend only on the
constant B.

(b) Let A be any finite constant such that A > B. There exists a constant c > 0 that depends
only on the constants A and B, such that

β(θ̂(A)) ≤ c
log d+ log k

dk
, (5.6b)

for all d ≥ d0 and all k ≥ k0, where d0 and k0 are constants that depend only on the
constants A and B.

We note that in Theorem 5.4(b), we allow A to be any positive constant as long as A > B.
Therefore, the difference between A and B can be any arbitrarily small constant. It is perhaps
surprising that stretching the box constraint only by a small constant yields such a significant
improvement in the bias. We provide intuition behind this result in Section 5.2.1.

We devote the remainder of this section to providing a sketch of the proof of Theorem 5.4.
We first prove Theorem 5.4(b) and then Theorem 5.4(a), because the proof of Theorem 5.4(a)
depends on the proof of Theorem 5.4(b). The complete proof is provided in Section 12.1.

72



µ

θ̂1

µ− 0.5 µ+ 1

B

0

−B θ̂
(B)
1

θ̂
(A)
1

θ̂
(∞)
1

(a)

µ

θ̂
(B)
1

µ+

B

0

(b)

µ

θ̂
(∞)
1

µ+

B

0

(c)

µ

θ̂
(A)
1

µ+

B

A

0

(d)

Figure 5.2: Intuition on the sources of bias. (a) The estimators standard MLE θ̂(B), stretched-
MLE θ̂(A) and unconstrained MLE θ̂(∞) (on item 1), as a function of µ when there are d = 2
items. We consider θ∗ = [B,−B], under which the true probability that item 1 beats item 2 is µ+.
We zoom in to the region around µ = µ+ indicated by the grey box. (b) The standard MLE θ̂(B)

incurs a negative bias, because the estimate is required to be at most B. (c) The unconstrained
MLE θ̂(∞) incurs a positive bias by Jensen’s inequality, because the estimator function is convex
on µ ∈ (0.5, 1). (d) Our estimator balances out the negative bias and the positive bias.

For Theorem 5.4(b), we first analyze the unconstrained MLE θ̂(∞). By plugging θ̂(∞) into the
first-order optimality condition of the negative log-likelihood function and using concentration
on the comparison outcomes, we prove an `∞ bound of the form ‖θ̂(∞) − θ∗‖∞ = Õ( 1√

dk
) with

sufficiently high probability (which partially resolves the open problem from [41], in the regime
where pobs = 1). Next, using a second-order mean value theorem on the first-order optimality
condition and taking an expectation, we show a result of the form ‖E[θ̂(∞) | E ] − θ∗‖∞ ≈
‖θ̂(∞) − θ∗‖2

∞ = Õ( 1
dk

), where E is some high-probability event (recall from Table 5.1 that for
unconstrained MLE, the bias ‖E[θ̂(∞)]− θ∗‖∞ without conditioning on E is undefined). Finally,
we show that the unconstrained MLE θ̂(∞) and the stretched-MLE θ̂(A) are identical with high
probability for sufficiently large d and k, and perform some algebraic manipulations to finally
arrive at the claim (5.6b).

For Theorem 5.4(a), we first prove a bound on the order of 1√
d

when there are d = 2
items. Then for general d, we consider the bias on item 1 under the true parameter vector
θ∗ = [B,− B

d−1
, . . . ,− B

d−1
]. We construct an “oracle” MLE, such that analyzing the bias of

the “oracle” MLE can be reduced to the proof of the 2-item case, and thereby prove a bias on the
order of 1√

dk
for the oracle MLE. Finally, we show that the difference between the oracle MLE

and the standard MLE is small, by repeating arguments from the proof of Theorem 5.4(b).

Intuition for Theorem 5.4

In this section, we provide intuition why stretching the box constraint from B to A significantly
reduces the bias. Specifically, we consider a simplified setting with d = 2 items. Due to the
centering constraint, we have θ∗2 = −θ∗1 for the true parameters, and we have θ̂2 = −θ̂1 for any
estimator θ̂ that satisfies the centering constraint. Therefore, it suffices to focus only on item 1.
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Denote µ as the random variable representing the fraction of times that item 1 beats item 2, and
denote the true probability that item 1 beats item 2 as µ∗ := 1

1+e−(θ∗1−θ
∗
2) . We consider the true

parameter of item 1 as θ∗1 ∈ [−B,B]. Then we have µ∗ ∈ [µ−, µ+], where µ− = 1
1+e2B

and
µ+ = 1

1+e−2B . The standard MLE θ̂(B), the stretched-MLE θ̂(A) and the unconstrained MLE θ̂(∞)

can be solved in closed form:

θ̂
(B)
1 (µ) =





−B if µ ∈ [0, µ−]

−1
2

log
(

1
µ
− 1
)

if µ ∈ (µ−, µ+)

B if µ ∈ [µ+, 1].

θ̂
(A)
1 (µ) =





−A if µ ∈
[
0, 1

1+e2A

]

−1
2

log
(

1
µ
− 1
)

if µ ∈
(

1
1+e2A

, 1
1+e−2A

)

A if µ ∈
[

1
1+e−2A , 1

]
.

θ̂
(∞)
1 (µ) = −1

2
log

(
1

µ
− 1

)
.

See Fig. 5.2a for a comparison of these three estimators.
Now we consider the bias incurred by these three estimators. For intuition, let us consider

the case θ∗1 = B, which incurs the largest bias in our simulation of Fig. 5.1. If the observation µ
were noiseless (and thus equals the true probability µ+), then all three estimators would output
the true parameter B. However, the observation µ is noisy, and only concentrates around µ+.
To investigate how these three estimators behave differently under this noise, we zoom in to the
region around µ = µ+ indicated by the grey box in Fig. 5.2a. (Note that the observation µ can lie
outside the grey box, but for intuition we ignore this low-probability event due to concentration.)

The behaviors of the three estimators in the grey box are shown in Fig. 5.2b, Fig. 5.2c and
Fig. 5.2d, respectively. For each of these estimators, the blue dots on the x-axis denotes the noisy
observation of µ across different iterations, and the blue dots on the estimator function denotes
the corresponding noisy estimates. The expected value of the estimator is a mean over the blue
dots on the estimator function. For the standard MLE θ̂(B) (Fig. 5.2b), the box constraint requires
that the estimate shall never exceed B. We call this phenomenon the “clipping” effect, which
introduces a negative bias. For the unconstrained MLE θ̂(∞) (Fig. 5.2c), since the estimator
function is convex, by Jensen’s inequality, the unconstrained MLE θ̂(∞) introduces a positive
bias. Our proposed stretched-MLE θ̂(A) (Fig. 5.2d) lies in the middle between the standard
MLE and the unconstrained MLE. Therefore, the stretched-MLE balances out the negative bias
from the “clipping” effect and the positive bias from the convexity of the estimator function,
thereby yielding a smaller bias on the item parameter. In practice, one can numerically tune the
parameter A to minimize the bias across all possible parameter vector θ∗ ∈ ΘB. Simulation
results on different values of A are included in Section 5.3.

5.2.2 Accuracy

Given the result of Theorem 5.4 on the bias reduction of the estimator θ̂(A), we revisit the mean
squared error. Past work [79, 156] has shown that the standard MLE θ̂(B) is minimax-optimal

74



in terms of the mean squared error. The following theorem shows that this minimax-optimality
also holds for our proposed stretched-MLE θ̂(A), where A is any constant such that A > B.
The theorem statement and its proof follows Theorem 2 from [156], after some modification to
accommodate the bounding box parameter A.
Theorem 5.5. (a) [Theorem 2(a) from [156]] There exists a constant c > 0 that depends only

on the constant B, such that any estimator θ̂ has a mean squared error lower bounded as

α(θ̂) ≥ c

k
, (5.7a)

for all k ≥ k0, where k0 is a constant that depends only on the constant B.
(b) Let A be any finite constant such that A > B. There exists a constant c > 0 that depends

only on the constants A and B, such that

α(θ̂(A)) ≤ c

k
. (5.7b)

Theorem 5.5 shows that using the estimator θ̂(A) retains the minimax-optimality achieved by
θ̂(B) in terms of the mean squared error. Combining Theorem 5.4 and Theorem 5.5 shows the
Pareto improvement of our estimator θ̂(A): the estimator θ̂(A) decreases the rate of the bias, while
still performing optimally on the mean squared error.

The proof of Theorem 5.5 closely mimics the proof of Theorem 2(b) from [156], replacing
the steps involving the domain ΘB by the stretched domain ΘA. The details are provided in
Section 12.2.

5.3 Simulations
In this section, we explore our problem space and compare the standard MLE and our proposed
stretched-MLE by simulations. In what follows, we set B = 1, and unless specified otherwise
we set A = 2 and θ∗ = [1,− 1

d−1
,− 1

d−1
, . . . ,− 1

d−1
]. We also evaluate the performance of other

values of θ∗ subsequently. Error bars in all the plots represent the standard error of the mean.

(i) Dependence on d: We vary the number of items d, while fixing k = 5. The results
are shown in Fig. 5.3. Observe that the stretched-MLE has a significantly smaller bias,
and performs on par with the MLE in terms of the mean squared error when d is large.
Moreover, the simulations also suggest the rate of bias as of order 1√

d
for the MLE and 1

d

for the stretched-MLE, as predicted by our theoretical results.

(ii) Dependence on k: We vary the number of comparisons k per pair of items, while fixing
d = 10. The results are shown in Fig. 5.4. As in the simulation (i) with varying d, we
observe that the stretched-MLE has a significantly smaller bias, and performs on par with
the MLE in terms of the mean squared error. Moreover, the simulations also suggest the
rate of bias as of order 1√

k
for the MLE and 1

k
for the stretched-MLE, as predicted by our

theoretical results.

(iii) Different values of A: In our theoretical analysis, we proved bounds that hold for all
constant A such that A > B. In this simulation, we empirically compare the performance
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Figure 5.3: Performance of estimators for various values of d, with k = 5 and A = 2. Each
point is a mean over 10000 iterations.
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Figure 5.4: Performance of estimators for various values of k, with d = 10 and A = 2. Each
point is a mean over 10000 iterations.

of the stretched-MLE for different values of A (note that setting A = 1 is equivalent to
the standard MLE). We fix d = 10, varying A ∈ [0.5, 3] and k from 1 to 100. The results
are shown in Fig. 5.5. For the bias, we observe that the bias keeps decreasing in the range
of A ∈ [0.5, 1]. This is because as we increase A to 1, the negative bias introduced by
the “clipping” effect is reduced. The optimal value of A for all settings of k is always
greater than 1. Moreover, the optimal A seems to be closer to 1 when we increase k. This
agrees with the intuition in Section 5.2.1. When k is larger, the estimate becomes more
concentrated around the true parameter. Then the “clipping” effect becomes smaller and
can be accommodated by a smaller A. The mean squared error is insensitive to the choice
of A as long as A ≥ 1.

(iv) Different settings of the true parameter θ∗: Our theoretical result considers the worst-
case bias and accuracy. In this simulation, we empirically compare the performance of the
stretched-MLE under different settings of the true parameter vector θ∗ (again, recall that
setting A = 1 is equivalent to the standard MLE). Specifically, we consider the following

76



k = 1

k = 5

k = 25

k = 100

1 2 3

A

10−3

10−2

10−1

B
ia

s

(a) Bias

1 2 3

A

10−1

100

M
ea

n
sq

u
ar

ed
er

ro
r

(b) Mean squared error

Figure 5.5: Performance of estimators for various values ofA and k, with d = 10. SettingA = 1
is equivalent to the standard MLE. Each point is a mean over 5000 iterations.

values of θ∗:
• Worst case: θ∗ = [1,− 1

d−1
, . . . ,− 1

d−1
].

• Worst case (0.5): θ∗ = [0.5,− 0.5
d−1

, . . . ,− 0.5
d−1

].
• Bipolar: half of the values are 1, and the other half are −1.
• Linear: the values are equally spaced in the interval [−1, 1].
• All zeros: all parameters are 0.

We fix d = 10 and k = 5, varyingA ∈ [0.5, 3] under different settings of the true parameter
vector θ∗. The results are shown in Fig. 5.6. Two high-level takeaways from the empirical
evaluations are that the bias generally reduces with an increase in A till past B, and that
the mean squared error remains relatively constant beyond A = 1 in the plotted range. In
more detail, for the bias, we observe that the performance primarily depends on the largest
magnitude of the items (that is, ‖θ∗‖∞). For the settings worst case, bipolar and linear
(where ‖θ∗‖∞ = 1), the bias keeps decreasing when A is past B = 1. For the setting
worst-case (0.5) (where ‖θ∗‖∞ = 0.5), the bias keeps decreasing when A is past 0.5. This
makes sense since in this case we effectively have B = 0.5 (although the algorithm would
not know this in practice). The bias for the setting all zeros stays small across values of A.
For the mean squared error, the increase when A is past 1 is relatively small under most of
the settings of the true parameter vector θ∗. The bipoloar setting has the largest increase in
the mean squared error. Under this setting, all parameters θ∗i take values at the boundaries
±B, and therefore the estimates of all parameters are affected by the box constraint.

(v) Sparse observations: So far we have considered a league format where k comparisons
are observed between any pair of items. Now we consider a random-design setup, where
k comparisons are observed between any pair of items independently with probability
pobs ∈ (0, 1), and none otherwise [41, 127]. In our simulations, we set pobs = 1√

d
and
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Figure 5.6: Performance of estimators for various values of A and various settings of θ∗, with
d = 10 and k = 5. Setting A = 1 is equivalent to the standard MLE. Each point is a mean over
5000 iterations.
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Figure 5.7: Performance of estimators for various values of d under sparse observations, with
A = 2. A number of k = 5 comparisons are observed between any pair independently with
probability pobs = 1√

d
and none otherwise. Each point is a mean over 10000 iterations.

k = 5. We discard an iteration if the graph is not connected, since the problem is not
identifiable under such a graph. The results are shown in Figure 5.7. We observe that the
stretched-MLE continues to outperform MLE in terms of bias, and perform on par in terms
of the mean squared error.

5.4 Conclusion and discussion
In this work, we show that the widely-used MLE is suboptimal in terms of bias, and propose a
class of estimators called the “stretched-MLE”, which provably reduces the bias while maintain-
ing the minimax-optimality in terms of accuracy. These results on the performance of the MLE
and the stretched-MLE are of both theoretical and practical interest. From the theoretical point
of view, our analysis and proofs provide insights on the cause of the bias, explain why stretching
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the box alleviates this cause, and prove theoretical guarantees in bias reduction by stretching the
box. Our results on the benefits of the stretched-MLE thus suggest theoreticians to consider the
stretched-MLE for analysis instead of the standard MLE.

From the practical point of view, the constant B is often unknown, and practitioners oten
estimate the value of B by fitting the data or from past experience. Our results thus suggest
that one should estimate B leniently, as an estimation smaller than or equal to the true B causes
significant bias. Moreover, our proposed estimator is a simple modification to the MLE, which
can be incorporated into any existing implementation at ease.

Our results lead to several open problems. First, it is of interest to extend our theoretical
analysis to settings where the observations are sparse. For example, one may consider a random-
design setup, where k comparisons are observed between any pair independently with probability
pobs and none otherwise [41, 127] (also see simulation (v) in Section 5.3). In terms of the bias
under this random-design setup, we think that the lower-bound for MLE and the upper-bound
for our stretched-MLE also depend on d and k as Ω( 1√

dk
) and Õ( 1

dk
) respectively; we also think

that the dependence of the stretched-MLE on pobs is no worse than that of the standard MLE.
Second, it is of interest to extend our results to other parametric models such as the Thurstone
model [177], and we envisage similar results to hold across a variety of such models. Finally, the
ideas and techniques developed in this chapter may also help in improving the Pareto efficiency
on other learning and estimation problems, in terms of the bias-accuracy tradeoff.
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Chapter 6

Allocation Schemes in Distributed
Evaluation: Evaluate a Full Application or
a Single Attribute?

Many applications such as hiring and educational admissions involve evaluation and selection
of applicants. The number of applicants is often large, thereby making it infeasible for a single
reviewer to evaluate all applications. The common practice is to assign the evaluation task to
multiple reviewers in a distributed fashion. Specifically, each reviewer is assigned a subset of the
applications, and asked to assess all relevant information for their assigned group of applicants.
However, such a selection process is subject to problems such as miscalibration (reviewers see
only a small fraction of applicants and may not get a good sense of relative quality) and of bias
and discrimination (irrelevant attributes of applicants influence the evaluation).

We propose an alternative “segmented” approach to assigning candidates to reviewers. Our
approach requires each reviewer to evaluate more candidates but fewer attributes per candidate.
We compare our proposed approach to the traditional aforementioned approach on several di-
mensions via theoretical and experimental methods. We establish various tradeoffs between
these two approaches, and identify conditions under which the segmented approach results in
more accurate evaluations.

6.1 Introduction
In applications such as hiring and educational admissions, the goal is to evaluate the quality of
the candidates, and select a subset of the candidates of the highest perceived quality (according
to some criteria). Notably, in both cases, the number of candidates is large (particularly in ad-
missions, which can be on a scale of hundreds or thousands), and thus it is unrealistic for a single
reviewer to evaluate all applications. The common practice is to assign the evaluation task to
many reviewers in a distributed fashion. Specifically, each reviewer is assigned a subset of the
applications, and asked to assess all relevant information for their assigned group of applicants.
We term this the holistic approach to evaluation.

It is well-documented that in many settings, the holistic selection process is subject to various
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Figure 6.1: An illustration of the spectrum of holistic vs different segmented schemes.

errors. One common source of error is miscalibration: reviewers see only a small fraction of
applicants, therefore do not have the same sense of the relative quality, and thus some judge
applicants in their set more harshly and others more leniently, leading some candidates to get
more or less favorable evaluations than their qualifications merit [159]. Another source of error
is bias and discrimination, where irrelevant characteristics such as race or gender influence the
evaluation on relevant attributes leading to systematic over- or under-estimation of ability for
some groups of applications [43].

In this work, we propose an alternative approach to task assignment. In our proposed ap-
proach, each reviewer is assigned a subset of the attributes for evaluation, but a greater number
of applicants. We term this a segmented approach. A pictorial illustration contrasting the holistic
versus segmented approaches is in Figure 6.1. Here each application is represented by a row,
and each column represents an attribute. Review assignments are characterized by how regions
of the table are allocated to different reviewers. In the holistic approach (left), rectangles of
different reviewers are tiled vertically. In the “fully segmented” approach (right), rectangles are
tiled horizontally. We use the term “segmented”: to refer to any assignment where each reviewer
evaluates a (strict) subset of the attributes, i.e., each rectangle does not cover the entire row.
Between holistic and fully segmented, there exist schemes where the rectangles are of different
aspect ratios to allocate rows and columns to reviewers, termed “partially segmented.” Hence,
“segmented” includes both fully segmented and partially segmented, forming a spectrum. For
the rest of the chapter, we also call the task assigned to a reviewer as a “tile,” and each attribute
of a single application as a “cell” (of the table depicted in Figure 6.1. Note that for simplicity,
we do not explicitly consider the case where different rectangle sizes are simultaneously used,
or the case where the there is overlap in the assignment of attributes to reviewers. However, our
analysis does not explicitly exclude these cases, and we expect that our general conclusions will
apply to such cases as well.

We also note two important boundary conditions based on our assumptions and the contexts
to which we expect to generalize. First, we focus on evaluation processes that involve judgment
of attributes which are separable. For example, when applying to college, students submit essays,
grades, test scores, recommendation letters, etc. which could be assigned to the same or differ-
ent reviewers. In contrast, when a manuscript is evaluated for publication, the attributes under
consideration are less easily separable. Even if the reviewers are only asked to rate a subset of
the attributes of the paper (e.g., writing, novelty, impact) it will typically be necessary for them
to read the entire paper. A second boundary condition is our focus on settings where the eval-
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uation involves at least some attributes that have a significant subjectivity component, requiring
expert judgement. This would stand in contrast to evaluations based almost entirely on attributes
involving demonstrably correct answers or universally accepted standards for identifying higher
quality performance, such as tests of math ability or physical evaluations of speed or strength.
These situations can still be affected by bias, in that the consideration of or weighting of such
inputs in final decisions could be influenced by irrelevant characteristics (i.e. for some groups
we look at math scores, for others we ignore them) which would be more likely to occur in a
holistic process. However these are not the types of influences we consider in the present study.

In what follows, we first discuss two considerations that motivate the proposed segmented
approach, namely the potential improvements on calibration (Section 6.1.1) and fairness (Sec-
tion 6.1.2) by the segmented approach. Calibration is the estimation of quality from the given
applicant samples where the segmented approach enjoys an advantage of size. As alluded to
above, fairness is improved in a segmented scheme when irrelevant attributes are hidden from
the evaluator. To present a fair comparison, we also discuss potential benefits of the holistic
approach – aggregation (Section 6.1.3) and efficiency (Section 6.1.4). Specifically, aggregation
in the holistic approach is the ability of the reviewers to jointly consider all attributes account
making a final determination about each candidate. Efficiency in the holistic approach refers to
the synergies in reviewing two different attributes simultaneously (such as reading a manuscript
to evaluate different aspects) as well as the reviewers’ flexibility in adapting time and effort allo-
cation on the basis of judged candidate quality. For example, when multiple objective indicators
all point to a particular candidate being below threshold, a holistic reviewer could decide to move
on to another and allocate more effort to applications above average. Our theoretical and experi-
mental results in the subsequent sections analyze these aspects quantitatively, describe tradeoffs
between them, and characterize the regimes where the segmented approach is desirable.

In the next sections, we first present a brief review of relevant literature (Section 6.2). We
then describe the general form of our model for evaluation (Section 6.3), followed by theoretical
and experimental results (Section 6.4) focused on the four aspects, namely calibration (Sec-
tion 6.4.1), fairness (Section 6.4.2), aggregation (Section 6.4.3) and efficiency (Section 6.4.4).
Finally, we conclude and discuss practical considerations for implementing the proposed seg-
mented approach and future directions (Section 6.5).

6.1.1 Advantages of the segmented approach in reviewer calibration
In the context of evaluation, calibration is the ability of reviewers to evaluate candidates in a
manner that is consistent and accurately reflects the candidate’s quality relative to the entire pool
of candidates candidates. Note that if a reviewer is able to perfectly identify the placement of
each candidate with respect to all other candidates, then a perfect ranking of all candidates is
derived. However, in most real world evaluation situations, reviewers lack information about the
full set of candidates and thus are not able to calibrate perfectly.

Problems with reviewer calibration comprise one of the main disadvantages of the holistic
approach to evaluation. In the holistic approach, each reviewer reviews all attributes for each
candidate, and with the exception of very small applicant pools, this necessitates that each re-
viewer sees on a small subset of the entire pool. Pictorially, in Figure 6.1, if we assume each
rectangle is of a fixed area (representing a fixed workload of each reviewer), then the holistic ap-
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proach entails rectangles of the longest width (number of attributes), and therefore the smallest
height (number of applications). Due to the limited scope (rows of the matrix in Figure 6.1) the
reviewers see, their evaluation of each candidate is heavily dependent on the quality of candidates
they review, and incurs an error if their assigned subset is not representative of the entire pool
(due to the randomness in the partition of subsets). Consequently, when scores for candidates
are combined from different reviewers, the resulting decisions will be less accurate as a result of
this miscalibration.

In contrast, we argue that a segmented approach is likely to reduce errors by improving
calibration. In a segmented approach, if we hold workload constant, each reviewer evaluates
one or a few attributes for a larger number of applications (such as in the right panel of Figure
1). Consequently, reviewers have better information about the distribution of quality in the pool
on their assigned attribute given their exposure to a much bigger sample if not the entire set of
scores.

Preview of results related to calibration In Section 6.4.1, we present a formal definition of
calibration, and subsequently present experimental results that validate this intuition, demon-
strating the benefit of the segmented approach in improving reviewer calibration.

6.1.2 Advantages of the segmented approach in reducing prejudice
A second drawback of the holistic approach relates to prejudice. Extensive literature (e.g., [20])
has shown that many judgments are biased by a variety of characteristics that are irrelevant
to the content of the evaluation (such as race or gender). Many of these biases operate on a
subconscious level [76] and thus affect evaluations even when the reviewers intend to be fair.
Even if some reviewers are biased and some are not, in the holistic approach when scores from
the reviewers are combined, the result will still be inaccurate with scope for potential prejudice
given the lack of consistency across reviewers.

Therefore, a second potential benefit of the segmented approach to evaluation is the reduction
of prejudice as a result of bias. This can occur for two reasons.
(F1) Reducing the impact of biased reviewers: Reviewers may be biased to different extents.

With the holistic approach, each candidate is assigned to only one reviewer, which is either
biased or unbiased. In contrast, with the segmented approach, since each reviewer is only
assigned a subset of the attributes, candidates can be assigned a mixture of biased and
unbiased reviewers. The probability that the evaluation of all attributes of a candidate will
be affected by bias is reduced in the segmented evaluation regime compared to the holistic
regime as is the probability of prejudice against certain groups of candidates.

(F2) Restricting access to biasing information: In the segmented approach, each reviewer
only evaluates a subset of the attributes for their assigned candidates. Therefore, the re-
viewers only need to be provided with information about the candidates that are relevant
to the evaluated attributes. For example, the reviewer evaluating the research statement
of graduate school applicants does not need to access the biographical information of the
candidates or their recommendation letters. When the reviewers are unaware of potentially
biasing information, the resulting evaluations are less likely to be influenced by prejudice.
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Preview of results related to reducing discrimination We focus on studying the first path-
way for reducing prejudice (F1). In Section 6.4.2, we present a multi-attribute model inspired
by [100], and provide theoretical support for the conditions under which the segmented approach
results in more accurate and less biased evaluations than the holistic approach. Our model sup-
ports our argument that a key means by which the segmented approach reduces bias is by redis-
tributing and reducing the impact of biased reviewers.

6.1.3 Advantages of the holistic approach in better aggregation
Despite the advantages of the segmented approach we have described, we note that many settings
still structure selection processes using the holistic approach. There are two potential advantages
of the holistic approach which relate to the aggregation of judgments, and the efficiency of con-
ducting evaluations.

First, a potential benefit of the holistic approach is that reviewers may more accurately com-
bine information from different attributes than would be the case if each were evaluated by dif-
ferent reviewers independently. This might take one of the following forms.

(A1) Weighing attributes: Reviewers conducting holistic evaluations may intuitively weight
attributes more effectively than might be true of the aggregation that would occur with
segmented evaluation. We model the weighting of attributes by letting each reviewer report
a score for each application they review, aggregated along the attributes they review. By
comparison, for the segmented approach, we expect an aggregation error, because now
different reviewers individually aggregate their assigned subset of attributes, losing the
ability to adjust the relative emphasis on different attributes across the entire available set.

(A2) Jointly reasoning about attributes: There may be benefits to utilizing information about
one attribute when interpreting another. This might be the case when there is a lot of
”noise” in the signal of certain attributes or when the evaluation of an attribute is done
more accurately with knowledge of another. For example, standard test scores and essays
may be positively correlated, as better writing skills can improve both of them. In this
case, the evaluation of writing skills would be improved by knowledge of a candidate’s
test scores and essay evaluation. Reviewers under the segmented approach may not have
access to such cross-attribute reasoning.
On the other hand, it is also possible that reviewers erroneously assume non-existing corre-
lations, or erroneously estimate the amount of the correlation. For example, if a candidate
has good test scores, the reviewers may form a good overall impression about the can-
didate, and consequently be lenient when scoring the other attributes of the candidate,
resulting in an inflated evaluation. This type of ”halo effect” can be modeled by an over-
estimation on the positive correlation between attributes.

Preview of results related to aggregation We focus on studying the aspect (A1). In Sec-
tion 6.4.3, we present simulation results comparing the performance of holistic vs segmented
approaches. The results suggest a trade-off between reducing errors related to calibration (where
the segmented approach performs better) vs errors related to aggregation (where the holistic ap-
proach performs better). We conclude that the segmented approach is better when the calibration
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error is significant and when the attributes are correlated, and the holistic approach performs
better under other conditions.

6.1.4 Efficiency advantages of the holistic approach

Another potential benefit of the holistic approach is related to the efficiency of conducting eval-
uations. We consider two reasons why the holistic approach may be more efficient:

(E1) Adaptively allocating effort: Recall that our goal is to select the best subset of applica-
tions. If an application is clearly below widely recognized threshold on a subset of the
attributes, a reviewer may conclude that the application will not be selected, without scru-
tinizing the remaining attributes or giving a precise score to the application. This is also
often the case in practice. For example, in admissions, standardized test scores and GPAs
are often used as preliminary filters to eliminate some applications from further consider-
ation. In terms of reviewers, if a reviewer sees red flags in the recommendation letters, the
reviewer may only skim through the rest of the material given that context. The segmented
approach, by contrast, lacks the ability to perform such adaptive reasoning, because the
segmented approach assigns the attributes to the reviewers in parallel. One potential way
to alleviate this drawback is to employ a filtering rule (such as test score cut-offs) to re-
duce the pool before segmenting on remaining attributes. However, it would be important
to insure that filtering rules did not inadvertently exclude qualified candidates or build in
other sources of error.

(E2) Automation: Many organizations have tried to automate the evaluation of the entire ap-
plications in hiring. However, these attempts have been fraught with biases [51, 174],
and eliminating these biases from evaluation of the entire application is a hard problem.
Our segmented approach can allow to reap the benefits of automation in a careful manner.
Specifically, the segmented approach allows an organization to first identify a the set of at-
tributes which they think can be evaluated in an automated manner without bias, and these
attributes can then be separately evaluated via automation and not assign them to a human
reviewer.

(E3) Switching cost: In the holistic approach, the reviewers primarily switch between different
attributes; in the segmented approach, the reviewers primarily switch between candidates.
Depending on the attribute being evaluated, switching between candidates may involve
greater effort, because the reviewers need to access information that is likely stored in
a manner (i.e. different directories with restricted access) that makes navigation among
files intentionally more difficult for security reason. Under such conditions, the holistic
approach incurs lower switching costs. On the other hand, switching between different
attributes of the same candidate may involve greater cognitive effort if the evaluation pro-
cess is very different for each, such as reviewing transcripts versus reading essays. Under
these conditions, the segmented approach may incur lower switching costs. Consequently,
whether the holistic or seqmented evaluation regime results in greater switching costs is
highly application-dependent.
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Preview of results related to efficiency We focus on studying adaptive allocation of effort (E1).
In Section 6.4.4, we consider a setting where there are only two attributes. We implement a sim-
ple heuristic where the reviewers evaluate the second attribute only if the first attribute passes a
certain threshold. The simulation results quantitatively show that the the holistic approach enjoys
notable savings especially if there is high (positive) correlation between the attributes, without
significant loss on evaluation accuracy. This result points to a trade-off between the holistic vs
segmented approaches and highlights a condition in which holistic would have an advantage.

6.2 Related work

In this section, we present an overview of related literature.

Inaccuracy of human evaluation Evaluation of creative work or portfolios is inherently a
subjective task. As an example, the NeurIPS 2014 experiment involved a fraction of papers that
were assigned to two different halves of the PC. The resulting inconsistency in the results led the
writer of this blog post to conclude that Computer Science conference acceptances seem to be
more random than was previously assumed. A recent dissertation highlights various aspects of
subjectivity in hiring. An economic perspective of algorithmic fairness [47] also highlights how
human inconsistency in evaluations might be benchmarked with that introduced by algorithms.
In a field experiment, Cowgill [46] describes how machine learning can lead to better outcomes
than human evaluators by reducing the inconsistency under certain conditions.

Controversy of automated evaluation Algorithmic hiring is not a panacea against inconsis-
tent human judgement either. The famous lapses of the AI-inspired hiring tool in Amazon doc-
umented in [51, 174] highlights many of the challenges in the deployment of AI in hiring deci-
sions. In our work, we suggest a natural point of efficiency in using algorithmic strategies for
evaluation in the form of segmenting the work. Our goal is to delineate conditions under which
this efficiency can be realized, while also highlighting under which settings aspects of fairness
that may be compromised.

Applications using a segmented approach “Segmented” approaches are frequently used in
other applications. One key example is grading by multiple teaching assistants. The grading task
is usually split by having each grader grade a specific subset of questions across all students’
homeworks, rather than each grader grading the entire homework of a subset of students (which
would mirror holistic evaluators).

People work on different parts of complicated tasks in [143]. Here a complex task is broken
down, where different crowdsourcing workers work on different parts, and then their work is
computationally (or sometimes manually) put together.

Calibration There is ample evidence in the literature that human evaluators are miscalibrated,
that is, different evaluators have different evaluation scales [7, 64, 123]. Some evaluators may be
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strict, some lenient, some extreme, some conservative, etc. Furthermore, this miscalibration is
known to be quite complex [28].

Our definition of using the relative scale for calibration is inspired by applications such as
admissions and hiring, where one often marks an applicant as being in a certain relative bin. In
peer review, various conferences ask reviewers to rate papers according to the relative position
among all submitted papers [159].

Fairness The problems in the Amazon automated resume screening system [174] provide a
clear example of the importance of enforcing fairness in evaluation tasks. When unfair outcomes
arise as a result of reviewers taking into account information from protected categories, segment-
ing evaluations offers a natural advantage by potentially avoiding revealing irrelevant information
(such as protected categories) for the task of evaluating the attributed assigned. Kleinberg and
Raghavan [100] have highlighted the relative advantages of rules promoting diversity (such as
the Rooney rule) in avoiding bias in the selection of a best candidate from a pool. In a similar
vein, we will highlight the conditions under which segmented evaluations retain an edge over
holistic ones for finding the best candidate in Section 6.4.2.

Hierarchical decision making The process for evaluating candidates for employment has been
debated throughout the history of industrial psychology [153]. There has been a strong tendency
among those reviewing candidates toward relying on intuition and informal processes, such as
unstructured interviews, despite the wealth of data pointing to the benefits of a more structured
approach [183]. Meta-analyses of selection methods have demonstrated that integrating stan-
dardized measures such as cognitive ability testing, work samples, and structured interviews
greatly increased the reliability and predictive validity of selection processes [152] and that they
could be used in combination as each added incremental validity to the overall prediction of
future performance [30]. Following a hierarchical decision process [101], the best selection
systems do a thorough job task analysis to identify the strongest predictors of future perfor-
mance, then identify the measurement approach that achieves the best balance of high reliability
vs. cost.

Halo effects during aggregation Despite the abundant evidence of the effectiveness of more
structured approaches to selection [152] many organizations continue to utilize unstructured and
informal methods [183]. However, these approaches pose a multitude of problems. First, they
tend to take on the “holistic” form mentioned previously, in that reviewers provide an overall rat-
ing or ranking on the set of candidates they review. This raises the chances of a variety of biases
to reduce the quality of decisions. One of the oldest of these, known as the “halo effect” [176],
refers to the extent to which a rater’s evaluations of another individual on a series of individual
traits are influenced by the rater’s overall liking (or disliking) for the individual. Bias can occur
for a variety of reasons; implicit bias (such as the halo effect) can occur as a result of a variety
of physical attributes associated with stereotypes including attractiveness, height, race, gender,
age, weight, physical disability or similarity to the prototype for the role [18]. They can also
occur as a result of similarity to the reviewer [144], as well as unusual scores or performance on
some dimensions of the evaluation that alter perceptions of other dimensions. These biases can
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work in a candidate’s favor or against them, but in either case they serve to increase the error in
selection decisions in a manner that is often non-random and problematic, as certain attributes
such as race, gender, or socioeconomic status elicit biases in a consistent enough manner that
unstructured selection processes predictably result in systematic discrimination [128]. A seg-
mented approach to evaluation offers the possibility of mitigating such biases, as such a system
could be designed so that reviewers evaluate candidates on particular attributes while remaining
unaware of their status on other, potentially biasing, attributes.

Aggregation in social choice and voting; subjectivity There is a rich literature on aggregation
of people’s preferences and evaluations over various domains. The field of social choice theory
concerns itself with aggregating subjective opinions of voters on multiple candidates [26]. A
different type of aggregation – more closely related to our work – is that of aggregating over
multiple criteria (or features). Specifically, there may be multiple criteria on which an item is
evaluated, and the overall evaluation of the item depends on how the evaluations of the individual
criteria are combined [106, 130]. The aggregation of criteria is frequently modeled using linear
models [129, 151], and we also make this assumption in parts of our work.

6.3 Model

In this section, we introduce our proposed model for the evaluation procedure.

Notations We assume there are n applications, and each application has d attributes. We let
X ∈ Rn×d be a matrix whose (i, j)th entry xij represents the “true” value of application i ∈ [n] on
attribute j ∈ [d]. A greater value represents higher quality. We divide the task into tiles as shown
in Figure 6.1, where each reviewer evaluates a n0 × d0 tile of n0 applications on a subset of d0

attributes. For simplicity, we assume each attribute of each application is evaluated once. Then
the number of reviewers is defined as R := nd

n0d0
. For each reviewer k ∈ [R], denote Ak ⊆ [n]

as the set of applications assigned to this reviewer, and Tk ⊆ [d] as the set of attributes assigned
to this reviewer. For any reviewer k, we let {x}Ak,Tk denote the submatrix of X comprising the
rows Ak and columns Tk; this is the data seen and evaluated by reviewer k.

Ground-truth We assume there exists a true ranking of the applications. To derive the true
ranking, we define true scores of the applications as a weighted linear combination on a mapping
of the attributes. That is, consider a vector w ∈ Rd, and a function f ∗ : R → R. Then
the true score for each application i ∈ [n] is defined as y∗i :=

∑
j∈[d]wjf

∗(xij). The true
ranking is the ranking induced by the scores {y∗i }i∈[n]. We use the function f ∗ to model the
non-linear preference on each individual attribute. In some of our subsequent results, f ∗ as the
percentile function mapping from the values to their percentage (when the values are drawn from
a distribution and the number of applications is large, then this percentile function becomes the
inverse c.d.f. of the distribution). For the weights w, for simplicity we later consider w as the
all-one vector. Then the linear combination reduces to taking the mean of all attributes.
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Metric In applications such as admissions, the goal is to choose the subset of the maximum
quality given a fixed size. Hence, the natural metric is the top-K error in ranking. For simplicity,
we consider the top-1 accuracy in ranking. That is, the accuracy is 1 if the estimated ranking
correctly identifies the maximum value in the true ranking, and 0 otherwise1.

Evaluation process The evaluation process is described in Algorithm 3. We assume each
reviewer k ∈ [R] has a calibration function fk : R → R on each individual attribute, and
an aggregation function gk : R → R for aggregating their assigned subset of attributes. The
realizations of the functions fk and gk are discussed later. The algorithm consists of two steps. In
Step 1 (Line 1-6), each reviewer evaluates their assigned subset of attributes (Line 3), and reports
a score y(k)

i ∈ R for each application they are assigned (Line 5). In Step 2 (Line 7), we compute
a final score for each application i ∈ [n], by aggregating the scores reported by all the reviewers
assigned this application (on a subset of attributes). These scores from reviewers are aggregated

exogenously, by using the weight vector w(k) ∈ R
(
d
d0

)
. When the d-dimensional weight vector

w is all-ones (i.e. taking the mean), it means all the attributes are treated with equal importance.
In this case, it is natural to define w(k) as the all-ones vector too, taking the mean of all reviewers
assigned to each application.

Algorithm 3: The evaluation procedure.
Input: Applications X ∈ Rn×d, the number n0 of applications and the number of

attributes d0 assigned to each reviewer, the weight vector w ∈ Rd

Output: Application scores y ∈ Rn

/* Step 1: each individual reviewer evaluates their assigned tile */

1 foreach reviewer k ∈ [R] do
2 foreach application i ∈ Ak do
3 Compute the attribute score yij ∈ R as yij = fk(xij; {x}Ak,Tk) // Compute

each cell

4 end
5 Compute the reviewer-aggregated score y(k)

i = gk(
∑

j∈Tk wjyij; {x}Ak,Tk , w).
// Aggregate within each tile

6 end
/* Step 2: aggregate across reviewers */

7 Compute the aggregated scores y ∈ Rn as yi =
∑

k∈[R] w
(k)y

(k)
i . // Aggregate across

tiles

1For simulation and experiments, we make sure that there are no ties in the maximum application in the true
ranking. If there are ties in the estimated ranking, the accuracy is computed as 1 / (number of maximum applications)
if the true top-1 application is one of the maximum application in the tie, and 0 otherwise.
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6.4 Main results
In this section we present main results. In what follows, we present our results on the four
aspects: calibration (Section 6.4.1), fairness (Section 6.4.2), aggregation (Section 6.4.3) and
efficiency (Section 6.4.4). The error bars presented in all the plots represent the standard error of
the mean.

6.4.1 Calibration
In this section, we present empirical results that validate the improvement on calibration by the
segmented approach via a study in a crowdsourcing platform. We start by giving our precise
definition of calibration, and then discuss our experimental results.

Definition of calibration Formally, we define calibration as the reviewers’ accuracy of estimat-
ing the ranking (or percentile) of each candidate with respect to the entire pool of all candidates.
We define calibration on this relative scale for three reasons: (1) the selection problem is intrin-
sically relative in nature, that is, we aim to select the top candidates compared to the entire pool;
(2) in many applications, the evaluation data that the reviewers are asked to report is relative. For
example, reviewers may be asked to give scores on a scale of 1-5, where the criteria define the
score of 1 as the candidate being the bottom 20% among all candidates, and 2 as being 20%-40%
among all candidates, etc.; (3) people’s reasoning involves a relative nature. For example, being
a “top” candidate is perceived as simply being significantly better than the rest of the candidates.

Hypothesis Recall that the potential improvement in calibration provided by the segmented
approach is given by the larger number of applications that the reviewer has access to in this
approach. Intuitively, in the segmented approach, the reviewers acquire more knowledge about
the pool for each attribute they examine, and hence have better calibration. The goal of our
experiment is to verify this hypothesis. For simplicity, we focus on a single attribute to isolate
it from the effect of aggregation across attributes. While this relationship is intuitive, it is not
immediately clear that it is realized in reality. For example, a counter-argument may say that
reviewers have a fixed short-term memory, so viewing more samples may have a minimal effect
on calibration.

Experimental setup We designed the experiment focused on a single attribute. We recruited
52 crowdsourcing workers on the Prolific platform. The workers were introduced to a hiring con-
text and asked to evaluate scores of candidates. Specifically, they were told that there are 1000
candidates with scores that are integers in the range of 200-300 (without any distributional infor-
mation about the scores). Then the workers were presented some numbers in between 200-300,
and are asked to estimate the percentile of the scores. For each score, the workers answered a
multiple-choice question with 5 choices to estimate the percentile of the score with respect to the
population: 0-20%, 20-40%, . . . , 80-100%. We chose to ask the reviewers to report in 5 quan-
tized bins instead of directly reporting a number for percentile, because extensive studies have
shown that workers are not able to perceive fine numbers accurately and have higher accuracy if
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the elicitation format is quantized. We also conducted a preliminary study comparing soliciting
data with 5 bins and 10 bins, and confirm this trend. At the end of the study, the workers are also
asked to describe in text their strategy in deriving answers to these questions.

Question grouping The workers were divided into two groups. In the first group, each worker
was presented 5 scores (termed “5Q-group”). In the second group, each worker was presented
20 scores (termed “20Q-group”). The workers are presented with 5 questions per page. That
is, for the 20Q-group, the 20 questions are distributed across 4 pages. Neither group of workers
was told the number of the scores they will be presented before starting the task. The workers
were required to answer all questions on a page before proceeding to the next page. The workers
were allowed to go back to previous pages at anytime. In both groups, the workers were allowed
to edit their answers to any question at any time before submission. We chose the design of
grouping 5 questions per page and not informing the workers the number of total questions a
priori, because in a preliminary study where workers from both groups were presented their
respective number of questions on one page, we observes that the results from the workers in
the 20Q-group were of lower accuracy in estimating the the first five questions compared to the
5Q-group. We hypothesize that this is due to the fact the workers in the 20Q-group are aware in
the beginning that they have a lot of questions to answer, and accordingly reduce their effort in
answering each question. Henceforth, we restricted each page to have 5 questions, and did not
inform the workers the number of questions in total, to eliminate this confounding factor.

Values of the scores The scores are generated at random from N (230, 25), truncated to the
range of [200, 300]. We choose this distribution for generating the scores, because in a prelimi-
nary study where the workers were presented scores in the range of [0, 100], we observed that the
workers appeared to have a strong uniform prior, mapping values in [0, 20] to percentile 0-20%,
etc. We therefore chose a range that is not [0, 100] so that the workers do not rely on such priors.

Results We record the reviewer calibration measured by their accuracy in estimating the per-
centiles. We compute the `1 error between the workers’ reported percentile against the true
percentile. Formally, we number the percentile 0-20%, 20-40%, 40-60%, 60-80% and 80-100%
as the bins 1, 2, 3, 4 and 5 respectively. Then the error is computed as the absolute difference be-
tween the workers’ reported bin and the true bin of the value, followed by taking the mean over
the questions and the workers. For the 20Q-group, we separately compute the error restricted to
each page of 5 questions (i.e., Q1-5, Q6-10, Q11-15, Q16-20).

The results are shown in Figure 6.2. We make the following observations. First, the workers
in the 5Q-group and 20Q-group have comparable accuracy in answering the first 5 questions –
this matches what we expect from the experimental set up. Second, the error in the 20Q-group
decreases significantly as the workers see more numbers in the later pages. This validates our
hypothesis that the reviewers have better calibration when they see more candidates.
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Figure 6.2: The `1 error in estimating percentile, for workers in the 5Q-group (representing
holistic) and the 20Q-group (representing segmented), computed individually for each page of 5
questions.

6.4.2 Fairness
In this section, we formulate a simple model to highlight the advantage of the segmented over
the holistic approach in terms of avoiding biases or unfairness that creeps in from evaluating
other attributes. As in [100], we consider the problem of finding the best candidate in a pool of
applicants, and present theoretical guarantees that characterize a wide range of regimes where
the segmented approach yields higher accuracy than the holistic approach.

Formulation We follow [100] and consider “absolute” values instead of relative values for this
section. The marginal distribution of each attribute is generated from a continuous distribution
D whose support only contains non-negative values. For the reviewers, we let f ∗ be the iden-
tity function. We also let g be the identity function. A fraction of α applicants are from the
disadvantaged group, and a fraction λ of the attributes are “protected”. Each reviewer has i.i.d.
Bernoulli(γ) probability of being biased in the following sense: an unbiased reviewer reports
the (noiseless) true values of the assigned tile for any applicant and any attribute, while a bi-
ased reviewer applies a multiplicative discount factor β ∈ [0, 1) to the protected attributes of
the disadvantaged applicants, and reports the true value otherwise. In other words, for unbiased
reviewer k, its function fk is the identity function. For a biased reviewer k evaluating attribute j
for applicant i (of value xij), we have

fk(xij) =

{
βxij if j is a protected attribute and i is a disadvantaged applicant
xij otherwise.

Note that here the function fk no longer represents calibration but a discrimination of the biased
reviewers.

Notation: Denote the underlying distribution as D. To illustrate the extreme situation, in
what follows, we consider the case where attributes are perfectly correlated (i.e., the attributes of

93



an applicant have identical values), and we call this the “quality” of the applicant or candidate.
Denote the quality of the disadvantaged candidates as X1, . . . , Xαn ∼ D, and the advantaged
candidates as Y1, . . . , Y(1−α)n ∼ D. Define the maximum of the disadvantaged candidate as
Xmax := maxi∈[αn] Xi and Y max similarly. Denote the expected top-1 error incurred by the
mean estimator under holistic and segmented approaches as ehol and eseg respectively. The power
law distribution with parameter δ is defined as P[Z ≥ t] = t−(1+δ) supported on [1,∞).
Proposition 6.1. Let the number of attributes be d = 2. Let α = 0.5 (that is, half of the applicants
are disadvantaged). Let the two attributes be perfectly correlated. Consider two reviewers,
under holistic (i.e., each reviewer sees half of the applicants, where the split is uniformly at
random) or segmented (i.e., each reviewer sees one attribute of all applicants) approaches.

(a) Let λ = 0.5 (that is, one of the two attributes is protected). Consider any β ∈ [0, 1).
Then for any γ ∈ (0, 1), the segmented approach is better than the holistic approach, i.e.
eseg ≤ ehol.

(b) Let λ = 1 (that is, both attributes are protected). Let β = 0 (i.e., extreme downward bias
on disadvantaged applicants). Then

ehol − eseg =
γ(1− γ)

2

[
4 · P

(
Xmax > 2Y max

)
− 1
]
. (6.1)

Hence, for any γ ∈ (0, 1), the segmented approach is better than the holistic approach, if
and only if

P
(
Xmax > 2Y max

)
> 0.25. (6.2)

This condition (6.2) is dependent on the number of applicants n and and the distribution
D, and independent of the other problem parameters. As an example, for PowerLaw(δ)
with parameter δ, for sufficiently large n, the segmented approach is better than the holistic
approach if and only if

δ <
log(3)

log(2)
− 1 ≈ 0.58. (6.3)

This proposition reveals that segmented is better than holistic in terms of accuracy over a
large range of parameters modeling the presence of mild levels of discrimination among the re-
viewers based on attributes are protected. Despite its extreme assumptions, it readily illustrates
the advantages of segmented in terms of avoiding bias creeping in from signals from other irrel-
evant attributes.

The proof of this proposition is in Chapter 13. Part (a) is intuitive: While holistic is led astray
on any disadvantaged applicant on the protected attribute, segmented ensures that one reviewer
out of the two only sees the attribute that is not protected and hence adds more information
compared to the holistic case. The intuition for part (b) is as follows. The difference in holistic
vs. segmented lies in the case where one reviewer is biased and the other is unbiased. For
segmented, one attribute of the best disadvantaged applicant is assigned the biased reviewer. For
holistic, the best disadvantaged applicant is assigned the biased reviewer with probability 0.5
(this is worse than in the segmented case – giving error probability 1 when β = 0), and the
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unbiased reviewer with probability 0.5 (better than segmented – giving error probability 0 when
β = 1). The probability in (6.2) characterizes the success probability of segmented. For power
law, with smaller δ, the distribution of the max, Xmax and Y max (identical in distribution when
α = 0.5), has a heavier tail by definition of the power law distribution, so it’s more likely for
segmented to succeed in this regime of δ.

Generalizing the underlying advantage of segmented in the above proposition to other cases
(such as a general d and any tile shape for the segmented work) is an interesting open problem.

6.4.3 Aggregation (and its tradeoff with calibration)
In this section, we analyze the aggregation aspect, that is, how each reviewer derives an aggre-
gated score for each application by combining the attributes they review. Recall that we reason
that the holistic approach may have the benefit of better aggregation, thereby resulting in a trade-
off between aggregation and calibration in the comparison of the holistic versus the segmented
approaches. We first describe the choices of reviewer functions f and g (see Section 6.3 and
Algorithm 3) that incorporate both the calibration and the aggregation aspects. Then we present
simulation results that describe this tradeoff on the spectrum from the holistic to the segmented
approaches.

Model of the true calibration function f ∗ Following the definition of calibration in Sec-
tion 6.4.1, we define the true calibration function f ∗ as the true ranking (or percentile) of each
attribute (among all applications).

Model of reviewer calibration function f We describe the choices of the reviewer calibration
function f and the aggregation function g. For the calibration function f , recall that we define
calibration as comparing a candidate to the entire pool. Intuitively, the more knowledge a re-
viewer has about the entire population, the better their calibration is. Such knowledge about the
pool comes from two sources: (1) the applications that the reviewer is assigned to; (2) reviewer’s
prior observations or belief about the distribution of the pool. Recall from Section 6.3 that each
reviewer k ∈ [R] has a calibration function f that is a mapping on each individual attribute. We
define the function f as follows. Recall that n0 denotes the number of applications that each
reviewer is assigned. We characterize the prior information by a set of past applications, whose
size is denoted as N . Then the calibration function f maps each application to its (normalized)
ranking among the (n0 +N) current and past applications. We denote this function as fn0,N . We
allow the prior applications to be different for different reviewers, so both the current and past
applications depend on the reviewer k ∈ [R], and thus the function fn0,N implicitly depends on
the reviewer k ∈ [R].

Intuition about the calibration function f Note that in the special case of N = 0, the func-
tion reduces to ranking among current applications. On the other hand, in the special case of
N → ∞, the function converges to the true inverse c.d.f. With N → ∞, the holistic scheme
approaches the true ranking. In this context, the calibration experiment in Section 6.4.1 veri-
fied that fn0,N gets better when n0 increases. This model also incorporates the miscalibration
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of lenient and strict reviewers – when the reviewer sees a skewed subset of good applications
(from the current applications or from the prior), the reviewer will have strict calibration. Like-
wise when the reviewer sees a skewed subset of low-quality applications, the reviewer will have
lenient calibration.

Model of aggregation functions g Similar to the calibration functions f , we define the ag-
gregation function g on a relative scale. Specifically, each reviewer aggregates their assigned
attributes using the weight vector w, and derives a score for each assigned application (including
the ones in the prior). Then the aggregation function g maps each application to its (noramlized)
ranking among the (n0 +N) scores of the current and past applications. We note that the aggre-
gation is performed only within the attributes that a reviewer is assigned to. Hence, we expect
that the aggregation function g introduces error in the segmented approach. On the other hand,
as suggested by Section 6.4.1, the segmented approach improves calibration. In what follows,
we conduct synthetic simulation to investigate this tradeoff between calibration and aggregation,
and the regimes where the holistic or the segmented approach is better.

Setting We let the number of applications be n = 200 and the number of attributes be d = 8.
We assume each reviewer has a fixed workload of reviewing 40 cells in total. We vary the
number of applications n0d0 = 40 assigned to each reviewer, where n0 = 5 corresponds to the
holistic approach and n0 = 40 corresponds to the (fully-)segmented approach. We generate all
attribute values (for both the current and past applications) from the power law distribution with
parameter δ = 1. To model the correlation between attributes, we order the attributes by the
ranking induced by a d-dimensional Normal distribution N (0d,Σ), where we set the covariance
matrix as Σ = (1−λ)Id +λ11T . With this definition of the covariance matrix Σ, we have λ = 0
correspond to i.i.d. attributes, and λ correspond to all attributes of an application having the same
ranking (perfect correlation). We consider the top-1 ranking accuracy, and report simulation
results over 200 runs.

Results First, we examine the performance over the holistic vs. segmented spectrum for dif-
ferent amounts of prior knowledge. We consider λ = 0 for independent attributes. The amount
of prior knowledge is controlled by the parameter N . The result is shown in Fig 6.3(a). We
observe that when the prior knowledge is limited (when N = 0), the top-1 error is dominated by
the calibration error, so holistic does not perform well. When the prior knowledge is large (when
N = 1000), the calibration error decreases and the aggregation error induced by g increases. In
this case, the holistic approach is better than the partially-segmented approaches.

Second, we examine the calibration-aggregation tradeoff under different amount of corre-
lation between the attributes. We set the prior size to be N = 1000. The result is shown in
Figure 6.3(b). We expect that the aggregation error decreases when the (positive) correlation
between attributes increases. This is because all attributes give the same ranking, and the role
of aggregation becomes less important. Figure 6.3(b) confirms this trend that more correlation
between the attributes benefits the segmented approach.
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Figure 6.3: A comparison of the spectrum of the holistic vs. segmented approaches (x-axis) in
terms of the calibration-aggregation tradeoff.

Caveats in interpreting the results This simulation seems to suggest that the fully-segmented
approach is always the best. This is because in this case, the aggregation function g of individual
reviewers become trivial, so there is no aggregation error. Then combining zero aggregation error
with the best calibration yields the best performance for the fully-segmented approach. However,
we should be careful about drawing the conclusion that fully-segmented is always optimal, due
to the following caveats: (1) we assume the exogenous aggregation for the segmented approach
is perfect, which may not be the case in reality (especially if true w is not the all-one vector);
(2) it makes sense for other reasons to group attributes together, giving less preference to the
fully-segmented approach. For example, the TOEFL and GRE scores of a graduate applicant
are correlated, and it makes sense to assign a single reviewer to evaluate both; (3) the fully-
segmented approach does not allow adaptive decision to save evaluation effort (see more in the
subsequent Section 6.4.4).

6.4.4 Efficiency from adaptive decision-making

Another potential benefit of the holistic approach is its efficiency in making evaluation adaptively.
Specifically, when a reviewer evaluates multiple attributes, if an application has a very low value
on one attribute, we may be confident to conclude that it is unlikely for the application to have
high values on other attributes due to correlation, or even if the values on other attributes are high,
since we combine the attributes such as taking their mean, it is still unlikely for this application
to be one of the best applications. We now conduct synthetic simulation to quantitatively analyze
such saving given by the holistic approach.

Setting We consider n = 200 applications. For simplicity, we consider d = 2 attributes, and
two reviewers. Then each holistic reviewer evaluates both attributes on half of the applications;
each segmented reviewer evaluates one attribute on all applications. We assume both review-
ers always evaluate the first attribute. Then the reviewers only proceed to evaluate the second
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Figure 6.4: The top-1 accuracy for different threshold values τ , for various values of the correla-
tion (x axis) of the attributes.

attribute of an application, if the value of its first attribute is the top-τ . Finally, the top-1 appli-
cation is selected only from applications whose both attributes are evaluated. The simulation
results are reported over 1000 runs.

Results We compute the top-1 accuracy for different threshold values τ , under different corre-
lations of the attributes. The result is shown in Figure 6.4. We observe that with high correlation
between the attributes, the accuracy only decreases marginally when less evaluation is performed
(smaller value of τ ). However, the threshold introduces a significant amount of saving in terms
of the number of cells that are evaluated. Hence, we conclude that a higher correlation between
the attributes allows more saving in the holistic approach.

In contrast, such saving is not possible in the segmented approach because the evaluation
tasks are typically allocated in parallel to the reviewers. Alternatively, choosing or reducing
the evaluation task can be made possible by decomposing the evaluation into multiple rounds.
However, having multiple rounds adds the complication to the implementation of the evaluation
procedure, and may also require more time needed for the evaluation process. This comparison
again suggests a tradeoff between the holistic and the segmented approaches, on efficiency versus
calibration.

6.5 Discussion
In this work, we propose using the segmented approach as an alternative to the conventional
holistic approach, for applications such as hiring and admissions. We provide a detailed discus-
sion comparing the two approaches, and provide theoretical and experimental results focused on
four aspects: calibration, fairness, aggregation and efficiency. These results indicate the potential
improvement by the segmented approach on calibration and fairness, while also suggesting that
the holistic approach has potential benefits on aggregation and efficiency. These results together
suggest a trade-off between the holistic and the segmented approaches (and the spectrum in be-
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tween). The trade-off and the choice of which scheme to use depends on the specific application
and desiderata. There are various considerations, as well as open problems, to this end:

• The segmented approach requires grouping of attributes, and the system designer needs to
do this grouping appropriately. For example, in the case of admissions, one may group
test scores and GPAs as one attribute called “scholarly performance”. In addition, in order
to provide appropriate context to reviewers, one may need to provide some attributes to
multiple reviewers.

• We assumed for simplicity that we aggregate the attributes by taking their mean. In prac-
tice, we may want to use different weights for different attributes, or even use non-linear
functions. This gives rise to two interesting open problems. First, if the aggregation func-
tion is non-linear, then it requires grouping the attributes in a manner that allows for the
best possible approximate aggregation after segmentation. Second, in some cases, the ag-
gregation function may not be precisely provided by the system designer, but needs to be
learnt from past data. This problem of learning the aggregation function from evaluations
has been studied in the specific context of peer review of scientific papers [130], and it is
of interest to extend such results to more general applications.

• This work discusses a spectrum of choices on how to tile the attributes and applications
in terms of the spectrum between holistic and segmented. An open problem of interest is
to establish the optimal point(s) on this spectrum theoretically and/or practically for any
given specification of application and desiderata.
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Chapter 7

Reducing Bias from Alphabetcial-Ordering
Authorship in Scientific Publications

7.1 Introduction
It is common in some academic fields such as theoretical computer science to order the authors
of a paper according to the alphabetical order of their last names. Alphabetical ordering is also
employed in other contexts like listing of names of people on the web, for instance, to order the
participant list and pictures on the ITA conference website1.

Although alphabetical ordering mitigates some issues with other ordering approaches (e.g.,
possible conflicts among authors under contribution-based ordering), it causes its own biases.
These biases form the focus of this post. What are these biases? A number of papers have
empirically studied the effects of the convention of alphabetically-ordered authorship, which
reveal biases associated to this convention. Here is an excerpt from the study [57] by Einav and
Yariv:

“We begin our analysis with data on faculty in all top 35 U.S. economics departments. Fac-
ulty with earlier surname initials are significantly more likely to receive tenure at top ten
economics departments, are significantly more likely to become fellows of the Econometric
Society, and, to a lesser extent, are more likely to receive the Clark Medal and the Nobel
Prize. These statistically significant differences remain the same even after we control for
country of origin, ethnicity, religion or departmental fixed effects. All these effects gradually
fade as we increase the sample to include our entire set of top 35 departments.

We suspect the ‘alphabetical discrimination’ reported in this paper is linked to the norm
in the economics profession prescribing alphabetical ordering of credits on coauthored pub-
lications. As a test, we replicate our analysis for faculty in the top 35 U.S. psychology de-
partments, for which coauthorships are not normatively ordered alphabetically. We find no
relationship between alphabetical placement and tenure status in psychology.”

Various other studies make similar observations and draw similar conclusions (e.g., see [85,
184] and references therein).

1http://ita.ucsd.edu/workshop/18/?year=18#participants .
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Conference Number of papers Number of papers using “First author et al.” in its text
STOC 2017 99 70
STOC 2016 79 59
FOCS 2017 79 48
FOCS 2016 73 43

EC 2017 75 48
EC 2016 99 87

Table 7.1: A significant portion of the papers accepted at theory conferences in recent years uses
the “First author et al.” citation format.

What is the source of these biases? There are at least two types of bias effects.

• Implicit bias – Primacy effects: Primacy effects describe the human cognitive bias that
people are more likely to remember and choose items showing up earlier in a list than
items later in the list – in short, “first is best” [32]. Primacy effects have been widely
studied in psychology, and observed in many laboratory and field settings, e.g., people are
more likely to recall words earlier in a list [96]; people are more likely to choose the first
candidate on the ballot for an election [38]. In the context of author ordering, primacy
effect suggests that authors whose names show up earlier in the author list are likely to
receive more attention from the reader.

• Explicit bias – “First author et al.”: A more conspicuous bias arises when papers use a
“First author et al.” format in its text to refer to other papers. Now, it may be argued that
communities which use alphabetical-ordering conventions do not use the “First author et
al.” format. So we put this hypothesis to the test. Publication venues in computer science
that primarily follow alphabetical orderings include STOC, FOCS and EC. We performed
a search on Google Scholar, and Tab. 7.1 shows the number of papers in these conferences
which use the “First author et al.” format in their own text. We observe that a significant
portion of the papers accepted at theory conferences in recent years uses the “First author
et al.” citation format.

What are alternative solutions? For ordering authors in papers, a contribution-based arrange-
ment is a popular alternative. However, this manner of ordering can cause conflicts between
authors regarding their contributions. An alternative is to employ a technique that computer sci-
entists use extensively in their research – randomization. Under such a randomized arrangement,
authors could be ordered uniformly at random. Or otherwise the authors could be arranged as a
combination of contribution-based and randomized methods, where contributions can determine
a partial order and then a total order is selected uniformly at random from among all total orders
consistent with the partial order. In this case, symbols or footnotes can be used to distinguish
authors whose orders are contribution-based and whose orders are random. See, for instance, the
paper [142] for a more detailed discussion on randomized author ordering.

Likewise for lists of names on the web, one could randomize the order whenever feasible.
This randomization could be dynamic (a new ordering whenever the page is loaded) or static
(permute once and fix the permutation). Now, if we were dealing with listing names in some
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printed material, searching for any particular individual would have been difficult. But on the
browser, one can always use Ctrl/Cmd+F to search.

7.2 Main results
We reached out to a number of organizations regarding mitigating the bias from alphabetical-
ordering authorship in scientific publications. We hope that these efforts constitute the important
first steps in reducing such bias:

• We reached out to the program chairs of ACM EC 2019, Nicole Immorlica and Ramesh
Johari. They kindly agreed to change the submission style file with numbered references
as default from the “First author et al.” format, and also keep numbered references in the
camera ready versions.

• Taking cognizance of these biases, starting October 24, 2019, the Machine Learning De-
partment at CMU has randomized the ordering of students and faculty on its webpages2.
One concern was that users may get confused since the standard practice is to order alpha-
betically. To this end, we put a small bar on top of the page indicating these biases and a
link to this post for details. Our webmaster tells us that the user experience has been same
as before (along with a lot of positive feedback that this was the right thing to do). The
CMU Theory group website also uses dynamic orderings now3.

• We reached out to Virginia Vassilevska Williams, the program chair of STOC 2021. Taking
cognizance of these issues, the call for papers for the conference added:

Recommended best practices for citations: Authors are asked to avoid “et
al.” in citations in favor of an equal mention of all authors’ surnames (unless the
number of authors is very large, and if it is large, consider just using \cite{}
with no “et al.”).

2https://www.ml.cmu.edu/people/
3http://theory.cs.cmu.edu/
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Chapter 8

Gender Bias in Conference Awards

In this chapter, we evaluate the gender distribution of best paper awardees in various top CS
conferences. The inspiration to do so comes from an interview of Andrea Goldsmith in the
IEEE Information Theory Society (ITSoc) newsletter [2] in which she lays out some interesting
statistics:

“Going by the names of authors, it seems that of the 64 papers that have won the ITSoc paper
award, not a single one has a female author. Similarly, it appears that not a single female
student has won the ISIT student paper award. Only five women have been elevated to IEEE
Fellow through ITSoc, which is quite a small number given that approximately 3–5 members
have been elevated annually to Fellow through ITSoc going back many decades. Finally, only
one of the nine Padovani lecturers, who are selected as role models for current ITSoc graduate
students, has been female. In my own experience serving on the ITSoc awards committees
and Fellows committee, I rarely see women nominated for society awards and honors. When
they are my sense is that their research, achievements, and impact are judged more harshly
than that of the men. Perhaps that is why women are not well represented among the recipients
of ITSoc’s highest honors and awards.”

In this section, we ask a similar question for other venues. Specifically, we compile data
on the fraction of women authors in award-winning papers in a number of top conferences in
Computer Science in this decade (2010-2018). Fig. 8.1 plot shows the percentage of women
authors among all authors in award-winning papers. Fig. 8.2 shows the percentage of award-
winning papers with at least one woman author. For comparison, all except two award-winning
papers (one from ACL and one from FOCS, both single-authored) have at least one male author.

The numbers are quite striking especially in venues on the left side of these plots. It is
also important to note that the conferences which have a healthier distribution in a relative sense
(those towards the right of the plots), still have the number of award-winning women authors less
than 20%. Also interestingly, comparing conferences on similar topics, we see that STOC and
FOCS are almost identical in these plots; on the other hand NeurIPS and ICML are significantly
different (p < 0.05 for in percentage of women authors in award-winning papers; Fisher’s two-
sided exact test).

We do hope that the compilation of this data in the post will at least spur some conversation
about this topic. Two specific topics of discussion are:
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Figure 8.1: The percentage of women authors among all authors in award-winning papers.

Figure 8.2: The percentage of award-winning papers with at leaset one women author.

1. Evaluation: It would be of interest to compare with the distribution of genders among the
submitted papers, accepted papers, and papers nominated for the awards at these venues.
Can we identify the main source(s) of this discrepancy in the peer-review pipeline —
whether it is in the submissions itself, paper acceptance decisions in reviews, nominations
for the awards, or in the final award decisions?

2. Transparency: The process of determining the awards is often not clear. For instance,
in the conferences which adopt a double-blind policy, are the author identities visible to
the award committee? How is the committee determined, and what criteria do they use?
Finally, if these conferences release some details on why a certain paper was chosen for
the award, it will not only provide some criteria for the award but also help motivate and
guide budding researchers. For example, the award selection process along with remarks
on the award-winning papers for ACL 2017 is described in the program chairs’ blog [14].
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Chapter 9

Proofs of Chapter 2

In this section, we present the proofs of our theoretical results.
For notational simplicity, we use “1 ≺ 2” to denote that item 1 has a smaller value than item

2. Since the items have distinct values, we have 1 ≺ 2 if and only if 2 � 1. For the 0-1 loss
L(π∗, π̂) = 1{π̂ 6= π∗}, we call the expected loss E[L(π∗, π̂)] = P(π̂ 6= π∗) as the “probability
of error” of any estimator π̂, and P(π̂ = π∗) as the “probability of success”. For the canonical
setting and A/B testing, the probability of success of random guessing is 0.5. To show that
some estimator π̂ strictly uniformly dominates random guessing for the canonical setting or A/B
testing, we only need to show that the probability of success of this estimator is strictly higher
than 0.5, or equivalently, the probability of error of of this estimator is strictly lower than 0.5.

9.1 Proof of Theorem 2.2
We prove that no deterministic cardinal estimator can strictly uniformly dominate the random-
guessing estimator π̂can, which implies the negative result for any deterministic ordinal estimator.

Recall the notation î(1) = argmaxi∈{1,2} yi as the item receiving the higher score (with ties
broken uniformly at random), and the notation î(2) as the remaining item. First, we consider a
deterministic estimator that always outputs î(1) as the item whose value is greater. We call this
estimator the “sign estimator”, denoted π̂sign:

π̂sign(A, y1, y2) = (̂i(1) � î(2)).

The proof consists of two steps. (1) We show that the sign estimator does not strictly uni-
formly dominate random guess. (2) Building on top of (1), we show that more generally, no
deterministic estimator strictly uniformly dominates random guess.
Step 1: The sign estimator does not strictly uniformly dominate random guess.

We construct the following counterexample such that the probability of error of the sign
estimator is 0.5. We construct reviewer calibration functions such that their ranges are disjoint,
that is, one reviewer always gives a higher score than the other reviewer, regardless of the items
they are assigned. Then the relative ordering of the two scores does not convey any information
about the relative ordering of the two items, and we show that in this case, the sign estimator has
a probability of error of 0.5. Concretely, let the item values be bounded as x1, x2 ∈ (0, 1), and
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let the calibration functions be f1(x) = x and f2(x) = x+ 1. Then the score given by reviewer 2
is higher than the score given by reviewer 1 regardless of the item values they are assigned. The
sign estimator always observes y1 < y2, and outputs the item assigned to reviewer 2 as the larger
item. The assignment is either A = (S1 = 1, S2 = 2) or (S1 = 2, S2 = 1) with probability 0.5
each. Under assignment (S1 = 1, S2 = 2), the sign estimator outputs 1 ≺ 2. Under assignment
(S1 = 2, S2 = 1), the sign estimator outputs 1 � 2. Under one (and exactly one) of the two
assignments, the output of the sign estimator is correct. Hence, the probability of error of the
sign estimator is 0.5.

Step 2: No deterministic estimator strictly uniformly dominates random guess.

Let A be the set of the two assignments, A = {(S1 = 1, S2 = 2), (S1 = 2, S2 = 1)}. A de-
terministic estimator π̂det : A×R×R→ {1 � 2, 1 ≺ 2} is a deterministic function that takes as
input the assignment and the scores for the two items, and outputs the relative ordering between
the two items. Step 1 has shown that the sign estimator does not strictly uniformly dominate ran-
dom guess. Hence, we only need to prove that any deterministic estimator π̂det that is different
from the sign estimator does not strictly uniformly dominate random guess. For this deterministic
estimator π̂det, there exist some input values (a, ỹ1, ỹ2) such that the output of this deterministic
estimator differs from the sign estimator. If the two estimators π̂sign and π̂det only differ at points
where ỹ1 = ỹ2, then we can use the same counterexample in Step 1 to show that the probability of
error of this deterministic estimator is 0.5. It remains to consider the case when ỹ1 6= ỹ2. Without
loss of generality, assume ỹ1 > ỹ2. Then consider the following counterexample. Let x1 > x2.
Let f1, f2 be strictly-increasing functions such that f1(x1) = f2(x1) = ỹ1, f1(x2) = f2(x2) = ỹ2.
Regardless of the reviewer assignment, the score y1 for item 1 is ỹ1, and the score y2 for item 2 is
ỹ2. The item receiving a higher score is always î(1) = argmaxi∈{1,2} yi = 1, so the sign estimator
π̂sign always outputs 1 � 2. Under assignment a, the deterministic estimator differs from the sign
estimator, so the deterministic estimator gives the incorrect output (1 ≺ 2). The assignment a
happens with probability 0.5, so the probability of error of this deterministic estimator is at least
0.5.

The two steps above complete the proof that there exists no deterministic estimator that
strictly uniformly dominates random guess.

9.2 Proof of Theorem 2.3

In what follows, we prove that the probability of success of our estimator is strictly greater than
0.5 under arbitrary item values x1, x2 and arbitrary calibration functions f1, f2. We start with
re-writing our estimator in (2.2) into an alternative and equivalent expression, and then prove the
result on this new expression of our estimator.

Recall that î(1) = argmaxi∈{1,2} yi denotes the item receiving the higher score, and î(2) de-
notes the remaining item (with ties broken uniformly). Depending on the relative ordering of y1

and y2, we can split (2.2) into the following three cases:
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π̃our
can(A, y1, y2 | y1 > y2) =

{
1 � 2 with probability 1+w(y1−y2)

2

2 � 1 otherwise,
(9.1a)

π̃our
can(A, y1, y2 | y1 < y2) =

{
1 � 2 with probability 1−w(y2−y1)

2

2 � 1 otherwise,
(9.1b)

π̃our
can(A, y1, y2 | y1 = y2) =

{
1 � 2 with probability 1

2

2 � 1 otherwise.
(9.1c)

Recall that the function w is from [0,∞) to [0, 1). Now we define the following auxiliary
function w̃ : R→ (0, 1):

w̃(x) =





1+w(x)
2

if x > 0
1
2

if x = 0
1−w(−x)

2
otherwise.

(9.2)

Combining (9.1) and (9.2), we have

π̃our
can(A, y1, y2) =

{
1 � 2 with probability w̃(y1 − y2)

2 � 1 otherwise.
(9.3)

Without loss of generality, assume x1 > x2. The assignment is either a := (S1 = 1, S2 = 2)
or a′ := (S1 = 2, S2 = 1) with probability 0.5 each. Thus, the estimator observes {y1 =
f1(x1), y2 = f2(x2)} under assignment a, or {y1 = f2(x1), y2 = f1(x2)} under assignment a′.
The probability of success of our estimator π̃our

can is:

P(π̃our
can = π∗) =

∑

ã∈{a,a′}

P(π̃our
can = π∗ | A = ã)P(A = ã)

(i)
=

1

2
w̃(f1(x1)− f2(x2)) +

1

2
w̃(f2(x1)− f1(x2))

=
1

2
[w̃(f1(x1)− f2(x2)) + w̃(f2(x1)− f1(x2))]

(ii)
=

1

2
[1 + w̃(f1(x1)− f2(x2))− w̃(f1(x2)− f2(x1))] , (9.4)

where step (i) is true by plugging in (9.3), and step (ii) is true because w̃(x) + w̃(−x) = 1 by the
definition of the function w̃ in (9.2).

By the monotonicity of the functions f1 and f2, and by the assumption that x1 > x2, we have
f1(x1) + f2(x1) > f1(x2) + f2(x2), and therefore f1(x1) − f2(x2) > f1(x2) − f2(x1). Since
w(0) ≥ 0 and w is monotonically increasing on [0,∞), it is straightforward to verify that w̃ is
monotonically increasing on R. Hence, we have

w̃(f1(x1)− f2(x2)) > w̃(f1(x2)− f2(x1)). (9.5)
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Combining (9.4) and (9.5), we have

P(π̃our
can = π∗) >

1

2
.

9.3 Proof of Theorem 2.4

We construct a counterexample on which the mean, median and sign estimators have a probabil-
ity of error of 0.5. In this counterexample, let the item values be bounded as x1, x2 ∈ (0, 1), and
let the m reviewer calibration functions be as follows:

fj(x) =




x+ (j − 1) if 1 ≤ j ≤ m− 1

x+
m(m− 1)

2
if j = m.

(9.6)

In these calibration functions, the score provided by each reviewer is the sum of the true value
of the item assigned to this reviewer, and a bias term specific to this reviewer. The analysis is
performed separately for the three estimators. At a high level, the analysis for the mean estimator
uses the fact that one reviewer (specifically, reviewer m) has a significantly greater bias than the
rest of the reviewers. The analysis for the median and the sign estimators uses the fact that the
ranges of these calibration functions are disjoint.
Mean estimator: Recall that each reviewer is assigned one of the two items. Given any assign-
ment, consider the item assigned to reviewer m. Trivially, the sum of the scores for this item
must be strictly greater than fm(0) = m(m−1)

2
. Now consider the remaining item (not assigned

to reviewer m). The sum of the scores for the remaining item can be at most
∑m−1

j=1 fj(1) =∑m−1
j=1 j = m(m−1)

2
.

From these two bounds on the sum of the scores, an item has a greater sum of scores if and
only if reviewer m is assigned to this item. By symmetry of the assignment, reviewer m is as-
signed to either item with probability 0.5. With the true ranking being either 1 � 2 or 1 ≺ 2, the
mean estimator makes an error in one of the two assignments, and this assignment happens with
probability 0.5. Hence, the mean estimator makes an error with probability 0.5.

Median estimator and sign estimator: For the median estimator and the sign estimator, we
first present an alternative view on the assignment, which is used for the analysis of both estima-
tors. Recall that the assignment specifies m/2 reviewers to evaluate item 1, drawn uniformly at
random without replacement, and the remaining m/2 reviewers to item 2. Equivalently, we can
view this assignment as comprising the following two steps. (1) We sample uniformly at random
a permutation of the m reviewers, denoted as a list (j1, . . . , jm). Define R and R′ as the first half
and second half of the reviewers in the list, R = (j1, . . . , jm

2
) and R′ = (jm

2
+1, . . . , jm). (2) We

draw uniformly at random one of the two items, and assign the list R of reviewers to this item.
Then assign the list R′ of reviewers to the remaining item. For each k ∈ [m/2] , call reviewers
{jk, jm

2
+k} as the kth pair of reviewers.
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For the median estimator and the sign estimator, we prove that given any arbitrary lists of re-
viewers R and R′ in Step (1) of the assignment, the randomness in Step (2) yields the probability
of error of the two estimators as 0.5.

Recall that the item values are bounded as x1, x2 ∈ (0, 1). Since the biases of any two
reviewers differ by at least 1 in Eq. (9.6), any reviewer j gives a higher score than any other
reviewer j′ if and only if j < j′, independent of the item values and the assignment. Formally,
for any x, x′ ∈ (0, 1), and any j, j′ ∈ [m], we have

fj(x) < fj′(x
′) if and only if j < j′. (9.7)

The remaining analysis is performed separately for the median estimator and the sign esti-
mator.
Median estimator: Denote jmed

1 and jmed
2 as the indices of the reviewers providing the (upper)

median scores in the set R1 and R2, respectively. From (9.7), we have

jmed
1 = median(j1, . . . , jm

2
)

jmed
2 = median(jm

2
+1, . . . , jm).

(9.8)

Also from (9.7), the higher score in the two scores given by reviewer jmed
1 and jmed

2 is the reviewer
with the larger index, max{jmed

1 , jmed
2 }. In Step (2) of the assignment, reviewer jmed

1 is assigned
to item 1 or item 2 with equal probability. Hence, the probability of error of the median estima-
tor is 0.5. This proves the claim that the (upper) median estimator does not strictly uniformly
dominates random guess.

We now comment on using the median function defined as the lower median, or as the mean
of the two middle values. For the lower median, the same argument as above applies. Now
consider the median defined as the mean of the two middle values. When m/2 is odd, Eq. (9.8)
still holds, and the argument as above still applies. When m/2 is even, the median value may not
be equal to any scores from the reviewers. We construct a counterexample where the item values
are still bounded as x1, x2 ∈ (0, 1), and the calibration functions as follows:

fj(x) = x+ 2j for every j ∈ [m].

With these calibration functions, for any x, x′, x′′, x′′′ ∈ (0, 1), and any j, j′, j′′, j′′′ ∈ [m], we
have

fj(x) + fj′(x
′) < fj′′(x

′′) + fj′′′(x
′′′) if and only if max{j, j′} < max{j′′, j′′′}.

Using this fact, we can show that the output of this median estimator only depends on re-
viewer indices and the realization of Step (2), independent of the item values. The probability of
error of this median estimator is also 0.5.

Sign estimator: Denote a as the assignment that reviewers in R are assigned to item 1, and
denote a′ as the assignment that reviewers in R are assigned to item 2. For each k ∈ [m/2],
define vk ∈ {0, 1} as the binary value of whether the higher score in the kth pair of scores comes
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from item 1, under assignment a. Set vk = 1 if the higher score comes from item 1 and vk = 0
otherwise. Define v′k ∈ {0, 1} similarly under assignment a′. Set v′k = 1 if the higher score
comes from item 1, and v′k = 0 otherwise. Inequality (9.7) implies that vk + v′k = 1 for any
k ∈ [m/2]. Define v =

∑m/2
k=1 vk as the count of pairwise wins for item 1 under assignment a,

and define v′ similarly. Then we have

v + v′ =
m

2
. (9.9)

The sign estimator outputs the item with more pairwise wins. That is, the sign estimator
outputs item 1 under assignment a if v > m/4, outputs item 1 under assignment a′ if v′ >
m/4, and outputs one of the two items uniformly at random if v = m/4 or v′ = m/4. When
v = v′ = m/4, then under either assignment, the sign estimator has a tie, and hence outputs
one of the two items uniformly at random. The probability of error of the sign estimator is 0.5.
Otherwise, we have v 6= m/4. By (9.9), we have either v > m/4 > v′ or v′ > m/4 > v. The
sign estimator gives different outputs under the two assignments, out of which one and only one
output is correct. The probability of error of the sign estimator is 0.5.

9.4 Proof of Theorem 2.5
Recall that a subset of m/2 reviewers, drawn uniformly at random without replacement, are
assigned to item 1, and the remaining m/2 reviewers are assigned to item 2. We provide an
alternative and equivalent view of the assignment as the following two steps:

(1) We sample two reviewers, uniformly at random without replacement, as the first pair of
reviewers for the two items, and call them {j1, j

′
1}. Then sample two reviewers, uniformly

at random without replacement, from the remaining (m− 2) reviewers as the second pair
of reviewers for the two items, and call them {j2, j

′
2}. Continue until all m reviewers are

exhausted, and call the subsequent pairs of reviewers {j3, j
′
3}, . . . , {jm/2, j′m/2}.

(2) Within each pair, assign the pair of reviewers to the two items uniformly at random. That
is, for each k ∈ [m/2], assign reviewer jk to one of the two items uniformly at random, and
assign reviewer j′k to the remaining item. The assignments are independent across pairs.

Consider any arbitrary values of items x1, x2 ∈ R. Given any arbitrary realization of Step
(1) of the assignment procedure described above, we apply Theorem 2.3 and show that on each
pair of reviewers, the canonical estimator gives the correct output with probability strictly greater
than 0.5. Then we show that combining the m/2 pairs by majority-voting yields probability of
success strictly greater than 0.5.

Denote λ(x1, x2, {f, f ′}) as the probability that our canonical estimator in Eq. (2.2) gives the
correct output comparing items of values x1, x2 under reviewer calibration functions f, f ′. In
Step (2) of the assignment procedure described above, for any k ∈ [m/2], consider the kth pair
of reviewers, {jk, j′k}. Suppose that the calibration functions of these two reviewers are denoted
as {f, f ′}. By Theorem 2.3, since the two reviewers are assigned to the two items uniformly at
random, we have

λ (x1, x2, {f, f ′}) >
1

2
for all permissible f, f ′. (9.10)
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Let λmin denote the probability of success of our canonical estimator when run on the worst
pair of calibration functions among all pairs of reviewers

λmin = min
f,f ′∈{f1,...,fm}

λ(x1, x2, {f, f ′})
(i)
>

1

2
,

where inequality (i) is true because of Eq. (9.10), and because the number of reviewers m is
finite.

Now assume that we are given any arbitrary realization of Step (1) of the assignment. For
each k ∈ [m/2], define Vk ∈ {0, 1} as the indicator variable of the correctness of our canonical
estimator on the kth pair of scores. We set Vk = 1 if the canonical estimator gives the correct
output on the kth pair, and 0 otherwise. Then Vk is a Bernoulli random variable with mean
λ(x1, x2, {fjk , fj′k}) ≥ λmin. Moreover, since Step (2) of the assignment is performed indepen-
dently across all pairs, the variables {Vj}kj=1 are independent given the item values and Step (1)
of the assignment.

Let V =
∑m/2

j=1 Vj be the number of pairs for which the canonical estimator π̃our
can gives the

correct output. Define a binomial random variable B with k trials and the success probability
parameter λmin. Then the random variable V stochastically dominates the random variable B.
Recall that our estimator breaks ties uniformly at random. The probability of success of our
estimator with the majority-voting procedure is then bounded as

P[V >
k

2
] +

1

2
P[V =

k

2
] =

1

2

(
P[V >

k

2
] + P[V ≥ k

2
]

)

≥1

2

(
P[B >

k

2
] + P[B ≥ k

2
]

)

=P[B >
k

2
] +

1

2
P[B =

k

2
]

(i)
>

1

2
,

where inequality (i) is true because the success probability parameter λmin of the binomial vari-
able is strictly greater than 1

2
.

We complete the proof that the probability of success of our estimator is strictly greater than
0.5 uniformly on any item values x1, x2 and any permissible calibration functions {fj}mj=1.

9.5 Proof of Theorem 2.6
We first provide a high-level description of the proof. We call a pair of items “flippable”, if
Algorithm 1 uses the canonical estimator to decide the relative ordering of this pair (that is, the
if-condition in Line 6 in Algorithm 1 is true). Note that a “flippable” pair may or may not be
flipped by the algorithm, as the outcome depends on the output of the canonical estimator. In
Theorem 2.3, we show that our canonical estimator π̃our

can predicts the relative ordering of a pair of
items correctly with probability strictly greater than 0.5. The main idea of the proof is to apply
Theorem 2.3 to each flippable pair. Then we show that an improvement on the probability of
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correctness on these flippable pairs translates to an improvement on the probability of success of
exact recovery.

Theorem 2.3 requires that within each pair, the two reviewers are assigned the two items
uniformly at random. To be able to apply this theorem, we separate the different sources of
randomness in the joint procedure of the assignment and the algorithm. We derive an equivalent
algorithm by re-ordering the steps of Algorithm 1, so that in this equivalent algorithm, given
any flippable pair of items and two reviewers evaluating this pair, the last sources of randomness
comes from the random assignment of the two reviewers to the two items within this pair.

We introduce some additional notation for our re-ordered algorithm. Recall the notation of
A = (S1, . . . , Sm) for the reviewer assignment, where Sj is a pair of items assigned to reviewer j
for each j ∈ [m]. DenoteQ = {S̃j}mj=1 as the samem pairs of items, but the reviewer assigned to
each pair S̃j is unspecified. Now we present an equivalent joint procedure of the assignment and
the cardinal estimator π̃our

rank in Algorithm 4. In what follows, we provide a high-level summary
of Algorithm 4:

(1) Line 1-2: We sample m pairwise comparisons of the items, drawn uniformly at random
without replacement from the

(
n
2

)
pairs. Obtain an initial estimate π̂ of the ranking, by

computing a topological ordering on the graph G(B).

(2) Line 3-18: Store the positions of all flippable pairs (if any) determined by Algorithm 1. If
an item is included in some flippable pair, then this item is matched to a distinct pairwise
comparison inQ. Store the matching between the items in flippable pairs and the pairwise
comparisons.

(3) Line 19: For the two pairwise comparisons associated with each pair of flippable items,
sample two reviewers uniformly at random without replacement to evaluate the two com-
parisons.

(4a) Line 20-21: Within each flippable pair, assign the two reviewers to the two items uni-
formly at random.

(4b) Line 22-28: Run the canonical estimator on each flippable pair, and flip the pair if the
canonical estimator decides to do so (Line 23-26). After all flippable pairs are examined,
output the final ranking π̂.

We now briefly discuss the equivalence of Algorithm 4 to Algorithm 1. We first discuss the
equivalence of the assignment procedures in the two algorithms, and then the estimation aspect in
the next paragraph. The assignment consists of Steps (1), (3) and (4a). Recall that the assignment
in Algorithm 1 samples m pairwise comparisons, uniformly at random without replacement, to
assign to the m reviewers. In Algorithm 4, this assignment is decomposed into the choice of
pairwise comparisons, the choice of a pair of reviewers to two pairwise comparisons in each
flippable pair, and the assignment within each flippable pair, corresponding to Steps (1), (3)
and (4a), respectively. Note that only the selected pairwise comparison for each item within
some flippable pair is used for Algorithm 4, so we do not need to specify the assignment of the
reviewers for the rest of the comparisons. This re-ordering of the assignment is equivalent to
Algorithm 1.

The cardinal ranking estimator consists of the rest of the steps, namely Steps (2) and (4b).
In the original presentation of the estimator in Algorithm 1, the estimator scans through the
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items, identifies flippable pairs, calls the canonical estimator on each flippable pair, and flips the
pairs accordingly. Note that the identification of flippable pairs does not need the assignment
of reviewers or the scores from the reviewers, so Algorithm 4 first scans through the items and
identifies all flippable pairs, without using the choice of the reviewers in the assignment or using
the scores from the reviewers. Then Algorithm 4 calls the canonical estimator on each flippable
pair once the choice of the reviewers and the scores are determined, and flips each pair based on
the corresponding output from the canonical estimator. Note that when checking for a flippable
pair (the if-condition in Line 6 in Algorithm 1 and Line 9 in Algorithm 4), Algorithm 1 checks
whether the flipped ranking π̂flip is a topological ordering, where the previous flippable pairs in
π̂flip may have already been flipped. In Algorithm 4, the previous flippable pairs are identified but
are not flipped. However, whether the flipped ranking π̂flip is a topological ordering is indepen-
dent of whether the previous flippable pairs in π̂flip are flipped. Hence, the identification of the
flippalbe pairs is equivalent in the two algorithms. The re-ordering of the steps of the cardinal
estimator π̃our

rank is valid.
Having now established the equivalence of Algorithm 4 to Algorithm 1, we now prove Theo-

rem 2.6 with respect to Algorithm 4. Let us denote π̃eq
rank as the cardinal estimator in Algorithm 4.

Denote topo(B) as the set of all topological orderings on the directed graph G(B) induced by the
set of ordinal observations B. We denote a random variable T (B) := |topo(B)| as the number
of such topological orderings. Note that the definition of flippable pairs carries over from Al-
gorithm 1 to Algorithm 4. We denote a random variable L as the number of flippable pairs in
Algorithm 4.

Let us first consider the probability of success of the ordinal estimator. The following lemma
describes the posterior distribution of the true ranking conditioned on the set of ordinal observa-
tions B. Using this posterior distribution, the optimal ordinal estimators and their probability of
success are derived.
Lemma 9.1. (a) Given any possible set of ordinal observations β, the posterior distribution of
the true ranking π∗ is uniformly distributed over the T (β) topological orderings:

P(π∗ = π | B = β) =

{
1

T (β)
if π ∈ topo(β)

0 otherwise.
(9.11)

(b) Any ordinal estimator π̂opt
rank is optimal for the 0-1 loss, if and only if given any set of ordinal

observations β, the output of this ordinal estimator belongs to the T (β) topological orderings
with probability 1, that is, if and only if

P(π̂opt
rank(β) ∈ topo(β) | B = β) = 1 for all possible set of ordinal observations β. (9.12)

Moreover, conditioned on the set of ordinal observations β, the probability of success of any
optimal ordinal estimator π̂opt

rank is

P(π̂opt
rank = π∗ | B = β) =

1

T (β)
. (9.13)

See Section 9.5.1 for the proof of the lemma.
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Now consider the probability of success of our cardinal estimator π̃eq
rank from Algorithm 4. We

write the probability of success of our cardinal estimator as

P(π̃eq
rank = π∗) =

∑

β

∑

`

P(π̃our
rank = π∗ | B = β, L = `)P(B = β, L = `), (9.14)

where β is summed over all possible sets of ordinal observations, and ` is summed from 0 to
bn/2c.

We consider each term P(π̃eq
rank = π∗ | B = β, L = `) separately for each β and `. We prove

that for any β and any `, the probability of success of our cardinal estimator is greater than or
equal to the probability of success of any optimal ordinal estimator π̂opt

rank. We also show that the
probability of success is strictly greater for some β and `. We discuss the following two cases
separately, depending on the number of flippable pairs.
Case 1: ` = 0.

We have the number of flippable pairs L = 0 either if there is a unique topological ordering
on the graph G(B), or if in each pair of adjacent items that can be flipped without violating
pairwise comparisons, at least one item in this pair does not have any score. Note that these two
conditions are fully determined by the set of ordinal observations. Hence, conditioned on the set
of ordinal observations B = β, the event of L = 0 is fully determined, and is independent of
everything else given B.

The initial estimated ranking of the cardinal estimator is a topological ordering (Line 2 of Al-
gorithm 4). Since there is no flippable pair, the cardinal estimator simply outputs this topological
ordering. For any set of ordinal observations β such that P(B = β, L = 0) > 0, we have

P(π̃eq
rank = π∗ | B = β, L = 0)

(i)
=P(π̃eq

rank = π∗ | B = β)
(ii)
=P(π̂opt

rank = π∗ | B = β), (9.15)

where π̂opt
rank denotes any optimal ordinal estimator. Here in (9.15), equality (i) is true because the

event L = 0 is fully determined by B, and equality (ii) is true because this cardinal estimator that
simply outputs a topological ordering is equivalent to an ordinal estimator that outputs the same
topological ordering. From (9.12), this ordinal estimator is one optimal ordinal estimator.
Case 2: ` > 0.

In this case, Algorithm 4 identifies at least one flippable pair. The probability of success of
our cardinal estimator is

P(π̃eq
rank = π∗ | B = β, L = `) =

∑

π∈Π

P(π̃eq
rank = π | π∗ = π,B = β, L = `)P(π∗ = π | B = β, L = `)

(i)
=
∑

π∈Π

P(π̃eq
rank = π | π∗ = π,B = β, L = `)P(π∗ = π | B = β)

(ii)
=

1

T (β)

∑

π∈topo(β)

P(π̃eq
rank = π | π∗ = π,B = β, L = `), (9.16)

where equality (i) is true because L is independent of π∗ conditioned on B. Equality (ii) is true
by plugging in (9.11).

115



In Algorithm 4, Lines 1-19 fully determine the number of the flippable pairs, their posi-
tions, and the two reviewers evaluating each flippable pair. In Lines 20-28, within each flippable
pair, the algorithm first assigns uniformly at random one reviewer to one item and the remaining
reviewer to the remaining item, and then calls the canonical estimator to output the relative or-
dering of this pair. Conditioned on the randomness in Lines 1-19 of Algorithm 4, we now apply
Theorem 2.3 to each flippable pair. Since the reviewer assignment within each flippable pair
(Line 21) is uniformly at random, by Thoerem 2.3, the probability that the canonical estimator
outputs the correct relative ordering of each flippable pair is strictly greater than 1

2
. Since the as-

signment within each flippable pair is independent across pairs, the probability that the canonical
estimator outputs the correct relative ordering of all ` flippable pairs is strictly greater than 1

2`
.

Recall that the initial estimated ranking of our cardinal estimator is a topological ordering.
Consider all total rankings that are identical to this initial ranking, except for (possibly) the
relative ordering of the ` flippable pairs. Since the items in the flippable pairs are disjoint, there
are 2` such total rankings. By definition, a pair is flippable only if the total ranking after this
pair is flipped is still a topological ordering. Hence, all these 2` total rankings are topological
orderings on the graph G(B). In (9.16), the summation of π is over all topological orderings. In
particular, this summation includes these 2` total rankings. On each of these 2` total rankings, the
output of our ranking estimator π̃eq

rank is correct if and only if the canonical estimator outputs the
correct relative orderings for the ` flippable pairs, which happens with probability strictly greater
than 1

2`
. Hence, we bound (9.16) as

P(π̃eq
rank = π∗ | B = β, L = `) >

1

T (β)
· 2` · 1

2`
=

1

T (β)
(i)
=P(π̂opt

rank = π∗ | B = β), (9.17)

where π̂opt
rank denotes any optimal ordinal estimator. Equality (i) is true because of (9.13) in

Lemma 9.1.
Plugging (9.15) and (9.17) into (9.14), we have

P(π̃eq
rank = π∗) ≥ P(π̂opt

rank = π∗) for any optimal ordinal estimator π̂opt
rank, (9.18)

and a strict inequality holds in (9.18) if there exists some β and some ` > 0, such that

P(B = β, L = `) > 0. (9.19)

It remains to find some β and some ` > 0 such that (9.19) is true. We construct such β and
` > 0 as follows. Consider the true ranking 1 � 2 � · · · � n, which happens with a strictly
positive probability as the prior distribution of the true ranking is uniform. Conditioned on this
true ranking, consider the event that the sampled pairwise comparisons in Q do not include a
direct comparison between items 1 and 2, but both item 1 and item 2 have at least one score each
(from comparisons with at least one of the remaining (n − 2) items). Recall that the number
of pairs satisfies 1 < m <

(
n
2

)
, so such a set Q of pairwise comparisons arises with a strictly

positive probability. Let β be the set of ordinal observations derived from the true ranking and
the setQ of pairwise comparisons described as above. With this β, item 1 and item 2 are the first
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two items in the initial ranking of the topological ordering, they can be flipped, and they both
have some scores. Hence, item 1 and item 2 form a flippable pair, and we have L > 0. Hence,
with this construction of β, we have

bn/2c∑

`=1

P(B = β, L = `) > 0.

Thus there exists some ` > 0 such that P(B = β, L = `) > 0. Hence, Equation (9.19) is true,
implying the strictly inequality in (9.18). Consequently, the probability of success of our cardinal
ranking estimator π̃eq

rank is strictly uniformly greater than the probability of success of any optimal
ordinal estimator. By the equivalence of Algorithm 4 and Algorithm 1, this result also holds for
the original cardinal estimator π̃our

rank, completing the proof.

9.5.1 Proof of Lemma 9.1
We first prove part (a) of the lemma. By Bayes rule, for any ranking π ∈ Π and any possible set
of ordinal observations β, we have

P(π∗ = π | B = β) =
P(B = β | π∗ = π)P(π∗ = π)

P(B = β)
. (9.20)

Given the set of ordinal observations β, the denominator in (9.20) is independent of π. Since
the prior of the true ranking is uniform, in the numerator we have P(π∗ = π) = 1

n!
, independent

of π. Now it remains to consider the term P(B = β | π∗ = π) in the numerator. Recall the
notation of the random variable Q as the set of pairwise comparisons in the ordinal observations
(but Q does not include the results of the relative orderings of these pairs). We write the term
P(B = β | π∗ = π) as

P(B = β | π∗ = π) =
∑

q

P(B = β | Q = q, π∗ = π)P(Q = q | π∗ = π)

(i)
=
∑

q

P(B = β | Q = q, π∗ = π)P(Q = q), (9.21)

where q is summed over all possible sets of m pairwise comparisons. Equality (i) is true because
the sampling of the set of pairwise comparisons Q is independent of the true ranking π∗.

Recall that the set of ordinal observations β includes the pairwise comparisons and results
of the relative orderings of these pairwise comparisons, whereas q only includes the pairwise
comparisons themselves, so β fully determines q. For this term to be non-zero, the set of pair-
wise comparisons indicated by β and the set of pairwise comparisons indicated by q need to be
identical. Hence, there is only one q in the summation of (9.21) consistent with β, and we denote
q̃ as the set of pairs consistent with β. Then (9.21) reduces to

P(B = β | π∗ = π) =P(B = β | Q = q̃, π∗ = π)P(Q = q̃), (9.22)

In (9.22), the second term P(Q = q̃) is independent of π. Now consider the first term
P(B = β | Q = q̃, π∗ = π). If π is a topological ordering on G(β), then by definition, the
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relative orderings on the pairs q̃ induced by the ranking π is the set of ordinal observations β. If
π is not a topological ordering, then by definition, the relative orderings induced by the ranking
π violates at least one relative ordering in β. Hence,

P(B = β | Q = q̃, π∗ = π) =

{
1 if π ∈ topo(β)

0 otherwise.
(9.23)

Combining the law of total probability with (9.20), (9.22) and (9.23), the posterior distribu-
tion of the true ranking is

P(π∗ = π | B = β) =

{
1

T (β)
if π ∈ topo(β)

0 otherwise.
(9.24)

Conditioned on the set of ordinal observations β, the posterior distribution of the true ranking
is uniform over all topological ordering on the graph G(β). This completes the proof for part (a)
of the lemma.

For part (b) of the lemma, we condition on any possible set of ordinal observations β. On the
input β, the probability of success of any (possibly-randomized) ordinal estimator π̂rank is:

P(π̂rank(β) = π∗ | B = β) =
∑

π∈Π

P(π̂rank(β) = π | π∗ = π,B = β)P(π∗ = π | B = β)

(i)
=

1

T (β)

∑

π∈topo(β)

P(π̂rank(β) = π | π∗ = π,B = β)

(ii)
=

1

T (β)

∑

π∈topo(β)

P(π̂rank(β) = π)

(iii)
≤ 1

T (β)
, (9.25)

where equality (i) is true by plugging in (9.24). Equality (ii) is true because the output of the
ordinal estimator π̂rank(β) on the input β only depends on its internal randomness, and hence
independent of the π∗ and B. Inequality (iii) is true by the law of total probability. In particular,
the equality sign in (iii) holds if and only if the output of the ordinal estimator is always a
topological ordering consistent with β, that is, if and only if

P(π̂rank(β) ∈ topo(β) | B = β) = 1. (9.26)

Taking an expectation over all possible ordinal observations β, we have

P(π̂rank(B) = π∗) =
∑

β

P(π̂rank(β) = π∗ | B = β)P(B = β). (9.27)

Combining (9.27) with the condition (9.26) for the equality sign in (9.25), an ordinal esti-
mator is optimal if and only if Eq. (9.26) holds on all possible ordinal observations β where
P(B = β) > 0. This completes the proof for part (b) of the lemma.
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9.6 Proof of Theorem 2.7
The proof is a slight modification to the proof of Theorem 2.3, so we only highlight the differ-
ence.

Recall that εij denotes the noise in the reported score of reviewer j ∈ {1, 2} for item i ∈
{1, 2}. In Eq. (9.4) from the proof of Theorem 2.3, we replace all the noiseless terms fj(xi) by
the noisy terms fj(xi)+εij for each i ∈ {1, 2} and j ∈ {1, 2}. Using the fact that the noise terms
are independent of everything else, and taking an expectation over all the noise terms, we have

P(π̃our
can = π∗) =

1

2
Eε11,ε12,ε21,ε22 [1 + w̃((f1(x1) + ε11)− (f2(x2) + ε22))− w̃((f1(x2) + ε21)− (f2(x1) + ε12))]

=
1

2
Eε11,ε12,ε21,ε22 [1 + w̃(f1(x1)− f2(x2) + ε11 − ε22)− w̃(f1(x2)− f2(x1) + ε21 − ε12)]

(i)
=

1

2
Eε1,ε2 [1 + w̃(f1(x1)− f2(x2) + ε1 − ε2)− w̃(f1(x2)− f2(x1) + ε1 − ε2)] ,

(9.28)

where step (i) uses linearity of expectation with a change of variable names, as the noise terms
εij are i.i.d.

Without loss of generality, assume x1 > x2. Recall from the proof of Theorem 2.3 that
f1(x1)− f2(x2) > f1(x2)− f2(x1), and therefore we have the deterministic inequality

f1(x1)− f2(x2) + ε1 − ε2 > f1(x2)− f2(x1) + ε1 − ε2, for any ε1, ε2 ∈ R.

Using the monotonicity of w̃, we have

w̃(f1(x1)− f2(x2) + ε1 − ε2)) > w̃(f1(x2)− f2(x1) + ε1 − ε2). (9.29)

Taking an expectation over ε1 and ε2 in (9.29) and combining with (9.28) gives

P(π̃our
can = π∗) >

1

2
.

9.7 Proof of Theorem 2.8
We first present the construction of a cardinal estimator σ̃our

rank-metric, which has access to one call to
any arbitrary ordinal estimator σ̂rank. For any i, i′ ∈ [n] with i 6= i′, we call the pair of items (i, i′)
“topologically-identical” under the set of ordinal observations B, if the following conditions are
met. There is no direct comparison between item i and item i′ in B. For any item ` 6∈ {i, i′},
the set B includes a comparison between item i and item `, if and only if the set B includes a
comparison between item i′ and item `. Moreover, if two comparisons (i, `) and (i′, `) are in
the set B, their comparison results are the same, that is, 1{i � `} = 1{i′ � `}. Note that it is
possible that item i is compared to no item in B (and hence item i′ is also compared to no item).

For any item i ∈ [n] and any possible set of ordinal observations B, we define the following
sets:

V +(i,B) ={` ∈ [n], ` 6= i | there exists a directed path from item ` to item i in the graph G(B)}
V −(i,B) ={` ∈ [n], ` 6= i | there exists a directed path from item i to item ` in the graph G(B)}.
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In words, V +(i,B) is the set of items that are ranked higher than item i according to the set of
ordinal observations B, and V −(i,B) is the set of items that are ranked lower than item i. For
any topologically-identical pair (i, i′), we have V +(i,B) = V +(i′,B) and V −(i,B) = V −(i′,B),
so we denote V +(i, i′,B) := V +(i,B) and V −(i, i′,B) := V −(i,B). Now we present a cardinal
estimator σ̃our

rank-metric in Algorithm 5.

In words, Algorithm 5 obtains an initial estimated ranking σ̂init by making one call to the given
ordinal estimator σ̂rank. Then Algorithm 5 identifies two items that are topologically-identical.
If such a topologically-identical pair (i, i′) exists, we perform the following two steps on this
topologically-identical pair:

(1) Line 5-13: Using the set of ordinal observations B, we obtain a new ranking σ̂ by re-
arranging the items in the initial estimated ranking σ̂init. In this new ranking σ̂, we keep
all items outside V + ∪ V − ∪ {i, i′} in the same positions as they are in σ̂init. We re-
arrange the items in V +∪V −∪{i, i′}, so that they occupy the remaining positions; the set
V + is ranked higher than items {i, i′}, and the set V − is ranked lower than items {i, i′}.
Moreover, the relative ranking of items within each set (V +, V − or {i, i′}) is preserved.
That is, if `, `′ ∈ V with some V ∈ {V +, V −, {i, i′}}, we have σ̂(`) < σ̂(`′) if and only if
σ̂init(`) < σ̂init(`

′).

(2) Line 14-18: We sample uniformly at random a score for each item in the topologically-
identical pair (i, i′). Based on this pair of scores, we call the canonical estimator to decide
the relative ordering of these two items. Depending on the outcome of the canonical esti-
mator, we keep the relative ordering of these two items unchanged, or flip the two items
accordingly.

This completes the description of the cardinal estimator σ̃our
rank-metric.

We now show that the cardinal estimator σ̃our
rank-metric takes polynomial time in the number of

items n, in addition to the time taken by one call to the given ordinal estimator σ̂rank. To check if a
pair of items (i, i′) is topologically-identical, it takes polynomial time to go through the pairwise
comparisons in B. Hence, it takes polynomial time to identify a topologically-identical pair (or
determine that such a pair does not exist). For any topologically-identical pair, in the re-arranging
step, the set V −(i, i′,B) can be found by a graph traversal from node i. The set V +(i, i′,B) can
be found by a graph traversal from node i on the graph G(B) but with all edges reversed. Both
traversals take polynomial time. Hence, Algorithm 5 takes polynomial time, in addition to one
call to the ordinal estimator σ̂rank.

We now present the proof for the uniform strict dominance of the cardinal estimator σ̃our
rank-metric

over the given ordinal estimator σ̂rank. Given any two rankings σ1, σ2 and any two items (i, i′),
we denote α(σ1, σ2, i, i

′) := 1{1{σ1(i) > σ1(i′)} 6= 1{σ2(i) > σ2(i′)}} as Kendall-tau distance
between σ1 and σ2 contributed by the pair of items (i, i′). Then we can write Kendall-tau distance
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between σ1, σ2 as

LKT(σ1, σ2) =
∑

i∈[n],i′∈[n]:
σ1(i)<σ2(i′)

1{σ2(i) > σ2(i′)}

=
∑

1≤i<i′≤n

1{1{σ1(i) > σ1(i′)} 6= 1{σ2(i) > σ2(i′)}}

=
∑

1≤i<i′≤n

α(σ1, σ2, i, i
′). (9.30)

For Spearman’s footrule dsitance, for each item i ∈ [n], we call the term |σ1(i) − σ2(i)| as
Spearman’s footrule distance between σ1 and σ2 contributed by item i.

We analyze Step (1) of re-arranging the items and Step (2) of evoking the canonical estimator
separately. The following rearrangement inequality is used for analyzing both steps. For any
a1, a2, b1, b2 ∈ R where a1 < a2 and b1 < b2, it is straightforward to verify that

|a1 − b2|+ |a2 − b1| ≥ |a1 − b1|+ |a2 − b2|. (9.31)

We first analyze the re-arranging step in Line 5-13 of Algorithm 5. We denote the random
variable σ̂re as the estimated ranking after the re-arranging step (that is, the value of the quantity
σ̂ after Line 13 of Algorithm 5). The re-arranged ranking σ̂re is a deterministic function of the
initial ranking σ̂init. The following lemma proves a deterministic result about this re-arranging
step.
Lemma 9.2. For any true ranking σ∗, any set of ordinal observations B consistent with the true
ranking, and any initial estimated ranking σ̂init, the re-arranged ranking σ̂re yields smaller or
equal loss compared to the initial ranking σ̂init, regarding Kendall-tau distance and Spearman’s
footrule distance. That is,

LKT(σ̂re, σ
∗) ≤ LKT(σ̂init, σ

∗) (9.32a)
LSF(σ̂re, σ

∗) ≤ LSF(σ̂init, σ
∗). (9.32b)

The lemma is proved at the end of this section.

Now we turn to analyze the second step of calling the canonical estimator on the topologically-
identical pair. This step starts from the re-arranged ranking σ̂re. Denote E as the event that
Algorithm 5 identifies some topologically-identical pair (that is, Line 5-19 of Algorithm 5 is ex-
ecuted). Then Ec denotes the event that no topologically-identical pair is found. If there exists
no topologically-identical pairs, then the second step in Line 14-18 of Algorithm 5 is never ex-
ecuted. Trivially, the final output σ̃our

rank-metric is identical to the re-arranged ranking σ̂re. We have

E[LKT(σ̃our
rank-metric, σ

∗) | Ec] = E[LKT(σ̂re, σ
∗) | Ec] (9.33a)

E[LSF(σ̃our
rank-metric, σ

∗) | Ec] = E[LSF(σ̂re, σ
∗) | Ec]. (9.33b)

It remains to consider the case when the event E is true. We start by showing that the event
E happens with non-zero probability. Consider any arbitrary true ranking σ∗. Under this true

121



ranking, denote the top item as i(1), and denote the second-ranked item as i(2). Conditioned
on this true ranking, consider the set of pairwise comparisons Q such that the set Q includes
comparisons between item i(1) and a subset of min{bm/2c, n − 2} items from [n] \ {i(1), i(2)}.
Assume that Q also includes comparisons between item i(2) and the identical subset of items
from [n] \ {i(1), i(2)}. The rest of the comparisons can be arbitrary between the (n − 2) items
in [n] \ {i(1), i(2)}. Recall that 1 < m <

(
n
2

)
, so such a set Q arises with non-zero probability.

Hence, the event E happens with non-zero probability.
Note that the set of ordinal observations B fully determines the topologically-identical pair (if

any) selected by Algorithm 5. Since the event E happens with non-zero probability, there exists
β such that P(B = β,E) > 0. We condition on the event E and any set of ordinal observations β
such that P(B = β,E) > 0. We denote the two items in the topologically-identical pair selected
by the algorithm as items (i(β), i′(β)) (or items (i, i′) in short). In what follows, we consider
Kendall-tau distance and Spearman’s footrule separately.

Kendall-tau distance: For each `, `′ ∈ [n] with ` 6= `′, we consider Kendall-tau distance
contributed by the pair (`, `′) . Recall that conditioned on the event event E and the set of ordinal
observations β, the only pair that can be flipped by Algorithm 5 is (i(β), i′(β)). We only need
to consider the pairs (`, `′) such that the relative ordering of (`, `′) can be potentially changed by
flipping the pair (i, i′). We consider the following two cases separately.
Case 1: We consider Kendall-tau distance contributed by the pair (i, i′) itself. That is, {`, `′} =
{i, i′}.

Consider the ranking σ̂re from the re-arranging step. We have

E[α(σ̂re, σ
∗, i, i′) | B = β,E] =

∑

σ

E[α(σ̂re, σ
∗, i, i′) | σ∗ = σ,B = β,E] · P(σ∗ = σ | B = β,E)

(i)
=
∑

σ

E[α(σ̂re, σ, i, i
′) | σ∗ = σ,B = β,E] · P(σ∗ = σ | B = β)

(ii)
=

1

T (β)

∑

σ∈topo(β)

E[α(σ̂re, σ, i, i
′) | σ∗ = σ,B = β,E]. (9.34)

where equality (i) is true because σ∗ is independent of E conditioned on B. Equality (ii) is true
because of (9.11) in Lemma 9.1.

Recall that the initial ranking σ̂init is obtained by calling the (possibly randomized) ordinal
estimator σ̂rank taking input B, and the re-arranged ranking σ̂re is fully determined by σ̂init. Hence,
we further write (9.34) as

E[α(σ̂re, σ
∗,i, i′) | B = β,E]

=
1

T (β)

∑

σ̂

∑

σ∈topo(β)

E[α(σ̂, σ, i, i′) | σ̂re = σ̂, σ∗ = σ,B = β,E] · P(σ̂re = σ̂ | σ∗ = σ,B = β,E)

(i)
=

1

T (β)

∑

σ̂

∑

σ∈topo(β)

E[α(σ̂, σ, i, i′) | σ̂re = σ̂, σ∗ = σ,B = β,E] · P(σ̂re = σ̂ | B = β),

(9.35)
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where equality (i) is true, because σ̂rank is independent of the true ranking σ∗ and the event E
conditioned on B. Hence, σ̂re is independent of the true ranking π∗ and the event E conditioned
on B.

Define the set Ωi�i′ ⊆ topo(β) as the collection of topological orderings where i is ranked
higher than i′. Define the set Ωi≺i′ ⊆ topo(β) as the collection of topological orderings where
i is ranked lower than i. Then {Ωi�i′ ,Ωi≺i′} is a partition of the collection of all topological
orderings, topo(β). Given that the pair (i, i′) is topologically-identical, for any ranking σ ∈
topo(β), we can flip items (i, i′), and the flipped ranking is still a topological ordering. Flipping
the items (i, i′) defines a bijection between the set Ωi�i′ ,Ωi≺i′ , so we have |Ωi≺i′ | = |Ωi≺i′|. Any
ranking σ̂re is correct on one and only one of the sets Ωi�i′ and Ωi≺i′ , and hence the re-arranged
ranking σ̂re is correct on exactly half of the topological orderings. For any σ̂, we have

∑

σ∈topo(β)

E[α(σ, π, i, i′) | σ̂re = σ̂, σ∗ = σ,B = β,E] =
1

2
. (9.36)

Combining (9.36) with (9.35) yields

E[α(σ̂re, σ
∗, i, i′) | B = β,E] =

1

2
.

Now consider the cardinal estimator. Similar to the proof of Theorem 2.6, we have

E[α(σ̃our
rank-metric, σ

∗, i, i′) | B = β,E] <
1

2
.

Consequently, in Case 1, we have

E[α(σ̃our
rank-metric, σ

∗, i, i′) | B = β,E] < E[α(σ̂re, σ
∗, i, i′) | B = β,E]. (9.37)

Case 2: Consider any pair (`, `′) that is not identical to the pair (i, i′). Since the relative ordering
of the pair (`, `′) is changed by flipping the pair (i, i′), then one item has to be either i or i′.
Without loss of generality, assume ` 6∈ {i, i′} and `′ ∈ {i, i′}. We consider pairs in the form of
(`, i) and (`, i′).

If the position of ` is not in between item i and item i′ in the ranking σ̂re (that is, if σ̂re(`) <
min{σ̂re(i), σ̂re(i

′)} or σ̂re(`) > max{σ̂re(i), σ̂re(i
′)}), then flipping the pair (i, i′) does not change

the relative ordering of the pair (`, i) or (`, i′). Now we restrict our attention to item ` ranked in
between item i and item i′ in the ranking σ̂re. Moreover, if the position of ` is not in between
the positions of item i and item i′ in the true ranking (that is, if σ∗(`) < min{σ∗(i), σ∗(i′)} or
σ∗(`) > max{σ∗(i), σ∗(i′)}), then whether flipping the pair (i, i′) or not, one and only one of the
two comparisons (`, i) and (`′, i) is correct. Hence, we only need to consider each item ` ranked
between the two items i and i′, in both the re-arranged ranking σ̂re and the true ranking σ∗. For
each such item `, for any re-arranged ranking σ̂re, we have the determinisitc equality

α(σ̂re, σ
∗, `, i) + α(σ̂re, σ

∗, `, i′) = 2α(σ̂re, σ
∗, i, i′)

α(σ̃our
rank-metric, σ

∗, `, i) + α(σ̃our
rank-metric, σ

∗, `, i′) = 2α(σ̃our
rank-metric, σ

∗, i, i′)
(9.38)
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Combining (9.38) and (9.37), for each item ` ranked in between item i and item i′ in both the
re-arranged ranking σ̂re and the true ranking σ∗, we have

E[α(σ̃our
rank-metric, σ

∗, `, i) + α(σ̃our
rank-metric, σ

∗,`, i′) | B = β,E]

< E[α(σ̂re, σ
∗, `, i) + α(σ̂re, σ

∗, `, i′) | B = β,E].
(9.39)

Combining the expression of Kendall-tau distance in (9.30) with the two cases in (9.37) and (9.39)
of which the relative ordering of some pair (`, `′) is changed, we have

E[LKT(σ̃our
rank-metric, σ

∗) | B = β,E] < E[LKT(σ̂re, σ
∗) | B = β,E].

Recall that P(B = β,E) > 0 for some β. Taking an expectation over B yields

E[LKT(σ̃our
rank-metric, σ

∗) | E] < E[LKT(σ̂re, σ
∗) | E]. (9.40)

Combining (9.40) and (9.33a) yields

E[LKT(σ̃our
rank-metric, σ

∗)] < E[LKT(σ̂re, σ
∗)]. (9.41)

Finally, combining (9.41) with inequality (9.32a) for the re-arranging step completes the
proof for Kendall-tau distance.

Spearman’s footrule distance: We condition on the eventE and any set of ordinal observations
β such that P(B = β,E) > 0. Since only one pair (i(β), i′(β)) can be flipped by Algorithm 5,
we only need to consider Spearman’s footrule distance contributed by these two items. Consider
any ranking σi�i′ ∈ Ωi�i′ . Let σi≺i′ be the ranking obtained by flipping items (i, i′) in σi�i′ . Then
we have σi≺i′ ∈ Ωi≺i′ . For any such pair {σi�i′ , σi≺i′}, we have

P(σ∗ ∈ {σi�i′ , σi≺i′},B = β,E) =P(σ∗ ∈ {σi�i′ , σi≺i′} | B = β,E) · P(B = β,E)

=P(σ∗ ∈ {σi�i′ , σi≺i′} | B = β,E) · P(B = β,E)

=P(σ∗ ∈ {σi�i′ , σi≺i′} | B = β) · P(B = β,E) (9.42)
(i)
>0, (9.43)

where inequality (i) is true, because the two terms in (9.42) are both non-zero. The first term
in (9.42) is non-zero by the fact that σi�i′ , σi≺i′ are topological orderings, and by (9.11) in
Lemma 9.1. The second term in (9.42) is non-zero, because by construction we find β such
that the second term P(B = β,E) > 0.

Now we analyze the Spearman’s footrule distance conditioned on the event σ∗ ∈ {σi�i′ , σi≺i′}.
Using the argument deriving (9.37), we can further derive

E[α(σ̃our
rank-metric, σ

∗, i, i′) | σ∗ ∈ {σi�i′ , σi≺i′},B = β,E]

<E[α(σ̂re, σ
∗, i, i′) | σ∗ ∈ {σi�i′ , σi≺i′},B = β,E].

(9.44)
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By the rearrangement inequality (9.31), if the relative ordering of the pair (i, i′) is correct, then
Spearman’s footrule distance does not increase compared to the ranking with the relative order-
ing of (i, i′) incorrect. Eq. (9.44) implies that conditioned on β, the event E and the event of
σ∗ ∈ {σi�i′ , σi≺i′}, the probability that the cardinal estimator σ̃our

rank-metric gives the correct relative
ordering of the pair (i, i′) is higher than the probability that σ̂re gives the correct relative ordering.
Hence, for any set of ordinal observations β and any pair {σi�i′ , σi≺i′} of the true rankings, we
have

E[LSF(σ̃our
rank-metric, σ

∗) | σ∗ ∈ {σi�i′ , σi≺i′},B = β,E] ≤ E[LSF(σ̂re, σ
∗) | σ∗ ∈ {σi�i′ , σi≺i′},B = β,E].

(9.45)

Note that directly applying the re-arrangement inequality does not translate the strict inequal-
ity from (9.37) to (9.45). The reason is that correctly ordering a topologically-identical pair does
not guarantee strictly smaller Spearman’s footrule distance. For example, if item i and item i′

are the top-2 items in the true ranking, but are the bottom-2 items in σ̂re. Then the relative or-
dering of the pair (i, i′) does not change the Spearman’s footrule distance. In the rearrangement
inequality (9.31), strictly inequality holds if a1 ≤ {b1, b2} ≤ a2. Hence, we find one pair of true
rankings {σ∗i�i′ , σ∗i≺i′} such that one of the following is true:

σ∗i�i′(i) ≤ {σ̂re(i), σ̂re(i
′)} ≤ σ∗i�i′(i

′)

or σ∗i�i′(i
′) ≤ {σ̂re(i), σ̂re(i

′)} ≤ σ∗i�i′(i).
(9.46)

Then strictly inequality in (9.44) holds on the pair {σ∗i�i′ , σ∗i≺i′}. Now we provide the construc-
tion of this pair {σ∗i�i′ , σ∗i≺i′}.

We start by constructing a topological ordering σ(i, i′, β) (or σ in short) as follows. We
topologically sort the items in V + := V (i, i′, β) and place them as the top |V +| items in σ.
We topologically sort the items in V − := V −(i, i, β) and place them as the bottom |V −| items.
Arbitrarily choose one item from {i, i′} and place it at the position (|V +| + 1), and place the
remaining item from the pair {i, i′} at the position (n− |V −|). Topologically sort the rest of the
items, and place them in the remaining positions in σ.

We now prove that the ranking σ is a valid topological ordering. Assume for contradiction
that σ is not a valid topological ordering. Then there exists a pair (`, `′) that violates some
pairwise comparison in B. Denote V c = [n] \ (V + ∪ V − ∪ {i, i′}). Within each set V +, V −

or V c, the items are ordered by a topological ordering. Moreover, there is no direct comparison
between item i and item i′, so items {i, i′} can be ranked with either i � i′ or i ≺ i′. Hence, ` and
`′ cannot belong to the same set of V +, V, V c or {i, i′}. By the definition of the sets V + and V −,
in the true ranking V + should be ranked higher than {i, i′}, and V − should be ranked lower than
{i, i′}. In our ranking σ, we also rank V + higher than {i, i′}, and V − lower than {i, i′}. Hence,
if both item ` and item `′ are in V + ∪ V − ∪ {i, i′}, the relative ordering between (`, `′) must be
consistent with B. Then at least one item from the pair (`, `′) must be in V c. Without loss of
generality, assume `′ ∈ V c. Since ` and `′ cannot belong to the same set, we have ` 6∈ V c. If
` ∈ {i, i′}, since the pair (`, `′) violates some pairwise comparison, the items (`, `′) are compared
in B, that is, `′ is compared to either i or i′. By the definition of the sets V + and V −, it must
be true that `′ ∈ V + or `′ ∈ V −, contradicting the assumption that `′ ∈ V c. If ` ∈ V +, by
construction the ranking σ ranks ` higher than `′. Since the pair (`, `′) violates some pairwise
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comparison, the set B must include the pairwise comparison `′ � `. By the definition of V +,
since ` ∈ V +, there exists a path from ` to i. Concatenating the pairwise comparison `′ � ` with
the path from ` to i, we have a path from `′ to i. Hence, `′ ∈ V +, contradicting the assumption
that `′ ∈ V c. Similarly, ` ∈ V − gives a contradiction. Hence, in the ranking σ there exists no
pair of items violating pairwise comparisons in B. By definition, the ranking σ is a topological
ordering. The ranking σ places items {i, i′} at positions {|V +| + 1, n− |V −|}. In Algorithm 5,
the re-arranged ranking σ̂re places the set V + before items {i, i′}, and the set V − after items
{i, i′}. Hence, we have either σ(i) ≤ {σ̂re(i), σ̂re(i

′)} ≤ σ(i′) or σ(i′) ≤ {σ̂re(i), σ̂re(i
′)} ≤ σ(i).

Recall that when constructing σ, we arbitrarily place an item from the set {i, i′} at position
(|V +| + 1), and the remaining item from {i, i′} at position (n − |V −|). Denote σ∗i�i′ as the
topological ordering with item i in position (|V +|+ 1). Denote σ∗i≺i′ as the topological ordering
with item i′ in position (|V +|+ 1). For any possible σ̂re, one of the conditions in (9.46) holds on
the pair {σ∗i�i′ , σ∗i≺i′}, and hence strict inequality in (9.45) holds for the pair {σ∗i�i′ , σ∗i≺i′}.

Eq. (9.43) implies that the event σ∗ ∈ {σ∗i�i′ , σ∗i≺i′} arises with non-zero probability. Taking
an expectation over all possible pairs {σi�i′ , σi≺i′} in (9.45), and using the strict inequality for
the pair {σ∗i�i′ , σ∗i≺i′} yields

E[LSF(σ̃our
rank-metric, σ

∗) | B = β,E] < E[LSF(σ̂re, σ
∗) | B = β,E].

Taking an expectation over the set of ordinal observations B yields

E[LSF(σ̃our
rank-metric, σ

∗) | E] < E[LSF(σ̂re, σ
∗) | E]. (9.47)

Combining (9.47) with inequality (9.33b) for the re-arranging step yields

E[LSF(σ̃our
rank-metric, σ

∗)] < E[LSF(σ̂re, σ
∗)]. (9.48)

Finally, combining (9.48) with inequality (9.32b) for the re-arranging step completes the
proof for Spearman’s footrule.

We make a comment about having multiple topologically-identical pairs. Notice that in Al-
gorithm 5, we only find one topologically-identical pair, and then break out of the for-loops.
Alternatively, we can identify and flip multiple disjoint topologically-identical pairs in a simi-
lar fashion as in Algorithm 1. This is still a valid algorithm, because each step of processing
one topologically-identical pair does not increase Kendall-tau distance or Spearman’s footrule
distance.

It remains to prove Lemma 9.2.

9.8 Proof of Lemma 9.2
Consider any two items `, `′ ∈ [n], such that ` � `′ in the true ranking σ∗. Let σ̂1 be an arbitrary
ranking. Let σ̂2 be a ranking where all items are ranked the same as in σ̂1, except that the posi-
tions of items ` and `′ are flipped as compared to σ̂1. The remainder of the proof is broken into
two parts.
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Part 1: If the relative ordering of a pair is inconsistent with the relative ordering indicated by
the true ranking, then flipping this pair does not increase Kendall-tau distance or Spearman’s
footrule distance.

Specifically, we claim that if ` ≺ `′ in π̂1, then σ̂2 has a smaller or equal loss than σ̂1, with
respect to Kendall-tau distance and Spearman’s footrule distance. We discuss the two distance
metrics separately.

Kendall-tau distance: First, consider Kendall-tau distance contributed by the pair (`, `′). We
have ` ≺ `′ in σ̂1 and ` � `′ in σ̂2. Since we have ` � `′ in the true ranking, the relative ordering
of this pair is correct in σ̂2, and incorrect in σ̂1. Hence,

0 = α(σ̂2, σ
∗, `, `′) < α(σ̂1, σ

∗, `, `′) = 1. (9.49)

Denote `mid as any item ranked in between ` and `′ in σ̂1 (or equivalently, in σ̂2). In the rest
of the pairs that are not (`, `′), the flip only changes the relative ordering of each pair of the form
(`, `mid) or (`′, `mid). If in the true ranking σ∗, item `mid is ranked higher than both (`, `′), or
ranked lower than both (`, `′), then the sum of the contributions to Kendall-tau distance by the
pair (`, `mid) and the pair (`′, `mid) is the same in σ̂1 and σ̂2:

α(σ̂2, σ
∗, `, `mid) + α(σ̂2, σ

∗, `′, `mid) = 1 = α(σ̂1, σ
∗, `, `mid) + α(σ̂1, σ

∗, `′, `mid). (9.50)

Otherwise `mid is ranked in between ` and `′ in the true ranking σ∗, then we have

0 = α(σ̂2, σ
∗, `, `mid) + α(σ̂2, σ

∗, `′, `mid) < α(σ̂1, σ
∗, `, `mid) + α(σ̂1, σ

∗, `′, `mid) = 2. (9.51)

Combining the expression (9.30) of Kendall-tau distance with (9.49), (9.50) and (9.51) yields

LKT(σ̂2, σ
∗) < LKT(σ̂1, σ

∗).

Spearman’s footrule distance: By flipping the positions of the items (`, `′), only Spearman’s
footrule distance contributed by these two items has changed. Recall that the condition for flip-
ping the pair (`, `′) requires ` ≺ `′ in π̂1 and ` � `′ in σ∗. Applying the rearrangement inequal-
ity (9.31) with a1 = σ̂1(`′), a2 = σ̂1(`), b1 = σ∗(`), b2 = σ∗(`′), we have

|σ̂1(`′)− σ∗(`′)|+ |σ̂1(`)− σ∗(`)| ≥|σ̂1(`′)− σ∗(`)|+ |σ̂1(`)− σ∗(`′)|
=|σ̂2(`)− σ∗(`)|+ |σ̂2(`′)− σ∗(`′)|. (9.52)

Combining (9.52) with the definition of Spearman’s footrule distance yields

LSF(σ̂2, σ
∗) ≤ LSF(σ̂1, σ

∗).

This completes Part 1 of the proof.

Part 2: The re-arranging step in Algorithm 5 is equivalent to a sequence of pair flips.
With Part 1 in place, we now explain the rest of the proof. For any arbitrary topologically-

identical pair of items (i, i′) and any arbitrary set of ordinal observations B, denote the sets
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V1 := V +(i, i′,B), V2 := {i, i′}, V3 := V −(i, i′,B). We consider the following procedure. We
start by setting σ̂1 as the initial estimated ranking σ̂init. We identify one pair (`, `′) (if any) such
that the following three conditions are met. First, we have ` ∈ Vj, `′ ∈ Vj′ with j < j′. Second,
we have ` ≺ `′ in σ̂1. Third, there is no item in V1 ∪ V2 ∪ V3, whose position is in between ` and
`′ in the ranking σ̂1. If such a pair is found, we flip the positions of ` and `′, and update σ̂1 to be
this new ranking. Repeat this procedure until no such pair can be found.

Now we show that this procedure is equivalent to the re-arranging step in Line 5-13 of Algo-
rithm 5. This procedure properly terminates, because each pair of items (`, `′) can be swapped
at most once, and there is a finite number of pairs. When the procedure terminates, the ranking
is identical to the re-arranged ranking σ̂ after Line 13 of Algorithm 5. To see this claim, we first
note that this procedure has never moved items outside V1 ∪ V2 ∪ V3, so we only need to concern
about the items in V1∪V2∪V3 and their positions. For each pair (`, `′) to be flipped, the procedure
specifies that ` and `′ belong to two different sets from V1, V2 and V3. Moreover, by the condition
on the pair (`, `′), there cannot be any item in V1 ∪ V2 ∪ V3 that is ranked in between ` and `′.
Hence, the relative ordering of the items within each set of V1, V2 or V3 is unchanged, consistent
with the ranking specified in Line 10 and Line 12 of Algorithm 5. Moreover, the re-arranging
step in Algorithm 5 ranks all items in V1 before all items in V2, and all items in V2 before all items
in V3. Assume that the final output of the procedure is a different ranking from the re-arranging
step in Algorithm 5, then we can find a pair (`, `′) that can be flipped, contradicting the fact that
no such pairs can be found at the termination of the procedure. Hence, the procedure and the
re-arranging step in Algorithm 5 are equivalent. Applying Part 1 to each flip in this procedure
completes the proof of the lemma.

9.9 Proof of Theorem 2.9
The proof is a slight modification to the proof of Theorem 2.6, so we only highlight the differ-
ence. First, we consider the probability of success of the optimal ordinal estimator π̂rank-unif that
outputs one of the topological orderings uniformly at random:

P(π̂rank-unif(β) = π∗ | B = β) =
∑

π∈topo(β)

P(π = π∗ | π̂rank-unif = π,B = β)P(π̂rank-unif = π | B = β)

(i)
=

1

T (β)

∑

π∈topo(β)

P(π = π∗ | π̂rank-unif = π,B = β), (9.53)

where equality (i) is true because the ordinal estimator π̂rank-unif uniformly at random outputs one
of the topological orderings consistent with β.

Now we consider each term P(π = π∗ | π̂rank-unif = π,B = β) in (9.53). The quantities π∗

and π are both deterministic. Trivially, we have

P(π = π∗ | π̂rank = π,B = β) =

{
1 if π = π∗

0 otherwise.
(9.54)
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Combining (9.53) and (9.54) with the fact that the true ranking π∗ must be a topological
ordering consistent with β, we have

P(π̂rank-unif(β) = π∗ | B = β) =
1

T (β)
. (9.55)

Now consider the cardinal estimator π̃our
rank-unif. When the number of flippable pairs is zero,

the cardinal estimator behaves equivalently as the ordinal estimator π̂rank-unif. Following a similar
argument as Case 1 in the proof of Theorem 2.6, for any set of ordinal observations β, we have
(cf. Equation (9.15) in the proof of Theorem 2.6):

P(π̃our
rank-unif | B = β, L = 0) = P(π̂rank-unif = π∗ | B = β). (9.56)

Denote π̂init as the initial estimated ranking obtained by calling the ordinal estimator π̂rank-unif.
When the number of flippable pairs is L = ` > 0, the probability of success of the cardinal
estimator is

P(π̃our
rank-unif = π∗ | B = b, L = `)

=
∑

π∈topo(β)

P(π̃our
rank-unif = π∗ | B = β, L = `, π̂init = π)P(π̂init = π | B = β, L = `)

(i)
=

1

T (β)

∑

π∈topo(β)

P(π̃our
rank-unif = π∗ | B = β, L = `, π̂init = π), (9.57)

where equality (i) is true because the ordinal estimator π̂rank-unif outputs a topological ordering
uniformly at random.

The remaining argument is similar to Case 2 in the proof of Theorem 2.6, so we only outline
the main steps. Consider all total rankings that are identical to the true ranking π∗, except for
(possibly) the relative ordering of the ` flippable pairs. There are 2` such total rankings, and all
these 2` total rankings are topological orderings on the graph G(B). In (9.57), the summation of
π is over all topological orderings. In particular, this summation includes these 2` total rankings.
Recall that the cardinal estimator π̃our

rank-unif is obtained by replacing Line 2 of Algorithm 1 by
calling the ordinal estimator π̂rank-unif. To be able to apply Theorem 2.3, we obtain a cardinal
estimator π̃eq

rank-unif by replacing Line 2 of Algorithm 4 by calling the ordinal estimator π̂rank-unif.
This estimator π̃eq

rank-unif is equivalent to the original estimator π̃our
rank-unif. When the initial estimated

ranking π̂init is any of the 2` total rankings, the probability that the cardinal estimator π̃eq
rank-unif

gives the correct output is strictly greater than 1
2`

. Hence, we bound (9.57) as (cf. Equation (9.17)
in the proof of Theorem 2.6):

P(π̃eq
rank-unif = π∗ | B = b, L = `) >

1

T (β)
· 2` · 1

2`
=

1

T (β)

(i)
= P(π̂rank-unif = π∗ | B = β).

(9.58)

where equality (i) is true from (9.55).
Having established (9.56) and (9.58), the rest of the argument follows the proof of Theo-

rem 2.6.
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Algorithm 4: An equivalent joint procedure of the assignment A, the evaluation Y , and
the execution of our cardinal ranking estimator π̃our

rank(A,Y) in Algorithm 1.

1 Sample pairwise comparisons Q = {S̃j}mj=1 uniformly at random from all
(
n
2

)
pairs.

Obtain the ordinal comparisons B.
2 Compute a topological ordering π̂ on the graph G(B), with ties broken in order of the

indices of the items.
3 t← 1.
4 Qavail ← Q.
5 flippable positions← [ ].
6 reviewer indices← [ ].
7 while t < n do
8 Let π̂flip be the ranking obtained by flipping the positions of the tth and the (t+ 1)th

items in π̂.
9 if π̂flip is a topological ordering on G(B), and both the tth and (t+ 1)th items are

each included in at least one pairwise comparison in Qavail then
10 From all of the pairwise comparisons in Qavail including the tth item, sample one

uniformly at random and denote it as S̃t. Likewise denote S̃t+1 as a randomly
chosen pairwise comparison including the (t+ 1)th item from Qavail.

11 Append t to flippable positions.
12 Append the pair [S̃t, S̃t+1] to reviewer indices.
13 Remove S̃t and S̃t+1 from Qavail.
14 t← t+ 2.
15 else
16 t← t+ 1.
17 end
18 end
19 For each pair [S̃t, S̃t+1] in reviewer indices, sample uniformly at random without

replacement a pair of reviewers {jt, jt+1}.
20 foreach t ∈flippable positions do
21 Assign reviewer jt to one of the two pairs S̃t or S̃t+1, uniformly at random. Assign

reviewer jt+1 to the remaining pair. Obtain the scores from these two reviewers for
their corresponding pair.

22 Denote yπ̂(t) as the score for the tth item in S̃t. Likewise denote yπ̂(t+1) as the score
for the (t+ 1)th item in S̃t+1.

23 if π̃our
can(yπ̂(t), yπ̂(t+1)) outputs π̂(t+ 1) � π̂(t) then

24 Let π̂flip be the ranking obtained by flipping the positions of the tth and the
(t+ 1)th items in π̂.

25 π̂ ← π̂flip.
26 end
27 end
28 Output π̂.
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Algorithm 5: Our cardinal ranking estimator σ̃our
rank-metric(A,Y) concerning Kendall-tau

distance and Spearman’s footrule distance.
1 Deduce the ordinal observations B from the cardinal observations Y . Compute an initial

estimated ranking σ̂init = σ̂rank(B).;
2 for i = 1, . . . , n do
3 for i′ = (i+ 1), . . . , n do
4 if the pair (i, i′) is topologically-identical, and both items i and i′ have at least

one score each from Y then
5 Compute V + := V +(i, i′,B). Denote the items in V + as i+1 � · · · � i+|V +|

under the ranking π̂init.;
6 Compute V − := V −(i, i′,B). Denote the items in V − as i−1 � · · · � i−|V −|

under the ranking π̂init.;
7 positions = {` ∈ V + ∪ V − ∪ {i, i′} | σ̂init(`)}. ;
8 σ̂ ← σ̂init.;
9 if i � i′ under σ̂init then

10 Re-arrange items in V + ∪ V − ∪ {i, i′} in σ̂, such that they still occupy
positions, and i+1 � · · · � i+|V +| � i � i′ � i−1 � · · · � i−|V −|.;

11 else
12 Re-arrange items in V + ∪ V − ∪ {i, i′} in σ̂, such that they still occupy

positions, and i+1 � · · · � i+|V +| � i′ � i � i−1 � · · · � i−|V −|.;
13 end
14 From all of the scores of item i in Y , sample one uniformly at random and

denote it as yi. Likewise denote yi′ as a randomly chosen score of item i′

from Y .;
15 if π̃our

can(yi, yi′) indicates a relative ordering of the pair (i, i′) different from σ̂
then

16 Let σ̂flip be the ranking obtained by flipping items i and i′ in σ̂.;
17 σ̂ ← σ̂flip.;
18 end
19 break from both for-loops and go to Line 23.
20 end
21 end
22 end
23 Output σ̃our

rank-metric(A,Y) = σ̂.;
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Chapter 10

Proofs of Chapter 3

In this chapter, we present the proofs of all theoretical results.

10.1 Preliminary results
In this section, we present preliminary results that are used in the proofs. For the regularizer R,
it can be verified that we have the symmetry

Rii′jj′ = Rii′j′j = Ri′ijj′ = Ri′ij′j.

We say that an entry (i, j) does not contribute to the regularizer if Rii′jj′ = 0 for all i′ ∈ [n] and
j′ ∈ [d]. We say that a row/column does not contribute to the regularizer if none of the entries in
the row/column contributes to the regularizer. We say that (i, i′, j, j′) is a “conflicting quadruple”
if we have (Aij−Aij′)(Ai′j−Ai′j′) < 0. By the definition (3.7) of the regularizer, an entry (i, j)
does not contribute to the regularizer if and only if the quadruple (i, i′, j, j′) is not a conflicting
quadruple for each i′ ∈ [n] and j′ ∈ [d].

10.1.1 Derivative of the objective
We compute the derivative of the regularizer term Rii′jj′ as

∂Rii′jj′

∂Aij
=

{
0 if (Aij − Aij′)(Ai′j − Ai′j′) ≥ 0

2(Aij − Aij′)(Ai′j − Ai′j′)2 otherwise.
(10.1)

Hence, we have

sign

(
∂Rii′jj′

∂Aij

)
= sign(Aij − Aij′), if (Aij − Aij′)(Ai′j − Ai′j′) < 0. (10.2)

It can be verified that we have the symmetry

∂Rii′jj′

∂Aij
=
∂Rii′j′j

∂Aij
=
∂Ri′ijj′

∂Aij
=
∂Ri′ij′j

∂Aij
. (10.3)
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Combining (10.3) with the expression (3.6) of R, we have

∂R

∂Aij
= 4

∑

i′∈[n],j′∈[d]

∂Rii′jj′

∂Aij
. (10.4)

The derivative of the objective L is computed as

∇L(A) = 2(A− Y )Ω + λ∇R(A). (10.5)

We have the partial derviative

∂L

∂Aij
= 2(Aij − Yij) · 1{(i, j) ∈ Ω}+ λ

∂R

∂Aij
(10.6)

(i)
= 2(Aij − Yij) · 1{(i, j) ∈ Ω}+ 4λ

∑

i′∈[n],j′∈[d]

∂Rii′jj′

∂Aij
, (10.7)

where (i) is true by plugging in (10.4).

10.1.2 Additional preliminary results
For notational simplicity, we denote the projection step (3.10b) asP[0,1]A := min{1,max{0, A}}
for any A ∈ Rd×n. The following lemma states that the objective L does not increase after a
projection step.
Lemma 10.1. Consider any Y ∈ [0, 1]n×d. Then for anyA ∈ Rn×d, we have L(P[0,1]A) ≤ L(A).

Proof of Lemma 10.1 We consider the two terms in the objective (3.8). For the first term
‖A− Y ‖2

Ω, it is straightforward to verify that

‖Y − P[0,1](A)‖Ω ≤ ‖Y − A‖Ω, ∀Y ∈ [0, 1]n×d. (10.8)

For the second term, we consider Rii′jj′ for each quadruple (i, i′, j, j′). Note that for any
scalar values a, b ∈ R, the term (P[0,1](a) − P[0,1](b)) either has the same sign as (a − b) or has
a value of 0. Now we discuss the following two cases depending on the sign of each quadruple
(i, i′, j, j′).
Case 1: (Aij − Aij′)(Ai′j − Ai′j′) ≥ 0.

In this case, we have (P[0,1]Aij′ − P[0,1]Ai′j)(P[0,1]Ai′j − P[0,1]Ai′j′) ≥ 0. Hence, by the
definition of the function Rii′jj′ , we have

0 = Rii′jj′(A) = Rii′jj′(P[0,1]A) (10.9)

Case 2: (Aij − Aij′)(Ai′j − Ai′j′) < 0.
In this case, we have (P[0,1]Aij′ − P[0,1]Ai′j)(P[0,1]Ai′j − P[0,1]Ai′j′) ≤ 0. Moreover, due to

the projection we have
∣∣P[0,1]Aij − P[0,1]Aij′

∣∣ ≤ |Aij − Aij′|∣∣P[0,1]Ai′j − P[0,1]Ai′j′
∣∣ ≤ |Ai′j − Ai′j′ |.
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By the definition of the function Rii′jj′ , it can be verified that

Rii′jj′(A) ≥ Rii′jj′(P[0,1]A). (10.10)

Combining (10.9) and (10.10) from the two cases, we have

R(A) ≥ R(P[0,1]A), ∀(i, i′, j, j′),∀A ∈ [0, 1]n×d. (10.11)

Finally, combining the two terms (10.8) and (10.11) of the objective L, we have

L(A) ≥ L(P[0,1]A),

completing the proof.

Now we analyze the local optima of the objective. Standard results suggest that any local
optimum in the interior of the domain satisfies the first-order optimality condition, namely having
a gradient of 0. The following lemma suggests that any local optimum on the boundary of the
domain also satisfies the first-order optimality condition. We define ∇L(A) as the gradient on
R, without restricting to the domain [0, 1]n×d.
Lemma 10.2. For any local optimum A of the objective (3.8) defined on the domain [0, 1]d×n,
we have∇L(A) = 0.

Proof of Lemma 10.2 If any local optimum A is in the interior, then standard first-order opti-
mality condition [16, Theorem 2.6] yields ∇L(A) = 0. It remains to consider the case where A
is on the boundary of the domain.

Assume for contradiction that there exists a local optimumA on the boundary with∇L(A) 6=
0. Without loss of generality we assume ∂L(A)

∂A11
6= 0. By definition of the local optimum, there

exists some δ > 0, such that L(A′) ≥ L(A) for all A′ ∈ [0, 1]n×d with ‖A′ − A‖F < δ. On
the other hand, let E11 denote the matrix whose (1, 1)-entry is 1 and all other entries are 0. By
definition of the partial derivative, there exists some δ′ ∈ (0, δ) such that L(A+ δ′E11) < L(A).
Now consider the point P[0,1](A+ δ′E11). By Lemma 10.1, we have

L(P[0,1](A+ δ′E11)) ≤ L(A+ δ′E11) < L(A). (10.12)

Since [0, 1]n×d is a convex set and A ∈ [0, 1]n×d, by Lemma 10.1 we have

‖P[0,1](A+ δ′E11)− A‖F ≤ ‖A+ δ′E11 − A‖F = δ′ < δ. (10.13)

Combining (10.12) and (10.13), the point P[0,1](A+ δ′E11) yields a contradiction to the local
optimality of A.

10.2 Proof of Theorem 3.1
The proof consists of two steps. First, we show that our objective L has a Lipschitz gradient.
Second, we incorporate the projected step straightforwardly into standard analysis of gradient
descent for functions with Lipschitz gradient.
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Step 1: Bound the magnitude of the gradient ‖∇L‖F and the Lipschitz constant
As a general definition, consider any d ≥ 1. A function f : Rd → R is said to have a

Lipschitz gradient with constant K on domain D ⊆ Rd if

‖∇f(x)−∇f(y)‖2 ≤ K‖x− y‖2, for all x, y ∈ D.

For projected gradient descent, the gradient step (3.10a) may give solutions outside the do-
main [0, 1]n×d, so we bound the gradient on an enlarged domain, namely [−1, 2]n×d. For any
A ∈ [−1, 2]n×d, its partial derivative is given by (10.7) as:

∂L

∂Aij
= 2(Aij − Yij) · 1{(i, j) ∈ Ω}+ 4λ

∑

i′∈[n],j′∈[d]

∂Rii′jj′

∂Aij
. (10.14)

Consider the term ∂Rii′jj′

∂Aij
in (10.14). For each i′ ∈ [n] and j′ ∈ [d], we have

∣∣∣∣
∂Rii′jj′

∂Aij

∣∣∣∣ ≤ 2|Aij − Aij′ | · (Ai′j − Ai′j′)2 ≤ 54. (10.15)

Combining (10.15) and (10.14), we have
∣∣∣∣
∂L

∂Aij

∣∣∣∣ ≤ 6 + 216λnd, (10.16)

and hence

‖∇L(A)‖F ≤
√
nd(6 + 216λnd). (10.17)

Now we bound the Lipschitz constant of the objective L. Let A,B ∈ [−1, 2]n×d be any two
matrices. Using (10.17), we have:

‖∇L(A)−∇L(B)‖2
F ≤ 4(nd)(6 + 216λnd)2

(i)
≤ 4(2 + 72λnd)2‖A−B‖2

F ,

where (i) holds becauseA,B ∈ [−1, 2]n×d Hence, L has a Lipschitz gradient withK = K(n, d, λ) :=
4 + 144λnd on [−1, 2]n×d.
Step 2: Incorporate the projection step into standard analysis of gradient descent

The following standard result states that a gradient descent step with a sufficiently small
stepsize decreases the objective.
Lemma 10.3 (Sufficient Decrease Lemma; Lemma 4.23 and Lemma 4.24 of [16]). Suppose
f : Rd → R has Lipschitz gradient with constant K. Then for any x ∈ Rd and γ > 0, we have

f(x)− f(x− γ∇f(x)) ≥
(

1− Kγ

2

)
‖∇f(x)‖2

2. (10.18)
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Now denote {Agrad
t }t≥0 as the sequence after the gradient step (3.10a) in each iteration, and

denote {At}t≥0 as the sequence after the projection step (3.10b) in each iteration. We set the
stepsize γ such that γ ∈ (0, 1

4K
). Due to the projection we have At ∈ [0, 1]n×d for all t ≥ 0.

Then for the gradient step, using (10.16) it can be verified that

Agrad
t = At−1 − γ∇L(At−1) ∈ [−1, 2]n×d.

By Lemma 10.3 we have

L(At−1)− L(Agrad
t ) ≥

(
1− Kγ

2

)
‖∇L(At−1)‖2

2 ≥ 0. (10.19)

For the projection step, by Lemma 10.1 we have

L(Agrad
t )− L(At) ≥ 0. (10.20)

Combining (10.19) and (10.20), we have

L(At−1)− L(At) ≥
(

1− Kγ

2

)
‖∇L(At−1)‖2

F ≥ 0. (10.21)

Hence, the sequence {L(At)}t≥0 is non-increasing. Furthermore, it is straightforward to verify
that L is bounded below by 0. Since the sequence {L(At)}t≥0 is non-increasing and bounded
below by 0, we have

lim
t→∞

L(At−1)− L(At) = 0. (10.22)

Plugging (10.22) into (10.21), we have limt→∞‖∇At‖F = 0, completing the proof.

10.3 Proof of Theorem 3.2

Since Y ∈M, we have A∗ is a global minimum if and only if

A∗Ω = YΩ

and A∗ ∈M.

By Lemma 10.2 any local optima (on the boundary) is a stationary point, so we only consider
stationary points for the proof. To show that any stationary point is the global optimum, we
separately discuss the three cases: d = 2, d = 3 and n = 2. In each case, we show that any
stationary point A satisfies A ∈ M. Since we have ∇L(A) = 0 for any A ∈ M, setting the
derivative (10.5) to 0 gives AΩ = YΩ.
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10.3.1 d = 2

Consider any stationary point A. With d = 2, the matrix A has two columns. Assume for
contradiction that A 6∈ M. Denote the sets

I+ := {i ∈ [n] : Ai1 − Ai2 > 0} (10.23a)
I− := {i ∈ [n] : Ai1 − Ai2 < 0}. (10.23b)

By the assumption that A 6∈ M, we have I+ 6= ∅ and I− 6= ∅.
For each i ∈ I+, we have

sign

(
∂R

∂Ai1

)
= sign


∑

i′∈I−

∂Ri,i′,1,2

∂Ai1


 (i)

= sign (Ai1 − Ai2)
(ii)
= 1 (10.24a)

sign

(
∂R

∂Ai2

)
= sign


λ

∑

i′∈I−

∂Rii′,2,1

∂Ai2


 (i)

= sign (Ai2 − Ai1)
(ii)
= −1, (10.24b)

where the steps (i) are true due to (10.2), and the steps (ii) are true due to the definition (10.23a)
of I+. Likewise for each i ∈ I−, we have

sign

(
∂R

∂Ai1

)
= sign(Ai1 − Ai2) = −1 (10.24c)

sign

(
∂R

∂Ai2

)
= sign(Ai2 − Ai1) = 1. (10.24d)

Case 1: If any entry (i, j) in the rows I+∪I− is not observed (i.e., not in Ω), then by the gradient
expression (10.6) we have

∂L

∂Aij
=

∂R

∂Aij
6= 0,

where the inequality holds due to (10.24). Contradiction to the assumption that A is a stationary
point with∇L(A) = 0.
Case 2: All the entries in the rows I+ ∪ I− are observed.

Now consider any i ∈ I+. Setting the gradient expression (10.6) to 0, we have

Ai1 − Yi1 +
∂R

∂Ai1
= 0

Yi1 = Ai1 +
∂R

∂Ai1
. (10.25a)

Likewise, we have

Yi2 = Ai2 +
∂R

∂Ai2
. (10.25b)
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Subtracting (10.25b) from (10.25a), we have

Yi1 − Yi2 = Ai1 − Ai2 +

(
∂R

∂Ai1
− ∂R

∂Ai2

)
> 0, (10.26a)

where the last inequality holds because (Ai1 − Ai2) > 0 by the definition (10.23a) of I+, and
because ∂R

∂Ai1
− ∂R

∂Ai2
> 0 due to (10.24a) and (10.24b). Likewise, for each i ∈ I−,

Yi1 − Yi2 = Ai1 − Ai2 +

(
∂R

∂Ai1
− ∂R

∂Ai2

)
< 0. (10.26b)

Combining (10.26) contradicts the assumption that Y ∈M.

10.3.2 n = 2

With n = 2, the matrix A has two rows. We prove by induction on the number of columns d.
For d = 1, we trivially have A ∈ M. For d = 2, the proof in Section 10.3.1 yields the claimed
result. Now suppose the claim holds for all 2 × d matrices. We now consider any 2 × (d + 1)
matrix.

Let A ∈ R2×(d+1) be a stationary point given the observations Y ∈ R2×(d+1). Without loss
of generality, we re-index the columns such that A11 ≤ A12 ≤ . . . ≤ A1,d+1. Now consider the
maximum entry in the second row of A.
Case 1: The entry A2,d+1 is the maximum in the second row of A.

In this case, column (d+ 1) contains the maximum for both rows. That is, we have Ai,d+1 ≥
Aij for each i ∈ {1, 2} and each j ∈ [d]. It can be verified that this column (d+ 1) of the matrix,

namely the column
[
A1,d+1

A2,d+1

]
does not contribute to the regularizer R. Hence, the gradient of

the submatrix {Aij}i∈{1,2},j∈[d] remains the same if the last column is removed. That is, for each
i ∈ {1, 2} and j ∈ [d], we have

∂L({Aij}i∈{1,2},j∈[d])

∂Aij
=
∂L(A)

∂Aij
.

Applying the induction hypothesis on the submatrix {Aij}i∈{1,2},j∈[d], we have {Aij}i∈{1,2},j∈[d] ∈
M. Since the last column

[
A1,d+1

A2,d+1

]
has the maximum entries in both rows, we have A ∈M.

Case 2: The entry A2,d+1 is not a maximum in the second row.
Assume that a maximum in the second row is A2j∗ for some 1 ≤ j∗ < d. Then we have

A2j∗ > A2,d+1.
Now consider the entry A1j∗ . By assumption we have A1j∗ ≤ A1,d+1. If A1j∗ = A1,d+1,

then the two entries in column j∗ are both the maximum in their respective rows. Applying a
similar inductive argument as in Case 1 to the submatrix {Aij}i∈{1,2},j∈[d+1]\{j∗} yields A ∈ M.
It remains to consider the case of A1j∗ < A1,d+1.

We first analyze row 2. Using (10.2) combined with the fact that A2j∗ is the maximum entry
in row 2, we have ∂R

∂A2j∗
≥ 0. Moreover, since A1j∗ < A1,d+1 and A2j∗ > A2,d+1, the quadruple
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(1, 2, j, d+ 1) is a conflicting quadruple, and hence we have the strict inequality

∂R

∂A2j∗
> 0. (10.27)

On the other hand, we have ∂R
∂A2,d+1

≤ 0, because for any conflicting quadruple (2, d+ 1, 1, j) for
some j ∈ [d] that contributes to the derivative ∂R

∂A2j
, we have

sign

(
∂R2,1,d+1,j

∂A2j

)
(i)
= sign(A2,d+1 − A2,j)

(ii)
= − sign(A1,d+1 − A1,j)

(iii)
= −1,

where step (i) is true due to (10.2); step (ii) is true because (2, 1, d + 1, j) is assumed to be a
conflicting quadruple and hence (A2,d+1 − A2,j)(A1,d+1 − A1,j) < 0; step (ii) is true because by
assumptionA1,d+1 is the maximum entry in the first row. Furthermore, the quadruple (1, 2, j∗, d+
1) is a conflicting quadruple, so we have strict inequality

∂R

∂A2,d+1

< 0. (10.28)

Now consider whether the entries A2,j∗ and A2,d+1 are observed. If either A2,j∗ or A2,d+1 is
not observed, then combining the gradient expression (10.6) with the strict inequalities (10.27)
and (10.28), we have ∂L

∂A2,d+1
6= 0 or ∂L

∂A2,j∗
6= 0, contradicting the assumption that A is a station-

ary point. Hence, both A2,j∗ and A2,d+1 are observed. Setting the gradient expression (10.6) to 0
respectively for the two entries (2, j∗) and (2, d+ 1), we have

Y2j∗ − Y2,d+1 = (A2j∗ − A2,d+1) +
∂R

∂A2j∗
− ∂R

∂A2,d+1

> 0, (10.29a)

where the inequality holds because (A2j∗ − A2,d+1) > 0 as A2j∗ is the maximum entry in the
second row, and because of (10.27) and (10.28).

Now we analyze row 1. Using a similar argument as in row 2, we have ∂R
∂A1,d+1

> 0 because
A1,d+1 is the maximum entry in row 1, and strict inequality holds due to the existence of the con-
flicting quadruple (1, 2, j∗, d+ 1). Moreover, we have ∂R

∂A1j∗
< 0, because A2j∗ is the maximum

entry in row 2 and the same conflicting quadruple (1, 2, j∗, d+ 1). Similar to the analysis of row
2, we derive that both entries (1, j∗) and (1, d+ 1) are observed. Therefore,

Y1j∗ − Y1,d+1 = (A1j∗ − A1,d+1) +
∂R

∂A1j∗
− ∂R

∂A1,d+1

< 0. (10.29b)

Combining (10.29) contradicts the assumption that Y ∈ M. Therefore, the entry A2,d+1 is the
maximum in row 2. From Case 1 we have A ∈ M for any 2× (d+ 1) matrices, completing the
inductive step.

10.3.3 d = 3

With d = 3, the matrix has 3 columns. We consider the maximum entry in each row of the
matrix. If a row has multiple maxima, one is chosen arbitrarily unless otherwise specified.
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Case 1: The maxima in all the n rows of the matrix lie in the same column.
Without loss of generality, assume that the column containing all the maxima is column 3.

It can be verified that all entries in column 3 do not contribute to the regularizer R. Apply-
ing the proof of the d = 2 case in Appendix 10.3.1 to the submatrix {Aij}i∈[n],j∈{1,2} yields
{Aij}i∈[n],j∈{1,2} ∈M. Since column 3 contains the maximum of each row, we have A ∈M.
Case 2: The maxima of the n rows lie in two different columns.

If the 3 entries within each row are identical, then we have A ∈M, so it remains to consider
the case where there exists a row whose values are not all identical. Without loss of generality,
we assume that the entries are not all identical in row 1. We re-index the columns such that the
first row is non-decreasing. Hence, we have A11 < A13. We also re-index the rows, so that rows
whose maxima are in the same column are grouped together. Then the matrix A is in one of the
two following forms:




min ∗ max
...

...
...

∗ ∗ max
∗ max ∗
...

...
...

∗ max ∗




(10.30a)

or



min ∗ max
...

...
...

∗ ∗ max
max ∗ ∗

...
...

...
max ∗ ∗



, (10.30b)

where we use “min” and “max” to indicate that the matrix entry is respectively a minimum or
a maximum of its row (allowing ties). We use ∗ to indicate a general matrix entry, and use the
horizontal line to indicate that the matrix structure decomposes into two blocks of rows. We
denote the upper block and the lower block of the matrix as AU and AL, respectively, so that the

matrix is also written as
[
AU

AL

]
. We denote the row indices of the upper block and the lower block

as IU, IL ⊆ [n], respectively. By the assumption of the case, we have IU, IL 6= ∅.
Case 2.1: We consider the matrix form (10.30a).

We assume that in the lower block AL, the entries in column 2 are strictly greater than the
entries in column 3 within each row. That is, we assume Ai2 > Ai3 for each i ∈ IL. This
assumption is without loss of generality, because otherwise we have Ai2 = Ai3, so that one can
move row i to the upper block of the matrix.
Case 2.1.1: There exists a strict min-entry in column 2 in some row of the upper block. That is,
there exists i∗ ∈ IU such that Ai∗1 > Ai∗2. Since column 3 contains the maximum for all rows in
the upper block, we have the strict inequality Ai∗2 < Ai∗3.
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Using (10.2), it can be verified that

∂R

∂Ai∗2
< 0 (10.31a)

∂R

∂Ai∗3
> 0, (10.31b)

where strict inequalities hold because the quadruple (i∗, i′, 2, 3) is a conflicting quadruple for
each i′ ∈ IL. Setting the gradient (10.6) for the stationary point A and combining with (10.31),
we have the entries (i∗, 1) and (i∗, 2) must both be observed. Subtracting the gradient expres-
sion (10.6) on the entries (i∗, 1) and (i∗, 2), we have

Yi∗,2 − Yi∗,3 = (Ai∗,2 − Ai∗,3) +

(
∂R

∂Ai∗,2
− ∂R

∂Ai∗,3

)
< 0,

where the last inequality holds by combining the fact of Ai∗2 < Ai∗3 with inequalities (10.31).
Hence, we have

Yi∗2 < Yi∗3. (10.32)

Now consider the case where there exists a min-entry in column 3 in the lower block, and denote
this row as iL ∈ IL. Since we assume Ai2 > Ai3 for each i ∈ IL for Case 2.1, we have (iL, 3) is
a strict min-entry. Note that (i∗, iL, 2, 3) is a conflicting quadruple. Using an argument similar to
the derivation of (10.32), we have

YiL,2 > YiL,3. (10.33)

Combining (10.32) and (10.33) contradicts the assumption that Y ∈ M. Hence, there does not
exist any min-entry in column 3 in the lower block. Hence, the min-entry must lie in column 1 in
the lower block, and all such min-entries are strict. Now the matrix A can be written in the form




min ∗ max
...

...
...

∗ ∗ max
min max ∗

...
...

...
min max ∗



.

Now consider any row iL ∈ IL. We have ∂R
∂AiL,2

> 0 because column 2 contains a max-entry, and
strict inequality holds due to the conflicting quadruple (i∗, iL, 2, 3). On the other hand, we have
∂R

∂AiL,3
≤ 0, because no quadruple within the lower block contributes to the regularizer, and in the

upper block column 3 contains the max-entry. Moreover, we have the strict inequality ∂R
∂AiL,3

< 0

due to the conflicting quadruple (i∗, iL, 2, 3) again. Setting the gradient expression (10.6) for the
stationary point A, we have that both entries (iL, 2) and (iL, 3) are observed. Subtracting the two
gradient expression, we have

YiL,2 > YiL,3. (10.33’)
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Combining (10.32) and (10.33’) yields a contradiction to the assumption of Y ∈M, completing
the proof of Case 2.1.1.
Case 2.1.2: There does not exist a min-entry in column 2 in the upper block.

In this case, the matrix is in the form




min ∗ max
...

...
...

min ∗ max
∗ max ∗
...

...
...

∗ max ∗



.

We consider column 2 in the upper block. If Ai2 = Ai3 for all i ∈ IU, then column 2 of
the entire matrix only contains max-entries, and we apply the proof of Case 1 to column 2. It
remains to consider the case where there exists some i ∈ IU such that AiU,2 < AiU,3. We have
∂R

∂AiU,3
> 0, where strict inequality holds due to the conflicting quadruple (IU, IL, 2, 3) for any

iL ∈ IL. Moreover, we have ∂R
∂AiU,2

≤ 0, because no quadruple within the upper block contributes
to the regularizer, and in the lower block column 2 contains the max-entries. We have the strict
inequality ∂R

∂AiU,2
< 0 due to the conflicting quadruple (IU, IL, 2, 3) for any iL ∈ IL. Using the

gradient expression (10.6), both entries (iU, 2) and (iU, 3) are observed, and we have

YiU,2 < YiU,3. (10.34a)

Now consider column 3 in the lower block. If for any row iL ∈ IL, column 3 contains the
min-entry. Then due to the quadruple (iU, iL, 2, 3) we have

YiL,2 < YiL,3. (10.34b)

Combining (10.34) yields a contradiction to the assumption that Y ∈M. Hence, column 3 does
not contain any min-entry in the lower block. That is, the matrix can be written in the form




min ∗ max
...

...
...

min ∗ max
min max ∗

...
...

...
min max ∗



.

Note that column 1 of the entire matrix only contains min-entries. Applying Case 1 to the minima
(instead of the maxima) completes the proof of Case 2.1.2.
Case 2.2: We consider the form (10.30b).

Without loss of generality, we assume strict inequality AiL,1 > AiL,3 for all iL ∈ IL. Other-
wise, we have AiL,1 = AiL,3 and one can move row iL to the upper block. Assume that column
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3 in the lower block contains a min-entry for some row iL ∈ IL. Combining row iL with row 1
gives a conflicting quadruple (1, iL, 1, 3). Using an argument similar to Case 2.1, we have

Y11 < Y13

YiL,1 > YiL,3,

contradicting to the assumption Y ∈ M. Hence, column 3 in the lower block does not contain
any min-entry. Therefore, the matrix can be written as




min ∗ max
...

...
...

∗ ∗ max
max min ∗

...
...

...
max min ∗



.

For any iL, the quadruple (1, iL, 1, 3) is again a conflicting quadruple. We have

Y11 < Y13

YiL,1 > YiL,3,

contradicting to the assumption Y ∈M, completing the proof of Case 2.2.
Case 3: The maxima of the n rows span all the 3 columns. That is, the matrix can be written in
the form:




min ∗ max
...

...
...

∗ ∗ max
∗ max ∗
...

...
...

∗ max ∗
max ∗ ∗

...
...

...
max ∗ ∗




.

Denote the three blocks in the matrix as AU, AM and AL respectively, so that the matrix is also

written as



AU

AM

AL


. Denote the corresponding sets of row indices as IU, IM and IL, respectively.

Without loss of generality, we assume

Ai2 > Ai3 ∀i ∈ IM

Ai1 > {Ai2, Ai3} ∀i ∈ IL.
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Otherwise, we may move the rows in the middle block to the upper block, and move the rows in
the lower block to the upper or middle blocks.

Now consider the lower block. Assume that there exists some min-entry in column 3 of the
lower block. That is, assume that there exists some iL ∈ IL, such that AiL,3 is a min-entry. Then
the quadruple (1, iL, 1, 3) is a conflicting quadruple. Hence, we have

Y11 < Y13

YiL,1 > YiL,3,

contradicting with the assumption that Y ∈ M. Hence, there does not exist any min-entry in
column 3 of the lower block. Then the matrix can be written in the form:




min ∗ max
...

...
...

∗ ∗ max
∗ max ∗
...

...
...

∗ max ∗
max min ∗

...
...

...
max min ∗




.

Now consider row 1. The quadruple (1, iL, 1, 3) is a conflicting quadruple for each row iL ∈ IL

in the lower block. Hence, we have

Y11 < Y13. (10.35)

Assume without loss of generality that there exists some iM ∈ IM, such that AiM,1 < AiM,2. Oth-
erwise, the first column in the middle block contains all max-entries, and the matrix reduces to
Case 2.2. Now consider any row iL ∈ IL. The quadruple (iM, iL, 1, 2) is a conflicting quadruple.
Hence, we have

YiL,1 > YiL,2. (10.36)

Combining (10.35) and (10.36) along with the assumption that Y ∈M, we have

Yi2 ≤ Yi1 ≤ Yi3, ∀i ∈ [n]. (10.37)

Now consider row iM again in the middle block. Assume AiM,1 is the min-entry in row iM. The
quadruple (iM, iL, 1, 2) is a conflicting quadruple for any iL ∈ IL. Hence, we have

YiM,2 > YiM,1,

contradicting (10.37). Hence, it must be the case that AiM,3 is the min-entry. Then we have
AIM,2 > AIM,1 ≥ AiM,3. Now again consider any row iL ∈ IL. Recall that we have established
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that AiL,3 cannot be a min-entry, so we have AiL,3 > AiL,2. Then the quadruple (iM, iL, 2, 3) is a
conflicting quadruple. Hence, we have

YiM,2 > YiM,3,

again contradicting (10.37), completing the proof of Case 3.

Finally, combining the three cases yields the claimed result.

10.4 Proof of Proposition 3.3
Without loss of generality, we consider any j, j′ ∈ [d] such that

A1,j < A1,j′ (10.38a)
A2,j > A2,j′ , (10.38b)

and prove that

Y1,j < Y1,j′ , if (1, j), (1, j′) ∈ Ω.

First, consider the quadruple (1, 2, j, j′). By (10.38), it is a conflicting quadruple. By (10.2),
we have

∂R1,2,j,j′

∂A1,j

< 0 (10.39a)

∂R1,2,j,j′

∂A1,j′
> 0. (10.39b)

Now consider quadruples involving any other column k ∈ [d] \ {j, j′}. We consider all
possible orderings of the entries in column k relative to the columns j and j′ as follows (we bold
the entries in column k for better readability).
Case 1:

A1,k ≤ A1,j < A1,j′

A2,k ≤ A2,j′ < A2,j
, or

A1,j < A1,j′ ≤ A1,k

A2,j′ < A2,j ≤ A2,k

It can be verified that column k does not form conflicting quadruples with columns j or j′. Hence,
column k does not contribute to the gradient of the regularizer with respect to A1j or A1j′:

∂R1,2,j,k

∂A1j

=
∂R1,2,j′,k

∂A1j′
= 0.

Case 2:

A1,j < A1,k ≤ A1,j′

A2,k ≤ A2,j′ < A2,j
, or

A1,j < A1,j′ ≤ A1,k

A2,j′ ≤ A2,k < A2,j
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It can be verified that column k contributes a negative gradient to the regularizer with respect to
A1j , and no gradient to the regularizer with respect to A1j′:

∂R12jk

∂A1j

< 0 =
∂R12j′k

∂A1j′
.

Case 3:

A1,j ≤ A1,k < A1,j′

A2,j′ < A2,j ≤ A2,k
, or

A1,k ≤ A1,j < A1,j′

A2,j′ < A2,k ≤ A2,j

It can be verified that column k contributes no gradient to the regularizer with respect to A1,j ,
and a positive gradient to the regularizer with respect to A1j′:

∂R1j2k

∂A1j

= 0 <
∂R1j′2k

∂A1j′
.

Case 4:

A1,j < A1,k < A1,j′

A2,j′ < A2,k < A2,j,

It can be verified that column k contributes a negative gradient to the regularizer with respect to
A1j , and a positive gradient to the regularizer with respect to A1j′:

∂R1j2k

∂A1j

< 0 <
∂R1j′2k

∂A1j′
.

Case 5:

A1,k < A1,j < A1,j′

A2,j′ < A2,j < A2,k,

It can be verified that column k contributes positive gradients to the regularizer with respect to
both A1j and A1j′ . By (10.1), we have

∂R1j2k

∂A1j

= 2(A1j − A1k)(A2j − A2k)
2

∂R1j′2k

∂A1j′
= 2(A1j′ − A1k)(A2j′ − A2k)

2,

and hence

0 <
∂R1j2k

∂A1j

<
∂R1j′2k

∂A1j′
.

Finally, combining all the 5 cases, it can be verified that they cover all possible orderings of
the entries in column k relative to columns j and j′. Moreover, we have

∂R1j2k

∂A1j

<
∂R1j′2k

∂A1j′
∀k ∈ [d] \ {j, j′}. (10.40)
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Plugging (10.39) and (10.40) to (10.4), we have

∂R

∂A1j

= 4λ


∂R1,2,j,j′

∂A1j

+
∑

k∈[d]\{j,j′}

∂R1j2k

∂A1j




< 4λ


∂R1,2,j′,j′

∂A1j′
+

∑

k∈[d]\{j,j′}

∂R1j′2k

∂A1j′


 =

∂R

∂A1j′
(10.41)

Since we assume (1, j), (1, j′) ∈ Ω, using the gradient expression (10.6), we have

Y1j′ − Y1j = (A1j − A1j′) +

(
∂R

∂A1j

− ∂R

∂A1j′

)
< 0,

where the inequality holds due to (10.38a) and (10.41), completing the proof.

10.5 Proof of Theorem 3.4
To present the main ideas of the proof, we first prove the following lemma under a simplified
setting of Theorem 3.4, where the partition includes two subsets, [d] = S ∪S under full observa-
tions Ω = [n]× [d]. Then we present how to generalize Lemma 10.4 to any partition and partial
observations.
Lemma 10.4. Consider any matrix Y ∈ Rn×d, and full observations Ω = [n] × [d]. Consider
n = 2. Assume there exists a partition of columns [d] = S ∪ S, such that any column in S
dominates any column in S. That is, for any j ∈ S and j′ ∈ S, we have

Yi,j < Yi,j′ ∀i ∈ {1, 2}. (10.42)

Then we have the same relation for any stationary point A. That is,

Ai,j < Ai,j′ ∀i ∈ {1, 2},∀j ∈ S and j′ ∈ S. (10.43)

10.5.1 Proof of Lemma 10.4
We decompose the proof into the following steps.
Step 1: Show that conflicting quadruples cannot lie across (S, S)

Assume for contradiction that there exists a conflicting quadruple across (S, S). That is, as-
sume that there exists j ∈ S and j′ ∈ S such that (A1,j − A1,j′)(A2j − A2j′) < 0. Applying
Proposition 3.3, we have (Y1,j − Y1,j′)(Y2j − Y2j′) < 0, contradicting the dominance assump-
tion (10.42). Hence, all conflicting quadruples must lie within S, or within S. Formally, for any
j, j′ ∈ [d] such that (1, 2, j, j′) is a conflicting quadruple, we have either j, j′ ∈ S or j, j′ ∈ S.
Step 2: Partition columns into blocks We partition the columns into blocks [d] = B1 ∪ B2 ∪
. . . ∪BK for some K ≥ 2, such that the following conditions are satisfied:

(a) For k ∈ [K], the block Bk includes columns only from S, or only from S. That is, for each
k ∈ [K] we have Bk ⊆ S or Bk ⊆ S .
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(b) For each k ∈ [K − 1], the blocks Bk and Bk+1 are in different sets of the partition (S, S).
That is, for each k ∈ [K − 1], we have either Bk ⊆ S and Bk+1 ⊆ S, or Bk ⊆ S and
Bk+1 ⊆ S.

(c) For each k ∈ [K − 1], the columns in Bk+1 dominates the columns in Bk. That is,

Aij ≤ Aij′ ∀i ∈ {1, 2},∀k ∈ [K],∀j ∈ Bk, and ∀j′ ∈ Bk+1.

Due to Step 1, all conflicting quadruples lie within S or S, so it can be verified that a partition of
blocks with K ≥ 2 satisfying (a)-(c) exists.
Step 3: Show that A satisfies the claimed dominance relation (10.43).

We define

kH := max{k ∈ [K] : Bk ⊆ S} (10.44a)

kL := min{k ∈ [K] : Bk ⊆ S}, (10.44b)

where ties are broken arbitrary. That is, BkL
is the block that is ordered the lowest among all

blocks consisting of columns in S, and BkH
is the block that is ordered the highest among all

blocks consisting of columns in S. Furthermore, we define

jH := argmax
j∈BkH

A1j (10.45a)

jL := argmin
j∈BkL

A1,j, (10.45b)

where ties are broken arbitrarily. That is, (1, jH) is the the maximum entry of A in row 1 among
columns BkH

, and (1, jL) is the minimum entry of A in row 1 among columns BkL
.

Case 1: A1,jH < A1,jL

By condition (c) of the construction, we have kL > kH. Hence, for all j ∈ S and j′ ∈ S, we
have

A1j

(i)
≤ A1jH < A1jL

(ii)
≤ A1j′ ,

where steps (i) and (ii) are true due to the definitions (10.44) and (10.45) along with the fact that
kL > kH. This completes Case 1.
Case 2: A1,jH ≥ A1,jL

If any conflicting quadruple includes the entry A1,jH , then from Step 1 we have that all such
conflicting quadruples are within S. By the definition (10.44a) of kH and the definition (10.45a)
of jH, the entry A1,jH is the maximum entry among all entries in row 1 among column S. Hence,
we have

∂R

∂A1,jH

≥ 0 (10.46a)

and likewise

∂R

∂A1,jL

≤ 0. (10.46b)
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Using the gradient expression (10.6), we have

Y1,jL − Y1,jH = (A1,jL − A1,jH) + λ

(
∂R

∂A1,jL

− ∂R

∂A1,jH

)
≤ 0,

where the last inequality is true due to (10.46) along with the assumption of the case. This
contradicts the assumption (10.42) that the columns S dominates the columns S, completing
Case 2.

Combining the two cases completes the proof.

10.5.2 Proof of Theorem 3.4
Now we extend Lemma 10.4 to partial observations, stated as follows.
Lemma 10.5. Consider any matrix Y ∈ [0, 1]n×d, and partial observations Ω ⊆ [n] × [d].
Consider n = 2. Assume there exists a partition of columns [d] = S ∪ S, such that any column
in S dominates any column in S. That is, we have

Yi,j < Yi,j′ ∀i ∈ {1, 2},∀j ∈ S and ∀j′ ∈ S. (10.47)

Moreover, we assume that for each j ∈ S, j′ ∈ S, we have

∃i ∈ {1, 2} such that (i, j), (i, j′) ∈ Ω. (10.48)

Then for any stationary point A, we have

Ai,j < Ai,j′ ∀i ∈ {1, 2},∀j ∈ S and j′ ∈ S. (10.49)

We first use Lemma 10.5 to prove Theorem 3.4, and then prove Lemma 10.5. To prove
Theorem 3.4, applying Lemma 10.5 with

S = ∪kr=1Sr

S = ∪mr=k+1Sr

with every k ∈ [m− 1] gives

Aij < Aij′ ∀i ∈ {1, 2},∀j ∈ Sk, and ∀j′ ∈ Sk+1,

completes the proof of Theorem 3.4. It now remains to prove Lemma 10.5.

Proof of Lemma 10.5 We extend the three steps in the proof of Lemma 10.4 to partial obser-
vations as follows.
Step 1: Show that conflicting quadruples cannot lie across (S, S)

Assume for contradiction that (1, 2, j, j′) is a conflicting quadruple with j ∈ S and j′ ∈ S.
Assume without loss of generality that

A1j < A1j′ (10.50a)
A2j > A2j′ . (10.50b)
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If all the 4 entries in this quadruple are observed, then applying Proposition 3.3 yields a contra-
diction. By assumption (10.48), one pair in the quadruple is observed. If the pair A2j > A2j′

is observed, then applying Proposition 3.3 gives Y2j > Y2j′ , yielding a contradiction to (10.47).
Hence, it remains to consider the case that the pair A1j < A1j′ is observed.

We first show that one entry in the pair A2j > A2j′ must be observed. Using the same
argument as in the proof of Proposition 3.3, we have

∂R

∂A2j

>
∂R

∂A2j′
. (10.51)

If both entries in this pair are unobserved, then combining (10.51) with the gradient expres-
sion (10.6), we have

∂L

∂A2j

= λ
∂R

∂A2j

> λ
∂R

∂A2j′
=

∂L

∂A2j′
,

contradicting the assumption that A is a stationary point with a gradient of 0, and hence ∂L
∂A2j

=
∂L
∂A2j′

= 0. Hence, one entry in the pair A2j > A2j′ is observed. We now separately discuss the
two cases depending on which entry in this pair is observed.
Case 1: A2j is observed and A2j′ is unobserved.

Since A2j′ is unobserved, we have

∂L

∂A2j′
=

∂R

∂A2j′
= 0. (10.52)

Since (1, 2, j, j′) is a conflicting quadruple, we have

∂R1,2,jj′

∂A2j′
< 0. (10.53)

Combining (10.52) and (10.53), there must exist some k ∈ [d] such that ∂R1,2,j′k
∂A2j′

> 0. That is, we
have

A1j′ < A1k (10.54a)
A2j′ > A2k. (10.54b)

If k ∈ S, then (1, 2, j′, k) is a quadruple across the partition (S, S). Recall by the assumption
of the case that A2j′ is unobserved, by condition (10.48), the pair A1j′ < A1k must be observed.
Applying Proposition 3.3 yields Y1j′ < Y1k, contradicting the dominance assumption (10.47).

It now remains to consider k ∈ S. Recall by the assumption of the case that A2j′ is un-
observed. If A2k is also unobserved, then the applying the arguments in Proposition 3.3 to the
conflicting quadruple (1, 2, j, k), we have

∂R

∂A2j′
<

∂R

∂A2k

,

150



and hence

∂L

∂A2j′
=

∂R

∂A2j′
<

∂R

∂A2k

=
∂L

∂A2k

,

contradicting the assumption that A is a stationary point with a gradient of 0. Hence, A2k is
observed. Combining (10.50) and (10.54), we have

A1j < A1k

A2j > A2k.

That is, (1, 2, j, k) is a conflicting quadruple. Note that all the 4 entries in this conflicting quadru-
ple are observed. Note that by the assumption that j ∈ S and k ∈ S, this conflicting quadruple is
across the partition (S, S). Applying Proposition 3.3 yields a contradiction with the dominance
relation (10.47) of the partition (S, S).
Case 2: A2j is unobserved and A2j′ is observed. A similar argument as in Case 1 applies.

Combining the two cases completes Step 1.
Step 2: Parition columns into blocks

We use the same construction of the blocks described in Step 2 of the proof of Lemma 10.4,
and obtain the blocks [d] = B1 ∪ . . . ∪BK .

Step 3: Show that A satisfies the claimed dominance relation (10.49)
We follow Step 3 of the proof of Lemma 10.4, and use the same definition of kH, kL from (10.44),

and the definition of (jH, jL) from (10.45). Again assume for contradiction that the dominance
relation (10.49) does not hold on A. We separately discuss the following cases depending on
whether the entries (1, jH) and (1, jL) are observed.
Case 1: Both (1, jH) and (1, jL) are observed. Then Step 3 of Lemma 10.4 can be applied
directly.
Case 2: Both (1, jH) and (1, jL) are unobserved. Due to the definitions (10.44a) and (10.45a),
the entry (1, jH) is the maximum entry of A in row 1 among columns S. If the entry (1, jH) is
involved in any conflicting quadruple, then due to Step 1, all such conflicting quadruples must lie
within S. Hence, all conflicting quadruples contribute a positive gradient to ∂R

∂A1,jH
. Since (1, jH)

is unobserved, setting the gradient expression (10.6) to 0 for the stationary point A, we have

∂L

∂A1,jH

=
∂R

∂A1,jH

= 0.

Hence, the entry (1, jH) cannot be in any conflicting quadruples. Therefore, (2, jH) is the maxi-
mum entry in row 2 among columns S. Likewise (1, jL) cannot be in any conflicting quadruples,
and (2, jL) is the minimum entry in row 2 among columns S. By the assumption (10.48), both
(2, jL) and (2, jL) are observed. Applying the arguments in Case 1 to the pair of (2, jH) and
(2, jL) completes Case 2.
Case 3: (1, jL) is observed and (1, jH) is unobserved.

Denote (2, j′L) as the minimum entry in row 2 among columns S. If (2, j′L) is unobserved,
then as in Case 2, the entry (2, j′L) cannot be in any conflicting quadruples, and hence j′L = jL.
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We have (1, jH) and (2, jL) both unobserved, contradicting (10.48). Hence, (2, j′L) must be
observed, and likewise (2, j′H) must be observed, where (2, j′H) is the maximum entry in row 2
among columns S. Applying Case 1 to the pair of (2, j′L) and (2, j′H) completes the proof.
Case 4: (1, jL) is unobserved and (1, jH) is observed. By symmetry, a similar argument as in
Case 3 applies.

Finally, combining the 4 cases completes the proof.
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Chapter 11

Proof of Chapter 4

In this chapter, we provide proofs for all the theoretical claims in Chapter 4. We begin by
introducing some additional notation in Section 11.1 which is used throughout the proofs. In
Section 11.2, we then provide certain preliminaries that are useful for the proofs. We then present
the proofs in subsequent subsections.

For ease of notation, we ignore rounding throughout the proofs as it does not affect the
claimed results.

11.1 Notation

Training-validation split (Ωt,Ωv): By Algorithm 2, the number of elements restricted to the
set Ωt or Ωv is the same for each course i. Hence, we denote nt and nv as the number of students
per course in Ωt and Ωv respectively. Throughout the proofs, for simplicity we assume that n is
even. In this case we have

nt = nv =
n

2
. (11.1)

All the proofs extend to the case where n is odd under minor modifications.
We define the elements in each course i ∈ [d] restricted to Ωt or Ωv as:

Ωt
i := {(i, j) ∈ Ωt}

Ωv
i := {(i, j) ∈ Ωv}.

We slightly abuse the notation and say j ∈ Ωt
i if (i, j) ∈ Ωt

i . Likewise for Ωv
i .

Group orderings: Recall that from Definition 4.1 that Gk denotes the set of elements in group
k ∈ [r]. We define

Gt
k := Gk ∩ Ωt

Gv
k := Gk ∩ Ωv.
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We denote the elements of group k ∈ [r] in course i ∈ [d] restricted to Ωv as:

Gik := Gk ∩ Ωi.

Furthermore, we define the elements of Gik restricted to Ωv as

Gt
ik := Gt

k ∩ Ωt
i Gv

ik := Gv
k ∩ Ωv

i .

Again, we slightly abuse the notation and say j ∈ Gv
ik if (i, j) ∈ Gv

ik.
We define `ik as the the number of students of group k ∈ [r] in course i ∈ [d]. We define `k

as the number of students of group k ∈ [r]. We denote `−i,k as the number of students of group
k ∈ [r] and not in course i. Namely,

`ik := |Gik| (11.2a)

`k := |Gk| =
∑

i∈[d]

`ik (11.2b)

`−i,k := |Gk \Gik| =
∑

i′ 6=i

`i′k. (11.2c)

Furthermore, we define

`t
k :=

∣∣Gt
k

∣∣ `v
k := |Gv

k|, (11.3a)

`t
ik :=

∣∣Gt
ik

∣∣ `v
ik := |Gv

ik|. (11.3b)

Total ordering: Consider the dn elements. We say that the element (i, j) is of rank t ∈ [dn] if
(i, j) is the tth-smallest element in among the dn elements.

We denote tij as the rank of each element (i, j) ∈ [d]× [n]. We denote (it, jt) as the element
of rank t ∈ [dn].

Observations Y and bias B: Denote the mean of all observations as

y =
1

dn

∑

i∈[d],j∈[n]

yij. (11.4)

Denote the mean of the observations in any course i ∈ [d] as

yi =
1

n

n∑

j=1

yij. (11.5)

Likewise we denote the mean of the bias in any course i ∈ [d] as bi. We denote the mean of the
bias of any course i ∈ [d] as

bGk =
1

`k

∑

(i,j)∈Gk

bij.
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Now restrict to group orderings. For any course i ∈ [d] and any group k ∈ [r], denote the
smallest and the largest observation in course i and group k as

yik,max := max
j:(i,j)∈Gk

yij (11.6a)

yik,min := min
j:(i,j)∈Gk

yij (11.6b)

We define bik,max and bik,min likewise. In addition, we define the smallest and the bias of any
group k ∈ [r] as

bk,min = min
(i,j)∈Gk

bij

bk,max = max
(i,j)∈Gk

bij.
(11.7)

Statistics: We g as the p.d.f. of N (0, 1). Denote G and G−1 as the corresponding c.d.f., and
the inverse c.d.f., respectively. We slightly abuse notation and write P(X) as the p.d.f. of any
continuous variable X .

For a set of i.i.d. random variables X1, . . . , Xn, we denote X(k) as the kth order statistics of
{Xi}ni=1. We use the notation X(k:n) when we emphasize the sample size n.

Let d ≥ 2 be any integer, and let π be a total ordering of size d. We denote the monotonic
cone with respect to π as M :=

{
θ ∈ Rd : θπ(1) ≤ . . . ≤ θπ(d)

}
. For any vector x ∈ Rd, we

denote the isotonic projection of x as

ΠM(x) := argmin
u∈Mπ

‖x− u‖2
2. (11.8)

We denoteM as the monotonic cone with respect to the identity ordering.

Our estimator and the cross-validation algorithm: Recall from Line 10 of Algorithm 2 that
our estimator restricted to any set of elements Ω ⊆ [d]× [n] is defined as the solution to:

argmin
x∈Rd

min
B∈Rd×n
B satisfiesO

∥∥Y − x1T −B
∥∥2

Ω
+ λ‖B‖2

Ω, (11.9)

with the ties broken by minimizing ‖B‖2
F .

We use the shorthand notation (x̂, B̂) to denote the solution (x̂(λ), b̂(λ)) to (11.9) when the
value λ is clear from the context. Likewise we use the shorthand notation B̃(λ) to denote the
interpolated bias B̃(λ) obtained in Line 15 of Algorithm 2.

Recall from Line 13 in Algorithm 2 that we find the element (iπ, jπ) ∈ Ωt (or two elements
(iπ1 , j

π
1 ), (iπ2 , j

π
2 ) ∈ Ωt) that is close to the considered element (i, j) ∈ Ωv in any total ordering π.

We call these one or two elements from Ωt as the “nearest-neighbor” of (i, j) with respect to π,
denoted NN(i, j; π). Recall from Line 17 in Algorithm 2 that e(λ) denotes the CV error at λ.

Define the random variable Λε as the set

Λε := {λ ∈ [0,∞] : ‖x̂(λ)‖2 > ε}. (11.10)

Under x∗ = 0, the set Λε consists of the “bad” choices of λ whose estimate x̂(λ) incurs a large
squared `2-error.
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Taking the limit of n → ∞: For ease of notation, we define the limit of taking n → ∞ as
follows. For example, in the statement of Theorem 4.5(a), we consider any fixed ε > 0. Then the
notation

lim
n→∞

P
(
‖x̂(0) − x∗‖2 < ε

)
= 1 (11.11)

is considered equivalent to the original statement of Theorem 4.5(a) that for any δ > 0, there
exists an integer n0, such that for every n ≥ n0 and every partial ordering satisfying the condi-
tion (a) we have

P
(
‖x̂(0) − x∗‖2 < ε

)
= 1.

The notation (11.11) has the alternative interpretation as follows. We construct a sequence of
partial orderings {On}∞n=1, where the partial ordering On is on d courses and n students and
satisfies the condition (a). With n students, the estimator x̂(0) is provided the partial ordering
On. We consider any such fixed sequence {On}∞n=1. Then the limit of n → ∞ in (11.11) is
well-defined.

11.2 Preliminaries

In this section we present preliminary results that are used in the subsequent proofs. Some of the
preliminary results are defined based on a set of elements Ω ⊆ [d]× [n]. We define the elements
in each course i ∈ [d] as

Ωi := {(i, j) ∈ Ω}.

Again we say j ∈ Ωi if (i, j) ∈ Ωi. We define the number of elements in each course i ∈ [d] as
ni := |Ωi|.

Throughout the proofs, whenever a set Ω ⊆ [d] × [n] is considered, we assume the set Ω
satisfies ni > 0 for each i ∈ [d] to avoid pathological cases. For ease of presentation, the order
of the preliminary results does not exactly follow the sequential order that they are proved.

11.2.1 Properties of the estimator

In this section we present a list of properties of our estimator. We start with the following
proposition. This proposition shows the existence and uniqueness of the solution to our estima-
tor (11.9) under its tie-breaking rule for any λ ∈ [0,∞). That is, the estimator is well-defined on
λ ∈ [0,∞).
Proposition 11.1 (Existence of the estimator at λ ∈ [0,∞)). For any λ ∈ [0,∞) and any
Ω ⊆ [d] × [n], there exists a unique solution to our estimator (4.2) under the tie-breaking rule,
given any inputs Y ∈ Rd×n and any partial ordering O.
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The proof of this result is provided in Appendix 11.9.1. Recall that the solution to (11.9) at
λ =∞ is defined by taking the limit of λ→∞ as:

x̂(∞) := lim
λ→∞

x̂(λ) (11.12a)

B̂(∞) := lim
λ→∞

B̂(λ). (11.12b)

The following proposition shows the existence of the solution (11.12). That is, the limit in (11.12)
is well-defined. This proposition is a generalization of Proposition 4.7 to any set Ω ⊆ [d] × [n],
and its proof is a straightforward generalization of the proof of Proposition 4.7 (Appendix 11.4).
Proposition 11.2 (Existence of the estimator at λ = ∞). For any Ω ⊆ [d] × [n], the solution
(x̂(∞), B̂(∞)) defined in (11.12) exists. Moreover, we have

[x̂(∞)]i =
1

ni

∑

j∈Ωi

yij ∀i ∈ [d]

B̂(∞) = 0.

The following lemma gives a relation between x̂(λ) and B̂(λ) for any λ ∈ [0,∞]. This basic
relation is used in proving multiple properties of the estimator to be presented subsequently in
this section.
Lemma 11.3. For any λ ∈ [0,∞], and any Ω ⊆ [d] × [n], the solution (x̂(λ), B̂(λ)) to the
estimator (11.9) satisfies

x̂
(λ)
i =

1

ni

∑

j∈Ωi

(
yij − b̂(λ)

ij

)
∀i ∈ [d]. (11.13)

In particular, in the special case of Ω = [d]× [n], we have

x̂
(λ)
i =

1

n

∑

j∈[n]

(
yij − b̂(λ)

ij

)
∀i ∈ [d]. (11.14)

The proof of this result is provided in Appendix 11.9.2 The following property gives expres-
sions of the sum of the elements in x̂ and the sum of the elements in B̂.
Lemma 11.4. For any λ ∈ [0,∞], any Ω ⊆ [d]× [n], the solution (x̂(λ), B̂(λ)) given any partial
ordering O and any observations Y satisfies

∑

(i,j)∈Ω

b̂
(λ)
ij = 0 (11.15a)

∑

i∈[d]

nix̂
(λ)
i =

∑

(i,j)∈Ω

yij. (11.15b)

In particular, in the special case of Ω = [d]× [n], we have
∑

i∈[d],j∈[d]

b̂
(λ)
ij = 0 (11.16a)

n
∑

i∈[d]

x̂
(λ)
i =

∑

i∈[d],j∈[n]

yij. (11.16b)
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The proof of this result is provided in Appendix 11.9.3. The following property shows a
shift-invariant property of our estimator. This property is used so that we assume x∗ = 0 without
loss of generality all the proofs.
Proposition 11.5 (Shift-invariance of the estimator). Consider any Ω ⊆ [d] × [n], and any
partial ordering O. Fix any λ ∈ [0,∞]. Let (x̂(λ), B̂(λ)) be the solution of our estimator for
any observations Y ∈ Rd×n given (O, λ,Ω). Consider any ∆x ∈ Rd. Then the solution of our
estimator for the observations Y + ∆x1T given (O, λ,Ω) is (x̂(λ) + ∆x, B̂(λ)).

The proof of this result is provided in Appendix 11.9.4. Note that the observation model (4.1)
is shift-invariant by definition. That is, consider any fixed B,Z ∈ Rd×n, denote the observations
with x∗ = 0 as Y . Then the observations with x∗ = ∆x is (Y + ∆x1T ). Hence, Proposition 11.5
implies the following corollary.
Corollary 11.6. Under the observation model (4.1), consider any fixed bias B ∈ Rd×n and
noise Z ∈ Rd×n. Suppose the solution of our estimator under x∗ = 0 is (x̂(λ), B̂(λ)) given any
(O, λ,Ω). Then the solution under x∗ = ∆x is (x̂(λ) + ∆x, B̂(λ)).

Based on the result of Corollary 11.6, it can be further verified that the cross-validation
algorithm (Algorithm 2) that uses our estimator is shift-invariant. Therefore, for all the proofs,
we assume x∗ = 0 without loss of generality.

The following pair of lemmas (Lemma 11.7 and Lemma 11.8) converts between a bound
on the difference of a pair of courses |x̂i − x̂i′ | and a bound on ‖x̂‖2. Lemma 11.7 is used
in Theorem 4.9 and Theorem 4.10; Lemma 11.8 is used in Theorem 4.5. Recall the notation
Λε := {λ ∈ [0,∞] : ‖x̂(λ)‖2 > ε}.
Lemma 11.7. Suppose x∗ = 0. Consider random Ωt obtained by Algorithm 2. Suppose the
observations are generate from either:

(a) The bias is marginally distributed as N (0, σ2) following assumption (A2) and there is no
noise, or

(b) The noise is generated from N (0, η2) following assumption (A1), and there is no bias.
For any constant ε > 0, our estimator x̂(λ) restricted to Ωt satisfies

lim
n→∞

P
(

max
i,i′∈[d]

(
x̂

(λ)
i − x̂(λ)

i′

)
>

ε√
d
, ∀λ ∈ Λε

)
= 1,

where the probability is taken over the randomness in the observations Y and the training set Ωt.
The proof of this result is provided in Appendix 11.9.5.

Lemma 11.8. Suppose x∗ = 0. Suppose the observations follow part (a) of Lemma 11.7. Sup-
pose the estimator is restricted to the set of either

(a) Ω = [d]× [n], or
(b) random Ωt obtained by Algorithm 2.

Fix any λ ∈ [0,∞] and any ε > 0. Suppose we have

lim
n→∞

P
(

max
i,i′∈[n]

∣∣∣x̂(λ)
i − x̂(λ)

i′

∣∣∣ < ε

)
= 1. (11.17)

Then we have

lim
n→∞

P
(
‖x̂(λ)‖2 < ε

)
= 1,
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where the probabilities are taken over the randomness in the observations Y and (for part (b))
in Ωt.

The proof of this result is provided in Appendix 11.9.6. The following proposition gives a
closed-form solution under d = 2 courses and r = 2 groups at λ = 0. This proposition is used for
proving Theorem 4.5(b) and Proposition 4.13. Recall the definitions of y, yi, yik,min and yik,max

from (11.4), (11.5) and (11.6).
Proposition 11.9. Consider d = 2 courses and any group ordering O with r = 2 groups. Let
Ω = [d] × [n]. Suppose the bias B satisfies the partial ordering O, and there is no noise. Then

the solution of our estimator (4.2) at λ = 0 has the closed-form expression x̂(0) = y +

[
−1
1

]
· γ

2
,

where

γ =





y22,min − y11,max if y22,min − y11,max < y2 − y1

y21,max − y12,min if y21,max − y12,min > y2 − y1

y2 − y1 o.w.
(11.18)

If some of {y11,max, y21,max, y12,min, y22,min} do not exist (i.e., when a certain course doesn’t have
students of a certain group), then the corresponding case in (11.18) is ignored.

The proof of this result is provided in Appendix 11.9.7

11.2.2 Order statistics
This section presents a few standard properties of order statistics.

Consider n i.i.d. random variables {Xi}i∈[n] ordered as

X(1) ≤ . . . ≤ X(n).

Define the maximal spacing as

Mn := max
1≤i≤n−1

(X(i+1) −X(i)). (11.19)

The following standard result from statistics states that the maximum difference between adjacent
order statistics converges to 0 for the Gaussian distribution.
Lemma 11.10. Let n > 1 be any integer. Let X1, . . . , Xn be i.i.d. N (0, 1). Then for any ε > 0,
we have

lim
n→∞

P(Mn < ε) = 1.

For completeness, the proof of this result is provided in Appendix 11.9.8. Denote G−1 as
the inverse c.d.f. of N (0, 1). The following standard result from statistics states that the order
statistics converges to the inverse c.d.f.
Lemma 11.11. Let X1, . . . , Xn be N (0, 1). Fix constant p ∈ (0, 1) and c ∈ R. Let {kn}∞n=1 be
a sequence such that kn

n
= p+ c√

n
+ o

(
1√
n

)
. We have

X(kn:n) P−→ G−1(p).
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For completeness, the proof of this result is provided in Appendix 11.9.9.
The following standard result from statistics provides a simple bound on the maximum (and

the minimum) of a set of i.i.d. Gaussian random variables.
Lemma 11.12. Let X1, . . . , Xn be i.i.d. N (0, σ2). Then we have

lim
n→∞

P
(

max
i∈[n]

Xi < 2σ
√

log n

)
= 1

lim
n→∞

P
(

max
i∈[n]

Xi −min
i∈[n]

Xi < 4σ
√

log n

)
= 1.

11.2.3 Additional preliminaries

In this section, we present several more additional preliminary results that are used in the subse-
quent proofs.

The following result considers the number of students under the all constant-fraction as-
sumption given any training-validation split (Ωt,Ωv). Recall the definitions of `ik, `k, `v

ik, `
t
k and

`v
k from (11.2) and (11.3).

Lemma 11.13. Assume `ik ≥ 4 for each i ∈ [d] and k ∈ [r]. Consider any training-validation
split (Ωt,Ωv) obtained by Algorithm 2. Then we have the deterministic relations

`ik
4
≤ `v

ik ≤
3`ik
4

∀i ∈ [d], k ∈ [r] (11.20a)

`ik
4
≤ `t

ik ≤
3`ik
4

∀i ∈ [d], k ∈ [r] (11.20b)

and

`k
4
≤ `v

k ≤
3`k
4

∀k ∈ [r] (11.21a)

`k
4
≤ `t

k ≤
3`k
4

∀k ∈ [r]. (11.21b)

The proof of this result is provided in Appendix 11.9.10. The following result considers any
total ordering. It states that the ranks of the adjacent elements within Ωt, or the ranks of the
adjacent elements between Ωt and Ωv differ by at most a constant. Formally, for any 1 ≤ k1 <
k2 ≤ dn, the element of rank k1 and the element of rank k2 are said to be adjacent within Ωt,
if both elements are in Ωt, and elements of ranks k1 + 1 through k2 − 1 are all in Ωv. The two
elements are said be be adjacent between Ωt and Ωv, if one of the following is true:

• The elements of ranks k1 through (k2 − 1) are in Ωt, and the element of rank k2 is in Ωv;
• The elements of ranks k1 through (k2 − 1) are in Ωv, and the element of rank k2 is in Ωt.

Lemma 11.14. For any partition (Ωt,Ωv) obtained by Algorithm 2, for any 1 ≤ k1 < k2 ≤ dn,
suppose that the element of rank k1 and the element of rank k2 are

(a) adjacent within Ωt, or
(b) adjacent between Ωt and Ωv.

160



Then we have

k2 − k1 ≤ 2d+ 1.

The proof of this result is provided in Appendix 11.9.11. The following lemma bounds the mean
of the bias terms using standard concentration inequalities.
Lemma 11.15. Consider any partial ordering O and any random Ωt obtained by Algorithm 2.
Suppose that the bias is marginally distributed as N (0, 1) following assumption (A2). For any
ε > 0, we have

lim
n→∞

P



∣∣∣∣∣∣

1

nt

∑

j∈Ωt
i

bij −
1

n

∑

j∈[n]

bij

∣∣∣∣∣∣
< ε


 = 1 ∀i ∈ [d], (11.22a)

lim
n→∞

P



∣∣∣∣∣∣

1

|Ωt|
∑

(i,j)∈Ωt

bij

∣∣∣∣∣∣
< ε


 = 1, (11.22b)

where the probabilities are over the randomness in B and in Ωt.
The proof of this result is provided in Appendix 11.9.12.

11.3 Proof of Theorem 4.5
The proof follows notation in Appendix 11.1 and preliminaries in Appendix 11.2. By Corol-
lary 11.6, we assume x∗ = 0 throughout the proof without loss of generality. We also assume
without loss of generality that the standard deviation of the Gaussian bias is σ = 1. Given x∗ = 0
and the assumption that there is no noise, model (4.1) reduces to

Y = B. (11.23)

Recall that `ik denotes the number of observations in course i ∈ [d] of group k ∈ [r], and
`k denotes the number of observations of group k summed over all courses. For any positive
constant c > 0, we define the set Sc as

Sc :=

{
(i, i′) ∈ [d]2 : ∃k ∈ [r] such that

`ik
`k
,
`i′,k+1

`k+1

≥ c

}
. (11.24)

In words, the definition (11.24) says that for any pair of courses (i, i′) ∈ Sc, we have that course
i takes at least c-fraction of observations in some group k ∈ [r], and course i′ takes at least
c-fraction of observations in group (k + 1).

Before proving the three parts separately, we first state a few lemmas that are used for more
than one part. The first lemma states that any (i, i′) ∈ Sc imposes a constraint on our estimator
x̂(0) at λ = 0.
Lemma 11.16. Assume x∗ = 0. Consider bias marginally distributed as N (0, 1) following
assumption (A2) and no noise. Let x̂(0) be the solution of our estimator at λ = 0. Fix any c > 0.
For any (i, i′) ∈ Sc, we have that for any ε > 0,

lim
n→∞

P
(
x̂

(0)
i′ − x̂

(0)
i < ε

)
= 1. (11.25)
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The proof of this result is provided in Appendix 11.10.1. To state the next lemma, we first
make the following definition of a “cycle” of courses.
Definition 11.17. Let L ≥ 2 be an integer. We say that (i1, i2, . . . , iL) ∈ [d]L is a “cycle” of
courses with respect to Sc, if

(im, im+1) ∈ Sc ∀m ∈ [L− 1], (11.26a)
and (iL, i1) ∈ Sc. (11.26b)

The following lemma states that if there exists a cycle of courses, then the difference of the
estimated quality x̂ between any two courses in this cycle converges to 0 in probability.
Lemma 11.18. Fix any c > 0. Suppose d is a fixed constant. Let (i1, i2, . . . , iL) ∈ [d]L for some
L ≥ 2 be a cycle with respect to Sc. Then for any ε > 0 we have

lim
n→∞

P
(

max
m,m′∈[L]

∣∣x̂im′ − x̂im
∣∣ < ε

)
= 1.

The proof of this result is provided in Appendix 11.10.2. Now we prove the three parts of
Theorem 4.5 respectively.

11.3.1 Proof of part (a)
For clarity of notation, we denote the constant in the all constant-fraction assumption as cf .
Consider any i, i′ ∈ [d] and any k ∈ [r − 1]. We have

`ik
`k

(i)
≥ cfn

dn
=
cf

d
,

where step (i) is true by the all c-fraction assumption from Definition 4.3. Hence, by the defini-
tion (11.24) of Sc, we have (i, i′) ∈ S cf

d
for every i, i′ ∈ [d]. Hence, (1, 2, . . . , d) is a cycle with

respect to S cf
d

according to Definition 11.17. Applying Lemma 11.18 followed by Lemma 11.8(a)
completes the proof.

11.3.2 Proof of part (b)
Without loss of generality we assume course 1 has more (or equal) students in group 1 than
course 2, that is, we assume

`11 ≥ `21. (11.27)

Since we assume there are only two courses and two groups, we have

`12 = n− `11 ≤ n− `21 = `22. (11.28)

We fix any constant ε > 0. We now bound the probability that |x̂2 − x̂1| < ε. Specifically,
we separately bound the probability of x̂2− x̂1 < ε, and the probability of x̂2− x̂1 > −ε. Finally,
we invoke Lemma 11.8 to complete the proof.
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Bounding the probability of x̂2 − x̂1 < ε: By the definition (11.24) of Sc, it can be verified
that given (11.27) and (11.28) we have (1, 2) ∈ S0.5 (taking k = 1). By Lemma 11.16, we have

lim
n→∞

P(x̂2 − x̂1 < ε) = 1. (11.29)

Bounding the probability of x̂2 − x̂1 > −ε: By the closed-form solution in Proposition 11.9,
we have x̂2 − x̂1 = γ where γ is defined in (11.18) as

γ =





y22,min − y11,max if y22,min − y11,max < y2 − y1

y21,max − y12,min if y21,max − y12,min > y2 − y1

y2 − y1 o.w.
(11.30)

Recall from the model (11.23) that Y = B, and hence we have the deterministic relation y22,min−
y11,max = b22,min−b11,max ≥ 0 due to the assumption (A2) under the group ordering, and similarly
we have the deterministic relation y21,max − y12,min ≤ 0. Consider the case of y2 − y1 ≥ 0.
In this case, only the first and the third cases in (11.30) are possible, and therefore we have
0 ≤ γ ≤ y2 − y1. Now consider the case of y2 − y1 < 0. In this case, only the second and the
third cases in (11.30) are possible, and we have y2 − y1 ≤ γ ≤ 0. Combining the two cases, we
have the relation

x̂2 − x̂1 = γ > −ε if y2 − y1 > −ε. (11.31)

It suffices to bound the probability of y2 − y1 > −ε.
In what follows we show that limn→∞ P(y2 − y1 > −ε) = 1. That is, we fix some small

δ > 0 and show that P(y2 − y1 > −ε) ≥ 1 − δ for all sufficiently large d. The intuition is that
course 2 has more students in group 2, which is the group of greater values of the bias. Since
according to assumption (A2) the bias is assigned within each group uniformly at random, the set
of observations in course 2 statistically dominates the set of observations in course 1. Therefore,
y2 should not be less than y1 by a large amount.

We first condition on any fixed values of bias ranked as b∗(1) ≤ . . . ≤ b∗(2n) (since we assume
the number of courses is d = 2). Denote the mean of bias of group 1 as b

∗
G1

= 1
`1

∑`1
k=1 b

∗(k) and
the mean of bias of group 2 as b

∗
G2

= 1
`2

∑2n
k=`1+1 b

∗(k). Denote ∆B∗ := b∗(2n) − b∗(1) and denote
∆B := b∗(2n) − b∗(1). By Hoeffding’s inequality without replacement [86, Section 6] on group 1
of course 1, we have

P

[∣∣∣∣∣
∑

j∈G11

b1j − `11b
∗
G1

∣∣∣∣∣ ≥ ∆B∗

√
`11 log

(
1

δ

) ∣∣∣∣∣ B
∗

]
≤ 2 exp

(
−2 ·∆2

B∗` log(1
δ
)

`∆2
B

)
= 2δ2

(i)
≤ δ

8
,

where (i) holds for any δ ∈ (0, 1
16

). We apply Hoeffding’s inequaltiy without replacement for any
i ∈ {1, 2} and any k ∈ {1, 2}. Using the fact that `ik ≤ n for any i ∈ {1, 2} and any k ∈ {1, 2},
we have

P

[∣∣∣∣∣
∑

j∈Gik

bij − `ikb
∗
Gk

∣∣∣∣∣ ≥ ∆B∗

√
n log

(
1

δ

) ∣∣∣∣∣ B
∗

]
≤ δ

8
. (11.32)
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Taking a union bound of (11.32) over i ∈ {1, 2} and k ∈ {1, 2}, we have that with probability at
least 1− δ

2
,

y2 − y1 =
1

n

(∑

j∈G21

b2j +
∑

j∈G22

b2j −
∑

j∈G11

b1j −
∑

j∈G12

b1j

)

(i)
≥ 1

n

(
`21b

∗
G1

+ `22b
∗
G2
− `11b

∗
G1
− `12b

∗
G2
− 4∆B∗

√
n log

(
1

δ

))

=
1

n

(
(`21 − `11)b

∗
G1

+ (`22 − `12)b
∗
G2
− 4∆B∗

√
n log

(
1

δ

))

(ii)
=

1

n

(
(`21 − `11)(b

∗
G1
− b∗G2

)− 4∆B∗

√
n log

(
1

δ

))

(iii)
≥ −4∆B∗

√
log
(

1
δ

)

n
, (11.33)

where inequality (i) is true by (11.32), step (ii) is true because `11 + `12 = `21 + `22 and hence
`21− `11 = −(`22− `12), and finally step (iii) is true by b

∗
G1
≤ b

∗
G2

due to the assumption (A2) of
the bias and the group orderings.

Now we analyze the term ∆B in (11.33). By Lemma 11.12, there exists integer n0 such that
for any n ≥ n0,

P
(

∆B ≤ 4
√

log 2n
)
≥ 1− δ

2
. (11.34)

Let n1 be a sufficiently large such that n1 ≥ n0 and 16
√

log 2n1 ·
√

log( 1
δ

)

n1
< ε. Then combin-

ing (11.34) with (11.33), we have that for any n ≥ n0,

P (y2 − y1 > −ε) =

∫

B∈R2×n
P (y2 − y1 > −ε | B) · P(B) dB

≥
∫

B∈R2×n:
∆B≤4

√
logn

P(y2 − y1 > −ε | B) · P(B) dB

(i)
≥
(

1− δ

2

)
· P(∆B ≤ 4

√
log 2n)

(ii)
≥
(

1− δ

2

)2

≥ 1− δ, (11.35)

where inequality (i) is true by (11.33) due to the choice of n1, and inequality (ii) is true by (11.34).
Combining (11.35) with (11.31), for any n ≥ n1, we have

P(x̂2 − x̂1 = γ > −ε) ≥ P(y2 − y1 > −ε) ≥ 1− δ.
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That is,

lim
n→∞

P(x̂2 − x̂1 > −ε) = 1. (11.36)

Finally, combining Step 1 and Step 2, we take a union bound of (11.29) and (11.36), we have

lim
n→∞

P
(
|x̂2 − x̂1| < ε

)
= 1. (11.37)

Given (11.37), we invoke Lemma 11.8 and obtain

lim
n→∞

P
(
‖x̂‖2 < ε

)
= 1,

completing the proof.

11.3.3 Proof of part (c)
For total orderings, each observation forms its own group of size 1 (that is, `k = 1 for all
k ∈ [dn]). A bias term belonging to group some k ∈ [dn] is equivalent to the bias term being
rank k. By the definition 11.24 of Sc, if course i contains rank k and course i′ contains rank k+1

then we have (i, i′) ∈ S1, because `ik
`k

=
`i′,k+1

`k+1
= 1 due to the total ordering.

The proof consists of four steps:
• In Step 1, we find a partition of the courses, where each subset in this partition consists of

courses i whose estimated qualities x̂i are close to each other.
• In Step 2, we use this partition to analyze |x̂i − x̂i′ |.
• In Step 3, we upper-bound the probability that |x̂i − x̂i′| is large. If |x̂i − x̂i′ | is large, then

we construct an alternative solution according to the partition and derive a contradiction
that x̂ cannot be the optimal compared to the alternative solution.

• In Step 4, we invoke Lemma 11.8 to convert the bound on |x̂i − x̂i′| to a bound on ‖x̂‖2.

Step 1: Constructing the partition We describe the procedure to construct the partition of
courses based on any given total ordering O. Without loss of generality, we assume that the
minimal rank in course i is strictly less than the minimal rank in course (i+1) for every i ∈ [d−1].
That is, we have

min
j∈[n]

tij < min
j∈[n]

ti+1,j ∀i ∈ [d− 1]. (11.38)

The partition is constructed in steps. We first describe the initialization of the partition.
After the partition is initialized, we specify a procedure to “merge” subsets in the partition. We
continue merging the subsets until there are no more subsets to merge according to a specified
condition, and arrive at the final partition.

Initialization We construct a directed graph of d nodes, where each node i ∈ [d] represents
course i. We put a directed edge from node i to node i′ for every (i, i′) ∈ S1. Let V1, . . . , Vd ⊆ [d]
be a partition of the d nodes. We initialize the partition as Vi = {i} for all i ∈ [d]. We also call
each subset Vi as a “hypernode”.
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course 1 1 2 6 7
course 2 3 4 5 8
course 3 9 10 11 12

students

(a) The total ordering

1 2 3

1 2 3

𝑉" 𝑉# 𝑉$

𝑉" 𝑉#
(b) The procedure of constructing
the partition

Figure 11.1: An example for constructing the partition of hypernodes.

Merging nodes We now merge the partition according to the following procedure. We find
a cycle (of directed edges) in the constructed graph, such that the nodes (courses) in this cycle
belong to at least two different hypernodes. If there are multiple such cycles, we arbitrarily
choose one. We “merge” all the hypernodes involved in this cycle. Formally, we denote the
hypernodes involved in this cycle as Vi1 , Vi2 , . . . , ViL . To merge these hypernodes we construct
a new hypernode V = Vi1 ∪ Vi2 ∪ . . . ∪ ViL . Then we remove the hypernodes Vi1 , Vi2 , . . . , ViL
from the partition, and add the merged hypernode V to the partition.

We continue merging hypernodes, until there exist no such cycles that involve at least two
different hypernodes. When we say we construct a partition we refer to this final partition after
all possible merges are completed.

An example is provided in Fig. 11.1. In this example we consider d = 3 courses and n = 4
students per course. We consider the total ordering in Fig. 11.1(a), where each integer in the table
represents the rank of the corresponding element with respect to this total ordering. The top graph
of Fig. 11.1(b) shows the constructed graph and the initialized partition. At initialization there
is a cycle between course 1 and course 2 (that belong to different hypernodes V1 and V2), so we
merge the hypernodes V1 and V2 as shown in the bottom graph of Fig. 11.1(b). At this point,
there are no more cycles that involve more than one hypernode, so the bottom graph is the final
constructed partition.

In what follows we state two properties of the partition. We define the length of a cycle as
the number of edges in this cycle. The first lemma states that within the same hypernode, any
two courses included in a cycle whose length is upper-bounded.
Lemma 11.19. Consider the partition constructed from any total ordering O. Let V be any
hypernode in this partition. Then for any i, i′ ∈ V with i 6= i′, there exists a cycle whose length
is at most 2(d− 1), such that the cycle includes both course i and course i′.

The proof of this result is provided in Appendix 11.10.3. The following lemma provides
further properties on the constructed partition. We say that there exists an edge from hypernode
V to V ′, if and only if there exists an edge from some node i ∈ V to some node i′ ∈ V ′. Denote
s as the number of hypernodes in the partition. Denote the hypernodes as V1, . . . , Vs.
Lemma 11.20. Consider the partition constructed from any total orderingO. The hypernodes in
this partition can be indexed in a way such that the only edges on the hypernodes are (Vm, Vm+1)
for all m ∈ [s − 1]. Under this indexing of hypernodes, the nodes within each hypernodes
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are consecutive, and increasing in the indexing of the hypernodes. That is, there exist integers
0 = i1 < i2 < . . . < is+1 = d, such that Vm = {im + 1, . . . , im+1} for each m ∈ [s].

Moreover, for each m ∈ [s], the ranks of elements (with respect to the total ordering O)
contained in the nodes of hypernode Vm are consecutive and increasing in the indexing of the
hypernodes. That is, there exists integers 0 = t1 < t2 . . . < ts+1 = dn, such that ∪i∈Vm ∪j∈[n]

{tij} = {tm + 1, . . . , tm+1}.
The proof of this result is provided in Appendix 11.10.4. When we refer to a partition

(V1, . . . , Vs), we specifically refer to the indexing of the hypernodes that satisfies Lemma 11.20.
As an example, in Fig. 11.1 we have V1 = {1, 2} and V2 = {3}. The ranks of elements in V1

are {1, . . . , 8}, and the ranks of elements in V2 are {9, . . . , 12}.

Step 2: Analyzing |x̂i − x̂i′| using the partition Our goal in Step 2 and Step 3 is to prove the
that for any ε > 0, we have

lim
n→∞

P
(

max
i,i′∈[n]

|x̂i′ − x̂i| < ε

)
= 1.

Equivalently, denote the “bad” event as

Ebad :=

{
max
i,i′∈[n]

|x̂i′ − x̂i| > 4d2ε

}
. (11.39)

The goal is to prove limn→∞ P(Ebad) = 0. In Step 2, we define some high-probability event
(namely, E1 ∩ E2 ∩ E3 to be presented), and show that it suffices to prove

lim
n→∞

P(Ebad, E1 ∩ E2 ∩ E3) = 0.

The eventE1 bounds |x̂i′ − x̂i|within each hypernode We first bound |x̂i′ − x̂i| for i, i′ ∈ [d]
within each hypernode. By Lemam 11.19, there exists a cycle of length at most 2(n−1) between
any two courses i, i′ within the same hypernode. Given assumption (A3) that n is a constant, by
Lemma 11.18 we have that for each hypernode V ,

lim
n→∞

P
(

max
i,i′∈V
|x̂i − x̂i′| < ε

)
= 1. (11.40)

Since the number of hypernodes is at most d, taking a union bound of (11.40) across all hypern-
odes in the partition, we have

lim
n→∞

P
(

max
i,i′∈V
|x̂i − x̂i′ | < ε, ∀V hypernode in the partition

︸ ︷︷ ︸
E1

)
= 1. (11.41)

We denote this event in (11.41) as E1.
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The event E2 bounds |x̂i′ − x̂i| across hypernodes We then bound |x̂i′ − x̂i| across differ-
ent hypernodes. We consider adjacent hypernodes Vm and Vm+1 for any m ∈ [s − 1]. By
Lemma 11.20, there exists an edge from Vm to Vm+1. That is, there exists i ∈ Vm and i′ ∈ Vm+1

such that (i, i′) ∈ S1. By Lemma 11.16, we have

lim
n→∞

P (x̂i′ − x̂i < ε) = 1. (11.42)

Since the number of hypernodes s is at most d, taking a union bound of (11.42) over all m ∈
[s− 1], we have

lim
n→∞

P
(

min
i∈Vm,i′∈Vm+1

x̂i′ − x̂i < ε, ∀m ∈ [s− 1]

︸ ︷︷ ︸
E2

)
= 1. (11.43)

We denote this event in (11.43) as E2.

Define E3: Finally, we define E3 as the event that B is not a constant matrix. That is,

E3 = {∃i, i′ ∈ [d], j, j′ ∈ [n] : bij 6= bi′j′}.

Since by assumption (A2) (setting σ = 1) the bias terms {bij}i∈[d],j∈[n] are marginally distributed
as N (0, 1), it is straightforward to see that the event E3 happens almost surely:

P(E3) = 1. (11.44)

Decompose Ebad: We decompose the bad event Ebad as

P(Ebad) = P(Ebad, E1 ∩ E2 ∩ E3) + P(Ebad, E1 ∩ E2 ∩ E3)

≤ P(Ebad, E1 ∩ E2 ∩ E3) + P(E1 ∩ E2 ∩ E3). (11.45)

Combining (11.41), (11.43) and (11.44), we have

lim
n→∞

P
(
E1 ∩ E2 ∩ E3

)
= lim

n→∞
P(E1 ∪ E2 ∪ E3) ≤ lim

n→∞

[
P(E1) + P(E2) + P(E3)

]
= 0.

(11.46)

Combining (11.45) and (11.46), in order to show limn→∞ P(Ebad) = 0 it suffices to show
limn→∞ P(Ebad, E1 ∩ E2 ∩ E3) = 0.

Step 3: Analyzing the event Ebad ∩ E1 ∩ E2 ∩ E3 In this step, we analyze the event Ebad ∩
E1 ∩ E2 ∩ E3, and identify a new partition (namely, {VL, VH} to be defined) of the nodes. This
new partition is used to drive a contradiction in Step 4.

First consider the case that the number of hypernodes is s = 1. In this case E1 and Ebad gives
a direct contradiction, and we have Ebad∩E1∩E2∩E3 = ∅. We now analyze the case when the
number of hypernodes is s ≥ 2. We arbitrarily find one course from each hypernode and denote
them as i1 ∈ V1, . . . , is ∈ Vs.
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We condition on Ebad ∩ E1 ∩ E2 ∩ E3. Recall that by definition (11.39), the event Ebad

requires that there exists i, i′ ∈ [d] such that

|x̂i′ − x̂i| > 4d2ε. (11.47)

By the definition (11.41) of E1, we have that i and i′ cannot be in the same hypernode. Hence,
we assume i ∈ Vm and i′ ∈ Vm′ , and assume m < m′ without loss of generality. We bound
x̂i′ − x̂i as

x̂i′ − x̂i = (x̂i′ − x̂im′ ) + (x̂im′ − x̂im′−1
) + . . .+ (x̂im+1 − x̂im) + (x̂im − x̂i′)

(i)
< 2ε+ dε < 4d2ε, (11.48)

where (i) is true by events E1 and E2. Combining (11.47) and (11.48), we must have x̂i′ − x̂i <
−4d2ε, or equivalently

x̂i − x̂i′ > 4d2ε. (11.49)

We decompose x̂i − x̂i′ as

x̂i − x̂i′ = (x̂i − x̂im) + (x̂im − x̂im+1) + . . .+ (x̂im′−1
− x̂im′ ) + (x̂im′ − x̂i′)

(i)
< 2ε+ (x̂im − x̂im+1) + . . .+ (x̂im′−1

− x̂im′ ), (11.50)

where (i) is due to event E1. Combining (11.49) and (11.50), we have

2ε+ (x̂im − x̂im+1) + . . .+ (x̂im′−1
− x̂im′ ) > x̂i − x̂i′ > 4d2ε

(x̂im − x̂im+1) + . . .+ (x̂im′−1
− x̂im′ ) > (4d2 − 2)ε > 3d2ε.

Hence, we have

d ·max{(x̂im − x̂im+1), . . . , (x̂im′−1
− x̂im′ )} > 3d2ε

max{(x̂im − x̂im+1), . . . , (x̂im′−1
− x̂im′ )} > 3dε. (11.51)

Without loss of generality, we assume that in (11.51) we have integer m∗ with m ≤ m∗ < m′

such that

x̂im∗ − x̂im∗+1
> 3dε. (11.52)

Now consider any m,m′ ∈ [s] such that m ≤ m∗ < m′, and for any i ∈ Vm and i′ ∈ Vm′ , we
have

x̂i − x̂i′ = (x̂i − x̂im) + (x̂im − x̂im+1) + . . .+ (x̂i∗m − x̂im∗+1
) + . . .+ (x̂im′−1

− x̂im′ ) + (x̂im′ − x̂i′)
(i)
> −2ε+ 3dε− dε > ε,

where (i) is by eventsE1 andE2 combined with (11.52). Equivalently, denote VL := V1∪. . .∪Vm∗
and VH := Vm∗+1 ∪ . . . ∪ Vs, we have

x̂i − x̂i′ > ε ∀i ∈ VL, i
′ ∈ VH. (11.53)
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Step 4: Showing P(Ebad, E1 ∩ E2 ∩ E3) = 0 by deriving a contradiction We consider any
solution (x̂, B̂) of our estimator at λ = 0 conditional on Ebad ∩ E1 ∩ E2 ∩ E3, and derive a
contradiction. Hence, we have P(Ebad, E1 ∩ E2 ∩ E3) = 0.

Analyzing properties of B̂ By Lemma 11.20, any bias term b̂ij for i ∈ VL has a smaller rank
than any bias term b̂ij for i ∈ VH. Therefore, the mean of B̂ over elements in VL is less than or
equal to the mean of B̂ over VH. That is, with the definition of b̂L and b̂H as

b̂L :=
1

|VL| · n
∑

i∈VL

∑

j∈[n]

b̂ij (11.54a)

b̂H :=
1

|VH| · n
∑

i∈VH

∑

j∈[n]

b̂ij, (11.54b)

We have the deterministic relation b̂L ≤ b̂H.
First consider the case of b̂L = b̂H. Since B̂ obeys the total ordering O, we have B̂ = c for

some constant c. Conditional on E3, it can be verified that for any c ∈ R, the objective (4.2)
attained at (x̂, B̂) is strictly positive. Recall from the model (11.23) that Y = B. Hence, an
objective (4.2) of 0 can be attained by the solution (0, B). Contradiction to the assumption that
(x̂, B̂) is the minimizer of the objective.

Now we consider the case of b̂L < b̂H. We have that either b̂L < 0 or b̂H > 0 (or both).
Without loss of generality we assume b̂H > 0.

Constructing an alternative solution We now construct an alternative solution by increasing
x̂i for every course i ∈ VH by a tiny amount, and prove for contradiction that this alternative
solution is preferred by the tie-breaking rule of minimizing ‖B‖2

F . We construct the alternative
solution (x̂′, B̂′) as

x̂′i =

{
x̂i if i ∈ VL

x̂i + ∆ if i ∈ VH

B̂′ = Y − x̂′1T ,
(11.55)

for some sufficiently small ∆ > 0 whose value is specified later. Since (x̂, B̂) is a solution,
as discussed previously it has to attain an objective of 0. By the construction (11.55), it can be
verified that (x̂′, B̂′) also attains an objective of 0. In what remains for this step, we first show that
the alternative solution (x̂′, B̂′) satisfies all ordering constraints by the total ordering O. Then
we show that ‖B̂′‖2

F < ‖B̂‖2
F , and therefore (x̂′, B̂′) is preferred by the tie-breaking rule over

(x̂, B̂), giving a contradiction.

The alternative solution (x̂′, B̂′) satisfies all ordering constraints in O Since both (x̂, B̂)

and (x̂′, B̂′) attain an objective of 0, we have the deterministic relation

yij = x̂i + b̂ij = x̂′i + b̂′ij ∀i ∈ [d], j ∈ [n]. (11.56)
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Consider any constraint ((i, j), (i′, j′)) ∈ O. If i, i′ ∈ VL, then we have

b̂′ij − b̂′i′j′ = yij − x̂′i − (yi′j′ − x̂′i′)
= yij − x̂i − (yi′j′ − x̂i′)

= b̂ij − b̂i′j′
(i)
< 0,

where (i) is true because by assumption (x̂, B̂) is the optimal solution, and hence B̂ satisfies the
ordering constraint of b̂ij ≤ b̂i′j′ . Similarly if i, i′ ∈ VH, then (x̂′, B̂′) also satisfies this ordering
constraint. Finally, consider the case where one of {i, i′} is in VL and the other is in VH. Due to
Lemma 11.20 regarding the ranks combined with the definition of (VL, VH), it can only be the
case that i ∈ VL and i′ ∈ VH. For any ∆ ∈ (0, ε), we have that conditional onEbad∩E1∩E2∩E3,

b̂′ij − b̂′i′j′ = (yij − x̂′i)− (yi′j′ − x̂′i′)
= (bij − x̂i)− (bi′j′ − x̂i′ −∆)

= (bij − bi′j′) + (x̂i′ + ∆− x̂i)
(i)
< 0,

where (i) is true because the ordering constraint ((i, j), (i′, j′)) gives bij ≤ bi′j′ . Moreover, we
have x̂i′ − x̂i < −ε due to (11.53). Hence, all ordering constraints are satisfied by the alternative
solution (x̂′, B̂′).

The alternative solution (x̂′, B̂′) satisfies ‖B̂′‖F < ‖B̂‖F , thus preferred by tie-breaking
Plugging in the construction (11.55), we compute ‖B̂′‖2

F as

‖B̂′‖2
F =

∑

i∈VL

∑

j∈[n]

(yij − x̂i)2 +
∑

i∈VH

∑

j∈[n]

(yij − x̂i −∆)2

(i)
=
∑

i∈VL

∑

j∈[n]

(̂bij)
2 +

∑

i∈VH

∑

j∈[n]

(̂bij −∆)2, (11.57)

where (i) is true by (11.56). Taking the partial derivative of (11.57) with respect to ∆, we have

∂‖B̂′‖2
F

∂∆
= 2


|VH| · n∆−

∑

i∈VH

∑

j∈[n]

b̂ij


 = 2|VH| · n(∆− b̂H). (11.58)

By the assumption of b̂H > 0, the partial derivative (11.58) is strictly negative for any ∆ ∈[
0, b̂H

)
. Contradiction to the fact that B̂ (corresponding to ∆ = 0) is the solution with the

minimal Frobenius norm ‖B̂‖2
F . Hence, (x̂, B̂) cannot be a solution, and we have

P(Ebad, E1 ∩ E2 ∩ E3) = 0.

Step 4: Invoking Lemma 11.8 Recall from Step 2 that limn→∞ P(Ebad, E1 ∩ E2 ∩ E3) = 0
implies limn→∞ P(Ebad) = 0. Equivalently, for any ε > 0 we have

lim
n→∞

P
(

max
i,i′∈[d]

|x̂i′ − x̂i| < ε

)
= 1.

Invoking Lemma 11.8 completes the proof.
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11.4 Proof of Proposition 4.7
We denote (x̂(∞), B(∞)) as the values given by expression (4.3). We prove that

(x̂(∞), B(∞)) = lim
λ→∞

(x̂(λ), B̂(λ)).

Denote the minimal value of the first term in the objective (4.2) as

V ∗ := min
x∈Rd,B∈Rd×n
B satisfiesO

∥∥Y − x1T −B
∥∥2

F
.

Denote V as the value of the first term attained at (x̂(∞), B̂(∞)). By the definition of V ∗ as the
minimal value over the domain, we have V ≥ V ∗. We discuss the following two cases depending
on the value of V .

Case of V = V ∗: We have that (x̂(∞), B̂(∞)) is the solution for any λ ∈ (0,∞), because it
attains the minimal value separately for the two terms in the objective (4.2). By Proposition 11.1,
a unique solution exists for any λ ∈ (0,∞). Hence, the limit limλ→∞(x̂(λ), B̂(λ)) exists and we
have (x̂(∞), B̂(∞)) = limλ→∞(x̂(λ), B̂(λ)).

Case of V > V ∗: We first show that limλ→∞ B̂
(λ) = 0. That is, we show that for any ε > 0,

there exists some λ0 > 0, such that ‖B̂(λ)‖2
F < ε for all λ ∈ (λ0,∞).

Take λ0 = V−V ∗
ε

, and assume for contradiction that there exists some λ∗ > λ0 such that
‖B̂(λ∗)‖2

F > ε. The objective (4.2) (setting λ = λ∗) attained by (x̂(λ∗), B̂(λ∗)) is lower-bounded
by

‖Y − x̂(λ∗) − B̂(λ∗)‖2
2 + λ∗‖B̂(λ∗)‖2

F > V ∗ + λ0ε > V ∗ + (V − V ∗) = V.

On the other hand, the objective attained by (x̂(∞), B̂(∞)) is V . Hence, (x̂(∞), B̂(∞)) attains
a strictly smaller value of the objective than (x̂(λ∗), B̂(λ∗)) at λ = λ∗. Contradiction to the
assumption that (x̂(λ∗), B̂(λ∗)) is the solution at λ = λ∗. Hence, we have limλ→∞ B̂

(λ) = 0.
Combining the fact that limλ→∞ B̂

(λ) = 0 with the relation (11.14) in Lemma 11.3 (at any
λ ∈ [0,∞)), we have that for each i ∈ [d],

x̂
(λ)
i =

1

n

∑

j∈[n]

(
yij − b̂(λ)

ij

)
→ 1

n

∑

j∈[n]

yij as λ→∞,

completing the proof.

11.5 Proof of Theorem 4.9
The proof follows notation in Appendix 11.1 and preliminaries in Appendix 11.2. By Corol-
lary 11.6, we assume x∗ = 0 without loss of generality. We also assume without loss of general-
ity that the standard deviation of the Gaussian bias distribution is σ = 1. Given x∗ = 0 and the
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assumption that there is no noise, model (4.1) reduces to:

Y = B. (11.59)

Both part (a) and part (b) consist of 3 similar steps. We start with the first step, and proceed
separately for the two remaining steps for the two parts.
Step 1: Showing the consistency of our estimator at λ = 0 restricted to the training set Ωt.

In the first step, we show that our estimator is consistent under group orderings satisfying
part (a) and part (b), on any fixed training set Ωt ⊆ [d] × [n] obtained by Algorithm 2. Note
that Theorem 4.5(a) and Theorem 4.5(c) give the desired consistency result when the data is full
observations Ω = [d]× [n]. It remains to extend the proof of Theorem 4.5(a) and Theorem 4.5(c)
to any Ωt given by Algorithm 2. The following theorem states that part (a) and part (c) of
Theorem 4.5 still hold for the estimator (11.9) restricted to Ωt. We use (x̂(0), B̂(0)) to denote the
solution to (11.9) restricted to Ωt for the remaining of the proof of Theorem 4.9.
Theorem 11.21 (Generalization of Theorem 4.5 to any Ωt). Consider any fixed Ωt ⊆ [d] × [n]
obtained by Algorithm 2. Suppose the partial ordering is one of

(a) any group ordering satisfying the all c-fraction assumption, or
(b) any total ordering.

Then for any ε > 0 and δ > 0, there exists an integer n0 (dependent on ε, δ, c, d), such that for
every n ≥ n0 and every partial ordering satisfying one of the conditions (a) or (b), the estimator
x̂(0) (as the solution to (11.9) restricted to Ωt) satisfies

P
(
‖x̂(0) − x∗‖2 < ε

)
≥ 1− δ. (11.60)

Equivalently, for any ε > 0, we have

lim
n→∞

P
(
‖x̂(0) − x∗‖2 < ε

)
= 1. (11.61)

The proof of this theorem is in Appendix 11.11.1. Now we consider the consistency of the
bias term B̂. Given the model (11.59), the objective (11.9) at λ = 0 equals 0 at the values
of (x̂, B̂) = (0, B). Hence, objective (11.9) attains a value of 0 at the solution (x̂(0), B̂(0)).
Therefore, we have the deterministic relation YΩt = [x̂(0)1T + B̂(0)]Ωt . For any (i, j) ∈ Ωt, we
have

b̂
(0)
ij = Yij − x̂(0)

i

(i)
= bij − x̂(0)

i , (11.62)

where equality (i) is true because of the model (11.59). Combining (11.62) with (11.61), we have
that for any ε > 0,

lim
n→∞

P
(∣∣∣̂b(0)

ij − bij
∣∣∣ < ε, ∀(i, j) ∈ Ωt

)
= 1. (11.63)

This completes Step 1 of the proof. The remaining two steps are presented separately for the two
parts.
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11.5.1 Proof of part (a)
We fix some constant ε1 > 0 whose value is determined later. For clarity of notation, we denote
the constant in the all constant-fraction assumption as cf .
Step 2: Computing the validation error at λ = 0

We first analyze the interpolated bias B̃(0). Recall that Gt
k and Gv

k denote the set of elements
of group k ∈ [r] in the training set Ωt and the validation set Ωv, respectively. By symmetry of the
interpolation expression in Line 15 of Algorithm 2 and Definition 4.1 of the group ordering, it
can be verified that the interpolated bias b̃ij is identical for all elements within any group k ∈ [r].
That is, for each k ∈ [r], we have

b̃ij = b̃i′j′ , for any (i, j), (i′, j′) ∈ Gv
k. (11.64)

Denote b̃k := b̃ij for any (i, j) ∈ Gt
k. By (11.64), we have that b̃k is well-defined. Denote the

random variables bt
k and bv

k as the mean of the (random) bias B in group k ∈ [r], over Gt
k and

Gv
k, respectively. Denote the random variable bv

ik as the mean of the (random) B of group k ∈ [r]
in course i ∈ [d] over Ωv. That is, we define

bt
k :=

1

|Gt
k|

∑

(i,j)∈Gt
k

bij (11.65)

bv
k :=

1

|Gv
k|

∑

(i,j)∈Gv
k

bij (11.66)

bv
ik :=

1

|Gv
ik|
∑

j∈Gv
ik

bij. (11.67)

Denote b̂t
k likewise as the mean of the estimated bias B̂ overGt

k. Given Y = B from model (11.59),
the validation error at λ = 0 is computed as:

e(0) =
1

|Ωv|
∑

(i,j)∈Ωv

(
yij − x̂(0)

i − b̃ij
)2

=
1

|Ωv|
∑

i∈[d],k∈[r]

∑

j∈Gv
ik

(
bij − x̂(0)

i − b̃k
)2

. (11.68)

We first analyze the term b̃k in (11.68). The following lemma shows that the interpolation proce-
dure in Algorithm 2 ensures that b̃k is close to b̂t

k, the mean of the estimated bias over Gt
k.

Lemma 11.22. Consider any group ordering O that satisfies the all cf-fraction assumption, and
any Ωt ⊆ [d]× [n] obtained by Algorithm 2. Then for any λ ∈ [0,∞] we have the deterministic
relation:

∣∣∣̃bk − b̂t
k

∣∣∣ ≤ 12

cfdn
· max

(i,j)∈Ωt

∣∣∣̂bij
∣∣∣ ∀k ∈ [r].

The proof of this result is provided in Appendix 11.11.2. Combining Lemma 11.22 with the
consistency (11.63) of B̂(0) from Step 1 and a bound on max(i,j)∈Ωt|bij| from Lemma 11.12, we
have the following lemma.
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Lemma 11.23. Under the same condition as Lemma 11.22, the interpolated bias at λ = 0
satisfies

lim
n→∞

P
(∣∣∣̃bk − bt

k

∣∣∣ < ε, ∀k ∈ [r]
)

= 1.

The proof of this result is provided in Appendix 11.11.3. Recall that bGk denotes the the mean
of the bias of any group k ∈ [r]. The following lemma gives concentration inequality results that
the quantities bv

ik and bt
k are close to bk. Note that this lemma is on the bias B and does not

involve any estimator.
Lemma 11.24. Consider any group ordering O that satisfies the all cf-fraction assumption.
Consider any fixed training-validation split (Ωt,Ωv) obtained by Algorithm 2. For any ε > 0, we
have

lim
n→∞

P
(∣∣bv

ik − bGk
∣∣ < ε, ∀i ∈ [d], k ∈ [r]

)
= 1 (11.69a)

lim
n→∞

P
(∣∣bt

k − bGk
∣∣ < ε, ∀k ∈ [r]

)
= 1. (11.69b)

The proof of this result is provided in Appendix 11.11.4. Combining Lemma 11.23 and (11.69)
from Lemma 11.24 with a union bound, we have the following corollary.
Corollary 11.25. Consider any group ordering O that satisfies the all cf-fraction assumption.
Consider any fixed Ωt ⊆ [d]× [n] obtained by Algorithm 2. For any ε > 0, the interpolated bias
at λ = 0 satisfies

lim
n→∞

P
(∣∣∣bv

ik − b̃k
∣∣∣ < ε, ∀i ∈ [d], k ∈ [r]

)
= 1.

Consider each i ∈ [d] and k ∈ [r]. The terms in the validation error (11.68) involving course
i and group k are:

e
(0)
ik :=

1

|Ωv|
∑

j∈Gv
ik

(
bij − x̂(0)

i − b̃k
)2

=
1

|Ωv|


∑

j∈Gv
ik

(
bij − b̃k

)2

+ |Gv
ik| · x̂2

i − 2
∑

j∈Gv
ik

(
bij − b̃k

)
x̂i




(i)
=

1

|Ωv|
∑

j∈Gv
ik

(
bij − b̃k

)2

︸ ︷︷ ︸
T1

+
|Gv

ik|
|Ωv| x̂

2
i

︸ ︷︷ ︸
T2

− 2|Gv
ik|

|Ωv| · (b
v
ik − b̃k)x̂i

︸ ︷︷ ︸
T3

,

where (i) is true by the definition (11.67) of bv
ik. We now consider the three terms T1, T2 and T3

(dependent on i and k), respectively.

Term T2: By the convergence (11.61) of x̂(0) in Theorem 11.21(a), we have

lim
n→∞

P
(
T2 ≤

|Gv
ik|
|Ωv| ε

2
1, ∀i ∈ [d], k ∈ [r]

)
= 1. (11.70)
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Term T3: We have

T3 ≤ 2
|Gv

ik|
|Ωv| ·

∣∣∣bv
ik − b̃k

∣∣∣ · |x̂i| ≤ 2
∣∣∣bv
ik − b̃k

∣∣∣ · |x̂i|.

By combining the convergence (11.61) of x̂(0) in Theorem 11.21(a) and Corollary 11.25 with a
union bound, we have

lim
n→∞

P
(
T3 ≤

2|Gv
ik|

|Ωv| ε
2
1, ∀i ∈ [d], k ∈ [r]

)
= 1. (11.71)

Term T1: We have

T1 =
1

|Ωv|
∑

j∈Gv
ik

(
bij − b̃k

)2

=
1

|Ωv|
∑

j∈Gv
ik

(
bij − bv

ik + bv
ik − b̃k

)2

=
1

|Ωv|


∑

j∈Gv
ik

(bij − bv
ik)

2 + |Gv
ik| · (bv

ik − b̃k)2 + 2
∑

j∈Gv
ik

(bij − bv
ik)(b

v
ik − b̃k)




(i)
=

1

|Ωv|


∑

j∈Gv
ik

(bij − bv
ik)

2 + |Gv
ik| · (bv

ik − b̃k)2




where inequality (i) holds because
∑

j∈Gv
ik

(bij − bv
ik) = 0 by the definition (11.67) of bv

ik. By
Corollary 11.25, we have

lim
n→∞


T1 <

1

|Ωv|
∑

j∈Gv
ik

(bij − bv
ik)

2 +
|Gv

ik|
|Ωv| ε

2
1, ∀i ∈ [d], k ∈ [r]


 = 1. (11.72)

Combining the three terms from (11.70), (11.71) and (11.72), we bound e(0)
ik as

lim
n→∞


e(0)

ik = T1 + T2 + T3 <
1

|Ωv|
∑

j∈Gv
ik

(bij − bv
ik)

2 +
4|Gv

ik|
|Ωv| ε

2
1, ∀i ∈ [d], k ∈ [r]


 = 1.

(11.73)

By the all cf-fraction assumption, the number of groups is upper-bounded by a constant as r ≤ 1
cf

.
Taking a union bound of (11.73) over i ∈ [d] and k ∈ [r], we have

lim
n→∞

P


e(0) =

∑

i∈[d],k∈[r]

e
(0)
ik <

1

|Ωv|
∑

i∈[d],k∈[r]


∑

j∈Gv
ik

(bij − bv
ik)

2 + 4|Gv
ik| · ε21




 = 1

lim
n→∞

P


e(0) <

1

|Ωv|
∑

i∈[d],k∈[r]

∑

j∈Gv
ik

(bij − bv
ik)

2 + 4ε21


 = 1. (11.74)
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This completes Step 2 of bounding the validation error at λ = 0.
Step 3: Computing the validation error at general λ ∈ Λε, and showing that it is greater
than the validation error at λ = 0

Recall from (11.10) the definition of the random set Λε := {λ ∈ [0,∞] : ‖x̂(λ)‖2 > ε}. In
this step, we show that

lim
n→∞

P
(
e(λ) > e(0), ∀λ ∈ Λε

)
= 1. (11.75)

From (11.75), we have that the estimated quality x̂(λcv) by cross-validation satisfies

lim
n→∞

(λcv 6∈ Λε) = 1

and consequently by the definition of Λε

lim
n→∞

P
(
‖x̂(λcv)‖2 < ε

)
= 1.

It remains to prove (11.75).

Proof of (11.75) For any i ∈ [d] and k ∈ [r], the terms in the validation error at any λ ∈ [0,∞]
involving course i and group k are computed as:

e
(λ)
ik =

1

|Ωv|
∑

j∈Gv
ik

(
bij − x̂(λ)

i − b̃(λ)
k

)2

=
1

|Ωv|
∑

j∈Gv
ik

(
bij − bv

ik + bv
ik − x̂i − b̃k

)2

(i)
=

1

|Ωv|
∑

j∈Gv
ik

(bij − bv
ik)

2 +
|Gv

ik|
|Ωv|

(
bv
ik − x̂i − b̃k

)2

︸ ︷︷ ︸
Tik

,

(11.76)

where (i) is true because
∑

j∈Gv
ik

(bij− bv
ik) = 0 by the definition (11.67) of bv

ik. Note that the first
term in (11.76) is identical to the first term in (11.73) from Step 2. We now analyze the second
term Tik in (11.76). On the one hand, by Lemma 11.7(a), we have

lim
n→∞

P
(

max
i,i′∈[d]

x̂i − x̂i′ >
ε√
d
, ∀λ ∈ Λε

)
= 1. (11.77)

On the other hand, taking a union bound of (11.69a) in Lemma 11.24 over i, i′ ∈ [d], we have

lim
n→∞

P
(
|bv
ik − bv

i′k| <
ε

2
√
d
, ∀i, i′ ∈ [d], k ∈ [r]

)
= 1. (11.78)

Conditional on (11.77) and (11.78), for every λ ∈ Λε and for every k ∈ [r],

max
i,i′∈[d]

∣∣∣
(
bv
ik − x̂i − b̃k

)
−
(
bv
i′k − x̂i′ − b̃k

)∣∣∣ = max
i,i′∈[d]

|(bv
ik − bv

i′k)− (x̂i − x̂i′)|

≥ max
i,i′∈[d]

(x̂i − x̂i′)− max
i,i′∈[d]

|bv
ik − bv

i′k|

>
ε√
d
− ε

2
√
d

=
ε

2
√
d
.
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Hence, conditional on (11.77) and (11.78),

max
i,i′∈[d]

{
(bv
ik − x̂i − b̃k)2, (bv

i′k − x̂i′ − b̃k)2
}
≥ ε2

16d
∀k ∈ [r],∀λ ∈ Λε. (11.79)

Now consider the terms Tik. By (11.20a) from Lemma 11.13 combined with the all cf-fraction
assumption, we have

|Gv
ik|
|Ωv| ≥

1

|Ωv| ·
|Gik|

4
≥ cfn

4|Ωv| =
cf

2d
. (11.80)

Conditional on (11.77) and (11.78), for every λ ∈ Λε and i ∈ [d],

max
i,i′∈[d]

(Tik + Ti′k)
(i)
≥ cf

2d

[(
bv
ik − x̂i − b̂t

k

)2

+
(
bv
i′k − x̂i′ − b̂t

k

)2
]

(ii)
≥ cf

2d

ε2

16d
=

cfε
2

32d2
,

where inequality (i) is true by (11.80), and inequality (ii) is true by (11.79). Now consider the
validation error e(λ). Conditional on (11.77) and (11.78), for every λ ∈ Λε,

e(λ) =
∑

i∈[d],k∈[r]

e
(λ)
ik

(i)
≥ 1

|Ωv|
∑

i∈[d],k∈[r]

∑

j∈Gv
ik

(bij − bv
ik)

2 +
∑

i∈[d],k∈[r]

(Tik + Ti′k)

>
1

|Ωv|
∑

i∈[d],k∈[r]

∑

j∈Gv
ik

(bij − bv
ik)

2 +
cfε

2

32d2
,

where inequality (i) is true by plugging in (11.76). Hence,

lim
n→∞


e(λ) >

1

|Ωv|
∑

i∈[d],k∈[r]

∑

j∈Gv
ik

(bij − bv
ik)

2 +
cfε

2

32d2
, ∀λ ∈ Λε


 = 1. (11.81)

We set ε1 to be sufficient small such that 4ε21 < cfε
2

32d2 . Taking a union bound of (11.81) with
(11.74) from Step 2, we have

lim
n→∞

P
(
e(λ) > e(0), ∀λ ∈ Λε

)
= 1,

completing the proof of (11.75).

11.5.2 Proof of part (b)
We fix some constant ε1 > 0 whose value is determined later. Since the partial ordering O is
assumed to be a total ordering, we also denote it as π.
Step 2: Computing the validation error at λ = 0

For any element (i, j) ∈ Ωv, recall that NN(i, j; π) ⊆ [d] × [n] denotes the set (of size 1
or 2) of its nearest neighbors in the training set Ωt with respect to the total ordering π. We use
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NN(i, j) as the shorthand notation for NN(i, j; π). For any λ ∈ [0,∞], we define the mean of
the estimated bias over the nearest-neighbor set

b̂
(λ)
NN(i,j)

:=
1

|NN(i, j)|
∑

(i′,j′)∈NN(i,j)

b̂
(λ)
i′j′

Similarly, we define

bNN(i,j) :=
1

|NN(i, j)|
∑

(i′,j′)∈NN(i,j)

bi′j′ .

SinceO is a total ordering, the set of total orderings consistent withO = π is trivially itself, that
is, T = {π}. Then in Line 15 of Algorithm 2, the interpolated bias for any element (i, j) ∈ Ωv

is b̃(λ)
ij = b̂

(λ)
NN(i,j).

Recall from the model (11.59) that Y = B. The validation error at λ = 0 is computed as:

e(0) =
1

|Ωv|
∑

(i,j)∈Ωv

(
bij − b̂(0)

NN(i,j) − x̂
(0)
i

)2

≤ 1

|Ωv|
∑

(i,j)∈Ωv

(∣∣bij − bNN(i,j)

∣∣+
∣∣∣bNN(i,j) − b̂(0)

NN(i,j)

∣∣∣+
∣∣∣x̂(0)
i

∣∣∣
)2

. (11.82)

We consider the three terms inside the summation in (11.82) separately. For the first term∣∣bij − bNN(i,j)

∣∣, combining Lemma 11.14(b) with Lemma 11.10, we have

lim
n→∞

P
(∣∣bij − bNN(i,j)

∣∣ < ε1, ∀(i, j) ∈ Ωv
)

= 1 (11.83)

For the second term |bNN(i,j) − b̂(0)
NN(i,j)|, we have |bNN(i,j) − b̂(0)

NN(i,j)| ≤ maxi∈[d],j∈[n]|bij − b̂(0)
ij |.

By the consistency (11.63) of B̂(0) from Step 1, we have

lim
n→∞

P
(
|bNN(i,j) − b̂(0)

NN(i,j)| < ε1, ∀(i, j) ∈ Ωv
)

= 1. (11.84)

For the third term x̂
(0)
i , by (11.61) in Theorem 11.21(b), we have

lim
n→∞

P
(
|x̂i| < ε1, ∀i ∈ [d]

)
= 1. (11.85)

Taking a union bound over the three terms (11.83), (11.84) and (11.85) and plugging them back
to (11.82), the validation error at λ = 0 satisfies

lim
n→∞

P
(
e(0) ≤ 9ε21

)
= 1. (11.86)

Step 3: Computing the validation error at general λ ∈ Λε, and showing that it is greater
than the validation error at λ = 0
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Recall the definition Λε := {λ ∈ [0,∞] : ‖x̂(λ)‖2 > ε}. In this step, we establish

lim
n→∞

(λcv 6∈ Λε) = 1.

By Lemma 11.7(a) combined with the assumption that d = 2, we have

lim
n→∞

P
( ∣∣∣x̂(λ)

1 − x̂(λ)
2

∣∣∣ > ε√
2
, ∀λ ∈ Λε

︸ ︷︷ ︸
E

)
= 1. (11.87)

We denote the the event in (11.87) as E. We define

Λ2>1 :=

{
λ ∈ [0,∞] : x̂

(λ)
2 − x̂(λ)

1 >
ε√
2

}
(11.88a)

Λ1>2 :=

{
λ ∈ [0,∞] : x̂

(λ)
1 − x̂(λ)

2 >
ε√
2

}
. (11.88b)

Then we have

Λε ⊆ Λ2>1 ∪ Λ1>2 | E. (11.89)

We first analyze Λ2>1. We discuss the following two cases, depending on the comparison of the
mean of the bias for the two courses.
Case 1:

∑
j∈[n] b1j ≥

∑
j∈[n] b2j

We denote the event that Case 1 happens as E1 := {∑j∈[n] b1j ≥
∑

j∈[n] b2j}. In this case,
our goal is to show

lim
n→∞

P
(
λcv 6∈ Λε ∩ Λ2>1, E1

)
= lim

n→∞
(E1). (11.90)

To show (11.90) it suffices to prove

lim
n→∞

P
(

Λε ∩ Λ2>1 = ∅, E1

)
= lim

n→∞
P(E1).

We separately discuss the cases of λ =∞ and λ 6∈ ∞.

Showing∞ 6∈ Λε ∩ Λ2>1: Denote the mean of the bias in each course in the training set Ωt as
bt
i := 1

nt

∑
j∈Ωt

i
bij for i ∈ {1, 2}. By (11.22a) in Lemma 11.15, we have

lim
n→∞

P


bt

1 −
1

n

∑

j∈[n]

b1j < −
ε

8


 = 0 (11.91a)

lim
n→∞

P


bt

2 −
1

n

∑

j∈[n]

b2j >
ε

8


 = 0 (11.91b)
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Taking a union bound of (11.91), we have

lim
n→∞

P


 bt

1 − bt
2 >

1

n

∑

j∈[n]

(b1j − b2j)−
ε

4
︸ ︷︷ ︸

E′


 = 1. (11.92)

Denote this event in (11.92) as E ′. Hence, we have

bt
1 − bt

2 > −
ε

4

∣∣∣ (E ′, E1) (11.93)

Recall from Proposition 11.2 that we have our estimator at λ = ∞ equals to the sample mean

per course. That is, x̂(∞) =

[
bt

1

bt
2

]
. Hence, we have

x̂
(∞)
2 − x̂(∞)

1 <
ε

4

∣∣∣ (E ′, E1).

By the definition of Λ2>1, we have

∞ 6∈ Λε ∩ Λ2>1 | (E ′, E1). (11.94)

Showing λ 6∈ Λε∩Λ2>1 for general λ ∈ [0,∞): As an overview, we assume there exists some
λ ∈ Λε ∩ Λ2>1 \ {∞} and derive a contradiction.

Denote the mean of the bias in the training set Ωt as bt := 1
|Ωv|
∑

(i,j)∈Ωv bij =
bt1+bt2

2
. Since

λ ∈ Λ2>1, we have x̂(λ)
2 − x̂(λ)

1 > ε√
2
. By (11.15b) in Lemma 11.4, we have

x̂(λ1) + x̂(λ2) = 2bt,

and hence x̂(λ) can be reparameterized as

x̂(λ) = bt + ∆

[
−1
1

]
, for some ∆ >

ε

2
√

2
. (11.95)

The following lemma gives a closed-form formula for `2-regularized isotonic regression. Recall
that M denotes the monotonic cone, and the isotonic projection for any y ∈ Rd is defined
in (11.8) as ΠM(y) = argminu∈M‖y − u‖2

2.
Lemma 11.26. Consider any y ∈ Rd and any λ ∈ [0,∞). Then we have

min
u∈M

(
‖y − u‖2

2 + λ‖u‖2
2

)
=

1

1 + λ
‖y − ΠM(y)‖2

2 +
λ

1 + λ
‖y‖2

2. (11.96)

The proof of this result is provided in Appendix 11.11.5. We denote the objective (11.9)
under any fixed x ∈ Rd as

L(x) := min
B obeys π

∥∥Y − x1T −B
∥∥2

Ωt + λ‖B‖2
Ωt

(i)
=

1

1 + λ

∥∥(Y − x1T )− Ππ(Y − x1T )
∥∥2

Ωt︸ ︷︷ ︸
L1(x)

+
λ

1 + λ

∥∥Y − x1T
∥∥2

Ωt︸ ︷︷ ︸
L2(x)

, (11.97)
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where equality (i) is true by (11.96) in Lemma 11.26. We now construct an alternative estimate

x̂′ = bt

[
1
1

]
, and show that

L(x̂) > L(x̂′) ∀λ ∈ Λε ∩ Λ2>1 \ {∞}.

We consider the two terms L1(x) and L2(x) in (11.97) separately.

Term L1: Recall from the model (11.59) that Y = B. Hence, Y satisfies the total ordering π,

and hence Y − x̂′1T = Y − bt

[
1
1

]
1Tn satisfies the total ordering π. That is,

Ππ(Y − x̂′1T ) = Y − x̂′1T .

Hence,

0 = L1(x̂′) ≤ L1(x̂(λ)) ∀λ ∈ [0,∞]. (11.98)

Term L2: We have

L2(x̂)− L2(x̂′) = ‖Y − x̂(λ)1T‖2
Ωt − ‖Y − x̂′1T‖2

Ωt

=
∑

j∈Ωt
1

(b1j − x̂(λ)
1 )2 +

∑

j∈Ωt
2

(b2j − x̂(λ)
2 )2 −


∑

j∈Ωt
1

(b1j − x̂′1)2 +
∑

j∈Ωt
2

(b2j − x̂′2)2




= nt
[
2bt

1(x̂′1 − x̂(λ)
1 ) + 2bt

2(x̂′2 − x̂(λ)
2 ) + ((x̂

(λ)
1 )2 − (x̂′1)2) + ((x̂

(λ)
2 )2 − (x̂′2)2)

]

= nt[2∆(bt
1 − bt

2) + 2∆2]

= 2nt∆(bt
1 − bt

2 + ∆)
(i)
> 0 | (E ′, E1),

where inequality (i) is true by combining (11.93) with (11.95). Hence, we have

L2(x̂) > L2(x̂′), ∀λ ∈ Λε ∩ Λ2>1 \ {∞} | (E ′, E1). (11.99)

Combining the term L1 from (11.98) and the term L2 from (11.99), we have

L(x̂(λ)) > L(x̂′), ∀λ ∈ Λε ∩ Λ2>1 \ {∞}
∣∣ (E ′, E1).

Contradiction to the assumption that x̂(λ) is optimal. Hence, we have

λcv 6∈ Λε ∩ Λ2>1 \ {∞} | (E ′, E1). (11.100)

Combining the cases of λ =∞ from (11.94) and λ 6=∞ from (11.100), we have

λcv 6∈ Λε ∩ Λ2>1 | (E ′, E1).
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Hence,

P (λcv 6∈ Λε ∩ Λ2>1, E1) ≥ P(E ′, E1)

= P(E1)− P(E1 ∩ E ′)
≥ P(E1)− P(E ′) (11.101)

Taking the limit of (11.101), we have

lim
n→∞

P (λcv 6∈ Λε ∩ Λ2>1, E1)
(i)
= lim

n→∞
P(E1), (11.102)

where (i) is true by (11.92).
Case 2:

∑
j∈[n] b1j <

∑
j∈[n] b2j

Denote the event that Case 2 happens as E2 :=
{∑

j∈[n] b1j <
∑

j∈[n] b2j

}
. Our goal is to

find a set of elements on which the validation error is large. For any constant c > 0, we define
the set:

Sc := {(j, j′) ∈ [n]2 : 0 < b2j′ − b1j < c}. (11.103)

Let c′ > 0 be a constant. Denote Ev
c′,c as the event that there exists distinct values (j1, . . . , jc′n)

and distinct values (j′1, . . . , j
′
c′n), such that (jk, j

′
k) ∈ Sc ∩ Ωv for all k ∈ [c′n]. That is, the set

Sc ∩ Ωv contains a subset of size at least c′n of pairs (j, j′), such that each element b1j and b2j′

appears at most once in this subset. We denote this subset as S ′.
The following lemma bounds the probability that Ev

c′,c happens under case E2.
Lemma 11.27. Suppose d = 2. Assume the bias is distributed according to assumption (A2)
with σ = 1. For any c > 0, there exists a constant c′ > 0 such that

lim
n→∞

P
(
Ev
c′,c ∩ E2

)
= lim

n→∞
P(E2).

The proof of this result is provided in Appendix 11.11.6. Now consider the the validation
error contributed by the pairs in the set S ′. We have

e(λ) ≤ 1

|Ωv|
∑

(j,j′)∈S′

[(
b1j − b̂(λ)

NN(1,j) − x̂
(λ)
1

)2

+
(
b2j′ − b̂(λ)

NN(2,j′) − x̂
(λ)
2

)2
]
. (11.104)

We consider each individual term (j, j′) ∈ S ′. On the one hand, we have b1j < b2j′ by the
definition (11.103) of Sc. Therefore, the element (1, j) is ranked lower than (2, j′) in the total
ordering T . According to Algorithm 2, it can be verified that their interpolated bias satisfies

b̃
(λ)
NN(1,j) ≤ b̃

(λ)
NN(2,j′) ∀λ ∈ [0,∞]. (11.105)

On the other hand, we have

b1j − x̂1 − (b2j′ − x̂2) = (b1j − b2j′) + (x̂2 − x̂1)
(i)
> − ε

2
+

ε√
2

=
ε

5
, ∀λ ∈ Λε ∩ Λ2>1

∣∣∣∣ (Ev
c′, ε

2
, E),

(11.106)

183



where (i) is true by the definition of Sc in (11.103) (setting c = ε
2
), and the definition 11.88 of

Λ2>1. Combining (11.105) and (11.106), we have that for all (j, j′) ∈ S ′:
(
b1j − b̃(λ)

NN(1,j) − x̂
(λ)
1

)2

+
(
b2j′ − b̃(λ)

NN(2,j′) − x̂
(λ)
2

)2

≥ min
u1,u2∈R
u1≤u2

min
v1,v2∈R
v1−v2>

ε
5

(v1 − u1)2 + (v2 − u2)2

>
ε2

50
, ∀λ ∈ Λε ∩ Λ2>1

∣∣∣∣ (Ev
c′, ε

2
, E).

(11.107)

Conditional onEv
c′, ε

2
, there are at least c′n such non-overlapping pairs. Plugging (11.107) to (11.104),

the validation error is lower-bounded as

e(λ) ≥ 1

|Ωv|c
′n · ε

2

50
≥ 2

dn
c′n · ε

2

50
=
c′ε2

25d
, ∀λ ∈ Λε ∩ Λ2>1

∣∣∣∣ (Ev
c′, ε

2
, E). (11.108)

Setting the constant ε1 to be a sufficiently small constant such that 9ε21 <
c′ε2

25d
, we have

P
(
e(λ) ≥ e(0), ∀λ ∈ Λε ∩ Λ2>1, E2

)
≥ P

(
e(λ) >

c′ε2

25d
> 9ε21 > e(0), ∀λ ∈ Λε ∩ Λ2>1, E2

)

≥ P
(
e(λ) >

c′ε2

25d
,E2

)
− P

(
e(0) > 9ε21, E2

)

(i)
≥ P

(
Ev
c′, ε

2
, E, E2

)
− P

(
e(0) > 9ε21

)
(11.109)

= P
(
Ev
c′, ε

2
, E
)
− P

(
Ev
c′, ε

2
, E, E2

)
− P

(
e(0) > 9ε21

)
,

(11.110)

where (i) is true by (11.108). Taking the limit of n→∞ in (11.110), we have

lim
n→∞

P
(
e(λ) ≥ e(0), ∀λ ∈ Λε ∩ Λ2>1, E2

)
= lim

n→∞
P(E2).

and (ii) is true by combining Lemma 11.27, (11.87) and (11.86) from Step 2. Equivalently,

lim
n→∞

P (λcv 6∈ Λε ∩ Λ2>1, E2) = 1. (11.111)

Finally, combining the two cases from (11.102) and (11.111), we have

lim
n→∞

P (λcv 6∈ Λε ∩ Λ2>1) = lim
n→∞

P (λcv 6∈ Λε ∩ Λ2>1, E1) + lim
n→∞

P (λcv 6∈ Λε ∩ Λ2>1, E2)

= lim
n→∞

P(E1) + lim
n→∞

P(E2) = 1. (11.112a)

By a symmetric argument on the set Λ1>2, we have

lim
n→∞

P (λcv 6∈ Λε ∩ Λ1>2) = 1. (11.112b)
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Hence, we have

lim
n→∞

P (λcv 6∈ Λε) ≥ lim
n→∞

P (λcv 6∈ Λε, E)

(i)
≥ lim

n→∞
P (λcv 6∈ Λε ∩ Λ1>2, E) + lim

n→∞
P (λcv 6∈ Λε ∩ Λ2>1, E)

≥ lim
n→∞

P (λcv 6∈ Λε ∩ Λ1>2) + P (λcv 6∈ Λε ∩ Λ2>1)− 2 lim
n→∞

P(E)
(ii)
= 1,

where inequality (i) is true by (11.89), and equality (ii) is true by combining (11.112) with (11.87).
This completes the proof.

11.6 Proof of Theorem 4.10
The proof follows notation in Appendix 11.1 and preliminaries in Appendix 11.2. Similar to the
proof of Theorem 4.9, without loss of generality we assume x∗ = 0 and the standard deviation
of the Gaussian noise is η = 1. Under this setting, the model (4.1) reduces to:

Y = Z. (11.113)

The proof consists of 3 steps that are similar to the steps in Theorem 4.9. Both part (a) and
part (b) share the same first two steps as follows. We fix some constants ε1, ε2 > 0, whose values
are determined later.
Step 1: Showing the consistency of our estimator at λ =∞ restricted to the training set Ωt

By Proposition 11.2, our estimator x̂(∞) at λ = ∞ is identical to taking the sample mean of
each course. By the model (11.113), conditional on any training-validation split (Ωt,Ωv) given
by Algorithm 2, each observation is i.i.d. noise ofN (0, 1). Recall from (11.1) that the number of
observations in each course restricted to the training set Ωt is nt = n

2
. Given the assumption (A3)

that the number of courses d is a constant, sample mean on the training set Ωt is consistent. That
is,

lim
n→∞

P
(
‖x̂(∞)‖∞ < ε1

)
= 1. (11.114)

By Proposition 11.2, we have B̂(∞) = 0.
Step 2: Computing the validation error at λ =∞

Recall from Algorithm 2 that the interpolated bias b̃ij for any element (i, j) ∈ Ωv is computed
as the mean of the estimated bias B̂ from its nearest neighbor set in the training set Ωt. Since
the estimated bias is B̂(∞) = 0, the interpolated bias is B̃(∞) = 0. Recall the model (11.113) of
Y = Z. The validation error at λ =∞ is computed as

e(∞) =
1

|Ωv|
∑

(i,j)∈Ωv

(
yij − x̂(∞)

i − b̃(∞)
ij

)2

=
1

|Ωv|
∑

(i,j)∈Ωv

(
zij − x̂(∞)

i

)2

=
1

|Ωv|


 ∑

(i,j)∈Ωv

zij
2

︸ ︷︷ ︸
T1

−2
∑

(i,j)∈Ωv

zijx̂
(∞)
i

︸ ︷︷ ︸
T2

+
∑

(i,j)∈Ωv

(x̂
(∞)
i )2

︸ ︷︷ ︸
T3


 .

(11.115)
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We consider the three terms T1, T2 and T3 in (11.115) separately. For the term T1, we have
E[z2

ij] = η2 = 1. The number of samples is |Ωv| = dnv = dn
2
. By Hoeffding’s inequality we

have

lim
n→∞

P


 1

|Ωv|
∑

(i,j)∈Ωv

z2
ij < 1 + ε1


 = 1. (11.116)

For the term T2, we have E[zij] = 0. By Hoeffding’s inequality and a union bound over i ∈ [d]
we have

lim
n→∞

P


 1

|Ωv|

∣∣∣∣∣∣
∑

j∈Ωv
i

zij

∣∣∣∣∣∣
< ε1, ∀i ∈ [d]


 = 1. (11.117)

Combining (11.117) with the consistency result (11.114) on x̂(∞) from Step 1, we have

lim
n→∞

P
(

1

|Ωv| |T2| < dε21

)
= 1. (11.118)

For the term T3, we have

1

|Ωv|T3 ≤ max
i∈[d]
|x̂i|2. (11.119)

Combining (11.119) with the consistency result (11.114) on x̂(∞) from Step 1, we have

lim
n→∞

P
(

1

|Ωv|T3 < ε21

)
= 1. (11.120)

Taking a union bound of the terms T1, T2 and T3 from (11.116), (11.118) and (11.120) and plug-
ging them back to (11.115), we have

lim
n→∞

P
(
e(∞) ≤ (1 + ε1) + dε21 + ε21 = 1 + ε1 + (d+ 1)ε21

)
= 1. (11.121)

Step 3 (preliminaries): Computing the validation error at general λ ∈ Λε, and showing that
it is greater than the validation error at λ =∞

We set up some preliminaries for this step that are shared between part (a) and part (b). Then
we discuss the two parts separately.

Recall from (11.10) the definition of Λε := {λ ∈ [0,∞] : ‖x̂(λ)‖2 > ε}. In this step, we show
that

lim
n→∞

P
(
e(λ) > e(∞), ∀λ ∈ Λε

)
= 1. (11.122)

Then from (11.122) we have

lim
n→∞

(λcv 6∈ Λε) = 1,
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yielding the result of Theorem 4.10. It is sufficient to establish (11.122).
We now give some additional preliminary results for this step. By Lemma 11.7, we have

lim
n→∞

P
(

max
i,i′∈[d]

x̂i − x̂i′ >
ε√
d
, ∀λ ∈ Λε

)

︸ ︷︷ ︸
E

= 1. (11.123)

We denote this event in (11.123) as E.
Both parts also use the following lemma that bounds the magnitude of the estimated bias B̂

given some value of x̂.
Lemma 11.28. Let Ω ⊆ [d] × [n] be any non-empty set. For any λ ∈ [0,∞], the solution
(x̂(λ), B̂(λ)) restricted to the set Ω satisfies the deterministic relation

max
(i,j)∈Ω

∣∣∣̂b(λ)
ij

∣∣∣ ≤ max
(i,j)∈Ω

|yij|+ ‖x̂(λ)‖∞. (11.124)

The proof of this result is provided in Appendix 11.12.1. Now we proceed differently for
Step 3 for part (a) and part (b).

11.6.1 Proof of part (a)
Step 3 (continued): For clarity of notation, we denote the constant in the single constant-
fraction as cf .

We analyze the validation error at any λ ∈ Λε similar to Step 2. The difference is that Step 2
(at λ =∞) uses the consistency of x̂(∞) from Step 1 on to bound the validation error. However,
x̂(λ) may not be consistent for any general λ ∈ Λε. Hence, we consider the following two subsets
of Λε depending on the value of x̂.

Similar to the proof of Theorem 4.9(a), by Algorithm 2 the interpolated bias for elements in
each group k ∈ [r] is identical for all (i, j) ∈ Gv

k. That is,

b̃ij = b̃i′j′ ∀(i, j), (i′, j′) ∈ Gv
k. (11.125)

We denote the interpolated bias for group k as b̃k := b̃ij for (i, j) ∈ Gv
k.

Case 1: Λ1 :=
{
λ ∈ [0,∞] : maxi,i′∈[d] x̂i − x̂i′ > 8

√
d
cf

}
.

Let kf ∈ [r] be a group that satisfies the single cf-fraction assumption. By the definition of

Λ1 we have maxi,i′∈[d]

[
(x̂i + b̃kf

)− (x̂i′ + b̃kf
)
]
> 8
√

d
cf

for any λ ∈ Λ1, which implies that

max
i∈[d]

∣∣∣x̂i + b̃kf

∣∣∣ > 4

√
d

cf

∀λ ∈ Λ1. (11.126)

Combining (11.20a) from Lemma 11.13 with the single cf-fraction assumption, one can see

`v
ikf
≥ `ikf

4
>
cfn

4
. (11.127)
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Given (11.127), by Hoeffding’s inequality we have

lim
n→∞

P


 ∑

j∈Gv
ikf

1{zij > 0} ≥ cfn

12


 = 1 (11.128a)

lim
n→∞

P


 ∑

j∈Gv
ikf

1{zij < 0} ≥ cfn

12


 = 1. (11.128b)

We denote the event

E1 :=




∑

j∈Gv
ikf

1{zij > 0} ≥ cfn

12
, ∀i ∈ [d]



 ∩




∑

j∈Gv
ikf

1{zij < 0} ≥ cfn

12
, ∀i ∈ [d]



 .

(11.129)

Given that d is a constant by the assumption (A3), taking (11.128) with a union bound over
i ∈ [d], we have

lim
n→∞

P(E1) = 1. (11.130)

Let i∗ be a random variable (as a function of λ) defined as i∗ := argmaxi∈[d]

∣∣∣x̂i + b̃kf

∣∣∣ where the
tie is broken arbitrarily. Conditional on E1, for any λ ∈ Λ1 we have the deterministic relation

e(λ) =
1

|Ωv|
∑

k∈[r]

∑

(i,j)∈Gv
k

(
zij − x̂(λ)

i − b̃(λ)
k

)2

≥ 1

|Ωv|
∑

(i,j)∈Gv
kf

(zij − x̂i − b̃kf
)2

≥ 1

|Ωv|
∑

j∈Gv
i∗kf

(zi∗j − x̂i∗ − b̃kf
)2

(i)
≥ 1

|Ωv|
cfn

12

(
4

√
d

cf

)2

=
2

dn
· cfn

12

16d

cf

=
8

3
, ∀λ ∈ Λ1

∣∣∣∣ E1. (11.131)

where (i) is true by (11.126) and the definition (11.129) ofE1. Combining (11.131) with (11.130),
we have

lim
n→∞

P
(
e(λ) ≥ 4

3
, ∀λ ∈ Λ1

)
≥ P (E1) = 1. (11.132)

Case 2: Λ2 = Λε ∩
{
λ ∈ [0,∞] : maxi,i′∈[d] x̂i − x̂i′ ≤ 8

√
d
cf

}
.
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Note that we have Λε ⊆ Λ1∪Λ2 by the definition of Λ1 and Λ2. We decompose the validation
error as:

e(λ) =
1

|Ωv|
∑

k∈[r]

∑

(i,j)∈Gv
k

(
zij − x̂(λ)

i − b̃(λ)
k

)2

=
1

|Ωv|


 ∑

(i,j)∈Ωv

z2
ij − 2

∑

k∈[r]

∑

(i,j)∈Gv
k

zij

(
x̂

(λ)
i + b̃

(λ)
k

)
+
∑

k∈[r]

∑

(i,j)∈Gv
k

(
x̂

(λ)
i + b̃

(λ)
k

)2




=
1

|Ωv|


 ∑

(i,j)∈Ωv

z2
ij

︸ ︷︷ ︸
T1

−2
∑

(i,j)∈Ωv

zijx̂
(λ)
i

︸ ︷︷ ︸
T2

+2
∑

k∈[r]

∑

(i,j)∈Gv
k

zij b̃
(λ)
k

︸ ︷︷ ︸
T3

+
∑

k∈[r]

∑

(i,j)∈Gv
k

(
x̂

(λ)
i + b̃

(λ)
k

)2

︸ ︷︷ ︸
T4


 .

(11.133)

We analyze the four terms T1, T2, T3 and T4 in (11.133) separately.

Term T1: Similar to (11.116) from Step 2, by Hoeffding’s inequality we have

lim
n→∞

P


 1

|Ωv|
∑

(i,j)∈Ωv

z2
ij > 1− ε2


 = 1. (11.134)

Term T2: Recall that d is a constant by the assumption (A3). Similar to (11.117) from Step 2,
by Hoeffding with a union bound over i ∈ [d], we have

lim
n→∞

P


 1

|Ωv|

∣∣∣∣∣∣
∑

j∈Ωv
i

zij

∣∣∣∣∣∣
< ε, ∀i ∈ [d]




︸ ︷︷ ︸
E2

= 1. (11.135)

Denote this event in (11.135) as E2.
We now bound ‖x̂‖∞. By Hoeffding’s inequality, on the training Ωt we have:

lim
n→∞

P


 1

|Ωt|

∣∣∣∣∣∣
∑

(i,j)∈Ωt

zij

∣∣∣∣∣∣
<

√
1

dcf




︸ ︷︷ ︸
E′2

= 1. (11.136)

Plugging (11.15b) in Lemma 11.4 to (11.136), we have
∣∣∣∣∣∣
∑

i∈[d]

x̂
(λ)
i

∣∣∣∣∣∣
=

1

nt

∣∣∣∣∣∣
∑

(i,j)∈Ωt

zij

∣∣∣∣∣∣
<

√
d

cf

∀λ ∈ Λ2, conditional on E ′2. (11.137)
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Combining (11.137) with the definition of Λ2, we have

‖x̂‖∞ ≤ 8

√
d

cf

∀λ ∈ Λ2

∣∣∣∣∣ E
′
2. (11.138)

To see (11.138), assume for contradiction that (11.138) does not hold. Consider the case of
x̂i∗ > 8

√
d
cf

for some i∗ ∈ [d]. Then by the definition of Λ2, we have x̂i > 0 for all i ∈ [d].

Then we have
∣∣∣
∑

i∈[d] x̂i

∣∣∣ > 8
√

d
cf

. Contradiction to (11.137). A similar argument applies if

x̂i∗ < −8
√

d
cf

. Hence, (11.138) holds.

Finally, combining (11.138) with (11.135), we have:

1

|Ωv| |T2| =
1

|Ωv|

∣∣∣∣∣∣
∑

(i,j)∈Ωv

zijx̂i

∣∣∣∣∣∣
(11.139)

≤ d

|Ωv| max
i∈[d]

∣∣∣∣∣∣
∑

(i,j)∈Ωv

zij

∣∣∣∣∣∣
· ‖x̂‖∞ < 8d

√
d

cf

ε2 ∀λ ∈ Λ2, conditional on (E2, E
′
2).

(11.140)

Hence, we have

lim
n→∞

P

(
1

|Ωv| |T2| < 8d

√
d

cf

ε, ∀λ ∈ Λ2

)
≥ lim

n→∞
P (E2 ∩ E ′2)

(i)
= 1,

where (i) is true by (11.135) and (11.136).

Term T3: We use the following standard result derived from statistics.
Lemma 11.29. Consider any fixed d ≥ 1. Let Z ∼ N (0, Id). Then we have

lim
d→∞

P


 sup
‖θ‖2=1
θ1≤...≤θd

θTZ ≤ d
1
4


 = 1.

For completeness, the proof of this lemma is in Appendix 11.12.2. We now explain how to
apply Lemma 11.29 on B̃Ωt .

The ordering of B̃: Take any arbitrary total ordering π ∈ T that is consistent with the partial
orderingO. Recall from (11.125) that the interpolated bias within each group k ∈ [r] is identical,
so B̃ satisfies the total ordering π.
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Bounding ‖B̃‖Ωt: We bound each b̃k. Recall that each b̃k is a mean of B̂ on its nearest-neighbor
set. Hence, we have

max
k∈[r]
|̃bk| ≤ max

(i,j)∈Ωt

∣∣∣̂b(λ)
ij

∣∣∣
(i)
≤ max

(i,j)∈Ωt
|yij|+ ‖x̂(λ)‖∞ ∀λ ∈ [0,∞], (11.141)

where (i) is true by (11.124) in Lemma 11.28. We consider the term max(i,j)∈Ωv |yij| on the RHS
of (11.141). Recall from the model (11.113) that Y = Z. Hence, we have

lim
n→∞

P
(

max
(i,j)∈Ωv

|yij| < 2
√

log dn

)

︸ ︷︷ ︸
E′′2

(i)
= 1, (11.142)

where (i) is true by Lemma 11.12. Plugging (11.142) and the bound on ‖x̂‖∞ from (11.138)
to (11.141), we have that conditional on E ′′2 and E ′2,

max
k∈[r]
|̃bk|≤ max

(i,j)∈Ωt
|yij|+ ‖x̂(λ)‖∞

≤ 2
√

log dn+ 8

√
d

cf

∀λ ∈ Λ2

∣∣∣∣∣ (E ′2, E
′′
2 ).

Hence, we have

‖B̃‖Ωt ≤
√
|Ωt| ·max

k∈[r]

∣∣∣̃bk
∣∣∣ ≤
√
dnv

(
2
√

log dn+ 8

√
d

cf

)
∀λ ∈ Λ2

∣∣∣∣∣ (E ′2, E
′′
2 ).

and therefore

lim
n→∞

P

(
‖B̃‖Ωt ≤

√
dnv

(
2
√

log dn+ 8

√
d

cf

)
, ∀λ ∈ Λ2

)
≥ lim

n→∞
P(E ′2 ∩ E ′′2 ) = 1.

(11.143)

Applying Lemma 11.29: For the term T3, for any constant C > 0, we have

P
(
|T3| < C(dnt)

1
4 , ∀λ ∈ Λ2

)
≥ P

( {∣∣∣∣
T3

C

∣∣∣∣ < (dnt)
1
4 , ∀λ ∈ Λ2

}

︸ ︷︷ ︸
E3

∩
{∥∥∥∥∥

B̃

C

∥∥∥∥∥
Ωt

≤ 1, ∀λ ∈ Λ2

}

︸ ︷︷ ︸
E4

)

(11.144)

We have

P(E3 ∩ E4) = P(E4) + P(E3 ∩ E4) (11.145)

Setting C =
√
dnv

(
2
√

log dn+ 8
√

d
cf

)
, by (11.143) we have

P(E4) = 0. (11.146)
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Applying Lemma 11.29 on B̃Ωt

C
, we have

lim
n→∞

P(E3 ∩ E4) = 0. (11.147)

Plugging (11.146) and (11.147) to (11.145), we have

lim
n→∞

P(E3 ∩ E4) = 0. (11.148)

Combining (11.148) with (11.144), we have

lim
n→∞

P

(
|T3| < C(dnt)

1
4 = (dnt)

3
4

(
2
√

log dn+ 8

√
d

cf

)
, ∀λ ∈ Λ2

)
= 1.

Hence, we have

lim
n→∞

P
(

1

|Ωv| |T3| < ε2

)
= 1. (11.149)

Term T4: Recall that kf denotes a group kf that satisfies the single cf-fraction assumption. By
the definition of E from (11.123), we have

max
i,i′∈[d]

(x̂i + b̃kf
)− (x̂i′ + b̃kf

) >
ε√
d

∀λ ∈ Λ2,

∣∣∣∣ E. (11.150)

Therefore, we have

max
i,i′∈[d]

[
(x̂i + b̃kf

)2 + (x̂i′ + b̃kf
)2
]
>
ε2

4d
∀λ ∈ Λ2

∣∣∣∣ E. (11.151)

We bound the term T4 as

1

|Ωv|T4 ≥
1

|Ωv|
∑

(i,j)∈Gv
kf

(x̂i + b̃kf
)2

(i)
≥ 2

dn
· cfn

4
· ε

2

4d
=
cfε

2

8d2
∀λ ∈ Λ2

∣∣∣∣∣∣
E,

where (i) is true by combining (11.127) and (11.151). Hence,

P
(
T4 ≥

cfε
2

8d2
∀λ ∈ Λ2

)
≥ P (E) = 1. (11.152)

Putting things together: Plugging the four terms from (11.134), (11.135), (11.149) and (11.152)
respectively back to (11.133), we have

lim
n→∞

P

(
e(λ) > (1− ε2) + 8d

√
d

cf

ε2 + ε2 +
cfε

2

8d2
, ∀λ ∈ Λ2

)
= 1. (11.153)
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Finally, combining the two cases from (11.132) and (11.153), we have

lim
n→∞

P

(
e(λ) ≥ 8

3
∧
(

1 + 16d

√
d

cf

ε2 +
cfε

2

8d2

)
, ∀λ ∈ Λε

)
= 1. (11.154)

Recall from (11.121) that the validation error at λ =∞ is bounded as

lim
n→∞

P
(
e(∞) ≤ 1 + ε1 + (d+ 1)ε21

)
= 1. (11.155)

Combining (11.154) and (11.155) with choices of (ε1, ε2) (dependent on ε, d, cf) such that 8
3
∧(

1 + 16d
√

d
cf
ε2 + cfε

2

8d2

)
> 1 + ε1 + (d+ 1)ε21, we have

lim
n→∞

P
(
e(∞) > e(0), ∀λ ∈ Λε

)
= 1,

completing the proof.

11.6.2 Proof of part (b)
For clarity of notation, we denote the constant in the constant-fraction interleaving assumption
as cf . Since O is a total ordering, we also denote it as π.

Step 3 (continued): Combining (11.15b) with Hoeffding’s inequality, we have

lim
n→∞

P


 |x̂1 + x̂2| =

1

nt

∣∣∣∣∣∣
∑

(i,j)∈Ωt

zij

∣∣∣∣∣∣
< ε ∧ 16√

cf

, ∀λ ∈ Λε

︸ ︷︷ ︸
E1


 = 1. (11.156)

We denote this event in (11.156) as E1.

Analyzing the number of interleaving points Let S ⊆ [2n − 1] denotes the interleaving
points. Recall that (it, jt) denotes element of rank t, and tij denotes the rank of the element
(i, j). We slightly abuse the notation to say (i, j) ∈ S if tij ∈ S, and also for other definitions of
subsets of interleaving points later in the proof. Denote Si ⊆ S as the set of interleaving points
in course i ∈ {1, 2}:

Si = S ∩ {t ∈ [2n− 1] : it = i}.

Denote Sv
i as the set of interleaving points in Si that are in the validation set:

Sv
i = Si ∩ Ωv.

We define Spairs as a set of pairs of interleaving points as:

Spairs := {(t, t′) ∈ [2n− 1]2 : t ∈ Sv
1 , t

′ ∈ Sv
2 , t < t′}.
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Define Ec as the event that there exists distinct values (t1, t
′
1, . . . , tcn, t

′
cn) such that (tk, t

′
k) ∈

Spairs for all k ∈ [cn]. That is, Spairs includes cn distinct pairs where each interleaving point
appears at most once. We define S ′pairs likewise as

S ′pairs := {(t, t′) ∈ [2n− 1]2 : t ∈ Sv
2 , t

′ ∈ Sv
1 , t < t′}.

and define E ′c likewise.
The following lemma bounds the probability of the event E 1

36
and E ′1

36

.

Lemma 11.30. Suppose d = 2. Then we have

lim
n→∞

P
(
E 1

36
∩ E ′1

36

)
= 1.

The proof of this result is provided in Appendix 11.12.3. Denote S+ as the set of the half
of the highest interleaving points and S− as the set of the half of the lowest interleaving points.
That is, we define

S+ := S ∩ {t ∈ [2n− 1] : t > median(S)}
S− := S ∩ {t ∈ [2n− 1] : t < median(S)}.

Furthermore, for i ∈ {1, 2}, we define

Sv+
i := S+ ∩ Si ∩ Ωv

Sv−
i := S− ∩ Si ∩ Ωv.

The following lemma lower-bounds the size of Sv+
i and Sv−

i .
Lemma 11.31. We have

lim
n→∞

P
(
|T | ≥ cfn

36
, ∀T ∈ {Sv+

1 , Sv−
1 , Sv+

2 , Sv−
2 }
)

︸ ︷︷ ︸
E2

= 1.

The proof of this result is provided in Appendix 11.12.4. We denote this event in Lemma 11.31
as E2.

Bounding the validation error Similar to part (a), we discuss the following two cases depend-
ing on the value of x̂.

Case 1: Λ1 = Λε ∩
{
λ ∈ [0,∞] : x̂

(λ)
1 < − 32√

cf

}
It can be verified that due to (11.156), we

have

x̂
(λ)
1 < − 32√

cf

<
16√
cf

< x̂
(λ)
2 ∀λ ∈ Λ1

∣∣∣∣ E. (11.157)
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By Hoeffding’s inequality combined with Lemma 11.31, we have

lim
n→∞

P


 ∑

(i,j)∈Sv−
1

1{zij > 0} > cfn

96


 = 1 (11.158a)

lim
n→∞

P


 ∑

(i,j)∈Sv+
2

1{zij < 0} > cfn

96


 = 1. (11.158b)

Denote the event

E3 :=





∑

(i,j)∈Sv−
1

1{zij > 0} > cfn

96



 ∩





∑

(i,j)∈Sv+
2

1{zij < 0} > cfn

96



 .

Taking a union bound of (11.158), we have

lim
n→∞

P(E3) = 1. (11.159)

We slightly abuse the notation and denote b̃t as the value of the interpolated bias on the element
of rank t. That is, we define b̃t := b̃itjt . It can be verified that b̃t is non-decreasing in t due to
the nearest-neighbor interpolation in Algorithm 2. Hence, b̃t ≤ 0 for all t ∈ S− or b̃t ≥ 0 for all
t ∈ S+.

First consider the case b̃t ≤ 0 for all t ∈ S−. We bound the validation error at λ ∈ Λ1 as:

e(λ) ≥ 1

|Ωv|
∑

(i,j)∈Sv−
1

(
zij − x̂(λ)

1 − b̃(λ)
ij

)2

(11.160)

(i)
≥ 1

|Ωv| ·
∣∣Sv−

1

∣∣ ·
(

0 +
16√
cf

+ 0

)2 (i)
≥ 1

n

cfn

96

256

cf

=
8

3
, ∀λ ∈ Λ1

∣∣∣∣∣ (E1, E2, E3),

(11.161)

where (i) is true by (11.157) and the definition of E3, and (ii) is true by the definition of E2.
Hence, we have

lim
n→∞

(
e(λ) ≥ 8

3
∀λ ∈ Λ1, {b̃t ≤ 0 for all t ∈ S−}

)
(i)
≥ P

(
b̃t ≤ 0 for all t ∈ S−

)
, (11.162a)

where (i) is true by (11.156), Lemma 11.31 and (11.159). By a similar argument, we have

lim
n→∞

(
e(λ) ≥ 8

3
∀λ ∈ Λ1, {b̃t ≥ 0 for all t ∈ S+}

)
≥ P

(
b̃t ≥ 0 for all t ∈ S+

)
, (11.162b)

Summing over (11.162), we have

lim
n→∞

P
(
e(λ) ≥ 8

3
, ∀λ ∈ Λ1

)
= 1. (11.163)
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Case 2: Λ2 = Λε ∩
{
λ ∈ [0,∞] : x̂

(λ)
1 > − 32√

cf

}
It can be verified that due to (11.156), we

have

− 32√
cf

< {x̂1, x̂2} <
48√
cf

. (11.164)

Similar to Case 2 in part (a), we decompose the validation error at λ ∈ Λ2 as

e(λ) =
1

|Ωv|
∑

(i,j)∈Ωv

(
zij − x̂(λ)

i − b̃(λ)
ij

)2

=
1

|Ωv|


 ∑

(i,j)∈Ωv

z2
ij

︸ ︷︷ ︸
T1

−2
∑

(i,j)∈Ωv

zijx̂
(λ)
i

︸ ︷︷ ︸
T2

−2
∑

(i,j)

zij b̃
(λ)
ij

︸ ︷︷ ︸
T3

+
∑

(i,j)

(
x̂

(λ)
i + b̃

(λ)
ij

)2

︸ ︷︷ ︸
T4


 .

Given that ‖x̂‖∞ is bounded by a constant by (11.164), the analysis of the terms T1, T2 and T3

follows the proof in part (a). We have

lim
n→∞

P
(

1

|Ωv|T1 > 1− ε2
)

= 1. (11.165a)

lim
n→∞

P


 1

|Ωv|
∑

(i,j)∈Ωv

|T2| <
96√
cf

ε2


 = 1. (11.165b)

lim
n→∞

P
(

1

|Ωv| |T3| < ε2

)
= 1. (11.165c)

Now we consider the last term T4. Recall from (11.123) that

|x̂2 − x̂1| >
ε√
2
∀λ ∈ Λ2

∣∣∣∣ E.

First consider the case of Λ2>1 :=
{
λ ∈ [0,∞] : x̂

(λ)
2 − x̂(λ)

1 > ε√
2

}
. Consider any (t, t′) ∈

Spairs. By the definition of Spairs we have t < t′. Hence, we have b̃t ≤ b̃t′ due to the nearest-
neighbor interpolation in Algorithm 2. Hence, we have x̂2+b̃t′−(x̂1+b̃t) >

ε√
2

and consequently

(x̂1 + b̃t)
2 + (x̂2 + b̃t′)

2 >
ε2

8
∀λ ∈ Λ2 ∩ Λ2>1

∣∣∣∣ E.

We bound the term T4 as:

1

|Ωv|T4 ≥
1

|Ωv|
∑

(t,t′)∈Spairs

[
(x̂1 + b̃t)

2 + (x̂2 + b̃t′)
2
]

(i)
≥ 1

2n
· cfn

36
· ε

2

8
=
cfε

2

576
∀λ ∈ Λ2 ∩ Λ2>1

∣∣∣∣ (E 1
36
, E), (11.166a)
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where inequality (i) is true by the definition ofE 1
36

. Define Λ1>2 :=
{
λ ∈ [0,∞] : x̂

(λ)
1 − x̂(λ)

2 > ε√
2

}
.

With a similar argument, we have

1

|Ωv|T4 ≥
cfε

2

576
, ∀λ ∈ Λ2 ∩ Λ1>2

∣∣∣∣ (E ′1
36
, E). (11.166b)

Combining (11.166), we have

1

|Ωv|T4 ≥
cfε

2

576
, ∀λ ∈ Λ2

∣∣∣∣ (E 1
36
, E ′1

36
, E).

By Lemma 11.30 and (11.123), we have

lim
n→∞

P
(

1

|Ωv|T4 ≥
cfε

2

576
, ∀λ ∈ Λ2

)
≥ lim

n→∞
P
(
E 1

36
, E ′1

36
, E
)

= 1. (11.167)

Putting things together: Combining the four terms from (11.165) and (11.167), we have

lim
n→∞

P
(
e(λ) > 1− ε2 −

128√
cf

ε2 − 2ε2 +
cfε

2

576
= 1−

(
3 +

128√
cf

)
ε2 +

cfε
2

576
, ∀λ ∈ Λ2

)
= 1.

(11.168)

Combining the two cases from (11.163) and (11.168), we have

lim
n→∞

P
(
e(λ) >

8

3
∧
[
1−

(
3 +

128√
cf

)
ε2 +

cfε
2

576

]
, ∀λ ∈ Λ2

)
= 1. (11.169)

Recall from (11.121) that the validation error at λ =∞ is bounded as (taking d = 2):

lim
n→∞

P
(
e(∞) ≤ 1 + ε1 + 3ε21, ∀λ ∈ Λε

)
= 1. (11.170)

Combining (11.169) and (11.170) with choices of (ε1, ε2) (dependent on ε, cf) such that 8
3
∧[

1−
(

3 + 128√
cf

)
ε2 + cfε

2

576

]
> 1 + ε1 + 3ε21, we have

lim
n→∞

P
(
e(∞) > e(0), ∀λ ∈ Λε

)
= 1,

completing the proof.

11.7 Proof of Proposition 4.11
To prove the claimed result, we construct partial orderings that satisfy each of the conditions (a), (b),
and (c) separately, and show that the mean estimator fails under each construction. Intuitively,
the mean estimator does not account for any bias, so we construct partial orderings where the
mean of the bias differs significantly across courses, and show that the mean estimator fails on
these construction. Without loss of generality we assume that the standard deviation parameter
for the Gaussian distribution of the bias is σ = 1.
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11.7.1 Proof of part (a)
We first construct a partial ordering that satisfies the condition (a), and then bound the mean of
each course to derive the claimed result. For clarity of notation, we denote the constant in the all
constant-fraction assumption as cf .

Constructing the partial ordering: Recall from Definition 4.3 that the all cf-fraction assump-
tion requires that each course i ∈ [d] has at least `ik ≥ cfn students in each group k ∈ [r]. Let
c0 = 1 − cfr. Due to the assumption that cf ∈ (0, 1

r
), we have that c0 > 0 is a constant. We

construct the following group ordering O, where the number of students in each course from
each group is specified as

• Course 1: The course has (cf + c0)n students from group 1, and cfn students from each
remaining group k ∈ {2, . . . , r}. That is,

`1k =

{
(cf + c0)n if k = 1

cfn if 2 ≤ k ≤ r.
(11.171a)

• Course 2: The course has (cf + c0)n students from group r, and cfn students from each
remaining group k ∈ [r − 1]. That is,

`2k =

{
(cf + c0)n if 1 ≤ k ≤ r − 1

cfn. if k = r.
(11.171b)

• Course i ≥ 3: The course has an equal number of students from each group k ∈ [r]. That
is, for every 3 ≤ i ≤ d,

`ik =
n

r
∀k ∈ [r].

It can be seen that this construction of the group ordering O is valid, satisfying the equality∑
k∈[r] `ik = n for each i ∈ [d]. Moreover, the group ordering O satisfies the all cf-fraction

assumption. Intuitively, course 1 contains more students associated with negative bias (from
group 1), and course 2 contains more students associated with positive bias (from group k). The
mean estimator underestimates the quality of course 1, and overestimates the quality of course 2.
We construct some true qualities x∗ with x∗1 > x∗2, whose values are specified later in the proof.

Bounding the mean of each course: Denote the mean of the bias in any course i ∈ {1, 2} of
group k ∈ [r] as bik := 1

`ik

∑
j∈Gik bij . Similar to the proof of Lemma 11.24 (see Appendix 11.3.1

for its statement and Appendix 11.11.4 for its proof), due to assumptions (A2) and (A3) we
establish the following lemma.
Lemma 11.32. Consider any group ordering O that satisfies the all cf-fraction assumption. For
any ε > 0, we have

lim
n→∞

P
( ∣∣bik − bGk

∣∣ < ε, ∀i ∈ [d], k ∈ [r]︸ ︷︷ ︸
E1

)
= 1.

198



Denote this event in Lemma 11.32 as E1. Recall that `k denotes the number of students in
each group k ∈ [r]. From the construction of the group ordering O, we have `0 := `1 = `r =
(2cf + c0 + d−2

r
)n. Recall that b(k) denotes the kth order statistics of {bij}i∈[d],j∈[n]. By the

assumption (A2) of the bias and the construction of the partial ordering O, the group 1 contains
the `1 lowest bias terms, {b(1), . . . , b(`0)}, and the group r contains the `r highest bias terms,
{b(dn−`0+1), . . . , b(dn)}. Hence, we have

bG1 <
b(
`0
2

) + b(`0)

2

bGr >
b(dn−`0) + b(dn− `0

2
)

2
.

By the convergence of the order statistics from Lemma 11.11, it can be shown that there exists
some constant c > 0 (dependent on d, r and cf), such that

lim
n→∞

P
(
bGr − bG1 > c︸ ︷︷ ︸

E2

)
= 1. (11.172)

Denote this event in (11.172) as E2. The mean estimator is computed as

[x̂mean]1 = x∗1 +
1

n

∑

k∈[r]

`1kb1k (11.173a)

[x̂mean]2 = x∗2 +
1

n

∑

k∈[r]

`2kb2k (11.173b)

Taking the difference on (11.172), conditional on E1 and E2,

[x̂mean]2 − [x̂mean]1 = (x∗2 − x∗1) +
1

n

∑

k∈[r]

(`2kb2k − `1kb1k)

(i)
> (x∗2 − x∗1) +

1

n

∑

k∈[r]

(`2kbGk − `1kbGk)− 2ε

(i)
= (x∗2 − x∗1) + c0(br − bG1)− 2ε
(iii)
> (x∗2 − x∗1) + c0c− 2ε. (11.174)

where inequality (i) is true by the eventE1, and equality (i) is true by plugging in the construction
of the group ordering from (11.171), and inequality (iii) is true by the definition (11.172) of E2.
We set ε = c0c

4
, and set x∗1 = c0c

2
and x∗2 = 0. Then by (11.174) we have

P([x̂mean]2 − [x̂mean]1 > 0) = 1. (11.175)

Combining (11.175) with the fact that x∗2 − x∗1 < 0, completing the proof of part (a).
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11.7.2 Proof of part (b)
To construct the partial ordering, we set r = 2 and d = 2 in construction we used for part (a).
This completes the proof of part (b).

11.7.3 Proof of part (c)
We construct a total ordering where the bias obeys the following order (same as the “non-
interleaving” total ordering described in Section 4.5.1):

b11 ≤ . . . ≤ b1n ≤ b21 ≤ . . . ≤ b2n ≤ . . . ≤ bd1 ≤ . . . ≤ bdn.

In this construction, course 1 contains the n students with the lowest bias, and course d contains
the n students with the highest bias. Recall that bi denotes the mean of the bias in course i ∈ [d].
We have

b1 =
1

n

∑

j∈[n]

b1j <
b(n

2
) + b(n)

2

br =
1

n

∑

j∈[n]

b2j >
b(dn−n

2
) + b(dn)

2
.

Similar to part (a), by Lemma 11.11, there exists a positive constant c > 0 (dependent on d),
such that

lim
n→∞

P
(
br − b1 > c

)
= 1.

Let x∗1 = c and x∗2 = 0. We have

lim
n→∞

P([x̂mean]r − [x̂mean]1 = x∗2 − x∗1 + b2 − b1 > 0) = 1. (11.176)

Combining (11.176) with the fact that x∗1 > x∗r completes the proof of part (c).

11.8 Proof of Proposition 4.13
By Corollary 11.6, we assume x∗ = 0 without loss of generality. Denote the bias of course 1 as
{Uj}j∈[rn] in group 1, and {Vj}j∈[(1−r)n] in group 2. Denote the bias of course 2 as {U ′j}j∈[(1−r)n]

in group 1 and {V ′j }j∈[rn] in group 2. We have Uj, U ′j ∼ Unif[−1, 0] and Vj, V ′j ∼ Unif[0, 1].
Denote the mean of {Uj}, {Vj}, {U ′j} and {V ′j } as U, V , U

′
and V

′
respectively. We prove the

claimed result respectively for the reweighted mean estimator (Appendix 11.8.1) and for our
estimator at λ = 0 (Appendix 11.8.2). Both parts use the following standard result regarding the
uniform distribution.
Lemma 11.33. Let X1, . . . , Xn be i.i.d. Unif[0, 1], we have

E
(∑n

i=1 Xi

n

)2

=
1

4
+

1

12n
.
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11.8.1 The reweighted mean estimator
We follow the definition of the reweighted mean estimator defined in Appendix 4.6.2. In the
reweighting step, by (4.4) we have

x̂rw =
1

2

[
U + V

U
′
+ V

′

]
. (11.177)

In the recentering step, by (4.6) we have

x̂rw ← x̂rw +


−1

2

∑

i∈{1,2}

[x̂rw]i +
1

2n

∑

i∈{1,2},j∈[n]

yij


1

= x̂rw +

(
− [x̂rw]1 + [x̂rw]2

2
+
rnU + (1− r)nV + (1− r)nU ′ + rnV

′

2n

)
1

=
[x̂rw]1 − [x̂rw]2

2

[
1
−1

]
+

(
rU + (1− r)V + (1− r)U ′ + rV

′

2

)
1

(i)
=
U + V − U ′ − V ′

4

[
1
−1

]
+

(
rU + (1− r)V + (1− r)U ′ + rV

′

2

)
1, (11.178)

where equality (i) is true by plugging in (11.177) from the reweighting step. By symmetry, we
have E[x̂rw]21 = E[x̂rw]22, so we only consider course 1. By (11.178), we have

E[x̂rw]21
(i)
= E

(
U + V − U ′ − V ′

4

)2

+ E

(
rU + (1− r)V + (1− r)U ′ + rV

′

2

)2

=
1

16
E
[
U
′2

+ V
′2

+ U
2

+ V
2 − 4 · 1

2

1

2

]

+
1

4
E
[
(1− r)2U

′2
+ r2V

′2
+ r2U

2
+ (1− r)2V

2 − 2

(
r2

4
+

(1− r)2

4

)]

=
1

8
E
[
U

2
+ V

2 − 1

2

]
+

1

2
E
[
r2U

2
+ (1− r)2V

2 − r2 + (1− r)2

4

]

(ii)
=

1

8

[
1

4
+

1

12rn
+

1

4
+

1

12(1− r)n −
1

2

]
+

1

2
E
[
r2

4
+

r2

12rn
+

(1− r)2

4
+

(1− r)2

12(1− r)n −
r2 + (1− r)2

4

]

=
1

96n

(
1

r
+

1

1− r

)
+

1

24n

=
1

24n
+

1

96r(1− r)n.

where (i) is true because it can be verified by algebra that E
[(

U+V−U ′−V ′
4

)(
rU+(1−r)V+(1−r)U ′+rV ′

2

)]
=

0, and (ii) is true by Lemma 11.33. Finally, we have
1

2
E‖x̂rw‖]22 =

1

2

(
E[x̂rw]21] + E[x̂rw]22

)
= E[x̂rw]21 =

1

24n
+

1

96r(1− r)n ≥
1

24n
+

1

24n
=

1

12n
,

where the inequality holds because r(1− r) ≤ 1
4

for every r ∈ (0, 1).
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11.8.2 Our estimator at λ = 0

Recall from Proposition 11.9 that for d = 2 courses and r = 2 groups, our estimator at λ = 0

has the closed-form expression x̂(0) = y +

[
−1
1

]
· γ

2
, where

γ =





y22,min − y11,max if y22,min − y11,max < y2 − y1

y21,max − y12,min if y21,max − y12,min > y2 − y1

y2 − y1 o.w.
(11.179)

By (11.179), we have

1

2
E‖x̂(0)‖2

2 =
1

2
E
[(
y − γ

2

)2

+
(
y +

γ

2

)2
]

= E[y2] +
1

4
E[γ2]. (11.180)

We analyze the two terms in (11.180) separately.

Term of E[y2] : For ease of notation, we denote the random variables

{Ũj}j∈[n] := {Uj}j∈[rn] ∪ {U ′j}j∈[(1−r)n]

{Ṽj}j∈[n] := {Vj}j∈[(1−r)n] ∪ {V ′j }j∈[rn]

Then {Ũj}j∈[n] is i.i.d. Unif[−1, 0] and {Ṽj}j∈[n] is i.i.d. Unif[0, 1]. We have

E[y2] = E

(∑
i∈[n] Ũi +

∑
i∈[n] Ṽi

2n

)2

=
1

4n2
E


∑

i∈[n]

Ũ2
i +

∑

i∈[n]

Ṽ 2
i + 2

∑

i∈[n],j∈[n]

ŨiṼj +
∑

i∈[n]

∑

j 6=i

ŨiŨj +
∑

i∈[n]

∑

j 6=i

ṼiṼj




=
1

4n2

[
n

3
+
n

3
+ 2n2

(
−1

4

)
+ n(n− 1)

1

4
+ n(n− 1)

1

4

]

=
1

24n
. (11.181)

Term of E[γ2]: To analyze the term E[γ2], we use the following standard result from statistics.
Lemma 11.34. Let X1, . . . , Xn ∼ Unif[0, 1]. Let Xmin = mini∈[n] Xi. We have

E[Xmin] =
1

n+ 1

E[X2
min] =

2

(n+ 1)(n+ 2)
.
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We define

Umax := max
j∈[rn]

Uj

Vmin := min
j∈[(1−r)n]

Vj,

and define U ′max and V ′min likewise. By (11.179) it can be verified that we have the deterministic
relation

|γ| ≤ (y22,min − y11,max) ∨ (y12,min − y21,max)
(i)
= (V ′min − Umax) ∨ (Vmin − U ′max)

≤ V ′min − Umax + Vmin − U ′max,

where equality (i) is true by the assumption that there is no noise and the assumption of x∗ = 0.
Therefore,

E[γ2] ≤ E [(V ′min − Umax) + (Vmin − U ′max)]
2

= E(V ′min − Umax)2

︸ ︷︷ ︸
T1

+E(Vmin − U ′max)2

︸ ︷︷ ︸
T2

+2E(V ′min − Umax)(Vmin − U ′max)︸ ︷︷ ︸
T3

. (11.182)

We consider the three terms T1, T2 and T3 separately. For the term T1, by Lemma 11.34 we have

T1 = E[V ′min]2 + E[U2
max]− 2E[V ′minUmax]

= 2 · 2

(rn+ 1)(rn+ 2)
+ 2 · 1

(rn+ 1)2
≤ 6

r2n2
.

Likewise, for the term T2 we have

T2 ≤
6

(1− r)2n2
.

For the term T3, by Lemma 11.34 we have

T3 =
2

rn+ 1
· 2

(1− r)n+ 1
≤ 4

r(1− r)n2
.

Plugging the three terms back to (11.182), we have

E[γ2] ≤ 6

r2n2
+

6

(1− r)2n2
+

8

r(1− r)n2
=

c

n2
, (11.183)

for some constant c > 0.
Finally, plugging (11.181) and (11.183) back to (11.180), we have

1

2
E‖x̂(0)‖2 ≤

1

24n
+

c

4n2
,

completing the proof.
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11.9 Proof of preliminaries
In this section, we present the proofs of the preliminary results presented in Appendix 11.2.

11.9.1 Proof of Proposition 11.1
To avoid clutter of notation, we first prove the case for Ω = [d] × [n], and then comment on the
general case of Ω ⊆ [d]× [n].

Now consider Ω = [d] × [n], where our estimator (11.9) reduces to (4.2). We separately
consider the cases of λ = 0 and λ ∈ (0,∞).

Case of λ = 0 The objective (4.2) becomes

min
x∈Rd

min
B∈Rd×n
B satisfiesO

∥∥Y − x1T −B
∥∥2

F
= min

W∈Rd×n
W∈{x1T+B|x∈Rd, B∈Rd×n, B satisfiesO}

‖Y −W‖2
F . (11.184)

It can be verified that the set {x1T + B | x ∈ Rd, B ∈ Rd×n, B satisfies O} is a closed convex
set. By the Projection Theorem [21, Proposition 1.1.9], a unique minimizer W0 to the RHS
of (11.184) exists. Therefore, the set of minimizers to the LHS of (11.184) can be written as
{(x,W0 − x1T ) | x ∈ Rd}. The tie-breaking rule minimizes the Frobenius norm ‖B‖2

F . That is,
we solve

min
x∈Rd

∥∥W0 − x1T
∥∥2

F
. (11.185)

It can be verified that a unique solution to (11.185) exists, because the objective is quadratic in
x. Hence, the tie-breaking rule defines a unique solution (x,B).

Case of λ ∈ (0,∞) It can be verified that the objective (4.2) is strictly convex in (x,B).
Therefore, there exists at most one minimizer [21, Proposition 3.1.1].

It remains to prove that there exists a minimizer. It is straightforward to see that the objective
is continuous in (x,B). We now prove that the objective is coercive on {(x,B) : x ∈ Rd, B ∈
Rd×n, B satisfies O}. That is, for any constant M > 0, there exists a constant RM > 0, such
that the objective at (x,B) is greater than M for all (x,B) in the domain {(x,B) : x ∈ Rd, B ∈
Rd×n, B satisfies O} with

‖x‖2
2 + ‖B‖2

F > RM (11.186)

Given coercivity, invoking Weierstrass’ Theorem [21, Proposition 3.2.1] completes the proof.
We set

RM = d

[(
1 +

1√
λ

)√
M + max

i∈[d],j∈[n]
Y

]2

+
1

λ
M. (11.187)

We discuss the following two cases depending on the value of ‖B‖2
F .
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Case of ‖B‖2
F ≥ M

λ
The second term of the objective (11.9) is lower-bounded as λ‖B‖2

F ≥M .
Hence, the objective (4.2) is at least M .

Case of ‖B‖2
F <

M
λ

: Combining (11.186) and (11.187), we have

‖x‖2
2 > RM − ‖B‖2

F > d

[
(1 +

1√
λ

)
√
M + max

i∈[d],j∈[n]
yij

]2

.

Hence, there exists some i∗ ∈ [d] such that

|xi∗ | > (1 +
1√
λ

)
√
M + max

i∈[d],j∈[n]
yij. (11.188)

Consider the (i∗, j) entry in the matrix (Y − x1T −B) for any j ∈ [n]. We have
∣∣(Y − x1T −B)i∗j

∣∣ ≥ |xi∗| − |yi∗j| − |bi∗j|
≥ |xi∗| − max

i∈[d],j∈[n]
yij − ‖B‖F

(i)
>

(
1 +

1√
λ

)√
M −

√
M

λ
=
√
M,

where (i) is true by (11.188) and the assumption of the case that ‖B‖2
F <

1
λ
M . Hence, the second

term in the objective (4.2) is lower-bounded by
∥∥Y − x1T −B

∥∥2

F
≥
∣∣(Y − x1T −B)i∗j

∣∣2 > M,

and therefore the objective (4.2) is greater than M .
Combining the two cases depending on ‖B‖2

F completes the proof of the coercivity of the
objective (4.2) in terms of (x,B). Invoking the Weierstrass’ Theorem [21, Proposition 3.2.1]
completes the proof of Ω = [d]× [n].

Extending the proof to general Ω ⊆ [d]×[n]: For general Ω ⊆ [d]×[n], by a similar argument
the solution (x̂, {b̂ij}(i,j)∈Ω) exists and is unique. Note that the objective (11.9) is independent
from {bij}(i,j)6∈Ω,so we have b̂ij = 0 for each (i, j) 6∈ Ω. Hence, a unique solution (x̂, B̂) to (11.9)
exists for general Ω.

11.9.2 Proof of Lemma 11.3
It is sufficient to prove the general version (11.13). First consider λ =∞. It can be verified that
the closed-form expression (4.3) for the solution at λ =∞ satisfies the claimed relation (11.13).

It remains to consider the case of λ ∈ [0,∞). Given the value of the solution B̂(λ), we solve
for x̂(λ) by minimizing the first term of the objective (4.2) as

min
x∈Rd
‖Y − x1T − B̂(λ)‖2

F . (11.189)

Writing out all the terms in (11.189) and completing the square yields the claimed relation (11.13).
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11.9.3 Proof of Lemma 11.4
It is sufficient to prove the general version (11.15). First consider the case of λ = ∞. It can be
verified that the closed-form expression expressions (4.3) for the solution at λ =∞ satisfies the
claimed relations (11.16).

It remains to consider the case of λ ∈ [0,∞). First we prove (11.15a). Assume for contra-
diction that

∑
(i,j)∈Ω b̂ij 6= 0. Consider the set of alternative solutions (x̂γ, B̂γ) parameterized by

some γ ∈ R as

x̂γ = x̂+ γ1d (11.190a)

B̂γ = B̂ − γ1d1Tn . (11.190b)

Note that the original solution (x̂, B̂) corresponds to γ = 0.
Since B̂γ in (11.190) is obtained by subtracting all entries in the matrix by a constant γ,

the bias term b̂γ satisfies the partial ordering O for any γ ∈ R. Moreover, since by construc-
tion (11.190) the value of (x̂γ1d + b̂γ) is the same for all γ ∈ R, the first term in the objec-
tive (4.2) is equal for all γ ∈ Rd. Now consider the second term ‖B̂γ‖2

Ω. Writing out the terms
in ‖B̂γ‖2

Ω and completing the square, we have ‖b̂γ‖2
Ω is minimized at γ = 1

|Ω|
∑

(i,j)∈Ω b̂ij 6= 0.
Contradiction to the assumption that the solution at γ = 0 minimizes the objective, completing
the proof of (11.15a).

Now we prove (11.15b). By (11.13) from Lemma 11.3 and summing over i ∈ [d], we have
∑

i∈[d]

nix̂i =
∑

i∈[d]

∑

jΩi

(yij − b̂ij) =
∑

(i,j)∈Ω

(yij − b̂ij) (i)
=
∑

(i,j)∈Ω

yij,

where equality (i) is true by (11.15a), completing the proof of (11.15b).

11.9.4 Proof of Proposition 11.5
First consider the case of λ = ∞, the claimed result can be verified using the closed-form
expressions (4.3) at λ = ∞. It remains to consider the case of any λ ∈ [0,∞). Assume for
contradiction that the solution at Y + ∆x1T is not (x̂ + ∆x, B̂), but instead (x̂ + ∆x + u, B̂′)

for some non-zero u ∈ Rd. By the optimality of (x̂+ ∆x+ u, B̂′), we have

‖(Y + ∆x1T )− (x̂+ ∆x+ u)1T − B̂′‖2
Ω + λ‖B̂′‖2

Ω ≤ ‖(Y + ∆x1T )− (x̂+ ∆x)1T − B̂‖2
Ω + λ‖B̂‖2

Ω

(11.191)

‖Y − (x̂+ u)1T − B̂′‖2
Ω + λ‖B̂′‖2

Ω ≤ ‖Y − x̂1T − B̂‖2
Ω + λ‖B̂‖2

Ω.
(11.192)

If strict inequality in (11.192) holds, then (x̂ + u, B̂′) attains a strictly smaller objective on ob-
servations Y given (O, λ,Ω) than (x̂, B̂). Contradiction to the assumption that (x̂, B̂) is optimal
on the observations Y . Otherwise, equality holds in (11.192) and hence in (11.191). By the
tie-breaking rule of the equality (11.191) on the observations (Y + ∆x1T ), we have

‖B̂′‖2
Ω < ‖B̂‖2

Ω, (11.193)
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Combining (11.193) with the equality of (11.192) yields a contradiction to the assumption that
(x̂, B̂) is optimal on the observations Y , and hence is chosen by the tie-breaking rule over the
alternative solution (x̂+ u, B̂′).

11.9.5 Proof of Lemma 11.7
The proof relies on (11.15b) from Lemma 11.4. Assume without loss of generality that x∗ = 0.
We first show that on the RHS of (11.15b), we have that

∑
(i,j)∈Ωt yij converges to 0 for random

Ωt obtained by Algorithm 2.
Fix some constant ε1 > 0 whose value is determined later.

Part (b): For any fixed Ωt, by Hoeffding’s inequality, we have

lim
n→∞

P



∣∣∣∣∣∣

1

|Ωt|
∑

(i,j)∈Ωt

yij

∣∣∣∣∣∣
< ε1


 = 1. (11.194a)

Part (a): Given the assumption that x∗ = 0 and the assumption that there is no noise, we have
Y = B. By (11.22b) from Lemma 11.15, we have

lim
n→∞

P



∣∣∣∣∣∣

1

|Ωt|
∑

(i,j)∈Ωt

yij

∣∣∣∣∣∣
< ε1


 = 1. (11.194b)

The rest of the proof is the same for both parts. Denote the event in (11.194) as E. We now
condition on E and consider the LHS of (11.15b). By (11.1), the number of students in each
course i ∈ [d] is nt = 1

2
n. Consider any λ ∈ [0,∞] ∈ Λε. By the definition of Λε we have

‖x̂(λ)‖2 ≥ ε. There exists some i∗ such that |x̂i∗| ≥ ε√
d
. Assume without loss of generality that

x̂i∗ >
ε√
d
. We now show that there exists some i′ such that x̂i′ ≤ 0. Assume for contradiction

that x̂i > 0 for all i ∈ [d]. Then by (11.15b), we have
∑

(i,j)∈Ωt

yij = nt
∑

i∈[d]

x̂i ≥ ntx̂i∗ >
n

2

ε√
d
.

Therefore,

1

|Ωt|
∑

(i,j)∈Ω

yij =
2

dn

n

3

ε√
d

=
2ε

3d
3
2

.

Setting ε1 to be sufficiently small such that ε1 < 2ε

3d
3
2

yields a contradiction with E. Hence,
conditional on E, there exists some i∗2 such that x̂i∗2 ≤ 0. Therefore, maxi,i′∈[d](x̂i − x̂i′) ≥
x̂i∗ − x̂i∗2 > ε√

d
. A similar argument applies to the case of x̂i∗ < − ε√

d
. Hence, we have

max
i,i′∈[d]

(x̂i − x̂i′) >
ε√
d
, ∀λ ∈ Λε

∣∣∣∣ E. (11.195)
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Combining (11.195) with (11.194), we have

lim
n→∞

(
max
i,i′∈[d]

(x̂i − x̂i′), ∀λ ∈ Λε

)
≥ P(E) = 1,

completing the proof.

11.9.6 Proof of Lemma 11.8
We follow the proof of Lemma 11.7, we assume x∗ = 0 without loss of generality. Then fix
some constant ε1 > 0, and estalish concentration inequalities on the RHS of (11.15b).

Part (b): Same as (11.194b) from Lemma 11.7, we have

lim
n→∞

P



∣∣∣∣∣∣

1

|Ωt|
∑

(i,j)∈Ωt

yij

∣∣∣∣∣∣
< ε1


 = 1. (11.196a)

Part (a): By Hoeffding’s inequality, we have

lim
n→∞

P


 1

dn

∣∣∣∣∣∣
∑

i∈[d],j∈[n]

yij

∣∣∣∣∣∣
< ε1


 = 1. (11.196b)

The rest of the proof is the same for both parts. Combining (11.196) with (11.15b), we have

lim
n→∞

P



∣∣∣∣∣∣
1

d

∑

i∈[d]

x̂i

∣∣∣∣∣∣
< ε1


 = 1. (11.197)

Fix any value ε > 0. Denote E as the event that the events in both (11.17) and (11.197) hold. By
a union bound of (11.17) and (11.197), we have

lim
n→∞

(E) = 1. (11.198)

Condition on E and consider the value of x̂(λ)
1 . First consider the case of x̂1 > ε, then by (11.17)

we have x̂i > 0 for each i ∈ [d]. Then

1

d

∣∣∣∣∣∣
∑

i∈[d]

x̂i

∣∣∣∣∣∣
=

1

d

∑

i∈[d]

x̂i >
ε

d

∣∣∣∣∣∣
x̂1 > ε,E

A similar argument applies to the case of e x̂1 < −ε, and we have

1

d

∣∣∣∣∣∣
∑

i∈[d]

x̂i

∣∣∣∣∣∣
>
ε

d

∣∣∣∣∣∣
|x̂1| > ε,E
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The same argument applies to each i ∈ [d]. We have

1

d

∣∣∣∣∣∣
∑

i∈[d]

x̂i

∣∣∣∣∣∣
>
ε

d

∣∣∣∣∣∣
‖x̂‖∞ > ε,E

Taking a sufficiently small ε1 such that ε1 < ε
d

in (11.197) yields a contradiction. Hence, we have

lim
n→∞

P(‖x̂‖∞ > ε,E) = 0. (11.199)

Hence,

lim
n→∞

P
(
‖x̂‖2 >

√
dε
)
≤ lim

n→∞
P (‖x̂‖∞ > ε)

(i)
= lim

n→∞

(
‖x̂‖∞ > ε,E

)
≤ lim

n→∞
P(E)

(ii)
= 0,

where inequality (i) is true by (11.199) and (ii) is true by (11.198), completing the proof.

11.9.7 Proof of Proposition 11.9
Without loss of generality we assume x∗ = 0. By (11.16b) from Lemma 11.4 with the assumption
that d = 2, we have 1

2
(x̂1 + x̂2) = y, and hence without loss of generality we parameterize x̂

with some γ ∈ R as

x̂γ = y +

[
−1
1

]
· γ

2
(11.200)

It remains to determine the value of γ.
Given x∗ = 0 and the assumption that there is no noise, we have Y = B. By the as-

sumption (A2) on the bias, we have B obeys the ordering constraintsO. Hence, setting (x̂, B̂) =

(0, B) gives an objective of 0 in (4.2). Hence, at the optimal solution (x̂γ, B̂γ), the objective (4.2)
equals 0. At the optimal solution, we have

B̂γ = Y − x̂γ1T . (11.201)

The rest of the proof consists of two steps in determining the value of γ. First, we find the set
of γ such that B̂γ satisfies the ordering constraint O. Then we find the optimal γ from this set
that is chosen by tie-breaking, minimizing ‖B̂γ‖2

F .

Step 1: Finding the set of γ that satisfies the ordering constraint Given Y = B, for any γR
we have that B̂γ satisfies all ordering constraints inO that are within the same course, that is, the
ordering constraints in the form of ((i, j), (i, j′)) ∈ O with i ∈ {1, 2}. Hence, we only need to
consider ordering constraints involving both courses, that is, the ordering constraints in the form
of ((i, j), (i′, j′)) with {i, i′} = {1, 2}. It can be verified that these constraints involving both
courses are satisfied if and only if

{
y11,max − x̂1 ≤ y22,min − x̂2

y21,max − x̂2 ≤ y12,min − x̂1.
(11.202)
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Plugging the parameterization (11.200) of x̂γ into (11.202), we have

y21,max − y12,min ≤ γ ≤ y22,min − y11,max. (11.203)

Note that the range in (11.203) is always non-empty, because given Y = B, we have
y11,max ≤ y12,min and y21,max ≤ y22,min and hence y21,max − y12,min ≤ y22,min − y11,max.

Step 2: Finding the optimal γ from the range (11.203) minimizing ‖B̂γ‖2
F Using the pa-

rameterizations (11.200) and (11.201), we write ‖B̂γ‖2
F as

‖B̂γ‖2
F = ‖Y − x̂γ1T‖2

F

(i)
=
∑

j∈[n]

(
y1j − y +

γ

2

)2

+
∑

j∈[n]

(
y2j − y −

γ

2

)2

. (11.204)

Writing out the terms in (11.204) and completing the square, we have that minimizing ‖b̂γ‖2
F

is equivalent to minimizing the term:

n

2
(γ − (y2 − y1))2 (11.205)

Combining (11.203) and (11.205) gives the yields expression (11.18) for the optimal γ.

11.9.8 Proof of Lemma 11.10
The lemma is a direct consequence of the following result (given that almost-sure convergence
implying convergence in probability).
Lemma 11.35 (Theorem 2 in [52]). Let X1, . . . , Xn be i.i.d. N (0, 1). We have

lim sup
n→∞

√
2 log n

log log n
Mn = 1 almost surely,

where log is the logarithm of base 2.

11.9.9 Proof of Lemma 11.11
Let g be the p.d.f. of N (0, 1). Let Gn be the empirical c.d.f. and the empirical inverse c.d.f. of
n i.i.d. samples from N (0, 1) and let G−1

n be the inverse of Gn.
The claim is a straightforward combination of the following two lemmas. The first lemma

states that the empirical inverse c.d.f. converges to the true inverse c.d.f. The second lemma
states that order statistics converges to the empirical inverse c.d.f.
Lemma 11.36 (Example 3.9.21 of [182], or Corollary 21.5 of [181]). Consider any fixed p ∈
(0, 1). Assume that G is differentiable at G−1(p) and g(G−1(p)) > 0. Then we have

√
n
[
G−1
n (p)−G−1(p)

] d−→ N

(
0,

p(1− p)
g2(G−1(p))

)
.
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Lemma 11.37 (Lemma 21.7 in [181]). Fix constant p ∈ (0, 1). Let {kn}∞n=1 be a sequence of
integers such that kn

n
= p+ c√

n
+ o

(
1√
n

)
for some constant c. Then

√
n
[
X(kn:n) −G−1

n (p)
] P−→ c

g(G−1(p))

11.9.10 Proof of Lemma 11.13
We consider any fixed i ∈ [d], k ∈ [r], and any fixed total ordering π0 generated by Line 2 of
Algorithm 2. Note that the `ik elements in Gik are consecutive with respect to the sub-ordering
of π0 restricted to course i in Line 4 of Algorithm 2. Then it can be verified from Line 5-7 of
Algorithm 2 that

`ik
2
− 1 ≤ `v

ik ≤
`ik
2

+ 1, (11.206)

It can be verified that (11.206) along with the assumption that `ik ≥ 4 yields (11.20a). Sum-
ming (11.20a) over i ∈ [d] yields (11.21a). Finally, replacing the validation set Ωv by the training
set Ωt in the proof of (11.20a) and (11.21a) yields (11.20b) and (11.21b), respectively.

11.9.11 Proof of Lemma 11.14
We prove part (a) and part (b) together. Note that if the element of rank k1 and the element of
rank k2 are adjacent within Ωt, or adjacent between Ωt and Ωv, the (k2−k1−1) elements of ranks
from k1 + 1 through k2 − 1 are within the same set (i.e., Ωt or Ωv). Assume for contradiction
that k2 − k1 ≥ 2d+ 2. Then the number of elements from rank k1 + 1 through k2 − 1 is at least
k2 − k1 − 1 ≥ 2d + 1. Consider these elements. There exists a course i∗ such that the number
of such elements within this course is at least 3. Given that these elements have consecutive
ranks, they are consecutive within course i∗. Hence, two of these elements in course i∗ appear
as the same pair of elements in Line 7 of Algorithm 2. According to Line 7 of Algorithm 2, one
element in this pair is assigned to Ωt and the other element is assigned to Ωv. Contradiction to
the assumption that all of these elements are from the same set.

11.9.12 Proof of Lemma 11.15
Proof of (11.22a): We consider any course i ∈ [d]. We first fix any value of B = B∗. Fix any
π0 of the dn elements (in Line 2 of Algorithm 2). Recall from Line 4 of Algorithm 2 that the
sub-ordering of the n elements in course i according to π0 is denoted as (i, j(1)), . . . , (i, j(n)).

Consider each pair (i, j(2t−1)) and (i, j(2t)) for t ∈
[
n
2

]
. Algorithm 2 randomly assigns one

of the two elements to the training set Ωt uniformly at random. Denote Ut as the the value from
this pair that is assigned to training set. Then we have

Ut =

{
b∗
i,j(2t−1) with probability 0.5

b∗
i,j(2t)

with probability 0.5.

211



Denote ∆B := maxj∈[n] bij −minj∈[n] bij and denote ∆B∗ = maxj∈[n] b
∗
ij −minj∈[n] b

∗
ij . Recall

from (11.1) that nt = n
2
. Fix any δ > 0. By Hoeffding’s inequality, there exists n1 such that for

all n ≥ n1,

P




∣∣∣∣∣∣∣
1

nt

∑

t∈[n2 ]

Ut −
1

nt
E[Ut]

∣∣∣∣∣∣∣
< ∆B∗

√
log n

n

∣∣∣∣∣∣∣
B = B∗


 ≥ 1− δ

2
.

Equivalently, for all n ≥ n1,

lim
n→∞

P



∣∣∣∣∣∣

1

nt

∑

j∈Ωt
i

bij −
1

n

∑

j∈[n]

bij

∣∣∣∣∣∣
< ∆B∗

√
log n

n

∣∣∣∣∣∣
B = B∗


 ≥ 1− δ

2
. (11.207)

Now we analyze the term ∆B. By Lemma 11.12, we have that there exists n2 such that for all
n ≥ n2,

P
(

∆B ≤ 4
√

log n
)
≥ 1− δ

2
. (11.208)

Fix any ε > 0. Take n0 to be sufficiently large such that n0 ≥ max{n1, n2} and 4 logn0√
n0

< ε. We
have that for all n ≥ n0,

P



∣∣∣∣∣∣

1

nt

∑

j∈Ωt
i

bij −
1

n

∑

j∈[n]

bij

∣∣∣∣∣∣
< ε


 =

∫

B∗∈Rd×n
P



∣∣∣∣∣∣

1

nt

∑

j∈Ωt
i

bij −
1

n

∑

j∈[n]

bij

∣∣∣∣∣∣
< ε

∣∣∣∣∣∣
B∗


 · P(B∗) dB∗

≥
∫

B∗∈Rd×n:
∆B∗≤4

√
logn

P



∣∣∣∣∣∣

1

nt

∑

j:(i,j)∈Ωt

bij −
1

n

∑

j∈[n]

bij

∣∣∣∣∣∣
< ε

∣∣∣∣∣∣
B


 · P(B∗) dB∗

(i)
≥
(

1− δ

2

)
· P
(

∆B ≤ 4
√

log n
)

(ii)
≥
(

1− δ

2

)2

≥ 1− δ,

where inequality (i) is true by (11.207) and inequality (ii) is true by (11.208), completing the
proof.

Proof of (11.22b): By Hoeffding’s inequality, we have that for any ε > 0,

lim
n→∞

P


 1

dn

∣∣∣∣∣∣
∑

i∈[d],j∈[n]

bij

∣∣∣∣∣∣
< ε


 = 1. (11.209)

Recall from assumption (A3) that d is assumed to be a constant. Taking a union bound of (11.22a)
over i ∈ [d] and (11.209), folloed by using the triangle inequality yields the claimed result.
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11.10 Proof of auxiliary results for Theorem 4.5
In this section, we present the proofs of the auxiliary results for Theorem 4.5.

11.10.1 Proof of Lemma 11.16
Fix any c > 0 and fix any (i, i′) ∈ Sc. Suppose k ∈ [r] satisfies the definition (11.24) corre-
sponding to (i, i′). We prove that for any ε > 0 and δ > 0, there exists some n0 such that for all
n ≥ n0,

P
(
x̂

(0)
i′ − x̂

(0)
i < ε

)
≥ 1− δ.

The proof consists of two steps. In the first step, we consider the rank of the maximum bias in
course i of group k (that is, max(i,j)∈Gik tij), and the rank of the minimum bias in course i′ of
group (k + 1) (that is, min(i,j)∈Gi′k+1

tij). We bound the difference between these two ranks, and
then bound the difference between the values of these two terms. In the second step, we show
that the ordering constraint imposed by this pair of bias terms leads to the claimed bound (11.25)
on x̂(0)

i′ − x̂
(0)
i .

Step 1: Bounding the difference of a pair of bias terms Recall from (11.7) that bk,max denotes
the largest bias of group k, and bk+1,min denotes the smallest bias of group k + 1. We denote the
rank of bk,max as t. By the definition of group ordering, the value of t is deterministic and we
have t =

∑k
k′=1 `k′ . Then the rank of bk+1,min is (t+ 1).

Recall that bik,max denotes the largest bias in course i of group k, and bik,min denotes the
smallest bias in course i of group k. Let Tk be a random variable denoting the difference between
the ranks of bk,max and bik,max, and let Tk+1 be a random variable denoting the difference between
the ranks of bk+1,min and bi,k+1,min. Equivalently, the ranks of bik,max and bi+1,k+1,min are (t−Tk)
and (t+ 1 + Tk+1), respectively, and we have Tk, Tk+1 ≥ 0.

Recall that the biases within a group are ordered uniformly at random among all courses. For
any constant integer t0 > 0, if we have Tk ≥ t0, then the bias terms corresponding to ranks of
(t − t0 + 1), . . . , t are not assigned to course i. Recall that `−i,k = `k − `ik denotes the number
of observations in group k that are not in course i. We bound the random variable Tk as

P(Tk ≥ t0) =

t0−1∏

m=0

`−i,k −m
`k −m

<

(
`−i,k
`k

)t0 (i)
≤ (1− c)t0 , (11.210)

where step (i) is true by the definition (11.24) of Sc. Similarly we have

P(Tk+1 ≥ t0) ≤ (1− c)t0 . (11.211)

Taking t0 =
log( 4

δ
)

log(1−c) and taking a union bound of (11.210) and (11.211), we have

P
(
Tk + Tk+1 < 2t0

)
≥ P

(
Tk < t0, Tk+1 < t0

)
≥ 1− 2(1− c)t0 = 1− δ

2
. (11.212)
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By Lemma 11.10, there exists n0 such that for all n ≥ n0, we have

P
(
M <

ε

2t0 + 1

)
> 1− δ

2
, (11.213)

where M is the maximum difference between a pair of bias terms of adjacent ranks, defined as
M := maxi∈[dn−1] b

(i+1)− b(i). Taking a union bound of (11.213) with (11.212), we have that for
all n ≥ n0

bi′,k+1,min − bik,max < [(t+ 1 + Tk+1)− (t− Tk) + 1] ·M
≤ (2t0 + 1)M < ε, with probability at least 1− δ. (11.214)

Due to the assumption of no noise and the assumption of x∗ = 0, the observation model (4.1)
reduces to Y = B. In particular, we have yik,max = bik,max and yi′,k+1,min = bi′,k+1,min. Moreover,
the solution (x̂, B̂) = (0, B) gives an objective (4.2) of 0 at λ = 0 due to Y = B. Therefore
the solution (x̂(0), B̂(0)) by our estimator gives an objective of 0, satisfying the deterministic
relation yij = x̂

(0)
i + b̂

(0)
ij . By definition of the group ordering, the group ordering includes the

constraint requiring b̂(0)
ik,max ≤ b̂

(0)
i′,k+1,min. Therefore, this ordering constraint requires the solution

(x̂(0), B̂(0)) to satisfy

b̂
(0)
i′,k+1,min − b̂

(0)
ik,max = (yi′,k+1,min − x̂(0)

i′ )− (yik,max − x̂(0)
i )

= (bi′,k+1,min − x̂(0)
i′ )− (bik,max − x̂(0)

i ) ≥ 0 (11.215)

Rearranging (11.215)and combining it with (11.214), we have that for all n ≥ n0,

P
(
x̂

(0)
i′ − x̂

(0)
i ≤ bi′,k+1,min − bik,max<ε

)
≥ 1− δ,

completing the proof.

11.10.2 Proof of Lemma 11.18

First of all, we assume that L ≤ d without loss of generality. This is because if L > d, then there
exists a course i that appears twice in this cycle. We write the cycle as (i1, . . . , i, . . . , i

′, . . . , i, . . . , iL),
where i′ ∈ [d] denotes some course appearing in between the two occurrences of i. We obtain a
shortened cycle by replacing the segment (i, . . . , i′, . . . i) with a single i. By shortening the cycle
the set of courses that appear in this cycle remain the same. We keep shortening the cycle until
L ≤ d.

Fix any ε > 0 and δ > 0. Recall from assumption (A3) that d is assumed to be a constant.
By applying Lemma 11.16 on the L pairs in (11.26) of Sc, and taking a union bound over these
L pairs, we have that there exists n0 such that for all n ≥ n0, with probability at least 1 − δ we
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simultaneously have

x̂m2 − x̂m1 <
ε

d
,

x̂m3 − x̂m2 <
ε

d
,

...

x̂mL − x̂mL−1
<
ε

d
,

x̂m1 − x̂mL <
ε

d
.

(11.216)

Consider any m < m′ with m,m′ ∈ [L]. Conditional on (11.216) we have

x̂im′ − x̂im = (x̂im′ − x̂im′−1
) + . . .+ (x̂im+1 − x̂im) < ε. (11.217)

On the other hand, conditional on (11.216) we also have

x̂im − x̂im′ = (x̂im − x̂im−1) + . . .+ (x̂i2 − x̂i1) + (x̂i1 − x̂iL) + . . .+ (x̂im′+1
− x̂im′ ) < ε

(11.218)

Combining (11.217) and (11.218), we have that for all n ≥ n0,

P
(∣∣x̂im′ − x̂im

∣∣ < ε, ∀m,m′ ∈ [L]
)
≥ 1− δ.

Equivalently,

lim
n→∞

P
(

max
m,m′∈[L]

|x̂i′ − x̂i| < ε

)
= 1,

completing the proof.

11.10.3 Proof of Lemma 11.19
The proof consists of two steps. We first show that if there exists a cycle including the nodes
i, i′ ∈ V , then this cycle can be modified to construct a cycle of length at most 2(d−1) including
i and i′. In the second step, we prove the existence of a cycle.

Constructing a cycle of length at most 2(d − 1) given a cycle of arbitrary length Fix any
hypernode V and any i, i′ ∈ V . We assume that there exists a cycle including the nodes i and
i′. By the definition of a cycle, this cycle includes a directed path i → i′ and a directed path
i′ → i. If the directed path i → i′ has length greater than (d− 1), then there exists some course
i′′ ∈ [d] (which may or may not equal to i or i′) that appears at least twice in this cycle. Then
we decompose the path into three sub-paths of i → i′′, i′′ → i′′, and i′′ → i′. We remove the
sub-path i′′ → i′′, and concatenate the subpaths i → i′′ and i′′ → i′, giving a new path i → i′ of
strictly smaller length than the original path. We continue shortening the path until each course
appears at most once in the path, and hence the path is of length at most (d − 1). Likewise we
shorten the path i′ → i to have length at most (d− 1). Finally, combining these two paths i→ i′

and i′ → i gives a cycle of length at most 2(d− 1), including nodes i and i′.
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Existence of a cycle of arbitrary length We prove the existence of a cycle including i and
i′ by induction on the procedure that constructs the partition. At initialization, each hypernode
contains a single course. The claim is trivially satisfied because for any hypernode V there do
not exist i, i′ ∈ V with i 6= i′. Now consider any merge step that merges hypernodes V1, . . . , VL
for some L ≥ 2 during the construction of the partition. By definition, the merge occurs because
there is a cycle that includes at least one course from each of the hypernodes V1, . . . , VL. We
denote the course from Vm that is included the cycle as im ∈ Vm for each m ∈ [L]. If there exist
multiple courses from Vm included in the cycle, we arbitrarily choose one as im). Denote the
merged hypernode as V = V1 ∪ . . . ∪ VL. Now consider any two courses i and i′ from the same
hypernode.

First consider the case of i and i′ are from a hypernode that is not V , then by the induction
hypothesis there is a cycle including both i and i′.

Now consider the case of i, i′ ∈ V . We have that i ∈ Vm and i′ ∈ Vm′ for some m,m′ ∈ [L].
If m = m′, then by the induction hypothesis there is a cycle that includes both m and m′. If
m 6= m′, then by the induction hypothesis, there is a directed path i → im within Vm (trivially
if i = im), and a directed path im′ → i′ within Vm′ (trivially if i′ = im′). Moreover, by the
definition of im and im′ , we have that im and im′ are included in a cycle. Hence, there exists a
directed path im → im′ . Concatenating the paths i → im, im → im′ and im′ → i′ gives a path
i → i′. Likewise there exists a path i′ → i. Hence, for any i, i′ ∈ V , there exists a cycle that
includes both i and i′.

11.10.4 Proof of Lemma 11.20
The proof consists of four steps. The first step gives a preliminary property on the graph, to be
used in the later steps. The second step shows that each hypernode contains courses that are
consecutive. The third step shows that the ranks of elements in each hypernode are consecutive.
The fourth step shows that the edges only exist between hypernodes that are adjacent in their
indexing.

Step 1: There exists a path from any course i to any course i′ with i < i′ Denote the
minimal rank in course i and in course i′ as t and t′, respectivly. By the assumption (11.38),
we have t < t′. We consider the courses corresponding to the elements of ranks t through t′,
denoted as (it, . . . , it′). For any integer k ∈ {t, . . . , t′ − 1} if ik 6= ik+1, then by the definition
of Sc from (11.24) we have (ik, ik+1) ∈ S1 because these two elements have consecutive ranks.
Hence, there is an edge ik → ik+1 by the construction of the graph. Concatenating all such edges
{ik → ik+1}k∈{t,...,t′−1}:ik 6=ik+1} gives a path i→ i′.

Step 2: Each hypernode contains consecutive nodes We prove that the nodes within each
hypernode are consecutive. That is, for each hypernode V , there exist courses i, i′ ∈ [d] with
i < i′ such that V = {i, i + 1, . . . , i′}. It suffices to consider any course i′′ such that i < i′′ < i′

and show that i′′ ∈ V . Assume for contradiction that i′′ 6∈ V . By Step 1, there exists a path i→ i′′

and also a path i′′ → i′. Since i, i′ ∈ V , by Lemma 11.19 there exists a path i′ → i. Hence,
by concatenating these three paths i → i′′, i′′ → i′ and i′ → i, we have a cycle that includes
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courses i, i′′ and i′ that are involved in two different hypernodes. Contradiction to the definition
of the partition that there are no cycles including nodes from more than one hypernode in the
final partition, completing the proof that each hypernode contains consecutive nodes. Hence, we
order the hypernodes as V1, . . . Vs, such that the indexing of the nodes increases with respect to
the indexing of the hypernodes.

Step 3: The ranks in each hypernode are consecutive We show that the ranks of the elements
within each hypernode are consecutive, and also in the increasing order of the indexing of the
hypernodes. Assume for contradiction that there exists some element of rank t′ in Vm′ , and some
element of rank t in Vm with m < m′ and t > t′. Denote the corresponding courses as i ∈ Vm
and i′ ∈ Vm′ . On the one hand, by Step 2 we have i < i′ due tom < m′. Then by Step 1, we have
a path i → i′. On the other hand, we consider the elements of ranks {t′, . . . , t} and construct a
path i′ → i similar to the construction of the path in Step 1. Concatenating the paths i → i′ and
i′ → i gives a cycle that include courses i ∈ Vm and i′ ∈ Vm′ that from two different hypernodes.
Contradiction to the definition of the partition that there does not exist cycles including more
than one hypernode.

Step 4: The only edges on the hypernodes are (Vm, Vm+1) for all m ∈ [s − 1] For total
orderings, the edges exist between elements of adjacent ranks. That is, consider the elements of
ranks t and t + 1 for any t ∈ [dn − 1]. If their corresponding courses it and it+1 are different,
then there exists an edge it → it+1. Then Step 4 is a direct consequence of Step 3.

11.11 Proof of auxiliary results for Theorem 4.9
In this section, we present the proofs of the auxiliary results for Theorem 4.9.

11.11.1 Proof of Theorem 11.21

The proof closely follows part (a) and part (c) of Theorem 4.5 (see Appendix 11.3). Therefore,
we outline the modifications to the proof of Theorem 4.5, in order to extend to any Ωt ⊆ [d]× [n]
obtained by Algorithm 2.

Proof Theorem 11.21(a) The proof closely follows the proof of Theorem 4.5(a) (see Ap-
pendix 11.3.1) with the modifications discussed in what follows.

Extending Sc to St
c Recall from (11.3) that `t

ik denotes the number of students in course i ∈ [d]
of group k ∈ [r] restricted to the training set Ωt, and `t

k denotes the number of students in group
k restricted to the training set Ωt. We extend the definition (11.24) of Sc and define

St
c :=

{
(i, i′) ∈ [d]2 : ∃k ∈ [r] such that

`t
ik

`t
k

,
`t
i′k+1

`t
k+1

≥ c

}
.
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Extending Lemma 11.16 to St
c restricted to the training set Ωt We show that Lemma 11.16

holds for any (i, i′) ∈ St
c, and the estimator (11.9) x̂(0) restricted to Ωt.

Denote bt
ik,max as the largest bias in course i of group k restricted to the training set Ωt, and

denote bt
k,max as the largest bias of group k restricted to the training set Ωt. We extend (11.210)

to show that the difference between the ranks of bt
ik,max and bt

k,max is bounded by some constant
with high probability.

Moreover, it can be verified that the difference between the ranks of bt
k,max and bk,max is

bounded by a constant with high probability. Combining these two bounds, the difference be-
tween the ranks of bt

ik,max and bk,max is bounded by a constant with high probability. We define
bt
i′k+1,min and bk+1,min likewise, and extend (11.211) to show that the difference between the

ranks of bt
i′k+1,min and bk+1,min is bounded by a constant with high probability. Therefore, we

extend 11.214 to:

bt
i′k+1,min − bt

ik,max < ε, with probability at least 1− δ.

Following the rest of the original arguments for Lemma 11.16 (see Appendix 11.10) completes
the extension of Lemma 11.16 to being restricted to Ωt.

Extending Lemma 11.18 to St
c restricted to Ωt We replace the set Sc in Lemma 11.18 by

the set St
c. It can be verified that Lemma 11.18 holds under this extension following its original

proof (see Appendix 11.10).

Extending the rest of the arguments For any i ∈ [d], k ∈ [r], by (11.20b) and (11.21b) from
Lemma 11.13 we have

`t
ik

`t
k

≥
`ik
4

3`k
4

=
`ik
3`k

.

Hence, any (i, i′) ∈ S cf
d

, we have (i, i′) ∈ St
cf
3d

. The rest of the arguments follow from the original
proof of Theorem 4.5(a) (see Appendix 11.3.1).

Proof of Theorem 11.21(b) The proof closely follows the proof of Theorem 4.5(c) (see Ap-
pendix 11.3.3) with the modifications discussed in what follows.

Extending Sc to St′
c Recall that for total orderings, we have (i, i′) ∈ S1 if and only if there ex-

ists some k ∈ [dn−1] such that course i contains the element of rank k, and course i′ contains the
element of rank (k+1). We define the following set St′ , where we consider the rank with respect
to the total ordering restricted to the elements in Ωt. That is, we extend the definition (11.24) of
Sc and define

St′ :=





(i, i′) ∈ [d]2 : ∃1 ≤ k < k′ ≤ |Ωt|
such that the element of rank k is in Ωt

i,
the element of rank k′ is in Ωt

i+1,
the elements of ranks (k + 1) through (k′ − 1) are in Ωv




.

(11.219)
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Extending Lemma 11.16 By Lemma 11.14(a) we have that for any (i, i′) ∈ St′ , the corre-
sponding values of k and k′ in (11.219) satisfy k′ − k ≤ 2d + 1. We define M ′ as the maximal
difference between elements that are adjacent within Ωt. Then by Lemma 11.10 we extend the
bound of M in (11.213) to M ′ as

P (M ′ < ε) > 1− δ

2
.

Following the rest of the arguments in Appendix 11.10.1, we have that Lemma 11.16 holds
restricted to the training set Ωt.

Extending Lemma 11.18 to St
c restricted to Ωt We replace the set Sc in Lemma 11.18 by

the set St′ . It can be verified that Lemma 11.18 holds under this extension following its original
proof (see Appendix 11.10).

Extending the rest of the arguments The rest of the arguments follow from the original proof
of Theorem 4.5(c) (see Appendix 11.3.3). Specifically, we replace the set S1 by St′ . We consider
the total ordering restricted to the training set Ωt. We extend the definition (11.54) of (̂bL, b̂H) to
(̂b′L, b̂

′
H) defined as:

b̂′L :=
1∑

i∈VL
|Ωt

i|
∑

i∈VL

∑

j∈Ωt
i

b̂ij

b̂′H :=
1∑

i∈VH
|Ωt

i|
∑

i∈VH

∑

j∈Ωt
i

b̂ij.

11.11.2 Proof of Lemma 11.22
We fix any partial ordering O that satisfies the all cf-fraction assumption, and fix any training-
validation split (Ωt,Ωv) obtained by Algorithm 2. Recall that T denotes the set of all total
orderings that are consistent with the partial ordering O. Recall from Line 15 of Algorithm 2
that the interpolated bias is computed as:

B̃(λ) =
1

|T |
∑

π∈T

B̃(λ)
π , (11.220)

where recall from Line 13 of Algorithm 2 that [B̃
(λ)
π ]ij for any (i, j) ∈ Ωv is computed as the

mean value of B̂ on the nearest-neighbor(s) of (i, j) with respect to the total ordering π. Recall
that NN(i, j; π) denotes the set (of size 1 or 2) of the nearest neighbor(s) of (i, j). We have

[B̃(λ)
π ]ij =

1

|NN(i, j; π)|
∑

(iπ ,jπ)∈NN

B̂
(λ)
iπjπ . (11.221)

Plugging (11.221) to (11.220), we have

B̃
(λ)
ij =

1

|T |
∑

π∈T

1

|NN(i, j; π)|
∑

(iπ ,jπ)∈NN

B̂
(λ)
iπjπ .
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The remaining of the proof is outlined as follows. We decompose the summation over π ∈ T
on the RHS of (11.220) into two parts: total orderings π ∈ T where the set of nearest-neighbors
NN(i, j; π) is within group k, and total orderings π ∈ T where at least one nearest-neighbor in
NN is outside group k. We show b̃k = b̂t

k in the first case, and then show that the second case
happens with low probability.

We consider any group k ∈ [r], and any element in the validation set of group k, that is,
(i, j) ∈ Gv

k. Let Tin ⊆ T denote the subset of total orderings where the nearest-neighbor set
NN(i, j; π) is contained within group k:

Tin := {π ∈ T : NN(i, j; π) ⊆ Gt
k}.

Let Tout := T \ Tin denote the subset of total orderings where at least one nearest-neighbor from
NN(i, j; π) is from outside group k. It can be verified by symmetry that the value of B̃(λ)

ij is
identical for all (i, j) ∈ Gv

k. Recall that we denote this value as b̃k := B̃
(λ)
ij for (i, j) ∈ Gv

k.

Case of π ∈ Tin: By the definition of Tin, we have NN(i, j; π) ⊆ Gt
k. By symmetry, it can

be verified that the mean of the nearest-neighbor set of the element (i, j) over Tin is simply the
mean of all training elements in Gt

k. That is,

1

|Tin|
∑

π∈Tin

[B̃(λ)
π ]ij =

1

|Gt
k|

∑

(i′,j′)∈Gt
k

b̂
(λ)
i′j′

(i)
= b̂t

k, (11.222)

where step (i) is true by the definition of b̂t
k.

Case of π ∈ Tout: We bound the size of Tout. If a nearest-neighbor of the element (i, j) is
outside group k, then this nearest-neighbor can only come from group (k − 1) or (k + 1). First
consider the case where a nearest-neighbor is from group (k − 1). Assume that the element
(i, j) is ranked t ∈ [`k] within the set Gk of all elements from group k with respect to π. A
nearest-neighbor is from group (k − 1), only if all elements ranked 1 through t − 1 are all in
the validation set (otherwise there is some training element whose rank is between 1 and (t− 1)
within group k, and this element is closer to (i, j) than any element from group (k − 1), giving
a contradiction). Out of the total orderings in T where (i, j) is ranked t within group k, the
fraction of total orderings that the elements ranked 1 through (t− 1) within group k are all in the
validation set Ωv is:

t−1∏

i=1

`v
k − i
`k − i

≤
(
`v
k

`k

)t−1
(i)
<

(
3

4

)t
,

where (i) is true due to (11.21a) from Lemma 11.13. By symmetry, the fraction of π ∈ T such
that (i, j) is placed in each position t ∈ [`k] is 1

`k
. Therefore, the fraction of total orderings that a

nearest-neighbor is from group (k − 1) is upper-bounded by:

1

`k

`k∑

t=1

(
3

4

)t
≤ 3

`k

(i)
<

3

dcfn
,
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where inequality (i) holds because `k =
∑

i∈[d] `ik > dcfn due to the all cf-fraction assumption.
By the same argument, the fraction of total orderings that at least one nearest-neighbor is from
group (k + 1) is also upper-bounded by 3

dcfn
. Hence, we have

|Tout|
|T | <

6

dcfn
. (11.223)

For any (i, j) ∈ Gv
k, we have

b̃k =
1

|T |

(∑

π∈Tin

[B̃(λ)
π ]ij +

∑

π∈Tout

[B̃(λ)
π ]ij

)
(i)
=

1

|T |

(
|Tin| · b̂t

k +
∑

π∈Tout

[B̃(λ)
π ]ij

)
,

where equality (i) is true by plugging in (11.222). Hence, we have

∣∣∣̃bk − b̂t
k

∣∣∣ =
1

|T |

∣∣∣∣∣
∑

π∈Tout

[B̃(λ)
π ]ij − b̂t

k

∣∣∣∣∣

≤ 1

|T |
∑

π∈Tout

(∣∣∣[B̃(λ)
π ]ij

∣∣∣+
∣∣∣̂bt
k

∣∣∣
)

(i)
≤ 2|Tout|
|T | max

i∈[d],j∈[n]

∣∣∣̂bij
∣∣∣

(ii)
≤ 12

cfdn
· max
i∈[d],j∈[n]

∣∣∣̂bij
∣∣∣,

where inequality (i) is true because [B̃
(λ)
π ]ij and b̂t

k are both the mean of B̂ on a subset of its

elements, so we have
∣∣∣[B̃(λ)

π ]ij

∣∣∣ ≤ maxi∈[d],j∈[n]

∣∣∣̂bij
∣∣∣ and

∣∣∣̂bt
k

∣∣∣ ≤ maxi∈[d],j∈[n]

∣∣∣̂bij
∣∣∣. Then step (ii)

is true by plugging in (11.223). This completes the proof.

11.11.3 Proof of Corollary 11.23

Fix any ε > 0. By the consistency of B̂(0) from (11.63), we have

lim
n→∞

P
(∣∣∣B̂(0)

ij −Bij

∣∣∣ < ε

2
, ∀(i, j) ∈ Ωt

)
= 1. (11.224)

Since b̂t
k and bt

k are simply the mean of B̂ and B over Gt
k ⊆ Ωt. We have

lim
n→∞

P
(∣∣∣̂bt

k − bt
k

∣∣∣ < ε

2
, ∀k ∈ [r]

)
= 1. (11.225)

For each k ∈ [r], we have
∣∣∣̃bk − bt

k

∣∣∣ ≤
∣∣∣̃bk − b̂t

k

∣∣∣+
∣∣∣̂bt
k − bt

k

∣∣∣
(i)
≤ 12

cfdn
· max
i∈[d],j∈[n]

∣∣∣̂bij
∣∣∣+
∣∣∣̂bt
k − bt

k

∣∣∣

≤ 12

cfdn

(
max

i∈[d],j∈[n]
|bij|+ max

i∈[d],j∈[n]

∣∣∣bij − b̂ij
∣∣∣
)

+
∣∣∣̂bt
k − bt

k

∣∣∣, (11.226)
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where (i) is true by combining Lemma 11.22. In (11.226), we bound the term maxi∈[d],j∈[n]|bij|
by Lemma 11.12 as

lim
n→∞

P
(

max
i∈[d],j∈[n]

|bij| < 2
√

log dn

)
= 1. (11.227)

We bound the term maxi∈[d],j∈[n]

∣∣∣bij − b̂ij
∣∣∣ by (11.224), and the term

∣∣∣̂bt
k − bt

k

∣∣∣ by (11.225).
Hence, plugging (11.227), (11.224) and (11.225) into (11.226), we have

lim
n→∞

P
(∣∣∣̃bk − bt

k

∣∣∣ ≤ 12

cfdn

(
2
√

log dn+
ε

2

)
+
ε

2
, ∀k ∈ [r]

)
= 1.

Equivalently,

lim
n→∞

P
(∣∣∣̃bk − bt

k

∣∣∣ ≤ ε, ∀k ∈ [r]
)

= 1,

completing the proof.

11.11.4 Proof of Lemma 11.24
We fix any training-validation split (Ωt,Ωv) and fix any ε > 0 and δ > 0. We first condition
on any value of the bias as B = B∗. Then the bias terms in Gv

ik (whose mean is bv
ik) can be

considered as randomly sampling `v
ik values from the `k terms in Gk (whose mean is bk). Denote

∆B∗ := maxi∈[d],j∈[n] b
∗
ij−mini∈[d],j∈[n] b

∗
ij , and denote ∆B := maxi∈[d],j∈[n] bij−mini∈[d],j∈[n] bij .

By Hoeffding’s inequality without replacement [86, Section 6], we have

P


|bv

ik − b∗k| > ∆B∗

√
log
(

1
δ

)

`v
ik

∣∣∣∣∣∣
B = B∗


 ≤ 2 exp

(
−2`v

ik∆
2
B∗ log

(
1
δ

)

`v
ik∆

2
B∗

)
= 2δ2

(i)
<
δ

2
,

(11.228)

where inequality (i) is true for any δ ∈ (0, 1
4
). Invoking (11.20a) from Lemma 11.13 and using

the all cf-fraction assumption, we have

`v
ik ≥

`ik
4
>
cfn

4
. (11.229)

Combining (11.228) with (11.229), we have that for any δ ∈ (0, 1
4
),

P


|bv

ik − b∗k| > 2∆B∗

√
log
(

1
δ

)

cfn

∣∣∣∣∣∣
B = B∗


 <

δ

2
. (11.230)

Now we analyze the term ∆B in (11.230). By Lemma 11.12, there exists integer n0 such that for
any n ≥ n0,

P
(

∆B ≤ 4
√

log dn
)
≥ 1− δ

2
. (11.231)
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Let n1 be a sufficiently large constant such that n1 ≥ n0 and 8
√

log dn ·
√

log( 1
δ )

cfn
< ε. Then

combining (11.231) with (11.230), for any n ≥ n1,

P
(
|bv
ik − bk| < ε

)
=

∫

B∗∈Rd×n
P
(
|bv
ik − bk| < ε

∣∣∣ B = B∗
)
· P(B∗) dB∗

≥
∫

B∗∈Rd×n
∆B∗≤4

√
log dn

P
(
|bv
ik − bk| < ε

∣∣∣ B
)
· P(B) dB∗

(i)
≥
(

1− δ

2

)
· P
(

∆B ≤
√

4 log dn
)

(ii)
≥
(

1− δ

2

)2

≥ 1− δ,

where inequality (i) is true by (11.230) and inequality (ii) is true by (11.231). Equivalently, we
have

lim
n→∞

P
(
|bv
ik − bk| < ε

)
= 1. (11.232)

Due to the all c-fraction assumption, the number of groups is upper-bounded as r ≤ 1
cf

. Taking a
union bound of (11.232) over i ∈ [d], k ∈ [r], we have

lim
n→∞

P
(
|bv
ik − bk| < ε, ∀i ∈ [d], k ∈ [r]

)
= 1,

completing the proof of (11.69a). A similar argument yields (11.69b), where in (11.229) we
invoke (11.21b) from Lemma 11.13 instead of (11.20a).

11.11.5 Proof of Lemma 11.26
In the proof, we use the following lemma.
Lemma 11.38. Let d ≥ 1 be an integer. For any y ∈ Rd, we have

argmin
u∈M

‖y − u‖2
2 + λ‖u‖2

2 = argmin
u∈M

‖ΠM(y)− u‖2
2 + λ‖u‖2

2 (11.233)

The proof of Lemma 11.38 is presented at the end of this section. We now derive a the
closed-form solution to (11.233). Consider the optimization problem on the RHS of (11.233).
We take the derivative of the objective with respect to u, and solve for u by setting the derivative
to 0. It can be verified that the unconstrained solution u∗un to the RHS of (11.233) is:

u∗un =
1

1 + λ
ΠM(y). (11.234)

Note that this unconstrained solution u∗un satisfies u∗un ∈ M, so u∗un is also the (constrained)
solution to (11.233). Plugging (11.234) to the objective on the LHS of (11.233) and rearranging
the terms complete the proof.
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Algorithm 6: The Pool-Adjacent-Violators algorithm (PAVA). Input: y ∈ Rd.
1 Initialize u = y
2 Initialize the partition P = {S1, . . . , Sd}, where Si = {i} for every i ∈ [d].
3 while u 6∈ M do
4 Find any i ∈ [d] such that ui > ui+1.
5 Find S, S ′ ∈ P such that i ∈ S and i+ 1 ∈ S ′.
6 Update ur ← 1

|S|+|S′|(
∑

i∈S ui +
∑

i∈S′ ui) for each r ∈ S ∪ S ′.
7 Update the partition as P ← P \ {S, S ′}+ {S ∪ S ′}.
8 end
9 return u

Proof of Lemma 11.38 We apply induction on the Pool-Adjacent-Violators algorithm (PAVA) [12,
Section 1.2]. For completeness, the Pool-Adjacent-Violators algorithm is shown in Algorithm 6.
For any integer d ≥ 1 and any input y ∈ Rd, PAVA returns argminu∈M‖y − u‖2

2.
Assume that the while loop in Algorithm 6 is executed T times. Let u(0) → u(1) → . . . →

u(T ) be any sequence of the value of x obtained in Algorithm 6. We have u(0) = y and u(T ) =
ΠMy. In what follows, we show that for any 0 ≤ t ≤ T − 1,

argmin
u∈M

‖u(t) − u‖2
2 + λ‖u‖2

2 = argmin
u∈M

‖u(t+1) − u‖2
2 + λ‖u‖2

2. (11.235)

By induction on (11.235), we have

argmin
u∈M

‖u(0) − u‖2
2 + λ‖u‖2

2 = argmin
u∈M

‖u(T ) − u‖2
2 + λ‖u‖2

2. (11.236)

Combining (11.236) with the fact that u(0) = y and u(T ) = ΠMy completes the proof.

Proof of (11.235): Consider any t such that 0 ≤ t ≤ T − 1. We consider Line 4-6 of PAVA
in Algorithm 6. For clarity of notation, we denote the partition corresponding to u(t) as P (t) and
the partition corresponding to u(t+1) as P (t+1). Then we have S, S ′ ∈ P (t) and S ∪ S ′ ∈ P (t+1).

First, by PAVA it is straightforward to verify that S and S ′ both contain consecutive indices.
That is, there exists integers m1,m2 such that 1 ≤ m1 ≤ i < m2 ≤ d, such that

S = {m1, . . . , i}
S ′ = {i+ 1, . . . ,m2}.

Furthermore, by PAVA it can be verified that

a :=u
(t)
i = u

(t)
i′ ∀i, i′ ∈ S (11.237a)

b :=u
(t)
i = u

(t)
i′ ∀i, i′ ∈ S ′ (11.237b)

z :=u
(t+1)
i = u

(t+1)
i′ ∀i, i′ ∈ S ∪ S ′. (11.237c)
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Denote these values in (11.237) as a, b and z, respectively. By the update of u in Line 6 of
Algorithm 6, we have the relation

z =
1

|S|+ |S ′| (|S| · a+ |S ′| · b) . (11.238)

Denote u∗(t) and u∗(t+1) as the minimizer to the LHS and RHS of (11.235), respectively. Us-
ing (11.237), it can be verified that

a∗ :=u
∗(t)
i = u

∗(t)
i′ ∀i, i′ ∈ S (11.239a)

b∗ :=u
∗(t)
i = u

∗(t)
i′ ∀i, i′ ∈ S ′ (11.239b)

u
∗(t+1)
i = u

∗(t+1)
i′ ∀i, i′ ∈ S ∪ S ′. (11.239c)

Denote the values in (11.239a) and (11.239b) as a∗ and b∗, respectively.
We now show that a∗ = b∗. Assume for contradiction that a∗ 6= b∗. Since the solution

u∗(t) ∈M, we have a∗ ≤ b∗. Hence, we have a∗ < b∗. By Line 4 of Algorithm 6, we have a > b.
We construct the alternative solution

v
∗(t)
i =

{
u
∗(t)
i i 6∈ S ∪ S

1
|S|+|S′|(|S| · a∗ + |S| · b∗) i ∈ S ∪ S ′.

It can be verified that v∗(t) attains a strict strictly smaller objective than u∗(t) for the objective
on the LHS of (11.235). Contradiction to the assumption that u∗(t) is the minimizer to the LHS
of (11.235). Hence, we have a∗ = b∗, implying

u
∗(t)
i = u

∗(t)
i′ ∀i, i′ ∈ S ∪ S ′.

The LHS of (11.235) is equivalent to

argmin
u∈M,t∈R

t=ui, ∀i,i′∈S∪S′

∑

i 6∈S∪S′
(u

(t)
i − xi)2 +

∑

i∈S∪S′
(u

(t)
i − xi)2 + λ‖u‖2

2

argmin
u∈M

t=ui, ∀i,i′∈S∪S′

∑

i 6∈S∪S′
(u

(t)
i − xi)2 + |S| · (a− t)2 + |S ′| · (b− t)2

︸ ︷︷ ︸
T

+λ‖u‖2
2. (11.240)

We write the term T as

T = |S| · a2 + |S ′| · b2 − 2 (|S| · a+ |S ′| · b) · t+ (|S|+ |S ′|) · t2

= (|S|+ |S ′|) ·
( |S| · a+ |S ′|b
|S|+ |S ′| − t

)2

+ term(a, b, S, S ′)

(i)
= (|S|+ |S ′|) · (z − t)2 + term(a, b, S, S ′), (11.241)

where equality (i) is true by (11.238).
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Using the relation u(t)
i = u

(t+1)
i for every i 6∈ S ∪ S ′, the RHS of (11.235) is equivalent to

argmin
u∈M,t∈R

t=ui, ∀i∈S∪S′

∑

i 6∈S∪S′
(u

(t+1)
i − xi)2 +

∑

i∈S∪S′
(u

(t+1)
i − xi)2 + λ‖u‖2

2

argmin
u∈M,t∈R

t=ui, ∀i∈S∪S′

∑

i 6∈S∪S′
(u

(t)
i − xi)2 + (|S|+ |S ′|) · (z − t)2 + λ‖u‖2

2. (11.242)

The equivalence of the LHS and RHS of (11.235) can be verified by combining (11.240), (11.241),
and (11.242).

11.11.6 Proof of Lemma 11.27

Let c′ > 0 be a constant. Denote Ec′,c as the event that the number of non-overlapping pairs in
Sc (instead of Sc∩Ωv defined for the event Ev

c′,c) is at least c′n. We delegate the main part of this
proof to the following lemma.
Lemma 11.39. Suppose d = 2. Assume the bias is distributed according to assumption (A2)
with σ = 1. For any c > 0, there exists a constant c′ > 0 such that

lim
n→∞

P (Ec′,c ∩ E2) = lim
n→∞

P(E2).

The proof this result is provided at the end of this section. We first explain how to complete
the proof of Lemma 11.27 given Lemma 11.39. The proof of Lemma 11.39 is presented at the
end of this section.

Conditional on Ec′,c, consider the c′n non-overlapping pairs in Sc. We denote this subset of
non-overlapping pairs as S ′′. For each t ∈ [n

2
] in Lines 5-7 in Algorithm 2, consider the elements

(1, j(2t−1)) and (1, j(2t)) in Line 6 of Algorithm 2. If both (1, j(2t−1)) and (1, j(2t)) are involved
in some pairs in S ′′, then we arbitrarily remove one of the pairs involving either (1, j(2t−1)) or
(1, j(2t)) from S ′′. After the removal, the size of the remaining S ′′ is at least c′n

2
. We repeat the

same procedure to consider the elements (2, j(2t−1)) and (2, j(2t)) and remove elements. After
this second removal, the size of the remaining S ′′ is at least c′n

4
. We now denote this set of non-

overlapping pairs after the two removals as S ′′. Now consider any remaining pair (j, j′) ∈ S ′′.
The probability of (1, j) ∈ Ωv is 1

2
and the probability of (2, j′) ∈ Ωv is 1

2
. Hence, the probability

of (j, j′) ∈ S ′′∩Ωv is 1
4
. Due to the removal, all of the elements involved in S ′′ appear in different

pairs during the training-validation split in Lines 5-7 in Algorithm 2. Hence, the probability of
(j, j′) ∈ Ωv is independent for each pair (j, j′) ∈ S ′′. By Hoeffding’s inequality, we have

lim
n→∞

P
(
|S ′′ ∩ Ωv| ≥ c′n

32

∣∣∣∣ Ec′,c
)

= 1.

That is,

lim
n→∞

P
(
Ev

c′
32
,c

∣∣∣ Ec′,c
)

= 1. (11.243)
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Hence, we have

P(Ev
c′
32
,c
∩ E2) ≥ P(Ev

c′
32
,c
∩ Ec′,c ∩ E2)

= P(Ec′,c ∩ E2)− P(Ev
c′
32
,c
∩ Ec′,c ∩ E2)

≥ P(Ec′,c ∩ E2)− P(Ev
c′
32
,c
∩ Ec′,c). (11.244)

Taking the limit of n→∞ in (11.244), we have

lim
n→∞

P(Ev
c′
32
,c
∩ E2)

(i)
≥ lim

n→∞
P(E2),

where inequality (i) is true by combining Lemma 11.39 and (11.243), completing the proof of
Lemma 11.27. It remains to prove Lemma 11.39.

Proof of Lemma 11.39 Recall the definition (11.103) of Sc = {(j, j′) ∈ [n]2 : 0 < b2j′−b1j <
c}. We first convert the constraint 0 < b2j′ − b1j < c to a constraint on the ranks of the elements
(1, j) and (2, j′).

Recall that g denotes the p.d.f. of N (0, 1). Recall that t(ij) is the rank of the element (i, j)
(in the total ordering of all 2n elements since we assume d = 2). For any constant γ ∈ (0, 1/2),
we define the following set of pairs:

Rγ,c =

{
(j, j′) ∈ [n]2 : γn < t1j < t2j′ < (2− γ)n,

t2j′ − t1j ≤ cg(γ
2
)n

}
.

The following lemma shows that Rγ,c is a subset of Sc for each γ > 0 with high probability, and
therefore we only need to lower-bound the number of non-overlapping pairs in Rγ,c.
Lemma 11.40. For each c > 0, for any γ ∈

(
0, 1

2

)
, we have

lim
n→∞

P
(
Rγ,c ⊆ S2c

)
= 1.

The proof of this result is provided in Appendix 11.11.7. Denote Eγ,c′,c as the event that
the set Rγ,c contains at least c′n non-overlapping pairs. We have that Eγ,c′,c is deterministic
(depending on γ, c′, c and the total ordering π). Then Lemma 11.40 implies that for any γ ∈(
0, 1

2

)
and any c′ ∈ (0, 1),

lim
n→∞

P
(
Eγ,c′,c ∩ Ec′,2c

)
= 0. (11.245)

In what follows, we establish that there exists γ > 0 and c′ > 0 such that

lim
n→∞

P
(
Eγ,c′,c ∩ E2

)
= 0, (11.246)

where the choices of γ and c′ are specified later.
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Proof of (11.246): Assume there exists maximally t such non-overlapping pairs in Rγ,c (that
is, Rγ,c does not have any subset of non-overlapping pairs of size greater than t). Assume for
contradiction that

t < min

{
cg(γ

2
)

2
, γ

}
· n. (11.247)

We “remove” these t pairs from the total ordering of 2n elements, and then there are 2(n − t)
remaining elements after the removal. In what follows, we derive a contradiction by using the
fact that theses elements are not in Rγ,c.

Denote the ranks corresponding to the remaining elements from course 2 with rank between
(γn, (2− γ)n] as j1 < . . . < jT . Since t elements are removed from each course, we have

T ≤ n− t. (11.248)

Since there are (n− t) remaining elements in course 2, and the number of elements whose rank
is outside the range (γn, (2 − γ)n] is 2γn, we also have T ≥ n − t − 2γn > 0. Denote the
difference of the ranks between adjacent remaining elements in course 2 as

`i =





j1 − γn− 1 if i = 0

ji+1 − ji − 1 if 1 ≤ i ≤ T − 1

(2− γ)n− ji if i = T.

(11.249)

The definition (11.249) of ` is also visualized in Fig. 11.2.

1 2𝑛𝛾𝑛 (2 − 𝛾)𝑛𝑗) 𝑗* 𝑗+

ℓ- ℓ) ℓ+

Figure 11.2: The definition (11.249) of `.

By in the definition of (11.249), we have
T∑

i=0

`i = (2− 2γ)n− T
(i)
≥ (1− 2γ)n+ t,

where inequality (i) is true by (11.248).
There are also (n − t) remaining elements in course 1. We consider the ranks where these

elements can be placed. Again, the number of positions outside the range (γn, (2− γ)n] is 2γn.
Therefore, at least (1 − 2γ)n − t elements form course 1 need to placed within the range of
(γn, (2 − γ)n]. Inside this range, the cg

(
γ
2

)
n ranks before each element in course 2 cannot be

placed, because otherwise this element from course 1 and the corresponding element from course
2 form a pair in Rγ,c. Contradiction to the assumption that a maximal subset of non-overlapping
pairs has been removed. Hence, inside the range, the number of ranks where elements from
course 1 can be placed is

T−1∑

i=0

max
{
`i − cg

(γ
2

)
n, 0
}

+ `T .
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Since we need to place at least (1− 2γ)n− t elements from course 1 to these ranks, we have

T−1∑

i=0

max
{
`i − cg

(γ
2

)
n, 0
}

+ `T ≥ (1− 2γ)n− t. (11.250)

Now we separately discuss the following two cases.
Case 1: `i ≥ cg

(
γ
2

)
n for some 0 ≤ i ≤ T − 1. Then consider the interval [ji − cg(γ

2
)n, ji).

On the one hand, there cannot be elements from course 2 in this interval, because we define
`i as the difference of ranks between elements ji+1 and ji that are already adjacent among ele-
ments in course 2. On the other hand, there cannot be elements j from course 1 in this interval,
because otherwise we have (j, ii) ∈ Rγ,c. Contradiction to the assumption that the removed sub-
set of non-overlapping pairs is maximal. Hence, all of the cg

(
γ
2

)
n elements from this interval

[ji − cg(γ
2
)n, ji) have been removed, and we have t ≥ cg( γ2 )n

2
. Contradiction to the assump-

tion (11.247).
Case 2: `i < cg

(
γ
2

)
n for all 0 ≤ i ≤ T − 1. Then inequality (11.250) reduces to

`T ≥ (1− 2γ)n− t
(i)
≥ (1− 3γ)n, (11.251)

where inequality (i) is true by the assumption (11.247) that t < γn.
In what follows, we consider the construction of ranks of all elements (either removed or not)

that maximizes
∑

j∈[n](b2j − b1j). Then we show that under the assumption (11.247), we have

lim
n→∞

P


∑

j∈[n]

(b2j − b1j) < 0


 = 1.

Construction of the ranks: To maximize
∑

j(b2j− b1j), we want to assign elements in course
2 to higher ranks, and elements in course 1 to lower ranks. We consider the course assigned to
the following ranges of the rank.

• Ranks ((2− γ)n, 2n] : The size of this range is 2γn. We assign elements from the course
2 to these ranks, since these are the highest possible ranks.

• Ranks ((1 + 2γ)n, (2− γ)n]: The size of this range is (1− 3γ)n. Note that the rank jT is

jT
(i)
= (2− γ)n− `T
(ii)
≤ (2− γ)n− (1− 3γ)n = (1 + 2γ)n,

where equality (i) is true by the definition (11.249), and inequality (ii) is true by (11.251).
We consider the number of elements from course 2 in this range, remaining or removed.
By the definition of jT from (11.249) there cannot exist remaining elements from course
2 in this range. The number of removed elements from course 2 is t ≤ γn by assump-
tion (11.247). Hence, the number of elements from course 2 in this range is at most γn.
The other elements in this range are from course 1. Hence, the number of elements from
course 1 in this range is at least (1 − 4γ)n. We assign the elements in course 2 to higher
ranks than the elements in course 1.
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• Ranks [1, (1− 2γ)n] There are 4γn elements from course 1, and (1− 2γ)n elements from
course 2 that have not been assigned to ranks. We simply assign the (1 − 2γ)n elements
from course 2 to be higher ranks than the 4γn elements from course 1.

This construction of ranks is also shown in Fig. 11.3. We denote S1L, S2L, S1H , S2H respectively
as the sums of the subset of elements as shown in Fig. 11.3.

1 2𝑛

4𝛾𝑛 (1 − 2𝛾)𝑛 (1 − 4𝛾)𝑛 2𝛾𝑛

course 1 course 1course 2 course 2

𝑆*+ 𝑆,+ 𝑆*- 𝑆,-

4𝛾𝑛 (0.5 + 3𝛾)𝑛 (1 + 2𝛾)𝑛 (2 − 2𝛾)𝑛1.5𝑛

𝑎, 𝑎4 𝑎5 𝑎6 𝑎7𝑎* 𝑎8

rank

number	of the	elements

sum	of	the	elements

Figure 11.3: Assignment of biases to the 2 courses.

The following lemma now bounds the difference between the sums of the bias in the two
courses, under this construction.
Lemma 11.41. Consider 2n i.i.d. samples from N (0, 1), ordered as X(1) ≤ . . . ≤ X(2n). Let

I1L := {1, . . . , 4γn}
I2L := {4γn+ 1, . . . , (1 + 2γ)n}
I1H := {(2− 2γ)n, . . . , 2n}
I2H := {(2− 2γ)n, . . . , 2n},

and let

I1 := I1L ∪ I1H ,

I2 := I2L ∪ I2H .

Then there exists some constant γ > 0, such that

lim
n→∞

(∑

i∈I2

X(i) −
∑

i∈I1

X(i) < 0

)
= 1.

The proof of this result is provided in Appendix 11.11.8. Denote the constant γ in Lemma 11.41

as γ0. By Lemma 11.41, we have that under the assumption (11.247) of t < min

{
cg( γ0

2 )
2

, γ0

}
n,

then

lim
n→∞

P


∑

j∈[n]

(b2j − b1j) < 0


 = 1.

Equivalently, let c′0 = min

{
cg( γ0

2 )
γ0

}
, we have

lim
n→∞

P
(
Eγ0,c′0,c

∩ E2

)
= 0,

completing the proof of (11.246).
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Combining (11.245) and (11.246): We have

lim
n→∞

P
(
Ec′0,c ∩ E2

)
= P(E2)− P(E2 ∩ Ec′,c)
= P(E2)− P(E2 ∩ Ec′,c)
= P(E2)− P(E2 ∩ Ec′,c ∩ Eγ0,c′0,c

)− P(E2 ∩ Ec′0,c ∩ Eγ0,c′0,c
). (11.252)

Taking the limit of n→∞ in (11.252), we have

P
(
Ec′0,c ∩ E2

) (i)
= lim

n→∞
P(E2),

where equality (i) is true by combining (11.245) and (11.246). This completes the proof of
Lemma 11.39.

11.11.7 Proof of Lemma 11.40
We show that for any (j, j′) ∈ Rγ,c we have (j, j′) ∈ S2c due to the assumption ((A2)). First,
by the definition of Rγ,c we have t1j < t2j′ , and hence b2j′ > b1j . It remains to show that
b2j′ − b1j < c. We denote (t0, . . . , tT ) := (γ, γ + cg(γ

2
), . . . , (2 − γ)), where T = 2−2γ

cg( γ
2

)
which

is a constant. Recall that b(k : 2n) denotes the kth order statistics among the 2n random variables.
Recall that G−1 denotes the inverse c.d.f. of N (0, 1). By Lemma 11.11 we have

b(tin : 2n) P−→ G−1

(
ti
2

)
∀0 ≤ i ≤ T. (11.253)

Taking a union bound of (11.253) over 0 ≤ i ≤ T , we have

lim
n→∞

( ∣∣∣∣b(tin : 2n) −G−1

(
ti
2

)∣∣∣∣ <
c

2
∀0 ≤ i ≤ T

︸ ︷︷ ︸
E

)
= 1. (11.254)

Denote this event in (11.254) as E. By the definition of Rγ,c, for any (j, j′) ∈ Rγ,c we have
γn < t1j < t2j′ < (2 − γ)n and t2j′ − t1j < cg(γ

2
)n. Hence, there exists some integer 0 ≤ i ≤

T − 2 such that tin ≤ t1j < t2j′ ≤ ti+2n. Conditional on the event E from (11.254), for any
(j, j′) ∈ Rγ,c,

b2j′ − b1j ≤ b(ti+2n : 2n) − b(tin : 2n) < G−1

(
ti+2

2

)
−G−1

(
ti
2

)
+ c

<
(ti+2 − ti)

2
· max
x∈( γ

2
,1− γ

2
)
(G−1)′(x) + c

(i)
= cg

(γ
2

)
· max
x∈( γ2 ,1−

γ
2 )

1

g(x)
+ c

= cg
(γ

2

)
· 1

g
(
γ
2

) + c = 2c

∣∣∣∣∣ E.
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where (i) holds due to the equality (G−1)′(x) = 1
G′(x)

= 1
g(x)

for all x ∈ (0, 1). Hence,Rγ,c ⊆ S2c

conditional on E, and we have

lim
n→∞

P(Rγ,c ⊆ S2c) ≥ lim
n→∞

P(E)
(i)
= 1,

where equality (i) is true by (11.254), completing the proof.

11.11.8 Proof of Lemma 11.41
We denote the random variables S1L, S2L, S1H and S2H as the sums over I1L, I2L, I1H and I2H ,
respectively. To bound these sums, we consider the values of X(i) at the following 7 ranks:

i ∈ {1, 4γn, (0.5 + 3γ)n, (1 + 2γ)n, 1.5n, (2− 2γ)n, 2n},
as shown by the cross marks in Fig. 11.3. Let a ∈ R7. In what follows we condition on the event
that

[
X(1), X(4γn), X((0.5+3γ)n), X((1+2γ)n), X(1.5n), X((2−2γ)n), X(2n)

]T
= a.

Denote the expected means of S1L, S2L, S1H and S2H conditional on a as µ1L|a, µ2L|a, µ1H|a and
µ2H|a, respectively.

Bounding the sums S1L, S2L, S1H and S2H conditional on a: We first consider the sum S2H .
By Hoeffding’s inequality, we have

lim
n→∞

P
(∣∣S1L − 4γnµ1L|a

∣∣ < (a7 − a1)
√
n log n

∣∣∣ a
)

= 1 (11.255a)

lim
n→∞

P
(∣∣S2L − (1− 2γ)nµ2L|a

∣∣ < (a7 − a1)
√
n log n

∣∣∣ a
)

= 1 (11.255b)

lim
n→∞

P
(∣∣S1H − (1− 4γ)nµ1H|a

∣∣ < (a7 − a1)
√
n log n

∣∣∣ a
)

= 1 (11.255c)

lim
n→∞

P
(∣∣S2H − 2γnµ2H|a

∣∣ < (a7 − a1)
√
n log n

∣∣∣ a
)

= 1. (11.255d)

Taking a union bound of (11.255) and using the equality
∑

i∈I2 X
(i)−∑i∈I1 X

(i) = S2L+S2H−
S1L − S1H , we have

lim
n→∞

P

(∑

i∈I2

X(i) −
∑

i∈I1

X(i)

≤ n

[
(1− 2γ)µ2L|a − (1− 4γ)µ1H|a + 2γµ2H|a − 4γµ1L|a + 4(a7 − a1)

√
log n

n︸ ︷︷ ︸
T

∣∣∣∣∣ a
] )

= 1.

We rearrange the terms in T as

T = (1− 4γ)(µ2L|a − µ1H|a) + 4γ(µ2H|a − µ1L|a) + 2γ(µ2L|a − µ2H|a) + 4(a7 − a1)

√
log n

n
.

(11.256)

In what follows, we define a range A on the values of a, show that limn→∞ P(a ∈ A) = 1 and
show that T < 0 conditional on any a ∈ A.
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Defining the range A and showing limn→∞ P(a ∈ A) = 1: We define the range A ⊆ R7 as

A :=





a1 < G−1(1.5γ)
a2 > G−1(1.99γ)
a3 < G−1(0.25 + 1.5γ) + 0.01
a5 > G−1(0.75)− 0.01
a6 < G−1(1− 0.99γ)
a7 > G−1(1− 0.5γ)





∩
{
a1 > −2

√
log 2n

a7 < 2
√

log 2n

}
. (11.257)

By Lemma 11.11, we have

a2
P−→ G−1(2γ) (11.258a)

a3
P−→ G−1(0.25 + 1.5γ) (11.258b)

a5
P−→ G−1(0.75) (11.258c)

a6
P−→ G−1(1− γ). (11.258d)

Moreover, for the extremal values a1 and a7, we have that for any c ∈ R,

lim
n→∞

P(a1 < c) = 1 (11.259a)

lim
n→∞

P(a7 > c) = 1. (11.259b)

Combining (11.258), (11.259) and Lemma 11.12, we have that for any γ > 0,

lim
n→∞

P(E) = 1.

Analyzing the expected means µ1L|a, µ2L|a, µ1H|a, µ2H|a: We analyze the terms on the RHS
of (11.256).

Term (µ2L|a− µ1H|a): We have µ2L ≤ a3+a4

2
and µ1H ≥ a4+a5

2
. Therefore, conditional on any

a ∈ A, for any γ < 0.1,

µ2L|a − µ1H|a ≤
a3 − a5

2

(i)
≤ −0.5, (11.260)

where inequality (i) is true by the definition (11.257) of A.

Term (µ2H − µ1L): Let X denote a random variable of N (0, 1). Conditional on any a ∈ A,

µ2H|a =
1√
2π

1

P (a6 < X < a7)

∫ a7

a6

xe−
x2

2 dx

=
1√
2π

1

P (a6 < X < a7)

[
−e−x

2

2

]a7

x=a6

≤ 1√
2π

1

P (a6 < X < a7)
e−

a2
6
2

(i)
≤ 1√

2π

1

0.49γ
e−

[G−1(1−0.99γ)]
2

2 , (11.261a)
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where (i) is true by the definition (11.257) of A. Similarly, conditional on the event E and on
any a,

µ1L|a > −
1√
2π

1

0.49γ
e−

[G−1(1.99γ)]
2

2 . (11.261b)

Term: (µ2L|a − µ2H|a): For any a ∈ R7, we have

(µ2L|a − µ2H|a) < 0. (11.262)

Showing T < 0: Plugging the three terms from (11.260), (11.261) and (11.262) back to (11.256),
conditional on any a ∈ A,

T < −0.5(1− 4γ) + 4 · 1√
2π

1

0.49

(
e−

[G−1(1−0.99γ)]2

2 + e−
[G−1(1.99γ)]2

2

)
+ 8
√

log n

√
log 2n

n
.

As γ → 0, we have G−1(1.99γ)→ −∞ and G−1(1− 0.99γ)→∞. It can be verified that there
exists some sufficiently small γ0 > 0, such that

lim
n→∞

T < 0
∣∣∣ a ∈ A.

Hence, we have

lim
n→∞

P

(∑

i∈I2

X(i) −
∑

i∈I1

X(i) ≤ 0

)
≥ lim

n→∞

∫

a∈R7

P (T < 0 | a)P(a)

≥ lim
n→∞

P(a ∈ A) = 1,

completing the proof.

11.12 Proof of auxiliary results for Theorem 4.10
In this section, we present the proofs of the auxiliary results for Theorem 4.10.

11.12.1 Proof of Lemma 11.28
First, at λ = ∞ we have B̂(∞) = 0 by Proposition 4.7, and hence the claimed result is trivially
true.

Now consider any λ ∈ [0,∞). We fix any value of Y ∈ Rd×n and any value of x ∈ Rd.
Denote U := Y − x1T . By triangle’s inequality, we have max(i,j)∈Ω|uij| ≤ max(i,j)∈Ω|yij| +
‖x‖∞. It then suffices to establish the inequality

max
(i,j)∈Ω

|b(λ)
ij | ≤ max

(i,j)∈Ω
|uij|,
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where B(λ) is the solution to the optimization

argmin
B satisfiesO

‖U −B‖2
Ω + λ‖B‖2

Ω, (11.263)

with ties broken by minimizing ‖B‖2
Ω. Assume for contradiction that we have

max
(i,j)∈Ω

|b(λ)
ij | > max

(i,j)∈Ω
|uij|. (11.264)

Denote umax := max(i,j)∈Ω uij and umin := min(i,j)∈Ω uij . Then we consider an alternative
solution B′ constructed from B(λ) as:

b′ij =





max(i,j)∈Ω uij if b(λ)
ij ∈ (umax,∞)

b
(λ)
ij b

(λ)
ij ∈ [umin, umax]

min(i,j)∈Ω uij if b(λ)
ij ∈ (−∞, umin).

By the assumption (11.264), there exists some (i, j) ∈ Ω such that b(λ)
ij 6∈ [umin, umax]. Hence, we

have B′ 6= B(λ). It can be verified that B′ satisfies the partial ordering O because B(λ) satisfies
O. Furthermore, it can be verified that

‖U −B′‖2
Ω < ‖U −B(λ)‖2

Ω

and also

‖B′‖2
Ω < ‖B(λ)‖2

Ω

Hence, B′ attains a strictly smaller objective of (11.263) than B(λ). Contradiction to the assump-
tion that B̂(λ) is the optimal solution of (11.263).

11.12.2 Proof of Lemma 11.29
Recall that the monotone cone is denoted as M := {θ ∈ Rd : θ1 ≤ . . . ≤ θd}, and ΠM denotes
the projection (11.8) onto M .

From known results on the monotone cone (see [6, Section 3.5]), we have E[ΠMZ] ≤
c
√

log d for some fixed constant c > 0. Using the Moreau decomposition, we have (see [190,
Eq. 20]):

E

[
sup
‖θ‖2=1
θ∈M

θTZ

]
= E‖ΠMZ‖2 ≤ c

√
log d.

Note that we have the deterministic equality supθ∈M,‖θ‖2=1 θ
TZ ≥ 0 by taking θ = 0. By

Markov’s inequality, we have

P

(
sup
‖θ‖2=1
θ∈M

θTZ > d
1
4

)
≤

E
[
supθ∈M,‖θ‖2=1 θ

TZ
]

d
1
4

≤ c
√

log d

d
1
4

,

completing the proof.
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11.12.3 Proof of Lemma 11.30
In the proof, we first bound the event E 1

36
, and then combine the events E 1

36
and E ′1

36

.

Bounding E 1
36

We denote the interleaving points in Spairs as t(1) < . . . < t(|Spairs|). It can be
verified that for any k ∈ [|Spairs| − 1], if t(k) ∈ S1 then then we have t(k+1) ∈ S2, and vice versa.
Hence, we have

−1 ≤ |S1| − |S2| ≤ 1. (11.265)

By Definition 4.4 of the cf-fraction interleaving assumption, we have

|S1|+ |S2| = |S| ≥ cfn. (11.266)

Combining (11.265) and (11.266), we have

|S1|, |S2| >
cfn

3
.

Suppose the smallest interleaving point in S1 is t1 := minS1. We now denote the interleaving
points in the increasing order of their rank as:

. . . < t1 < t′1 < . . . < t cfn
3
< t′cfn

3
< . . . .

Then we have tk ∈ S1 and t′k ∈ S2 for all k ∈
[
cfn
3

]
.

we construct the set of distinct pairs as:

Sv :=
{

(t2k−1, t
′
2k) : k ∈

[cfn

6

]}
∩ (Ωv × Ωv).

Now we lower-bound the size of Sv. For each k ∈
[
cfn
6

]
, consider the probability that the pair

(t2k−1, t
′
2k) is in Ωv. It can be verified that the elements of ranks {t2k−1}k∈[ cfn6 ] are not adjacent

in the sub-ordering of π restricted to course 1, and hence appear in distinct pairs in Line 5-7 of
Algorithm 2 when generating the training-validation split of (Ωt,Ωv). Hence, the probability that
each element {t2k−1}k∈[ cfn6 ] is assigned to Ωv is independently 1

2
. Similarly, the probability that

each element {t′2k}k∈[ cfn6 ] is assigned to Ωv is 1
2
. Hence, the probability of each pair (t2k−1, t

′
2k)

is assigned to Ωv is 1
4
. By Hoeffding’s inequality, we have

lim
n→∞

P
(
|Sv| > cfn

36

)
= 1.

That is, limn→∞ P
(
E 1

36

)
= 1.

Combining E 1
36

and E ′1
36

By a similar argument, we have limn→∞ P
(
E ′1

36

)
= 1. Taking a

union bound of E 1
36

and E ′1
36

completes the proof.
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11.12.4 Proof of Lemma 11.31
Consider any T ′ ∈ {S+ ∩S1, S

− ∩S1, S
+ ∩S2, S

− ∩S2}. Similar to the proof of Lemma 11.30,
using the fact that the interleaving points alternate between S1 and S2, we have

|T ′| > cfn

6
.

We write the elements in T ′ in the increasing order as k1 < . . . < k cfn
6
< . . . < k|T ′|. It can be

verified that the elements in {t2k}k∈[ cfn12 ] appear in different pairs when generating the training-

validation split (Ωt,Ωv) in Line 5-7 of Algorithm 2. Hence, each element in {t2k}k∈[ cfn12 ] is

assigned to Ωv independently with probability 1
2
. Using Hoeffding’s inequality, we lower-bound

the size of T ′ ∩ Ωv as:

lim
n→∞

P
(
|T ′ ∩ Ωv| > cfn

36

)
= 1. (11.267)

Taking a union bound of (11.267) over T ′ ∈ {S+ ∩ S1, S
− ∩ S1, S

+ ∩ S2, S
− ∩ S2} completes

the proof.
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Chapter 12

Proofs of Chapter 5

In this section, we present all proofs for results in Section 5.

12.1 Proof of Theorem 5.4

In this chapter, we present the proof of Theorem 5.4. We first introduce notation and preliminar-
ies in Section 12.1.1, to be used subsequently in proving both parts of Theorem 5.4. The proof of
Theorem 5.4(b) is presented in Section 12.1.2. The proof of Theorem 5.4(a) is presented in Sec-
tion 12.1.3. We first present the proof of Theorem 5.4(b) followed by Theorem 5.4(a), because
the proof of Theorem 5.4(a) depends on the proof of Theorem 5.4(b).

In the proof of Theorem 5.4(a), the constants are allowed to depend only on the constant B.
In the proof of Theorem 5.4(b), the constants are allowed to depend only on the constants A and
B. The proofs for all the lemmas are presented in Section 12.1.4.

12.1.1 Notation and preliminaries

In this section, we introduce notation and preliminaries that are used subsequently in the proofs
of both Theorem 5.4(b) and Theorem 5.4(a).

(i) Notation
Recall that d denotes the number of items, and k denotes the number of comparisons per
pair of items. The d items are associated to a true parameter vector θ∗ = [θ∗1, . . . , θ

∗
d]. We

have the set ΘB = {θ ∈ Rd | ‖θ‖∞ ≤ B,
∑d

i=1 θi = 0} and the set ΘA = {θ ∈ Rd |
‖θ‖∞ ≤ A,

∑d
i=1 θi = 0}, where A and B are finite constants such that A > B > 0. The

true parameter vector satisfies θ∗ ∈ ΘB.
Denote µ∗ij as the probability that item i ∈ [d] beats item j ∈ [d]. Under the BTL model,
we have

µ∗ij =
1

1 + e−(θ∗i−θ∗j )
. (12.1)
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For every r ∈ [k], denote the outcome of the rth comparison between item i ∈ [d] and item
j ∈ [d] as

X
(r)
ij := 1{item i beats item j in their rth comparison}.

We have X(r)
ij ∼ Bernoulli(µ∗ij), independent across all r ∈ [k] and all i < j. Recall

that Wij denotes the number of times that item i beats j. We have Wij =
∑k

r=1 X
(r)
ij and

therefore Wij ∼ Binom(k, µ∗ij). Denote µij as the fraction of times that item i beats item
j. That is,

µij :=
1

k
Wij =

1

k

k∑

r=1

X
(r)
ij . (12.2)

We have µij ∼ 1
k
Binom(k, µ∗ij), independent across all i < j.

Finally, we use c, c′, c1, c2, etc. to denote finite constants whose values may change from
line to line. We write f(n) . g(n) if there exists a constant c such that f(n) ≤ c · g(n) for
all n ≥ 1. The notation f(n) & g(n) is defined analogously.

(ii) Notion of conditioning
Let E be any event. The conditional bias of any estimator θ̂ conditioned on the event E is
defined as:

β(θ̂ | E) := sup
θ∗∈ΘB

‖E[θ̂ | E]− θ∗‖∞.

We use “w.h.p.( 1
dk

)” to denote that an event E happens with probability at least

P(E) > 1− c

dk
,

for all d ≥ d0 and k ≥ k0, where d0, k0 and c are positive constants.
Similarly, we use “w.h.p.( 1

dk
| E)” to denote that conditioned on some event E, some other

event E ′ happens with probability at least

P(E ′ | E) ≥ 1− c

dk
,

for all d ≥ d0 and k ≥ k0, where d0, k0 and c are positive constants.

(iii) The negative log-likelihood function and its derivative
Recall that ` denotes the negative log-likelihood function. Under the BTL model, we have

`(θ) := `({Wij}; θ) = −
∑

1≤i<j≤d

[
Wij log

(
1

1 + e−(θi−θj)

)
+Wji log

(
1

1 + e−(θj−θi)

)]

= −k
∑

1≤i<j≤d

[
µij log

(
1

1 + e−(θi−θj)

)
+ µji log

(
1

1 + e−(θj−θi)

)]

= k
∑

1≤i<j≤d

[
log(eθi + eθj)− µijθi − µjiθj

]
. (12.3)
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Since {µij} is simply a normalized version of {Wij}, we equivalently denote the negative
log-likelihood function as `({µij}; θ).
From the expression of ` in (12.3), we compute the gradient ∂`

∂θm
for every m ∈ [d] as

∂`

∂θm
= k

∑

i 6=m

(
1

1 + e−(θm−θi)
− µmi

)
. (12.4)

Finally, the following lemma from [89] shows the strict convexity of the negative log-
likelihood function `.
Lemma 12.1 (Lemma 2(a) from [89]). The negative log-likelihood function `(θ) is strictly
convex in θ ∈ Rd.

(iv) The sigmoid function and its derivatives
Denote the function f : (−∞,∞) → (0, 1) as the sigmoid function f(x) = 1

1+e−x
. It is

straightforward to verify that the function f has the following two properties.
• The first derivative f ′ is positive on (−∞,∞). Moreover, on any bounded interval,

the first derivative f ′ is bounded above and below. That is, for any constants c1 < c2,
there exist constants c3, c4 > 0 such that

0 < c3 < f ′(x) < c4, for all x ∈ (c1, c2). (12.5a)

• The second derivative f ′′ is bounded on any bounded interval. That is, for any con-
stants c1 < c2, there exists a constant c5 such that

|f ′′(x)| < c5, for all x ∈ (c1, c2). (12.5b)

(v) Existence and uniqueness of MLE
Recall that the MLE (5.3), the unconstrained MLE (5.4), and the stretched-MLE (5.5) are
respectively defined as:

θ̂(B)({µij}) = argmin
θ∈ΘB

`({µij}; θ), (12.6)

θ̂(∞)({µij}) = argmin
θ∈Θ∞

`({µij}; θ), (12.7)

θ̂(A)({µij}) = argmin
θ∈ΘA

`({µij}; θ). (12.8)

The following lemma shows the existence and uniqueness of the stretched-MLE θ̂(A) (12.8)
for any constant A > 0, which incorporates the standard MLE θ̂(B) by setting A = B.
Lemma 12.2. For any finite constant A > 0, there always exists a unique solution θ̂(A) to
the stretched-MLE (12.8).

See Section 12.1.4 for the proof of Lemma 12.2.
For the unconstrained MLE, due to the removal of the box constraint in (12.7), a finite
solution θ̂(∞) may not exist. However, the following lemma shows that a unique finite
solution exists with high probability.
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Lemma 12.3. There exists a unique finite solution θ̂(∞) to the unconstrained MLE (12.7)
w.h.p.( 1

dk
).

See Section 12.1.4 for the proof of Lemma 12.3.
In the subsequent proofs of Theorem 5.4(b) and Theorem 5.4(a), we heavily use the un-
constrained MLE as an intermediate quantity to analyze the MLE and the stretched-MLE.

12.1.2 Proof of Theorem 5.4(b)
In this section, we present the proof of Theorem 5.4(b). To describe the main steps involved,
we first present a proof sketch of a simple case of d = 2 items (Section 12.1.2), followed by the
complete proof of the general case (Section 12.1.2). The reader may pass to the complete proof
in Section 12.1.2 without loss of continuity.

Simple case: 2 items

We first present an informal proof sketch for a simple case where there are d = 2 items. The
proof for the general case in Section 12.1.2 follows the same outline. In the case of d = 2 items,
due to the centering constraint on the true parameter vector θ∗, we have θ∗2 = −θ∗1. Similarly,
we have θ̂2 = −θ̂1 for any estimator that satisfies the centering constraint (in particular, for the
stretched-MLE θ̂(A) and the unconstrained MLE θ̂(∞)). Therefore, it suffices to focus only on
item 1. Since there are only two items, for ease of notation, we denote µ = µ12 and µ∗ = µ∗12.
We now present the main steps of the proof sketch.

Proof sketch of the 2-item case (informal):
In the proof sketch, we fix any θ∗ ∈ ΘB, and any finite constants A and B such that A >

B > 0.

Step 1: Establish concentration of µ
By Hoeffding’s inequality, we have

|µ− µ∗| .
√

log k

k
, w.h.p. (12.9)

Since |θ∗| ≤ B, we have that µ∗ is bounded away from 0 and 1 by a constant. Hence, for
sufficiently large k, there exist constants cL, cU where 0 < cL < cU < 1, such that

µ, µ∗ ∈ (cL, cU). (12.10)

Step 2: Write the first-order optimality condition for θ̂(∞)

The unconstrained MLE θ̂(∞) minimizes the negative log-likelihood `. If a finite uncon-
strained MLE θ̂(∞) exists1, we have ∇θ=θ̂(∞)`(θ) = 0. Setting m = 1 in the gradient

1For the proof sketch, we ignore the high-probability nature of Lemma 12.3, and assume that a finite θ̂(∞) always
exists. It is made precise in the complete proof in Section 12.1.2.
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expression (12.4) and plugging in θ̂(∞), we have

∂`

∂θ1

∣∣∣∣
θ=θ̂(∞)

= k

(
1

1 + e−(θ̂
(∞)
1 −θ̂(∞)

2 )
− µ12

)

= k

(
1

1 + e−2θ̂
(∞)
1

− µ
)
. (12.11)

Setting the derivative (12.11) to 0, we have

θ̂
(∞)
1 = −1

2
log

(
1

µ
− 1

)
. (12.12)

By the definition of {µ∗ij} in (12.1), we have µ∗ = 1

1+e−(θ∗1−θ
∗
2) = 1

1+e−2θ∗1
, which can be

written as

θ∗1 = −1

2
log

(
1

µ∗
− 1

)
. (12.13)

Define a function h : [0, 1]→ R ∪ {±∞} as

h(t) = −1

2
log

(
1

t
− 1

)
. (12.14)

Subtracting (12.13) from (12.12) and using the definition of h from (12.14), we have

θ̂
(∞)
1 − θ∗1 = h(µ)− h(µ∗). (12.15)

Step 3: Bound the difference between θ̂(∞) and θ∗, by the first-order mean value theorem
It can be verified that h has positive first-order derivative on (0, 1). Moreover, there exists
some constant c1 such that 0 < h′(t) < c1 for all t ∈ (cL, cU). Applying the first-order
mean value theorem on (12.15), we have the deterministic relation

θ̂
(∞)
1 − θ∗1 = h′(λ) · (µ− µ∗), (12.16)

where λ is a random variable that depends on µ and µ∗, and takes values between µ and
µ∗. By (12.10), we have λ ∈ (cL, cU). From (12.16) we have

|θ̂(∞)
1 − θ∗1| ≤ c1|µ− µ∗|. (12.17)

Combining (12.17) with (12.9), we have

|θ̂(∞)
1 − θ∗1| .

√
log k

k
, w.h.p. (12.18)
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Step 4: Bound the expected difference between θ̂(∞) and θ∗, by the second-order mean value
theorem
By the second-order mean value theorem on (12.15), we have the deterministic relation

θ̂
(∞)
1 − θ∗1 = h(µ)− h(µ∗) = h′(µ∗) · (µ− µ∗) + h′′(λ̃) · (µ− µ∗)2, (12.19)

where λ̃ is a random variable that depends on µ and µ∗, and takes values between µ and
µ∗. By (12.10), we have λ̃ ∈ (cL, cU).
It can be verified that h has bounded second-order derivative. That is, |h′′(t)| < c2 for all
t ∈ (cL, cU). Taking an expectation over (12.19), we have

E[θ̂
(∞)
1 ]− θ∗1 = h′(µ∗) · (E[µ]− µ∗) + E[h′′(λ̃) · (µ− µ∗)2] (12.20)

(i)
≤ c2E[(µ− µ∗)2]
(ii)
.

log k

k
, (12.21)

where (i) is true because E[µ] = µ∗ combined with the fact that |h′′| < c2 on (cL, cU), and
(ii) is true2 by (12.9).

Step 5: Connect θ̂(∞) back to θ̂(A)

From (12.18), we have |θ̂(∞)
1 − θ∗1| ≤ A−B w.h.p. for sufficiently large k. Hence,

|θ̂(∞)
1 | ≤ |θ∗1|+ |θ̂(∞)

1 − θ∗1| ≤ B + (A−B) = A, w.h.p.

Moreover, we have
∣∣∣θ̂(∞)

2

∣∣∣ =
∣∣∣θ̂(∞)

1

∣∣∣ ≤ A. Therefore, with high probability, the uncon-

strained MLE θ̂(∞) does not violate the box constraint at A, and therefore θ̂(∞) is identical
to the stretched-MLE θ̂(A). Hence, the bound (12.21) holds3 for the stretched-MLE, com-
pleting the proof sketch.

Complete Proof

In this section, we present the proof of Theorem 5.4(b), by formally extending the 5 steps outlined
for the simple case in Section 12.1.2. In the general case, one notable challenge is that one can
no longer write a closed-form solution of the MLE as we did in (12.12) of Step 2. The first-
order optimality condition now becomes a system of equations that describe an implicit relation
between θ and µ, requiring more involved analysis.

In the proof, we fix any θ∗ ∈ ΘB, and fix any finite constants A and B such that A > B > 0.
Step 1: Establish concentration of {µij}

We first use standard concentration inequalities to establish the following lemma, to be
used in the subsequent steps of the proof.

2For the proof sketch, we ignore the high-probability nature of (12.9) and treat it as a deterministic relation. It is
made precise in the complete proof in Section 12.1.2.

3For the proof sketch, we ignore the high-probability nature of the fact that θ̂(∞) = θ̂(A), and treat it as a
deterministic relation. It is made precise in the complete proof in Section 12.1.2.
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Lemma 12.4. There exists a constant c > 0, such that∣∣∣∣∣
∑

i 6=m

µmi −
∑

i 6=m

µ∗mi

∣∣∣∣∣ ≤ c

√
d(log d+ log k)

k
,

simultaneously for all m ∈ [d] w.h.p.( 1
dk

).

See Section 12.1.4 for the proof of Lemma 12.4.
Recall that Lemma 12.3 states that a finite unconstrained MLE θ̂(∞) exists w.h.p.( 1

dk
). We

denote E0 as the event that Lemma 12.3 and Lemma 12.4 both hold. For the rest of the
proof, we condition on E0. Since both Lemma 12.3 and Lemma 12.4 hold w.h.p.( 1

dk
),

taking a union bound, we have that E0 holds w.h.p.( 1
dk

). That is,

P(E0) ≥ 1− c

dk
, for some constant c > 0. (12.22)

Step 2: Write the first-order optimality condition for the unconstrained MLE θ̂(∞)

Recall from Lemma 12.1 that the negative log-likelihood function ` is convex in θ. In this
step, we first justify that the whenever a finite unconstrained MLE θ̂(∞) exists, it satis-
fies the first-order optimality condition ∇θ=θ̂(∞)`(θ) = 0. (Note that for any optimization
problem with constraints, it is in general not true that the derivative of the convex objec-
tive equals 0 at the optimal solution.) Then we derive a specific form of the first-order
optimality condition, to be used in subsequent steps of the proof.
Given that we have conditioned on E0 (and therefore on Lemma 12.3), a finite solution
θ̂(∞) to the unconstrained MLE exists. To show that θ̂(∞) satisfies the first-order optimality
condition, we show that θ̂(∞) is also a solution to the following MLE without any constraint
at all (that is, we remove the centering constraint too):

argmin
θ∈Rd

`(θ). (12.23)

If the unconstrained MLE θ̂(∞) is a solution to (12.23), then it satisfies the first-order
condition ∇θ`(θ̂

(∞)) = 0. Now we prove that θ̂(∞) is a solution to (12.23). Note that the
solutions to (12.23) are shift-invariant. That is, if θ is a solution to (12.23), then θ + c1 is
also a solution, where 1 is the d-dimensional all-one vector, and c is any constant. Now
suppose by contradiction that θ̂(∞) is not a solution to (12.23). Then there exists some
finite θ ∈ Rd such that `(θ) < `(θ̂(∞)). Now consider θ′ := θ − (1

d

∑d
i=1 θi)1. We have

θ′ ∈ Θ∞ because it satisfies the centering constraint, and we have `(θ′) = `(θ) < `(θ̂(∞))
because the solutions to (12.23) are shift-invariant. The construction of θ′ thus contradicts
the assumption that θ̂(∞) is optimal for the unconstrained MLE. Hence, θ̂(∞) is a solution
to (12.23), and θ̂(∞) satisfies the first-order optimality condition.
Now we derive a specific form of the first-order optimality condition. Plugging θ̂(∞) into
the gradient expression (12.4) and setting the gradient to 0, we have the deterministic
equality

∑

i 6=m

1

1 + e−(θ̂
(∞)
m −θ̂(∞)

i )
=
∑

i 6=m

µmi, for every m ∈ [d]. (12.24)

244



In words, the first-order optimality condition (12.24) means that for any item m ∈ [d],
the probability that item m wins (among all comparisons in which item m is involved) as
predicted by the unconstrained MLE θ̂(∞) equals the fraction of wins by item m from the
observed comparisons. We now subtract (12.1) from both sides of (12.24):

∑

i 6=m

(
1

1 + e−(θ̂
(∞)
m −θ̂(∞)

i )
− 1

1 + e−(θ∗m−θ∗i )

)
=
∑

i 6=m

(µmi − µ∗mi)

d∑

i=1

(
1

1 + e−(θ̂
(∞)
m −θ̂(∞)

i )
− 1

1 + e−(θ∗m−θ∗i )

)
=
∑

i 6=m

(µmi − µ∗mi). (12.25)

For ease of notation, we denote the random vector δ := θ̂(∞) − θ∗. Equivalently, we have
θ̂(∞) = θ∗ + δ. Using the definition of δ, we rewrite (12.25) as:

d∑

i=1

(
1

1 + e−(θ∗m−θ∗i +δm−δi)
− 1

1 + e−(θ∗m−θ∗i )

)
=
∑

i 6=m

(µmi − µ∗mi). (12.26)

Using the definition of the sigmoid function f(x) = 1
1+e−x

, we rewrite (12.26) as:

d∑

i=1

[f(θ∗m − θ∗i + δm − δi)− f(θ∗m − θ∗i )] =
∑

i 6=m

(µmi − µ∗mi). (12.27)

In the rest of the proof, we primarily work with the first-order optimality condition in the
form of (12.27).

Step 3: Bound the difference between the unconstrained MLE θ̂(∞) and the true parameter
vector θ∗

The first-order optimality condition (12.27) can be thought of as a system of equations that
describes some implicit relation between the unconstrained MLE θ̂(∞) and the observations
{µmi}. Intuitively, the concentration of {µmi} on the RHS of (12.27) (by Lemma 12.4)
should imply the concentration of the unconstrained MLE θ̂(∞) on the LHS. The following
lemma formalizes this intuition about the concentration of θ̂(∞).
Lemma 12.5. Conditioned on E0, we have the deterministic relation

|δm| = |θ̂(∞)
m − θ∗m| .

√
log d+ log k

dk
, for every m ∈ [d],

for all d ≥ d0 and k ≥ k0, where d0 and k0 are constants.

See Section 12.1.4 for the proof of Lemma 12.5.
This lemma provides a deterministic bound on the difference between θ̂(∞) and θ∗. Now
we move to analyze the difference between θ̂(∞) and θ∗ in expectation.

Step 4: Bound the expected difference between the unconstrained MLE θ̂(∞) and the true
parameter vector θ∗, using the second-order mean value theorem
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In Step 1 we bound the difference between {µmi} and {µ∗mi} with high-probability. How-
ever, if we consider the difference in expectation, we have E[µmi] = µ∗mi. The expected
difference between {µmi} and {µ∗mi} is 0, significantly smaller than the high-probability
bound in Step 1. Intuitively, we may also expect that the expected difference between θ̂(∞)

and θ∗ is smaller than the deterministic bound in Lemma 12.5. In this step, we formalize
this intuition.
By the second-order mean value theorem on the LHS of the first-order optimality condi-
tion (12.27), we have the deterministic relation that for every m ∈ [d],

d∑

i=1

[
f ′(θ∗m − θ∗i ) · (δm − δi) +

1

2
f ′′(λmi) · (δm − δi)2

]
=
∑

i 6=m

(µmi − µ∗mi)

d∑

i=1

f ′(θ∗m − θ∗i ) · (δm − δi) =
∑

i 6=m

(µmi − µ∗mi)−
1

2

d∑

i=1

f ′′(λmi) · (δm − δi)2,

(12.28)

where each λmi is a random variable that takes values between θ∗m − θ∗i and θ∗m − θ∗i +
(δm − δi). Taking an expectation over (12.28) conditional on E0, we have that for every
m ∈ [d]:

d∑

i=1

f ′(θ∗m − θ∗i ) · E [δm − δi | E0] =
∑

i 6=m

(E[µmi | E0]− µ∗mi)−
1

2

d∑

i=1

E[f ′′(λmi)(δm − δi)2 | E0].

(12.29)

Denote the vector ∆ := E[δ | E0] = E[θ̂(∞) | E0] − θ∗. Plugging this definition of ∆
into (12.29) yields

d∑

i=1

f ′(θ∗m − θ∗i ) · (∆m −∆i) =
∑

i 6=m

(E[µmi | E0]− µ∗mi)−
1

2

d∑

i=1

E[f ′′(λmi)(δm − δi)2 | E0].

(12.30)

We first bound the RHS of (12.30), and then derive a bound regarding ∆i on the LHS
accordingly.
To bound the RHS of (12.30), we first consider the term E[µmi | E0] − µ∗mi. In what
follows, we state a lemma that is slightly more general than what is needed here. The more
general version is used in the subsequent proof of Theorem 5.4(a). To state the lemma,
recall the definition that an event E ′ happens w.h.p.( 1

dk
| E), if the conditional probability

P(E ′ | E) ≥ 1− c
dk

, for some constant c > 0.
Lemma 12.6. Let E be any event, and let E ′ be any event that happens w.h.p.( 1

dk
| E).

Then for any m 6= i, we have

|E[µmi | E ′, E]− E[µmi | E]| . 1

dk
. (12.31)
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See Section 12.1.4 for the proof of Lemma 12.6.
To apply Lemma 12.6, we set E to be the (trivial) event of the entire probability space, and
set E ′ to be E0 in (12.31). We have

|E[µmi | E0]− E[µmi]| = |E[µmi | E0]− µ∗mi| .
1

dk
. (12.32)

The remaining terms in (12.30) are handled in the following lemma. This lemma bounds
the expected difference between θ̂(∞) and θ∗ conditioned on E0, that is, the quantity
|∆m| = |E[θ̂

(∞)
m | E0]− θ∗m|.

Lemma 12.7. Conditioned on E0, we have

|∆m| .
log d+ log k

dk
, for every m ∈ [d],

for all d ≥ d0 and all k ≥ k0, where d0 and k0 are constants. Equivalently,

β(θ̂(∞) | E0) = ‖E[θ̂(∞) | E0]− θ∗‖∞ = ‖∆‖∞ .
log d+ log k

dk
, (12.33)

for all d ≥ d0 and all k ≥ k0, where d0 and k0 are constants.

See Section 12.1.4 for the proof of Lemma 12.7.
Note that (12.33) yields the desired rate on the quantity β(θ̂(∞) | E0). It remains to show
that β(θ̂(∞) | E0) is sufficiently close to β(θ̂(A)).

Step 5: Show that the box constraint at A is vacuous for the unconstrained MLE θ̂(∞) and
hence θ̂(∞) is the same as the stretched-MLE θ̂(A) with high probability, using the
deterministic bound in Step 3
To show that β(θ̂(∞) | E0) is sufficiently close to β(θ̂(A)), we divide the argument into two
parts. First, we show that β(θ̂(∞) | E0) = β(θ̂(A) | E0). Second, we show that β(θ̂(A) | E0)

is close to β(θ̂(A)).

We first show that β(θ̂(∞) | E0) = β(θ̂(A) | E0). Recall that A and B are constants such
that A > B. Recall from Lemma 12.5 that ‖θ̂(∞) − θ∗‖∞ . log d+log k

dk
conditioned on E0.

Hence, there exist constants d0 and k0, such that for any d ≥ d0 and k ≥ k0, we have
‖θ̂(∞) − θ∗‖∞ < A−B conditioned on E0. In this case, we have

‖θ̂(∞)‖∞ ≤ ‖θ∗‖∞ + ‖θ̂(∞) − θ∗‖∞ < B + (A−B) = A, conditioned on E0.

Conditioned on E0, the unconstrained MLE θ̂(∞) obeys the box constraint ‖θ̂(∞)‖∞ ≤ A.
Therefore, θ̂(∞) is also a solution to the stretched-MLE θ̂(A). By the uniqueness of θ̂(A)

from Lemma 12.2, we have

θ̂(A) = θ̂(∞), conditioned on E0.

Hence, we have the relation

β(θ̂(∞) | E0) = β(θ̂(A) | E0), (12.34)
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completing the first part of the argument.

It remains to show that β(θ̂(A) | E0) is sufficiently close to β(θ̂(A)). We have

β(θ̂(A)) = ‖E[θ̂(A)]− θ∗‖∞
(i)
= ‖E[θ̂(A) | E0] · P(E0) + E[θ̂(A) | E0] · P(E0)− θ∗‖∞
(ii)
≤ ‖E[θ̂(A) | E0]− θ∗‖∞ · P(E0) + ‖E[θ̂(A) | E0]− θ∗‖∞ · P(E0)

= β(θ̂(A) | E0) · P(E0)︸ ︷︷ ︸
R1

+ ‖E[θ̂(A) | E0]− θ∗‖∞ · P(E0)︸ ︷︷ ︸
R2

. (12.35)

where step (i) is true by the law of iterated expectation, and step (ii) is true by the triangle
inequality.
Consider the two terms in (12.35). For R1, combining (12.33) and (12.34) yields

β(θ̂(A) | E0) = β(θ̂(∞) | E0) .
log d+ log k

dk
.

Therefore,

R1 .
log d+ log k

dk
. (12.36)

Now consider R2. By the box constraint ‖θ̂(A)‖∞ ≤ A, we have

‖E[θ̂(A) | E0]− θ∗‖∞
(i)
≤ ‖E[θ̂(A) | E0]‖∞ + ‖θ∗‖∞ ≤ A+B, (12.37)

where step (i) is true by the triangle inequality. Recall from (12.22), the event E0 happens
w.h.p.( 1

dk
). Therefore,

P(E0) .
1

dk
. (12.38)

Combining (12.37) and (12.38) yields

R2 .
1

dk
. (12.39)

Plugging the term R1 from (12.36) and the term R2 from (12.39) back into (12.35), we
have

β(θ̂(A)) .
log d+ log k

dk
,

completing the proof of Theorem 5.4(b).
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12.1.3 Proof of Theorem 5.4(a)

Similar to the proof of Theorem 5.4(b), we first present a proof of the simple case of d = 2 items.
It is important to note that although we present proofs of the 2-item case for both Theorem 5.4(b)
and Theorem 5.4(a), their purposes are different. In Theorem 5.4(b) presented in Section 12.1.2,
the proof sketch of the 2-item case is informal. It serves as a guideline for the general case. Then
the main work involved in the general case is to generalize the arguments in the 2-item case
step-by-step. On the other hand, in Theorem 5.4(a), the proof of the 2-item case to be presented
is formal. It serves as a core sub-problem of the general case. Then the main work involved in
the general case is to reduce the problem to the 2-item case, and then the results from the 2-item
case directly.

Simple case: 2 items

As in Section 12.1.2, we first consider the simple case where there are d = 2 items. Again, due
to the centering constraint, we have θ∗2 = −θ∗1 for the true parameter vector θ∗, and we have
θ̂2 = −θ̂1 for any estimator θ̂ that satisfies the centering constraint (in particular, for the standard
MLE θ̂(B) and the unconstrained MLE θ̂(∞)). Therefore, it suffices to focus only on item 1. Since
there are only two items, for ease of notation, we denote µ = µ12 and µ∗ = µ∗12.

We consider the true parameter vector θ∗ = [B,−B]. By the definition of {µ∗ij} in (12.1), we
have

µ∗ =
1

1 + e−(θ∗1−θ∗2)
=

1

1 + e−2B
.

The following proposition now lower bounds the bias of the standard MLE θ̂(B).
Proposition 12.8. Under θ∗ = [B,−B], the bias of the MLE θ̂(B) is bounded as

β(θ̂(B)) = ‖E[θ̂(B)]− θ∗‖∞ = |E[θ̂
(B)
1 ]−B| & 1√

k
.

Specifically, the bias is negative, that is,

E[θ̂
(B)
1 ]−B ≤ − c√

k
, (12.40)

for some constant c > 0.
The rest of this section is devoted to proving (12.40) in Proposition 12.8.

For ease of notation, denote µ+ = µ∗ = 1
1+e−2B , and µ− = 1 − µ∗ = 1

1+e2B
. In the proof

sketch of Theorem 5.4(b) of the case of d = 2 items (Section 12.1.2), we derived the following
expression (12.12) for the unconstrained MLE:

θ̂
(∞)
1 (µ) = −1

2
log

(
1

µ
− 1

)
.
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Now consider the standard MLE θ̂(B). By straightforward analysis, one can derive the following
closed-form expression for the standard MLE:

θ̂
(B)
1 (µ) =





−B if µ ∈ [0, µ−]

−1
2

log
(

1
µ
− 1
)

if µ ∈ (µ−, µ+)

B if µ ∈ [µ+, 1].

(12.41)

For ease of notation, we denote a function h : [0, 1]→ [−B,B] as

h(t) =





−B if t ∈ [0, µ−]

−1
2

log
(

1
t
− 1
)

if t ∈ (µ−, µ+)

B if t ∈ [µ+, 1],

(12.42)

where h(t) = θ̂
(B)
1 (µ = t) for any t ∈ [0, 1]. Then the standard MLE (12.41) can be equivalently

written as h(µ). To make the computation of the bias incurred by θ̂(B) more tractable, we also
define the following auxiliary function h+ : [0, 1]→ [−B,B] as:

h+(t) :=

{
2B
µ+

(t− µ+) +B if t ∈ [0, µ+)

B if t ∈ [µ+, 1].
(12.43)

In words, the function h+ is piecewise linear. On the interval [0, µ+], it is a line passing through
the points (0,−B) and (µ+, B). On the interval [µ+, 1], its value equals the constant B. The
following lemma now states a relation between h+(µ) and h(µ) in expectation with respect to µ.
Lemma 12.9. Under θ∗ = [B,−B], we have

E[h(µ)] ≤ E[h+(µ)]. (12.44)

See Section 12.1.4 for the proof of Lemma 12.9.
Now subtracting B from both sides of (12.44), we have

E[θ̂
(B)
1 ]− θ∗1 = E[h(µ)]−B ≤ E[h+(µ)]−B. (12.45)

The following lemma states that the bias introduced by h+(µ) satisfies the desired rate from
Proposition 12.8.
Lemma 12.10. Under θ∗ = [B,−B], we have

E[h+(µ)]−B ≤ − c√
k
, (12.46)

for some constant c > 0.
See Section 12.1.4 for the proof of Lemma 12.10.
Combining (12.45) and (12.46), we have

E[θ̂
(B)
1 ]− θ∗1 ≤ −

c√
k
,

completing the proof of (12.40) in Proposition 12.8.
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Complete Proof

In this section, we present the proof of Theorem 5.4(a). The proof reduces the general case to
the 2-item case presented in Section 12.1.3. In the reduction, we construct an “oracle” MLE,
such that the oracle MLE yields identical estimates for item 2 through item d. Specifically, we
consider an unconstrained oracle denoted by θ̃(∞) (without the box constraint), and a constrained
oracle denoted by θ̃(B) (with the box constraint at B), to be defined precisely in the proof shortly.
Then we derive the closed-form expressions for θ̃(∞) and θ̃(B), which bear resemblance to the
expressions of the the unconstrained MLE and the standard MLE in the 2-item case. Using
the proof of the 2-item case, we prove that the constrained oracle θ̃(B) incurs a negative bias of
Ω( 1√

dk
). Given this result, it remains to show that θ̃(B) and θ̂(B) differ by o( 1√

dk
) in terms of

bias. We decompose the difference between θ̃(B) and θ̂(B) into three terms: from θ̃(B) to θ̃(∞),
from θ̃(∞) to θ̂(∞), and from θ̂(∞) to θ̂(B), The second term is bounded by Õ( 1

dk
) by modifying

the upper-bound proof of Theorem 5.4(b). The first and the third terms are bounded by carefully
analyzing the effect of the box constraint on the oracle MLE and the standard MLE, respectively.

In the proof, we fix any constant B > 0, and consider the true parameter vector:

θ∗ =

[
B,− B

d− 1
,− B

d− 1
, . . . ,− B

d− 1

]
. (12.47)

It can be verified that θ∗ satisfies both the box constraint at B and the centering constraint, so we
have θ∗ ∈ ΘB. We prove that the bias on item 1 is negative, and its magnitude is Ω( 1√

dk
). That

is, we prove that

E[θ̂
(B)
1 ]− θ∗1 = E[θ̂

(B)
1 ]−B ≤ − c√

dk
,

for some constant c > 0. The proof consists of the following 5 steps.

Step 1: Construct oracle estimators θ̃(∞) (unconstrained) and θ̃(B) (constrained)
Recall that µij ∼ 1

k
Binom(k, µ∗ij) is a random variable representing the fraction of times

that item i beats item j. We define µ1 as fraction of wins by item 1, among all comparisons
in which item 1 is involved:

µ1 :=
1

d− 1

d∑

m=2

µ1m. (12.48)

We similarly define the true probability µ∗1 = 1
d−1

∑d
m=2 µ

∗
1m. With the construction (12.47)

of θ∗, we have µ∗1 = 1

1+e
− d
d−1B

. Now we construct the following random quantities {µ̃ij}i 6=j
as a function of {µij}i 6=j:

µ̃ij =





µ1 if i = 1, j ∈ {2, . . . , d}
1− µ1 if j = 1, i ∈ {2, . . . , d}
1
2

otherwise.
(12.49)
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Recall that θ̂(∞)({µij}) denotes the unconstrained MLE (12.7). Now define an “uncon-
strained oracle” MLE θ̃(∞) as:

θ̃(∞)({µij}) := θ̂(∞)({µ̃ij})
= argmin

θ∈Θ∞

`({µ̃ij}; θ). (12.50a)

Similarly, define a “constrained oracle” MLE θ̃(B) as:

θ̃(B)({µij}) := θ̂(B)({µ̃ij})
= argmin

θ∈ΘB

`({µ̃ij}; θ). (12.50b)

In the subsequent steps, these oracle estimators are used to reduce the general case to the
2-item case.

Step 2: Formalize the oracle information contained in the unconstrained oracle θ̃(∞) and the
constrained oracle θ̃(B)

Note that the construction of {µ̃ij} in (12.49) is symmetric with respect to item 2 through
item d, that is, for any two items i and i′ where i, i′ ∈ {2, . . . , d}, we have µ̃ij = µ̃i′j and
µ̃ji = µ̃ji′ for every i ∈ [d]\{j, j′}. Therefore, the construction of {µ̃ij} intuitively encodes
the “oracle” that item 2 through item d have identical parameters. Formally, define the set
Θoracle := {θ ∈ Rd | θ2 = · · · = θd}. The following lemma states that the unconstrained
oracle and the constrained oracle incorporate the set Θoracle into the domain of optimization
without altering their solutions.
Lemma 12.11. The unconstrained oracle θ̃(∞) can be equivalently written as

θ̃(∞) = argmin
Θ∞∩Θoracle

`({µ̃ij}; θ). (12.51a)

That is, a solution to (12.50a) exists if and only if a solution to (12.51a) exists. Moreover,
when the solutions to (12.50a) and (12.51a) exist, they are identical.
Similarly, the constrained oracle θ̃(B) can be equivalently written as

θ̃(B) = argmin
θ∈ΘB∩Θoracle

`({µ̃ij}; θ). (12.51b)

See Section 12.1.4 for the proof of Lemma 12.11.
Given Lemma 12.11 combined with the centering constraint, we parameterize the uncon-
strained oracle θ̃(∞) and the constrained oracle θ̃(B) as:

θ̃(∞) =

[
θ̃

(∞)
1 ,− 1

d− 1
θ̃

(∞)
1 , . . . ,− 1

d− 1
θ̃

(∞)
1

]
, (12.52a)

θ̃(B) =

[
θ̃

(B)
1 ,− 1

d− 1
θ̃

(B)
1 , . . . ,− 1

d− 1
θ̃

(B)
1

]
. (12.52b)

Step 3: Show that the bias of the constrained oracle θ̃(B) on item 1 is bounded by E[θ̃
(B)
1 ]−θ∗1 ≤

− c√
dk

, by making a reduction to the 2-item case
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In this step, we modify the proof of Proposition 12.8 in the 2-item case to lower bound the
bias of the constrained oracle θ̃(B). Specifically, we show that given θ∗ =

[
B,− B

d−1
, . . . ,− B

d−1

]
,

the bias on item 1 is bounded as (cf. (12.40)):

E[θ̃
(B)
1 ]− θ∗ ≤ − c√

dk
,

for some constant c > 0.
First, we solve for the unconstrained oracle θ̃(∞) and the constrained oracle θ̃(B) in closed
form. Set m = 1 in the gradient expression (12.4). Plugging in the expressions for the
unconstrained oracle θ̃(∞) (12.52a) and the manipulated observations {µ̃ij} (12.49), we
have

∂`

∂θ1

∣∣∣∣
θ=θ̃(∞)

= k(d− 1)

[
1

1 + e−
d
d−1

θ̃
(∞)
1

− µ1

]
(12.53)

Setting the derivative (12.53) to 0, we have

1

1 + e−
d
d−1

θ̃
(∞)
1

= µ1

θ̃
(∞)
1 = −d− 1

d
log

(
1

µ1

− 1

)
. (12.54)

Denote µd,+ = µ∗1 = 1

1+e
− d
d−1

B
, and µd,− = 1 − µd,+ = 1

1+e
d
d−1

B
. In the notations µd,+

and µd,−, the dependency on d is made explicit. When the dependency on d does not
need to be emphasized, we also use the shorthand notations µ+ and µ−. Now consider the
constrained oracle θ̃(B). By straightforward analysis, one can derive the following closed-
form expression for the constrained oracle:

θ̃
(B)
1 (µ1) =





−B if 0 ≤ µ1 < µd,−

−d−1
d

log
(

1
µ1
− 1
)

if µd,− < µ1 < µd,+

B if µd,+ ≤ µ1 ≤ 1.

(12.55)

Note the similarity between θ̃(B) in (12.55) and the 2-item case θ̂(B)
1 in (12.41) from Sec-

tion 12.1.3. Similar to the function h defined in (12.42) of the 2-item case, we denote a
function hd : [0, 1]→ [−B,B] as:

hd(t) =





−B if 0 ≤ t < µd,−

−d−1
d

log
(

1
t
− 1
)

if µd,− < t < µd,+

B if µd,+ ≤ t ≤ 1,

where hd(t) = θ̃
(B)
1 (µ1 = t) for any t ∈ [0, 1]. Then the estimator θ̃(B)

1 (µ) can be equiv-
alently written as hd(µ). Similar to the function h+ defined in (12.43) of the 2-item case,
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we define an auxiliary function h+
d : [0, 1]→ [−B,B] as:

h+
d (t) =

{
2B
µd,+

(t− µd,+) +B if 0 ≤ t < µd,+

B if µd,+ ≤ t ≤ 1.

Note that in the proofs of Lemma 12.9 and Lemma 12.10, we have only relied on the
following two facts:

• There exists a constant c such that

1

2
< µ+ < c < 1.

• The random variable µ is sampled as µ ∼ 1
k
Binom(k, µ+).

In the general case, it can be verified that
• There exists a constant c such that

1

2
< µd,+ < c < 1, for all d ≥ 2.

• The random variable µ1 as defined in (12.49) is sampled as µ1 ∼ 1
k′

Binom(k′, µ+),
where k′ := (d − 1)k denotes the total number of comparisons in which item 1 is
involved.

To extend the arguments in the 2-item case to the general case, we replace µ by µ1, replace
µ+ by µd,+, replace h+ by h+

d , and replace k by k′ in the proof of Proposition 12.8. It
can be verified that the arguments in Lemma 12.9 and Lemma 12.10 still hold after these
replacements. Therefore, extending the arguments in Proposition 12.8, we have that at
θ∗ =

[
B,− B

d−1
, . . . ,− B

d−1

]
,

E[θ̃
(B)
1 ]− θ∗1 ≤ −

c√
k′

= − c√
(d− 1)k

≤ − c′√
dk
, (12.56)

for some constants c, c′ > 0.

Step 4: Bound the difference between the unconstrained oracle θ̃(∞) and the unconstrained
MLE θ̂(∞), by modifying the proof of Theorem 5.4(b)
Recall that the random variable µ1 denotes the fraction of wins by item 1. In this step,
we fix any real number v ∈ [1

2
, µ+], and denote Ev as the event that we observe µ1 = v.

Then we prove that conditioned on the event Ev, the difference between the unconstrained
oracle θ̃(∞) and the unconstrained MLE θ̂(∞) is small in expectation, by modifying Step 1
to Step 4 in the upper-bound proof of Theorem 5.4(b) in Section 12.1.2.
We first conceptually explain how to modify the proof of Theorem 5.4(b). Our goal is
to bound the difference between θ̃(∞) and θ̂(∞) in expectation conditioned on the event
Ev. By the definition of {µ̃ij} in (12.49), the quantities {µ̃ij} are fixed (not random)
conditioned on Ev, and hence the unconstrained oracle θ̃(∞) is fixed conditioned on Ev.
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We therefore replace the role of the true parameter vector θ∗ in the proof of Theorem 5.4(b)
by the unconstrained oracle θ̃(∞). Then we think of the actual observations {µij} as a noisy
version of {µ̃ij}, and think of θ̂(∞) as the estimate for θ̃(∞). Now we modify the proof of
Theorem 5.4(b) to bound the expected difference between θ̂(∞) and θ̃(∞) conditioned on
Ev. At the end of this step, we provide more intuition why we need to condition on the
event Ev.
Formally, we denote {µ̃vij} as the values of {µ̃ij} conditional on Ev. We denote θ̃v as the
unconstrained oracle θ̃(∞) conditional on Ev. It can be verified that {µ̃vij} and θ̃v are fixed
(not random) given any v ∈ [1

2
, µ+]. Conditioned on Ev, we think of θ̃v as if it is the “true”

parameter vector to be estimated (replacing the role of θ∗), and think of {µ̃vij} as if it is the
“true” underlying probabilities (replacing the role of {µ∗ij}).
Given the definition of {µ̃ij} in (12.49), we have that conditioned on event Ev,

µ̃vij =





v if i = 1, j ∈ {2, . . . , d}
1− v if j = 1, i ∈ {2, . . . , d}
1
2

otherwise.
(12.57)

From the expression (12.54) of the unconstrained oracle θ̃(∞), it can be verified that θ̃(∞)

satisfies the deterministic equality

1

1 + e
−
(
θ̃
(∞)
i −θ̃(∞)

j

) = µ̃ij, for all i 6= j. (12.58)

Now we start to replicate Step 1 to Step 4 in the proof of Theorem 5.4(b) presented in
Section 12.1.2.
To replicate Step 1 of Theorem 5.4(b), recall that in the proof of Theorem 5.4(b), we
condition on Lemma 12.3 and Lemma 12.4. We first establish the modified versions of
these two lemmas, when conditioned on Ev.
Lemma 12.12 (Conditional version of Lemma 12.3). Conditioned on the event Ev, there
exists a finite solution θ̂(∞) to the unconstrained MLE (12.7) w.h.p.( 1

dk
| Ev).

See Section 12.1.4 for the proof of Lemma 12.12.
Lemma 12.13 (Conditional version of Lemma 12.4). Conditioned on the event Ev, there
exists a constant c > 0, such that

∣∣∣∣∣
∑

i 6=m

µmi −
∑

i 6=m

µ̃vmi

∣∣∣∣∣ ≤ c

√
d(log d+ log k)

k
, (12.59)

simultaneously for all m ∈ [d] w.h.p.( 1
dk
| Ev).

See Section 12.1.4 for the proof of Lemma 12.13.
Recall that we have conditioned on the eventEv. DenoteE0 as the event that Lemma 12.12
and Lemma 12.13 both hold. (Note that the event E0 is defined for some fixed v, so to be
precise, the eventE0 should be denoted asE0,v. For ease of notation, we drop the subscript
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v.) Taking a union bound of Lemma 12.12 and Lemma 12.13, we have that E0 happens
w.h.p.( 1

dk
| Ev). For the rest of the proof, we condition on the events (E0, Ev).

To replicate Step 2 of Theorem 5.4(b), we subtract equality (12.58) from both sides of (12.24).
We obtain the (unconditional) deterministic equality:

d∑

i=1

(
1

1 + e−(θ̂
(∞)
m −θ̂(∞)

i )
− 1

1 + e−(θ̃
(∞)
m −θ̃(∞)

i )

)
=
∑

i 6=m

(µmi − µ̃mi), for every m ∈ [d].

(12.60)

Conditioning (12.60) on (E0, Ev), we have the following deterministic equality, as a mod-
ified version of (12.25):

d∑

i=1

(
1

1 + e−(θ̂
(∞)
m −θ̂(∞)

i )
− 1

1 + e−(θ̃vm−θ̃vi )

)
=
∑

i 6=m

(µmi − µ̃vmi), conditioned on (E0, Ev).

(12.61)

To replicate Step 3 of Theorem 5.4(b), note that v is bounded as v ∈ [1
2
, µ+]. By the

expression (12.54) of θ̃(∞) (and hence of θ̃v), it can be verified that θ̃v is bounded as |θ̃v| ≤ c

for some constant c. Denote δ̃ = θ̂(∞) − θ̃v. Using the same arguments as in Lemma 12.5,
we have the deterministic relation that

‖θ̂(∞) − θ̃v‖∞ = ‖δ̃‖∞ .

√
log d+ log k

dk
, conditioned on (E0, Ev). (12.62)

To replicate Step 4 of Theorem 5.4(b), we first apply the second-order mean value theorem
on (12.61), and then take an expectation conditional on (E0, Ev). The following equation
establishes a modified version of (12.29):

d∑

i=1

f ′(θ̃vm − θ̃vi ) · E
[
δ̃i − δ̃m | E0, Ev

]
=

∑

i 6=m

(E[µmi |E0, Ev]− µ̃vmi)−
1

2

d∑

i=1

E[f ′′(λmi)(δ̃m − δ̃i)2 | E0, Ev],

(12.63)

where each λmi is a random variable that takes values between θ̃vm−θ̃vi and θ̃vm−θ̃vi +δ̃m−δ̃i.
To apply Lemma 12.6, we set E as Ev, and set E ′ as E0 in (12.31):

|E[µij | E0, Ev]− E[µij | Ev]| .
1

dk
. (12.64)

It can be verified that

E[µij | Ev] = µ̃vij. (12.65)
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Plugging (12.65) into (12.64), we have

|E[µij | E0, Ev]− µ̃vij| .
1

dk
.

Using the same arguments as in Lemma 12.7 to handle the remaining terms in (12.63), we
have the following upper bound as a modified version of (12.33):

‖E[θ̂(∞) − θ̃v | E0, Ev]‖∞ = ‖E[θ̂(∞) − θ̃(∞) | E0, Ev]‖∞ .
log d+ log k

dk
. (12.66)

Now that we have established the desired result (12.66) of this step, we conclude this step
with some intuition why we need to condition on Ev. Without conditioning on Ev, we
could still have utilized the proof of Theorem 5.4(b), and could have established a result
of the form (cf. (12.66)):

‖E[θ̂(∞) − θ̃v | E0]‖∞ = ‖E[θ̂(∞) − θ̃(∞) | E0]‖∞ .
log d+ log k

dk
. (12.67)

Our goal here is to bound the constrained oracle θ̂(B) and the constrained MLE θ̃(B) in
expectation. However, the fact that two unconstrained estimators are close in expectation
does not imply that their constrained counterparts are close in expectation4. Therefore, a
bound of the form (12.67) is not sufficient for our goal, and instead we need to establish
some “pointwise” control between θ̂(∞) and θ̃(∞). That is, whenever the box constraint has
little effect on θ̃(∞), we want to show that the box constraint also has little effect on θ̂(∞).
Thus, we condition on the event Ev for any v ∈ [1

2
, µ+], and bound the difference between

θ̂(∞) and θ̃(∞) in expectation conditioned on Ev (that is, the bound in (12.66)). Given this
pointwise result, we then integrate over v to establish the desired result that θ̂(B) and θ̃(B)

are close in expectation, to be presented in the subsequent step of the proof.

Step 5: Bound the expected difference between θ̂(B) and θ̃(B), by making a connection be-
tween θ̂(B) − θ̃(B) and θ̂(∞) − θ̃(∞)

We decompose the bias of the standard MLE θ̂(B) as

E[θ̂
(B)
1 ]− θ∗1 = (E[θ̃

(B)
1 ]− θ∗1) + E[θ̂

(B)
1 − θ̃(B)

1 ]. (12.68)

Recall from (12.56) that

E[θ̃
(B)
1 ]− θ∗1 ≤ −

c√
dk
. (12.69)

4For example, consider the following two univariate estimators. The first estimator always outputs a value within
[−B,B]. The second estimator sometimes outputs a value within [−B,B], and sometimes outputs a value greater
than B. The two estimators could be constructed such that they are close (or equal) in expectation. However,
now consider their constrained counterparts. The first estimator is not affected by a box constraint at B, whereas
the expected value of second estimator can become significantly smaller due to the box constraint. Therefore, the
constrained counterparts of these two estimators may not be close in expectation.
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In what follows, we prove that

E[θ̂
(B)
1 − θ̃(B)

1 ] ≤ c′
log d+ log k

dk
. (12.70)

Then plugging (12.69) and (12.70) back into (12.68) yields

E[θ̂
(B)
1 ]− θ∗1 ≤ −

c√
dk

+ c′
log d+ log k

dk
≤ − c′′√

dk
,

for all d ≥ d0 and k ≥ k0 where d0 and k0 are constants, completing the proof of Theo-
rem 5.4(a).

The rest of this step is devoted to proving (12.70). To bound E[θ̂
(B)
1 − θ̃(B)

1 ], we make a
connection between θ̂(B)

1 −θ̃(B)
1 and θ̃(∞)

1 −θ̂(∞)
1 , and then we evoke the bound on θ̃(∞)

1 −θ̂(∞)
1

from (12.66) in Step 4.
Recall that µ1 is a discrete random variable representing the fraction of wins by item 1. By
the law of iterated expectation, we have

E[θ̂
(B)
1 − θ̃(B)

1 ] =E
[
θ̂

(B)
1 − θ̃(B)

1 | 1

2
< µ1 < µ∗1

]
· P
(

1

2
< µ1 < µ∗1

)

︸ ︷︷ ︸
R1

+ E[θ̂
(B)
1 − θ̃(B)

1 | µ1 ≥ µ∗1] · P (µ1 ≥ µ∗1)︸ ︷︷ ︸
R2

+E
[
θ̂

(B)
1 − θ̃(B)

1 | µ1 <
1

2

]
· P
(
µ1 <

1

2

)

︸ ︷︷ ︸
R3

.

(12.71)

In what follows, we bound the terms R1, R2 and R3 separately.

Consider the term R2. From the expression of θ̃(B) in (12.55), we have θ̃(B)
1 = B when

µ1 ≥ µ∗1. Therefore,

E[θ̂
(B)
1 − θ̃(B)

1 | µ1 ≥ µ∗1] = E[θ̂
(B)
1 | µ1 ≥ µ∗1]−B

(i)
≤ 0,

where (i) is true due to the box constraint |θ̂(B)
1 | ≤ B. Hence,

R2 ≤ 0. (12.72)

Consider the term R3, we have E[µ1] = µ∗1 = 1

1+e
− d
d−1

B
, and therefore it can be verified

that there exists a constant τ > 0, such that µ∗1 >
1
2

+ τ for all d ≥ 2. By Hoeffding’s
inequality, we have

P
(
µ1 <

1

2

)
< P (|µ1 − µ∗1| > τ)

≤ 2 exp
(
−2(d− 1)kτ 2

)
.

1

dk
. (12.73)
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Therefore, we have

R3 = E
[
θ̂

(B)
1 − θ̃(B)

1 | µ1 <
1

2

]
· P
(
µ1 <

1

2

)

(i)
≤ 2B · P

(
µ1 <

1

2

)

(ii)
.

1

dk
, (12.74)

where (i) is true because |θ̂(B)
1 − θ̃(B)

1 | ≤ |θ̂(B)
1 | + |θ̃(B)

1 | ≤ 2B by the box constraint, and
(ii) is true due to (12.73).
Now consider the term R1. Denote E0 as the complement of the event E0. Using the law
of iterated expectation again, we have

R1 = E
[
θ̂

(B)
1 − θ̃(B)

1 | 1

2
< µ1 < µ∗1

]
· P
(

1

2
< µ1 < µ∗1

)
=

E
[
θ̂

(B)
1 − θ̃(B)

1 | E0,
1

2
< µ1 < µ∗1

]
· P
(
E0,

1

2
< µ1 < µ∗1

)

︸ ︷︷ ︸
R11

+E
[
θ̂

(B)
1 − θ̃(B)

1 | E0,
1

2
< µ1 < µ∗1

]
· P
(
E0,

1

2
< µ1 < µ∗1

)

︸ ︷︷ ︸
R12

(12.75)

Consider the term R12. We have

P
(
E0,

1

2
< µ1 < µ∗1

)
=

∑

v∈( 1
2
,µ∗1)

P(E0 | Ev) · P(Ev)

(i)
≤ c

dk

∑

v∈( 1
2
,µ∗1)

P(Ev)

.
1

dk
, (12.76)

where (i) is true because E0 happens w.h.p.( 1
dk
| Ev). Combining (12.76) with the fact that

|θ̂(B)
1 − θ̃(B)

1 | ≤ 2B due to the box constraint, we have

R12 .
1

dk
. (12.77)

Now consider the termR11. We first analyze the constrained oracle θ̃(B). By the expression
of θ̃(B) in (12.55) and the expression of θ̃(∞) in (12.54), we have

θ̃(B) = θ̃(∞), conditioned on
1

2
< µ1 < µ∗1. (12.78)
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Moreover, given 1
2
< µ1 < µ∗1, by the expression of θ̃(B) in (12.55), we have

0 < θ̃
(B)
1 < B

and therefore by the parameterization of θ̃(B) in (12.52b),

|θ̃(B)
i | ≤

1

d− 1
B for every i ∈ {2, . . . , d}.

Hence, there exists a constant τ ′ > 0 such that

θ̃
(B)
1 > −B + τ ′ (12.80a)

and

−B + τ ′ < θ̃
(B)
i < B − τ ′ for every i ∈ {2, . . . , d}. (12.80b)

Now we analyze the standard MLE θ̂(B). Recall that Ev denotes the event that µ1 = v. We
have that for every v ∈

(
1
2
, µ∗1
)
,

‖θ̂(∞)
1 − θ̃(B)

1 ‖∞
(i)
= ‖θ̂(∞)

1 − θ̃(∞)‖∞
(ii)
.

√
log d+ log k

dk
, conditioned on (E0, Ev),

(12.81)

where (i) is true by (12.78), and (ii) is true by (12.62) from Step 4. By (12.81), we have
that for every v ∈

(
1
2
, µ∗1
)
,

‖θ̂(∞)
1 − θ̃(B)

1 ‖∞ ≤ τ ′, conditioned on (E0, Ev), (12.82)

for all d ≥ d0 and all k ≥ k0, where d0 and k0 are constants. Combining (12.82)
with (12.80), if the unconstrained MLE θ̂(∞) violates the box constraint, then only pos-
sible case is θ̂(∞)

1 > B. Then either θ̂(∞)
1 = θ̂

(B)
1 (when θ̂(∞) does not violate the box

constraint) or θ̂(∞)
1 > B ≥ θ̂

(B)
1 (when θ̂(∞) violates the box constraint). Hence, for every

v ∈ (1
2
, µ∗1),

θ̂
(∞)
1 ≥ θ̂

(B)
1 , conditioned on (E0, Ev). (12.83)

Combining (12.78) and (12.83), we have that for every v ∈ (1
2
, µ∗1),

θ̂(B) − θ̃(B) ≤ θ̂(∞) − θ̃(∞), conditioned on (E0, Ev). (12.84)
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By the law of iterated expectation again, we have

R11 =
∑

v∈( 1
2
,µ∗1)

E[θ̂
(B)
1 − θ̃(B)

1 | E0, µ1 = v] · P(E0, µ1 = v)

=
∑

v∈( 1
2
,µ∗1)

E[θ̂
(B)
1 − θ̃(B)

1 | E0, Ev] · P(E0, Ev)

(i)
≤

∑

v∈( 1
2
,µ∗1)

E[θ̂
(∞)
1 − θ̃(∞)

1 | E0, Ev] · P(E0, Ev)

(ii)
.

log d+ log k

dk

∑

v∈( 1
2
,µ∗1)

P(E0, Ev)

.
log d+ log k

dk
, (12.85)

where (i) is true due to (12.84), and (ii) is true due to the bound (12.66) from Step 4.
Plugging the term R11 from (12.85) and R12 from (12.77) back to (12.75), we have

R1 = R11 +R12 .
log d+ log k

dk
. (12.86)

Finally, plugging the terms R1 from (12.86), R2 from (12.72), and R3 from (12.74) back
into (12.71) yields

E[θ̂
(B)
1 − θ̃(B)

1 ] .
log d+ log k

dk
,

completing the proof of (12.70).

12.1.4 Proofs of lemmas
In this section, we present the proofs of all the lemmas used for proving Theorem 5.4.

Proof of Lemma 12.2

We fix any constant A > 0.
The stretched-MLE (12.8) is an optimization over the compact set ΘA, and the negative log-

likelihood function ` is continuous. By the Extreme Value Theorem [149, Theorem 4.16], a
solution θ̂(A) is guaranteed to exist.

It remains to prove the uniqueness of θ̂(A). Assume for contradiction that there exist two
solutions θ̂, θ̂′ ∈ ΘA to the stretched-MLE (12.8) and θ̂ 6= θ̂′. By Lemma 12.1, the negative
log-likelihood function ` is strictly convex. Therefore,

1

2

(
`(θ̂) + `(θ̂′)

)
> `

(
θ̂ + θ̂′

2

)
. (12.87)
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It can be verified that θ̂+θ̂′

2
∈ ΘA. Moreover, (12.87) along with the fact that `(θ̂) = `(θ̂′)

implies that θ̂+θ̂
′

2
attains a strictly smaller function value than both θ̂ and θ̂′. This contradicts the

assumption that θ̂ and θ̂′ are both optimal solutions to the stretched-MLE (12.8).

Proof of Lemma 12.3

We first define a “comparison graph” G({Wij}) as a function of the pairwise-comparison out-
comes {Wij}. Let each item i ∈ [d] be a node of the graph. Let there be a directed edge
(i→ j) ∈ G, if and only if there exists a comparison where item i beats item j. A directed graph
is called strongly-connected if and only if there exists a path from every node i to every other
node j.

The following lemma from [63] relates the existence and uniqueness of a finite unconstrained
MLE θ̂(∞) to the strong connectivity of the comparison graph G. This lemma is based on a
different parameterization of the BTL model. In this parameterization, each item has a weight
w∗i > 0, and the probability that item i beats item j equals w∗i

w∗i +w∗j
.

Lemma 12.14 (Section 2 from [63]). If the comparison graph G({Wij}) is strongly-connected,
then there exists a unique solution to the following MLE:

ŵMLE = argmin
w∈Rd

wi>0,
∑d
i=1 wi=1

`w({Wij};w),

where the negative log-likelihood function `w is defined as

`w(w) = −
∑

1≤i<j≤d

(
Wij log

(
wi

wi + wj

)
+Wji log

(
wj

wi + wj

))
.

It can be seen that θ and w are simply different parameterizations of the same problem. There
is a one-to-one mapping between θ and w, by taking θi = log(wi) and re-centering accordingly
(or in the inverse direction, by taking wi = eθi and normalizing accordingly). Therefore, the
existence and the uniqueness of the MLE ŵMLE in Lemma 12.3 carries over to our unconstrained
MLE θ̂(∞) in (12.7). That is, if the comparison graph G is strongly-connected, then there exists
a unique solution θ̂(∞) to the unconstrained MLE. It remains to show that the comparison graph
G is strongly-connected w.h.p.( 1

dk
).

We first construct an undirected graph G′({Wij}) as follows. Let each item i ∈ [d] be a node
of the graph G′. Let there be an undirected edge (i, j) ∈ G′, if and only if in the directed graph
G we have both (i → j) ∈ G and (j → i) ∈ G. Equivalently, there exists an undirected edge
(i, j) ∈ G′, if and only if 0 < µij < 1. It can be verified that the connectivity of the undirected
graph G′ implies the strong connectivity of the directed graph G. Therefore,

P(G strongly-connected) ≥ P(G′ connected). (12.88)

The probability that (i, j) ∈ G′ is P(0 < µij < 1). By Hoeffding’s inequality, we have that
for any t > 0,

P(|µij − µ∗ij| > t) < 2e−kt
2

, for all 1 ≤ i < j ≤ d.
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We have 0 < 1
1+e2B

≤ µ∗ij ≤ 1
1+e−2B < 1, for any i < j. Since B is a constant, we have that

µ∗ij is bounded away from 0 and 1 by a constant. Set t = τ where τ is any constant such that
0 < τ < 1

1+e2B
. Then for all 1 ≤ i < j ≤ d, we have

P(0 < µij < 1) > P(µ∗ij − τ < µij < µ∗ij + τ)

≥ 1− P(|µij − µ∗ij| > τ)

> 1− 2e−ck,

for some constant c > 0 .
Recall that the random variables {µij} are independent across all 1 ≤ i < j ≤ d. Hence,

the probability of the undirected graph G′ being connected is at least the probability of an (undi-
rected) Erdős-Rényi random graph being connected, where each edge independently exists with
probability 1− 2e−ck.

The following lemma from [68] provides an upper bound on the probability of an (undirected)
Erdős-Rényi random graph being disconnected (and hence a lower bound on the probability of
the graph being connected).
Lemma 12.15 (Theorem 1 from [68]). For an (undirected) Erdős-Rényi graph of d nodes, where
each edge independently exists with probability p. Let q := 1 − p. Then the probability of the
graph being disconnected is at most

(
1− d− 1

2
qd−1

)
dqd−1.

To apply Lemma 12.15, we set p = 1− 2e−ck and therefore q = 2e−ck. Then we have

P[G′ disconnected] ≤
(

1− d− 1

2
qd−1

)
dqd−1

≤ dqd−1

= de−ck(d−1)

≤ c′

dk
, for some constant c′ > 0. (12.89)

Combining (12.88) and (12.89) completes the proof of the lemma.

Proof of Lemma 12.4

We first consider any fixed m ∈ [d]. By the definition of {µij} in (12.2), we have

∑

i 6=m

µmi =
1

k

∑

i 6=m

k∑

r=1

X
(r)
mi . (12.90)

There are (d − 1)k terms of the form X
(r)
mi in (12.90). It can be verified that the terms X(r)

mi

involved in (12.90) are independent. Moreover, since X(r)
mi ∈ {0, 1}, changing the value of a
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single term X
(r)
mi changes the value of (12.90) by 1

k
. By McDiarmid’s inequality, we have that for

any t > 0,

P

[∣∣∣∣∣
∑

i 6=m

µmi −
∑

i 6=m

µ∗mi

∣∣∣∣∣ > t

]
≤ 2 exp

(
− 2t2

(d− 1)k · ( 1
k
)2

)
= 2 exp

(
− 2kt2

(d− 1)

)
. (12.91)

Setting t = c
√

d(log d+log k)
k

in (12.91), we have

P

[∣∣∣∣∣
∑

i 6=m

µmi −
∑

i 6=m

µ∗mi

∣∣∣∣∣ ≤ c

√
d(log d+ log k)

k

]
≥ 1− 2 exp

(
−c′ d

d− 1
(log d+ log k)

)

≥ 1− c′′

d2k
, (12.92)

for some constants c′, c′′ > 0, provided that the constant c > 0 is sufficiently large.
Taking a union bound over m ∈ [d] on (12.92) completes the proof.

Proof of Lemma 12.5

Denote the random variables m+ := argmaxi∈[d] δi and m− := argmini∈[d] δi. When there are
multiple maximizers or minimizers, we arbitrarily choose one.

Setting m = m+ in the first-order optimality condition (12.27), we have

d∑

i=1

[f(θ∗m+ − θ∗i + δm+ − δi)− f(θ∗m+ − θ∗i )]
︸ ︷︷ ︸

T+

=
∑

i 6=m+

(µmi − µ∗mi)
(i)
.

√
d(log d+ log k)

k
,

(12.93)

where (i) is true by Lemma 12.4 (recall that the lemma statement is conditioned on the event E0

that both Lemma 12.3 and Lemma 12.4 hold).
Denote the function g(x, t) := f(x + t) − f(x) = 1

1+e−(x+t) − 1
1+e−x

. The following lemma
states three properties for the function g, which are used in later parts of the proof.
Lemma 12.16. We have the following properties for the function g.

g(x, t) = −g(−x,−t), for all x, t ∈ R (12.94a)
g(x, t) ≥ g(τ, t) > 0, for all τ > 0, t > 0, and all x such that − τ ≤ x ≤ τ

(12.94b)

g(τ, t1) + g(τ, t2) ≥ g(τ, t1 + t2), for all τ > 0, and all t1, t2 ≥ 0. (12.94c)

Lemma 12.16 can be verified by straightforward algebra. For completeness, we include the
proof of Lemma 12.16 at the end of this section.
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By the definition of m+, we have δm+ = maxi∈[d] δi, and therefore δm+ − δi ≥ 0 for all
i ∈ [d]. Hence, we have

T+ =
d∑

i=1

f(θ∗m+ − θ∗i + δm+ − δi)− f(θ∗m+ − θ∗i )

=
d∑

i=1

g(θ∗m+ − θ∗i , δm+ − δi)

(i)
≥

d∑

i=1

g(2B, δm+ − δi), (12.95)

where (i) is true by (12.94b) combined with the fact that |θ∗i − θ∗j | ≤ |θ∗i | + |θ∗j | ≤ 2B for all
i, j ∈ [d].

Similarly, setting m = m− in the first-order optimality condition (12.27), we have

d∑

i=1

[f(θ∗m− − θ∗i + δm− − δi)− f(θ∗m− − θ∗i )]
︸ ︷︷ ︸

T−

.

√
d(log d+ log k)

k
. (12.96)

By the definition of m−, we have δm− = mini∈[d] δi, and therefore δi − δm− ≥ 0 for all i ∈ [d].
Hence, we have

T− =
d∑

i=1

f(θ∗m− − θ∗i + δm− − δi)− f(θ∗m− − θ∗i )

=
d∑

i=1

g(θ∗m− − θ∗i , δm− − δi)

(i)
=

d∑

i=1

−g(θ∗i − θ∗m− , δi − δm−)

(ii)
≤

d∑

i=1

−g(2B, δi − δm−), (12.97)

where (i) is true by (12.94a), and (ii) is true by (12.94b) combined with the fact that |θ∗i − θ∗j | ≤
2B for all i, j ∈ [d].

Combining (12.95) and (12.97), we have

T+ − T− ≥
d∑

i=1

g(2B, δm+ − δi) +
d∑

i=1

g(2B, δi − δm−)

(i)
≥

d∑

i=1

g(2B, δm+ − δm−)

= d · g(2B, δm+ − δm−)
(ii)
≥ 0, (12.98)
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where (i) is true due to (12.94c) since δm+ − δi ≥ 0 and δi − δm− ≥ 0 for all i ∈ [d], and (ii) is
true since δm+ − δm− ≥ 0. On the other hand, combining (12.93) and (12.96), we have

T+ − T− .

√
d(log d+ log k)

k
. (12.99)

Combining (12.98) and (12.99), we have

0 ≤ d · g(2B, δm+ − δm−) ≤ T+ − T+ .

√
d(log d+ log k)

k

g(2B, δm+ − δm−) .

√
log d+ log k

dk

f(2B + δm+ − δm−)− f(2B) .

√
log d+ log k

dk
. (12.100)

By the first-order mean value theorem on the LHS of (12.100), we have

f(2B + δm+ − δm−)− f(2B) = f ′(λ) · (δm+ − δm−) ≤ c

√
log d+ log k

dk
, (12.101)

where λ is a random variable that takes values in the interval [2B, 2B + δm+ − δm− ].
Let ε be any constant such that 0 < ε < 1− f(2B). Then there exists a constant τ > 0 such

that f(2B + τ) − f(2B) = ε. On the other hand, there exist constants d0 > 0 and k0 > 0 such
that

c

√
log d+ log k

dk
< ε, for any d ≥ d0 and k ≥ k0. (12.102)

Combining (12.101) and (12.102), we have

f(2B + δm+ − δm−)− f(2B) ≤ c

√
log d+ log k

dk
< ε = f(2B + τ)− f(2B)

f(2B + δm+ − δm−) ≤ f(2B + τ). (12.103)

By (12.5a), we have f ′ > 0 on (−∞,∞), and hence the function f is monotonically increasing.
Hence, from (12.103), we have δm+− δm− ≤ τ , and therefore the interval [2B, 2B+ δm+− δm− ]
is bounded. By the property (12.5a) of the sigmoid function f , we have f ′ > c3 > 0 for some
constant c3 > 0 in the bounded interval [2B, 2B + δm+ − δm− ]. Recall that λ takes values in the
interval [2B, 2B + δm+ − δm− ]. Therefore, we have

c3(δm+ − δm−) < f ′(λ) · (δm+ − δm−). (12.104)

Combining (12.101) and (12.104), we have

c3(δm+ − δm−) < f ′(λ) · (δm+ − δm−) ≤ c

√
log d+ log k

dk

δm+ − δm− .

√
log d+ log k

dk
. (12.105)
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By the assumption that θ∗ ∈ ΘB, we have
∑d

i=1 θ
∗
i = 0. Similarly, by the centering con-

straint on the unconstrained MLE θ̂(∞) in (12.7), we have
∑d

i=1 θ̂
(∞)
i = 0. Hence, we have the

deterministic relation
d∑

i=1

θ̂
(∞)
i −

d∑

i=1

θ∗i =
d∑

i=1

δi = 0. (12.106)

Hence, δm+ ≥ 0 and δm− ≤ 0. By (12.105), we have

δm+ − δm− = |δm+|+ |δm−| .
√

log d+ log k

dk
.

Hence, |δm+| .
√

log d+log k
dk

and |δm− | .
√

log d+log k
dk

. Therefore,

|δm| .
√

log d+ log k

dk
, for all m ∈ [d],

completing the proof of the lemma.

Proof of Lemma 12.16: We prove the three parts of the lemma separately.
(a) It can be verified that f(x) = 1− f(−x). Hence,

g(x, t) = f(x+ t)− f(x) = [1− f(−x− t)]− [1− f(−x)]

= −[f(−x− t)− f(−x)] = −g(−x,−t).

(b) We prove the two parts of the inequality separately.
We first prove that g(τ, t) > 0. By (12.5a), the function f is strictly increasing. Therefore,
for any t > 0, we have

g(τ, t) = f(τ + t)− f(τ) > 0.

Now we prove that g(x, t) ≥ g(τ, t). We have

g(x, t)− g(τ, t) = f(x+ t)− f(x)− [f(τ + t)− f(τ)]

=

∫ x+t

x

f ′(u) du−
∫ τ+t

τ

f ′(u) du

=

∫ t

0

f ′(x+ u) du−
∫ t

0

f ′(τ + u) du

=

∫ t

0

[f ′(x+ u)− f ′(τ + u)] du. (12.107)

By (12.107), it remains to prove that

f ′(x+ u) ≥ f ′(τ + u), for any u ∈ [0, t]. (12.108)
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Fix any u ∈ [0, t]. By assumption we have τ > 0. Hence, τ +u > 0. Now we consider the
sign of (x+ u).
If x + u ≥ 0, then by the assumption that x ≤ τ , we have 0 ≤ x + u ≤ τ + u. It can be
verified that f ′ is decreasing on [0,∞). Therefore,

f ′(x+ u) ≥ f ′(τ + u). (12.109)

If x+ u < 0, we have

0 < −x− u
(i)
≤ τ − u

(ii)
≤ τ + u, (12.110)

where (i) is true by the assumption that x ≥ −τ , and (ii) is true because u ∈ [0, t] and
therefore u ≥ 0. We have

f ′(x+ u)
(i)
= f ′(−x− u)

(ii)
≥ f ′(τ + u), (12.111)

where (i) holds because it can be verified that f ′(x) = f ′(−x) for any x ∈ R, and (ii) is
true by combining (12.110) with the fact that f ′ is decreasing on [0,∞).
Combining the two cases of (12.109) and (12.111) completes the proof of (12.108).

(c) We have

g(τ, t1) + g(τ, t2) = f(τ + t1)− f(τ) + f(τ + t2)− f(τ)

=

∫ τ+t1

τ

f ′(u) du+

∫ τ+t2

τ

f ′(u) du

(i)
≥
∫ τ+t1

τ

f ′(u) du+

∫ τ+t1+t2

τ+t1

f ′(u) du

=

∫ τ+t1+t2

τ

f ′(u) du

= f(τ + t1 + t2)− f(τ) = g(τ, t1 + t2),

where (i) is true because f ′ is decreasing on (0,∞), and because τ > 0 and t1, t2 ≥ 0 by
assumption.

Proof of Lemma 12.6

We fix any i, j ∈ [d] where i 6= j. By the law of iterated expectation, we have

E[µij | E] = E[µij | E ′, E] · P(E ′ | E) + E[µij | E ′, E] · P(E
′ | E). (12.112)

Subtracting E[µij | E ′, E] from both sides of (12.112), we have

E[µij | E]− E[µij | E ′, E] = E[µij | E ′, E] · [P(E ′ | E)− 1] + E[µij | E ′, E] · P(E
′ | E)

= (−E[µij | E ′, E] + E[µij | E ′, E]) · P(E
′ | E). (12.113)
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Taking an absolute value on (12.113), we have

|E[µij | E]− E[µij | E ′, E]| =
∣∣∣−E[µij | E ′, E] + E[µij | E ′, E]

∣∣∣ · P(E
′ | E)

(i)
.

1

dk
,

where (i) is true due to the deterministic inequality 0 ≤ µij ≤ 1 and the fact that event E ′

happens w.h.p.( 1
dk
| E).

Proof of Lemma 12.7

Denote m+ := argmaxi∈[d] ∆i and m− := argmini∈[d] ∆i. When there are multiple maximizers
or minimizers, we arbitrarily choose one. The proof works similarly in spirit to the proof of
Lemma 12.5. We first show that ∆m+ −∆m− satisfies the desired upper bound. Then we show
that ∆m+ and ∆m− have different signs, and therefore the desired upper bound holds on |∆m|
uniformly across all m ∈ [d].

Recall from (12.30) that for every m ∈ [d],

d∑

i=1

f ′(θ∗m − θ∗i ) · (∆m −∆i) =
∑

i 6=m

(E[µmi | E0]− µ∗mi)
︸ ︷︷ ︸

R1

− 1

2

d∑

i=1

E[f ′′(λmi)(δm − δi)2 | E0]

︸ ︷︷ ︸
R2

,

(12.114)

where λmi is a random variable that takes values between θ∗m − θ∗i and θ∗m − θ∗i + (δm − δi).
We consider the two terms on the RHS of (12.30) separately. For the termR1, recall from (12.32)

that

|E[µmi | E0]− µ∗mi| .
1

dk
.

Therefore,

|R1| . (d− 1) · 1

dk
.

1

k
. (12.115)

Now consider the term R2. Recall that θ∗ ∈ ΘB. Therefore, for every m ∈ [d], we have
|θ∗m| ≤ B. Recall from Lemma 12.5 that for every m ∈ [d], we have

|δm| .
√

log d+ log k

dk
, conditioned on E0. (12.116)

Let c > 0 be any constant. By (12.116), we have |δm| ≤ c, for all d ≥ d0 and k ≥ k0, where
d0 and k0 are constants which may only depend on c. Hence, conditioned on E0, the interval
between θ∗m − θ∗i and θ∗m − θ∗i + (δm − δi) is contained in the interval [−2B − 2c, 2B + 2c]. By
the property (12.5b) of the sigmoid function f , we have

|f ′′| < c5, on the bounded interval [−2B − 2c, 2B + 2c].
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Therefore,

∣∣E
[
f ′′(λmi) · (δm − δi)2 | E0

]∣∣ ≤ c5 · E[(δm − δi)2 | E0]
(i)
.

log d+ log k

dk
, for all i,m ∈ [d],

where (i) is again by (12.116). Therefore,

|R2| . d · log d+ log k

dk
=

log d+ log k

k
. (12.117)

Taking an absolute value on (12.114) and using the triangle inequality, we have
∣∣∣∣∣
d∑

i=1

f ′(θ∗m − θ∗i ) · (∆m −∆i)

∣∣∣∣∣ ≤ |R1|+ |R2|
(i)
.

log d+ log k

k
, (12.118)

where (i) is true by combining the term R1 from (12.115) and the term R2 from (12.117). Taking
m = m+ in (12.118), we have

d∑

i=1

f ′(θ∗m+ − θ∗i ) · (∆m+ −∆i) ≤ c
log d+ log k

k
. (12.119)

Taking m = m− in (12.118), we have

d∑

i=1

f ′(θ∗m− − θ∗i ) · (∆m− −∆i) ≥ −c
log d+ log k

k

and hence

d∑

i=1

f ′(θ∗m− − θ∗i ) · (∆i −∆m−) ≤ c
log d+ log k

k
. (12.120)

Adding (12.119) and (12.120), we have

d∑

i=1

f ′(θ∗m+ − θ∗i ) · (∆m+ −∆i) +
d∑

i=1

f ′(θ∗m− − θ∗i ) · (∆i −∆m−)

︸ ︷︷ ︸
R

≤ c
log d+ log k

k
.

(12.121)

Consider the term R. We have |θ∗m − θ∗i | ≤ 2B for all i,m ∈ [d]. By the property (12.5a) of
the sigmoid function, there exists some constant c3, such that

f ′(θ∗m − θ∗i ) > c3 > 0, for all i,m ∈ [d]. (12.122)

By the definition of m+ and m−, we have ∆m+ −∆i ≥ 0 and ∆i −∆m− ≥ 0 for every i ∈ [d].
Plugging (12.122) into (12.121), combined with the fact that ∆m+−∆i ≥ 0 and ∆i−∆m− ≥ 0,
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we have

c3

[
d∑

i=1

(∆m+ −∆i) +
d∑

i=1

(∆i −∆m−)

]
≤ R ≤ c

log d+ log k

k

c3d · (∆m+ −∆m−) ≤ c
log d+ log k

k

∆m+ −∆m− .
log d+ log k

dk
. (12.123)

By (12.106) in the proof of Lemma 12.5, we have the deterministic relation

d∑

i=1

δi = 0. (12.124)

Taking an expectation over (12.124) conditional on E0, we have

d∑

i=1

∆i = 0.

Hence, ∆m+ ≥ 0 and ∆m− ≤ 0. By (12.123), we have

∆m+ −∆m− = |∆m+ |+ |∆m−| .
log d+ log k

dk
.

Hence, |∆m+ | . log d+log k
dk

and |∆m−| . log d+log k
dk

. Therefore,

|∆m| .
log d+ log k

dk
, for all m ∈ [d].

Proof of Lemma 12.9

To compare the functions h and h+, we introduce an auxiliary function h0 : [0, 1]→ [−B,B]:

h0(t) =





−B if 0 ≤ t ≤ µ−
B

µ+− 1
2

(t− 1
2
) if µ− < t < µ+

B if µ+ ≤ t ≤ 1.

In words, the function h0 is piecewise linear. On the interval [0, µ−], its value equals the constant
−B. On the interval [µ−, µ+], it is a line passing through the points (µ−,−B) and (µ+, B). On
the interval [µ+, 1], its value equals the constant B. See Fig. 12.1 for a comparison of the three
functions h, h+ and h0.

It can be verified that h+(t) ≥ h0(t) for any t ∈ [0, 1]. Hence,

E[h+(µ)] ≥ E[h0(µ)]. (12.125)
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µ− 0.5 µ+ 1

B

0

−B

h

h+

h0

Figure 12.1: The functions h, h+ and h0.

Recall that our goal is to prove (12.44):

E[h(µ)] ≤ E[h+(µ)].

Given (12.125), it suffices to prove that

E[h(µ)] ≤ E[h0(µ)]. (12.126)

The rest of the proof is devoted to proving (12.126).

It can be verified that h and h0 are anti-symmetric around 1
2
. That is, for any t ∈ [0, 1], we

have

h(t) = −h(1− t) (12.127a)
h0(t) = −h0(1− t). (12.127b)

In particular, we have

h

(
1

2

)
= h0

(
1

2

)
= 0. (12.128)

It can also be verified that

h(t) ≥ h0(t), for all t ∈
[
0,

1

2

]
. (12.129)

Recall the notation of W = kµ representing the number of times that item 1 beats item 2

272



among the k comparisons between them. We have W ∼ Binom(k, µ+). Therefore,

E[h(µ)]− E [h0(µ)] = EW
[
h

(
W

k

)]
− EW

[
h0

(
W

k

)]

=
k∑

w=0

[
h
(w
k

)
− h0

(w
k

)]
· P(W = w)

(i)
=



b k2c∑

w=0

+
k∑

w=d k2e



[
(h− h0)

(w
k

)]
· P(W = w)

(ii)
=

b k2c∑

w=0

[
(h− h0)

(w
k

)
· P(W = w) + (h− h0)

(
1− w

k

)
· P(W = k − w)

]

(iii)
=

b k2c∑

w=0

(h− h0)
(w
k

)
· [P(W = w)− P(W = k − w)], (12.130)

where (i) is true by (12.128). Specifically, when k is even, we double-count the term of w = k
2
.

This term equals (h − h0)(1
2
) = 0, so double-counting this term does not affect the equality.

Moreover, step (ii) is true by a change of variable w ← k − w in the second summation, and
step (iii) is true by the anti-symmetry (12.127) of the functions h and h+.

Now consider the terms in the summation (12.130). By (12.129), we have

(h− h0)
(w
k

)
≥ 0, for all 0 ≤ w ≤

⌊
k

2

⌋
. (12.131)

Using the binomial probabilities of W ∼ Binom(k, µ+), we also have

P(W = w)− P(W = k − w) =

(
k

w

)
[(µ+)w(1− µ+)k−w − (µ+)k−w(1− µ+)w]

=

(
k

w

)
(µ+)w(1− µ+)w · [(1− µ+)k−2w − (µ+)k−2w]

(i)
≤ 0, for all 0 ≤ w ≤

⌊
k

2

⌋
, (12.132)

where (i) is true because µ+ = 1
1+e−2B > 1

2
, combined with the fact that k − 2w ≥ 0, for all

0 ≤ w ≤
⌊
k
2

⌋
. Plugging (12.131) and (12.132) back into (12.130), we have

E[h(µ)]− E[h0(µ)] ≥ 0,

completing the proof of (12.126).
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Proof of Lemma 12.10

We have

E[h+(µ)]− θ∗1 = EW
[
h+

(
W

k

)]
−B

=
k∑

w=0

h+
(w
k

)
· P(W = w)−B

(i)
=

bkµ+c∑

w=0

2B

µ+

(w
k
− µ+

)
· P(W = w)

= c




bkµ+c∑

w=0

w

k
· P(W = w)

︸ ︷︷ ︸
R1

−µ+

bkµ+c∑

w=0

P(W = w)

︸ ︷︷ ︸
R2



, (12.133)

where (i) is true by plugging in the definition of the function h+ from (12.43).
Now we consider the two terms R1 and R2 separately. For any integer n ≥ 1, any integer s

such that 0 ≤ s ≤ n, and any real number p ∈ [0, 1], we define Ple(n, p, s) (resp. Peq(n, p, s))
as the probability that the value of the random variable Binom(n, p) is at most (resp. equal to) s.
That is,

Ple(n, p, s) = P[Binom(n, p) ≤ s],

Peq(n, p, s) = P[Binom(n, p) = s].

Then the term R2 can be written as

R2 = Ple(k, µ+, bkµ+c). (12.134)

For the term R1, we have

R1 =

bkµ+c∑

w=0

w

k
· P(W = w) =

bkµ+c∑

w=0

w

k
·
(
k

w

)
µw+(1− µ+)(k−w)

=

bkµ+c∑

w=1

w

k
· k!

w!(k − w)!
µw+(1− µ+)(k−w)

= µ+

bkµ+c∑

w=1

(k − 1)!

(w − 1)!(k − w)!
µw−1

+ (1− µ+)(k−w)

(i)
= µ+

bkµ+c−1∑

w=0

(k − 1)!

(w)!(k − w − 1)!
µw+(1− µ+)(k−1−w)

= µ+

bkµ+c−1∑

w=0

(
k − 1

w

)
µw+(1− µ+)(k−1−w)

= µ+ · Ple(k − 1, µ+, bkµ+c − 1), (12.135)
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where (i) is true by a change of variable w ← w − 1. Plugging (12.134) and (12.135) back
into (12.133), we have

E[h+(µ)]− θ∗1 = cµ+ · [Ple(k − 1, µ+, bkµ+c − 1)− Ple(k, µ+, bkµ+c)]. (12.136)

For any integer n ≥ 1, any integer s such that 0 ≤ s ≤ n, and any p ∈ [0, 1], we claim the
combinatorial equality

Ple(n, p, s) = Ple(n− 1, p, s− 1) + (1− p) · Peq(n− 1, p, s). (12.137)

To prove (12.137), we use a standard combinatorial argument. Consider n balls, and we select
each ball independently with probability p. Then the LHS of (12.137) equals the probability that
at most s balls are selected. This event can be decomposed into two cases. Either there are at
most (s− 1) balls selected from the first (n− 1) balls; or there are exactly s balls selected from
the first (n − 1) balls, and the last ball is not selected. These two cases correspond to the two
terms on the RHS of (12.137).

Now setting n = k, p = µ+, and s = bkµ+c in (12.137), we have

Ple(k, µ+, bkµ+c) = Ple(k − 1, µ+, bkµ+c − 1) + (1− µ+) · Peq(k − 1, µ+, bkµ+c]).
(12.138)

Combining (12.136) and (12.138), we have

E[h+(µ)]− θ∗1 = −c(1− µ+) · Peq(k − 1, µ+, bkµ+c). (12.139)

It remains to bound the term Peq(k − 1, µ+, bkµ+c) on the RHS of (12.139). Writing out the
binomial probability, we have

Peq(k − 1, µ+, bkµ+c) =

(
k − 1

bkµ+c

)
µ
bkµ+c
+ (1− µ+)k−1−bkµ+c. (12.140)

By the Stirling’s approximation, we have

√
2π · kk+ 1

2 e−k ≤ k! ≤ e · kk+ 1
2 e−k, for any integer k ≥ 0.

Then for any integer n ≥ 1, and any integer k such that 0 ≤ k ≤ n, we have

(
n

k

)
=

n!

k!(n− k)!
≥ c

nn+ 1
2

kk+ 1
2 (n− k)n−k+ 1

2

. (12.141)
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Plugging (12.141) into (12.140), we have

Peq(k − 1, µ+, bkµ+c) ≥ c
(k − 1)k−

1
2

(k − 1− bkµ+c)k−
1
2
−bkµ+c · (bkµ+c)bkµ+c+ 1

2

· µbkµ+c
+ (1− µ+)k−1−bkµ+c

≥ c
(k − 1)k−

1
2

(k − kµ+)k−
1
2
−bkµ+c · (kµ+)bkµ+c+ 1

2

· µbkµ+c
+ (1− µ+)k−1−bkµ+c

≥ c
(k − 1)k−

1
2

kk · (1− µ+)k−
1
2
−bkµ+c · (µ+)bkµ+c+ 1

2

· µbkµ+c
+ (1− µ+)k−1−bkµ+c

= c
(k − 1)k−

1
2

kk
· µ−

1
2

+ (1− µ+)−
1
2

(i)
= c

(k − 1)k−
1
2

kk
≥ c

1√
k − 1

(1− 1

k
)k &

1√
k
, (12.142)

where (i) is true because µ+ = 1
1+e−2B is bounded away from 0 and 1 by a constant.

Combining (12.139) and (12.142), we have

E[h+(µ)]− θ∗1 ≤ −
c√
k
, for some constant c > 0.

Proof of Lemma 12.11

First consider the unconstrained oracle θ̃(∞). We prove that for any θ 6∈ Θoracle, there exists some
θ′ ∈ Θoracle such that `(θ′) < `(θ), where both θ and θ′ satisfy the centering constraint.

Consider any θ 6∈ Θoracle. By the definition of Θoracle, there exist some integers i and j where
2 ≤ i < j ≤ d, such that θi 6= θj . By the symmetry of the manipulated observations {µ̃ij}
defined in (12.49) with respect to item 2 through item d, we have that for any θ ∈ Rd,

`({µ̃i,j; θ}) = `({µ̃i,j; θπ}), (12.143)

where π : {2, . . . , d} → {2, . . . , d} is any permutation of item 2 through item d, and θπ =
[θ1, θπ(2), . . . , θπ(d)]. For every s ∈ {0, 1, . . . , d − 2}, define πs as the permutation where item 2
through item d are shifted s positions to the left in a circle. That is, for every i ∈ {2, . . . , d}, we
have

πs(i) = 2 + [(i− 2 + s) mod (d− 1)].

Now define θ′ = 1
d−1

∑d−2
s=0 θπs . It can be verified that

θ′ =

[
θ1,

1

d− 1

d∑

i=2

θi, . . . ,
1

d− 1

d∑

i=2

θi

]
∈ Θoracle. (12.144)

Moreover, we have

`(θ′) = `

(
1

d− 1

d−2∑

s=0

θπs

)
(i)
<

1

d− 1

d−2∑

s=0

`(θπs)
(ii)
= `(θ),
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where (i) is due to the strict convexity of the negative log-likelihood function ` in Lemma 12.1,
and (ii) is due to (12.143).

Now we argue the equivalence of the unconstrained oracle θ̃(∞) defined in (12.50a) and (12.51a).
If a solution θ̃(∞) to (12.50a) exists, then we have θ̃(∞) ∈ Θoracle and it is trivially also the solution
to (12.51a). On the other hand, if a solution θ̃(∞) to (12.51a) exists, assume for contradiction that
θ̃(∞) is not a solution to (12.50a). Then either there exists no solution to (12.50a), or the solution
to (12.50a) is not θ̃(∞). In either case, there exists some θ such that `(θ) < `(θ̂(∞)). By (12.144),
we construct some θ′ ∈ Θoracle such that `(θ′) < `(θ) < `(θ̂(∞)). This contradicts the assumption
that θ̂(∞) is the optimal solution to (12.51a). Hence, Eq. (12.50a) and (12.51a) are equivalent
definitions of the unconstrained oracle θ̂(∞).

The same argument can be extended to the constrained oracle θ̂(B), by noting that if θ ∈ ΘB,
then in the construction (12.144) we have θ′ ∈ ΘB.

Proof of Lemma 12.12

Note that the lemma statement is conditioned on the event Ev. That is, we observe µ1 = v
for some 1

2
≤ v ≤ µ+ < 1. In particular, we have 0 < µ1 < 1. Then there exists at least

one directed edge from node 1 to nodes {2, . . . , d}, and at least one directed edge from nodes
{2, . . . , d} to node 1. Then it suffices to prove that the subgraph consisting of nodes {2, . . . , d}
is strongly-connected w.h.p.( 1

dk
).

Note that the observations {µij} for any 2 ≤ i < j ≤ d are all independent of µ1, and
therefore independent of the event Ev. Using the arguments in Lemma 12.3, we have that the
subgraph consisting of nodes {2, . . . , d} is strongly-connected w.h.p.( 1

dk
).

Proof of Lemma 12.13

Note that the lemma statement is conditioned on the event Ev. That is, we observe µ1 = v for
some 1

2
≤ v ≤ µ+ < 1.

When m = 1, the desired inequality (12.59) holds trivially, because conditioned on Ev, we
have

∑

i 6=1

µ1i −
∑

i 6=1

µ̃v1i = (d− 1)v − (d− 1)v = 0.

Now consider every m ∈ {2 . . . , d}. Consider the (unconditional) McDiarmid’s inequal-
ity of (12.92) in the proof of Lemma 12.4. Replacing the summation sign

∑
i 6=m on the LHS

of (12.92) by the summation sign
∑

i≥2
i 6=m

(that is, we further exclude i = 1 from the summation)

yields the unconditional inequality:

P




∣∣∣∣∣∣∣∣

∑

2≤i≤d
i 6=m

µmi −
∑

2≤i≤d
i 6=m

µ∗mi

∣∣∣∣∣∣∣∣
≤ c

√
d(log d+ log k)

k


 ≥ 1− c′

d2k
, (12.145)
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where c, c′ > 0 are constants. Now we condition (12.145) on the event Ev. Note that for all
i,m ∈ {2, . . . , d} with i 6= m, the terms {µmi} are independent of Ev. Moreover, by the
expression of µ̃vmi in (12.57), we have µ∗mi = 1

2
= µ̃vmi conditioned on Ev. Hence, we have

P




∣∣∣∣∣∣∣∣

∑

2≤i≤d
i 6=m

µmi −
∑

2≤i≤d
i 6=m

µ̃vmi

∣∣∣∣∣∣∣∣
≤ c

√
d(log d+ log k)

k

∣∣∣∣∣∣∣∣
Ev


 ≥ 1− c′

d2k
. (12.146)

Now we bound the quantity |µm1 − µ̃vm1| conditioned on Ev. By the definition of µ1, we have
that among the (d− 1)k comparisons {X(r)

1j }j∈{2,...,d},r∈[k] in which item 1 is involved, there are
(d − 1)kµ1 terms that have value 1, and the rest have value 0. Hence, each µ1j can be thought
of as the mean of k comparisons sampled without replacement from the (d − 1)k comparisons
{X(r)

1j }j∈{2,...,d},r∈[k]. By Hoeffding’s inequality (sampling without replacement), we have that
for every j ∈ {2, . . . , d},

P

[
∣∣µ1j − µ̃v1j

∣∣ ≤ c

√
log d+ log k

k

∣∣∣∣∣ Ev
]
≥ 1− 2 exp (−c′(log d+ log k))

≥ 1− c′′

d2k
,

where c, c′, c′′ > 0 are constants. Equivalently, by a change of variables, we have that for every
j ∈ {2, . . . , d},

P

[
|µm1 − µ̃vm1| ≤ c

√
log d+ log k

k

∣∣∣∣∣ Ev
]
≥ 1− c′′

d2k
. (12.147)

Combining (12.146) and (12.147) by the triangle inequality, and taking a union bound over
m ∈ {2, . . . , d} completes the proof.

12.2 Proof of Theorem 5.5
In this section, we present the proof of Theorem 5.5. Both Theorem 5.5(a) and Theorem 5.5(b)
are closely related to Theorem 2 from [156]. Under our setting, the quantity σ defined in [156]
is a universal constant, and the quantities ζ and γ defined in [156] are constants that depend only
on the constant B.

12.2.1 Proof of Theorem 5.5(a)
Theorem 5.5(a) is a direct consequence of Theorem 2(a) from [156]. We now provide some
details on how to apply Theorem 2(a) from [156]. Under our setting, each pair of items is
compared k times. Therefore, the sample size n is

n =

(
d

2

)
k = Θ(d2k). (12.148)
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Moreover, under our setting the underlying topology is a complete graph. Let L denote the scaled
Laplacian as defined in Eq. (4) from [156], and let L† denote the Moore-Penrose pseudoinverse
of L. From [156], the spectrum of L for a complete graph is 0, 2

d−1
, . . . , 2

d−1
. Therefore, we have

λ2(L) =
2

d− 1
, (12.149a)

tr(L†) = (d− 1) · d− 1

2
=

(d− 1)2

2
. (12.149b)

Plugging (12.148) and (12.149) into Theorem 2(a) from [156] shows that the Theorem 5.5(a)
holds for all k ≥ k0, where k0 is a constant.

12.2.2 Proof of Theorem 5.5(b)
The proof of Theorem 5.5(b) closely mimics the proof of Theorem 2(b) from [156] (which is in
turn based on Theorem 1(b) from [156]). In what follows, we state a minor modification to be
made in order to extend the proof from [156] to Theorem 5.5(b).

In the proof from [156], the box constraint for the MLE θ̂(B) is only used to obtain the
following bound (see Section A.2 from [156]):

vT∇2`(w)v ≥ γ

nσ2
‖Xv‖2

2, for all v, w ∈ ΘB. (12.150)

Now we fix any constant A such that A > B. It can be verified that (12.150) still holds when
replacing ΘB by ΘA, where we now allow γ to depend on both A and B. Since A is assumed to
be a constant, we have that γ is still a constant. Then the rest of the arguments from [156] carry
to the proof of Theorem 5.5(b).

279



Chapter 13

Proofs of Chapter 6

In this section, we present all proofs for results in Section 6.

13.1 Proof of Proposition 6.1

In this section, we present the proof of Proposition 6.1. For any event E, we let E denote the
complement of E. We first derive equality (13.2) that is common across parts (a) and (b), and
then separately prove for parts (a) and (b) based on equality (13.2).

Consider both parts (a) and (b), where one or both attributes are protected. Let Ehol and Eseg

denote the events that the estimator makes an error in the top-1 metric, for the holistic approach
and the segmented approach, respectively. First, we note that for either the holistic approach
or the segmented approach, the estimated quality of the advantaged candidates always equals
their true quality, because there is no quality discounting on the advantaged candidates. For the
disadvantaged candidates, due to the discounting, their estimated quality is always lower than or
at most equal to their true quality. Hence, when the top candidate is an advantaged candidate, the
estimator does not make an error. That is, for E ∈ {Ehol, Eseg}, we have

P(E | Xmax < Y max) = 0. (13.1)

Therefore, for E ∈ {Ehol, Eseg},

P(E) = P(E | Xmax > Y max) · P(Xmax > Y max) + P(E | Xmax < Y max) · P(Xmax < Y max)
(i)
= P(E | Xmax > Y max) · P(Xmax > Y max)

(ii)
=

1

2
P(E | Xmax > Y max), (13.2)

where (i) is true by (13.1), and (ii) is true because P(Xmax > Y max) = 1
2

by symmetry.
Hence, it sufficies to consider the case where the top applicant is a disadvantaged candidate.

We now analyze the term P(E | Xmax > Y max), separately for part (a) and part (b).
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13.1.1 Proof of Proposition 6.1(a)
Error for the segmented approach Recall that in the segmented approach, each of the two
reviewers is assigned one attribute each. Let R denote the event that the protected attribute is
assigned to a biased reviewer. We have P(R) = γ. We have

P(Eseg | Xmax > Y max) = P(Eseg | Xmax > Y max, R) · P(R | Xmax > Y max)

+ P(Eseg | Xmax > Y max, R) · P(R | Xmax > Y max)
(i)
= γ · P(Eseg | Xmax > Y max, R) + (1− γ) · P(Eseg | Xmax > Y max, R),

(13.3)

where (i) is true because R is independent of the event {Xmax > Y max}. Now we consider the
two probabilities in (13.3). If the protected attribute is assigned the unbiased reviewer, then the
estimator correctly identifies the best candidate. That is,

P(Eseg | Xmax > Y max, R) = 1. (13.4)

If the protected attribute is assigned the biased reviewer, then the estimated quality of the best
disadvantaged candidate becomes 1+β

2
Xmax. We have

P(Eseg | Xmax > Y max, R) = P
(1 + β

2
Xmax > Y max | Xmax > Y max

)
. (13.5)

Plugging (13.4) and (13.5) to (13.3), we have

P(Eseg | Xmax > Y max) = γ · P
(1 + β

2
Xmax > Y max | Xmax > Y max

)
+ (1− γ). (13.6)

Error for the holistic approach Recall that in the holistic approach, each of the two reviewers
is assigned half of the applicants. Let R′ denotes the event that the best disadvantaged candidate
is assigned to a biased reviewer. Using analysis similar to the segmented approach, we have

P(Ehol | Xmax > Y max) = γ · P(Ehol | Xmax > Y max, R′) + (1− γ).

Now we analyze the term P(Ehol | Xmax > Y max, R′). Denote R′′ as the event that the second
reviewer is also biased. We have

P(Ehol | Xmax > Y max, R′) = P(Ehol | Xmax > Y max, R′, R′′) · P(R′′ | Xmax > Y max, R′)

+ P(Ehol | Xmax > Y max, R′, R′′) · P(R′′ | Xmax > Y max, R′)
(i)
= γ · P(Ehol | Xmax > Y max, R′, R′′) + (1− γ) · P(Ehol | Xmax > Y max, R′, R′′),

(13.7)

where (i) is true because R′′ is independent of R′ and the event {Xmax > Y max}. Now we
consider the two probabilities in (13.7). When both reviewers are biased, we have

P(Ehol | Xmax > Y max, R′, R′′) = P
(

1 + β

2
Xmax > Y max | Xmax > Y max

)
. (13.8)
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When the second reviewer is unbiased, the estimator correctly identifies the best disadvantaged
candidate, if and only if its estimated quality exceeds both the best advantaged candidate, and
also the disadvantaged candidates that are assigned to the second (unbiased) reviewer. Denote the
random variable A ⊆ [αn] the set of disadvantaged applicants assigned to the unbiased reviewer.
We have

P(Ehol | Xmax > Y max, R′, R′′) = P
({1 + β

2
Xmax > Y max

}
∩
{

1 + β

2
Xmax > max

i∈A
Xi

}
| Xmax > Y max

)
.

(13.9)

Plugging (13.8) and (13.9) back to (13.7), we have

P(Ehol | Xmax > Y max) = γ2 · P
(

1 + β

2
Xmax > Y max | Xmax > Y max

)

+γ(1− γ)·P
({1 + β

2
Xmax > Y max

}
∩
{

1 + β

2
Xmax > max

i∈A
Xi

}
| Xmax > Y max

)
+ (1− γ).

(13.10)

Finally, subtracting (13.6) and (13.10), we have

P(Eseg | Xmax > Y max)− P(Ehol | Xmax > Y max) = (13.11)

γ(1− γ) · P
({1 + β

2
Xmax > Y max

}
∩
{

1 + β

2
Xmax > max

i∈A
Xi

}
| Xmax > Y max

)
> 0.

(13.12)

Combining (13.12) with (13.2), we have

ehol − eseg > 0,

completing the proof.

13.1.2 Proof of Proposition 6.1(b)
We decompose the error based on the number of biased reviewers being 0, 1, or 2. Denote Ri as
the event that the number of biased reviewers is i, for i ∈ {0, 1, 2}.

Expression for the error For E ∈ {Eseg, Ehol}, we have

P(E | Xmax > Y max) = P(E | Xmax > Y max, R0) · P(R0 | Xmax > Y max)

+ P(E | Xmax > Y max, R1) · P(R1 | Xmax > Y max)

+ P(E | Xmax > Y max, R2) · P(R2 | Xmax > Y max)
(i)
= (1− γ)2 · P(E | Xmax > Y max, R0) + 2γ(1− γ) · P(E | Xmax > Y max, R1)

+ γ2 · P(E | Xmax > Y max, R2), (13.13)
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where (i) is true because for each k ∈ {0, 1, 2}, we have Rk is independent from the event
{Xmax > Y max}. Hence, we have P(Rk | Xmax > Y max) = P(Rk) and then compute the
probabilities by the Bernoulli model of the reviewers.

Now we analyze the three terms P(E | Xmax > Y max, Rk) for k ∈ {0, 1, 2}. If no reviewer is
biased, then it can be verified that for both the holistic and segmented approaches, the estimator
correctly identifies the top applicant. That is,

P(E | Xmax > Y max, R0) = 1. (13.14)

If both reviewers are biased, then both attributes of the disadvantaged candidate are discounted,
and the estimated quality of the best disadvantaged candidate becomes βXmax. The best disad-
vantaged candidate remains the best among the disadvantaged candidates. Hence,

P(E | Xmax > Y max, R0) = P
(
βXmax > Y max | Xmax > Y max

)
. (13.15)

Now we analyze the remaining term P(E | Xmax > Y max, R1), for the segmented and the
holistic approaches separately.

Term for the segmented approach If exactly one reviewer is biased, then one attribute of the
disadvantaged candidate is discounted, and the estimated quality of the best disadvantaged can-
didate becomes 1+β

2
Xmax. In this case, the estimated quality of the best disadvantaged candidate

remains the best among the disadvantaged candidates. An error occurs if and only if the esti-
mated quality of the best advantaged candidate exceeds the best disadvantaged candidate. That
is,

P(Eseg | Xmax > Y max, R1) = P
(1 + β

2
Xmax > Y max | Xmax > Y max

)
(13.16)

(i)
= 2 · P

(1 + β

2
Xmax > Y max

)
, (13.17)

where (i) is true because by the definition of the conditional we have P
(

1+β
2
Xmax > Y max |

Xmax > Y max
)

=
P( 1+β

2
Xmax>Y max,Xmax>Y max)

P(Xmax>Y max)
=

P( 1+β
2
Xmax>Y max)

P(Xmax>Y max)
, and also P(Xmax > Y max) =

1
2

by symmetry.

Term for the holistic approach Now we consider the term P(Ehol | Xmax > Y max, R1)
in (13.13) for the holistic approach. By symmetry, with probability 1

2
, the best disadvantaged

applicant is assigned the unbiased reviewer. In this case, the estimator correctly identifies it as
the best applicant. With probability 1

2
, the best disadvantaged applicant is assigned the biased re-

viewer. In this case, this candidate remains the best among all disadvantaged candidates assigned
to the biased reviewer. Hence, this candidate is correctly identified, if and only if its estimated
quality is higher than the best advantaged candidate, and also higher than the best disadvantaged
candidate assigned to the unbiased reviewer. Let the random variable A ⊆ [αn] denote the set of
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disadvantaged applicants assigned to the unbiased reviewer. We have

P(Ehol | Xmax > Y max, R1) = (13.18)
1

2
+

1

2
·P
(
{βXmax > Y max} ∩

{
βXmax > max

i∈A
Xi

}
| Xmax > Y max, R1

)
.

(13.19)

Now setting β = 0 in (13.19), we have

P(Ehol | Xmax > Y max, R1) =
1

2
. (13.20)

Comparing the error for the segmented and holistic approaches Now settingE ∈ {Eseg, Ehol}
in (13.13), subtracting the two, and using (13.14) and (13.15), we have

P(Eseg | Xmax > Y max)− P(Ehol | Xmax > Y max)
(i)
=

2γ(1− γ) ·
[
P(Eseg | Xmax > Y max, R1)− P(Ehol | Xmax > Y max, R1)

]
(13.21)

Setting β = 0, and plugging (13.17) and (13.20) to (13.21), we have

P(Eseg | Xmax > Y max)− P(Ehol | Xmax > Y max) = 2γ(1− γ) ·
[
2P
(1

2
Xmax > Y max

)
− 1

2

]

= γ(1− γ) ·
[
4P
(1

2
Xmax > Y max

)
− 1

]
.

Finally, setting E ∈ {Eseg, Ehol} in (13.2) and subtracting the two expressions, we have

ehol − eseg =
1

2
[P(Ehol | Xmax > Y max)− P(Eseg | Xmax > Y max)]

=
1

2
[P(Eseg | Xmax > Y max)− P(Ehol | Xmax > Y max)]

=
γ(1− γ)

2

[
4P
(1

2
Xmax > Y max

)
− 1

]
,

completing the proof of (6.1) and (6.2).

Power law distribution Following Definition 3 from [100], for non-negative functions f(n)
and g(n), we define

f(n) ∼∼∼ g(n)

if and only if f(n) = g(n)
(

1±O
(

(lnn)2

n

))
. Now consider the power law distribution with

parameter δ. Setting α = 1, β = 2, c = αβ−(1+δ) and k = 1 in Theorem B.3 from [100] yields

P(Xmax < 2Y max) ∼∼∼
(
1 + 2−(1+δ)

)−1
. (13.22)
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By (6.2), the segmented approach is better if and only if

P(Xmax > 2Y max) > 0.25,

or equivalently

P(Xmax < 2Y max) < 0.75. (13.23)

Combining (13.22) and (13.23), for sufficiently large n, the segmented approach is better if and
only if

(
1 + 2−(1+δ)

)−1
< 0.75,

or equivalently

δ <
log 3

log 2
− 1,

completing the proof of (6.3).
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Part V

Conclusion and Discussion
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In this thesis, we study various aspects of biases involved in decision-making problems. The
thesis presents theoretical and experimental analysis on different sources of biases arising from
people, estimation and policies. We conclude with a discussion on the open directions that are
important in extending the scope of this thesis.

Modeling biases In this thesis, we have developed conceptual and technical methodologies
in identifying and addressing certain types of biases. These high-level methodologies lay the
foundation in tackling other sources of biases that are prominent in real-life applications. One
concrete problem is to model the temporal dependency of the bias. People’s evaluation stan-
dards often fluctuate over time. For example, if a person sees a number of below-the-average
applications followed by a good one, the person is subject to overrating the good one due to the
contrast. There is also fluctuation over the longer term. In many applications the evaluation takes
place annually (e.g., admissions and paper review), and the quality of the items (applicants and
papers) changes over the years. Furthermore, the quality within a single item can also change
over time (e.g., student performance throughout a semester). On the human side, it is of interest
to study whether and how people are delayed in recognizing and making adjustments for these
changes. On the estimation side, it is of interest to study how a model mismatch of neglecting
such time dependency affects the statistical estimation of the item qualities. Relevant technical
tools include online learning and time series.

A second concrete problem is to study how people influence each other. In many applications
people have knowledge about other peoples’ evaluation, directly (e.g., in sports, judges immedi-
ately see the scores given by each other in each round of the competition) or indirectly (e.g., in
certain peer review schemes, the reviewers do not see evaluation from each other but ultimately
know whether the papers they review are accepted or rejected). It is of interest to understand how
people respond to such knowledge from others: do people tend to follow others, or do people
express their opinions more strongly if they anticipate others to disagree? One may start with
identifying a realistic and tractable problem formulation, and then provide theoretical guarantees
along with empirical validation.

Algorithmic fairness The research in this thesis focuses on the modeling aspect, where we
propose formulations to describe the bias, and then design algorithms to minimize standard error
metrics, such as the mean-squared error, under the proposed models of the bias. One interest-
ing direction is to connect the research in this thesis more closely with the area of algorithmic
fairness, which focuses on carefully defining and comparing different types of error metrics and
performance guarantees. Drawing inspirations from prior work on various fairness constraints
and metrics, it would be interesting to combine these concepts with the approach to bias mod-
eling presented in this thesis. For example, do the proposed algorithms for the presented bias
models improve certain fairness metrics in addition to estimation accuracy? Moreover, a lot of
prior work in algorithmic fairness has focused on the classification setting, whereas other set-
tings such as ranking are commonly used in domains such as admissions and peer review. These
settings have been studied (e.g., [195]) but remain relatively unexplored. Combining algorithmic
fairness, bias modeling, and application-specific challenges provides a more holistic picture in
thinking about the bias involved in different parts of the decision-making pipeline.
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Mechanism Design The majority of this thesis focuses on how to correct the bias after it is
introduced. A complementary research question is how to prevent or reduce the bias before it is
introduced. The comparison of the holistic and the segmented approaches in multi-attribute eval-
uation presented in Chapter 6 is one example, but a lot more can be done in terms of improving
the design of the evaluation systems. It is an interesting direction to think about utilizing tools
from mechanism design. For example, remotely inspired by recent work on inducing a specific
allocation of effort (e.g., [99]), one specific direction is to design incentives to encourage desir-
able behaviors (e.g., incentivizing authors to submit high-quality papers under self-selection, and
incentivizing reviewers to provide impartial evaluation). One challenge is that different applica-
tions impose different constraints on the available tools of incentives (e.g., revenue, penalty, or
non-monetary). Research in this area is both of theoretical interest, and also lay a more convinc-
ing foundation for outreach and policy recommendations in practice.

Computational social choice One key assumption we make in this thesis is that every item
has a true quality represented by a scalar value. A true ordering of items is also subsequently
derived from these true qualities. However, such assumptions may not be always applicable.
For example, in peer review, papers in different fields cannot be straightforwardly compared,
meaning a total ordering of all the items may not exist. Furthermore, even if evaluators individu-
ally perceive a true total ordering of all the items, their perceived orderings may not necessarily
be the same due to subjectivity. The area of (computational) social choice operates in such
settings where no ground-truth is assumed, and the goal is to capture the consensus of people
described by axiomatic properties. In peer review, there are objective yardsticks for theoretical
and empirical results, while there are also subjective judgments, such as the relative weighting
of theoretical and empirical results. It is a regime in between the two extremes – there may not
exist a universally-agreed true ordering, but reviewers still share some common sense as in what
defines a good paper. We envisage that bringing together tools from social choice and statistical
estimation bridges the two regimes with new insights, and influences subsequent research in the
two communities.
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book of computational social choice. Cambridge University Press, 2016. 89

[27] Mark Braverman and Elchanan Mossel. Noisy sorting without resampling. In Proceedings
of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’08,
page 268–276, USA, 2008. Society for Industrial and Applied Mathematics. 31

[28] Lyle Brenner, Dale Griffin, and Derek J Koehler. Modeling patterns of probability cal-
ibration with random support theory: Diagnosing case-based judgment. Organizational
Behavior and Human Decision Processes, 97(1):64–81, 2005. 88

290

http://www.fairmlbook.org
https://acl2017.wordpress.com/2017/08/03/outstanding-and-best-papers-and-the-decision-process/
https://acl2017.wordpress.com/2017/08/03/outstanding-and-best-papers-and-the-decision-process/


[29] Russ Bubley and Martin Dyer. Faster random generation of linear extensions. Discrete
Mathematics, 201(1):81 – 88, 1999. 45

[30] Michael A Campion, Elliott D Pursell, and Barbara K Brown. Structured interviewing:
Raising the psychometric properties of the employment interview. Personnel psychology,
41(1):25–42, 1988. 88

[31] Gilles Caraux and Sylvie Pinloche. PermutMatrix: a graphical environment to arrange
gene expression profiles in optimal linear order. Bioinformatics, 21(7):1280–1281, 11
2004. 23

[32] Dana R. Carney and Mahzarin R. Banaji. First is best. PLOS ONE, 7(6):1–5, 06 2012.
101

[33] Scott E. Carrell and James E. West. Does professor quality matter? Evidence from random
assignment of students to professors. Working Paper 14081, National Bureau of Economic
Research, June 2008. 38

[34] Jonathan P. Caulkins, Patrick D. Larkey, and Jifa Wei. Adjusting gpa to reflect course
difficulty, Jun 1995. 39

[35] Laurent Charlin and Richard Zemel. The toronto paper matching system: An automated
paper-reviewer assignment system. ICML Workshop on Peer Reviewing and Publishing
Models (PEER), 2013. 2

[36] Sourav Chatterjee. Matrix estimation by universal singular value thresholding. Annals of
Statistics, 43(1):177–214, 2015. 32

[37] Baiyu Chen, Sergio Escalera, Isabelle Guyon, Vı́ctor Ponce-López, Nihar Shah, and
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