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Abstract

Three-dimensional reconstruction in confined spaces is important for
the manufacturing of aircraft wings, the inspection of narrow pipes, the
examination of turbine blades, etc. It is also challenging because confined
spaces tend to lack a positioning infrastructure. Therefore, a sensor that
is capable of performing Simultaneous Localization and Mapping (SLAM)
is required. Although there exist a variety of SLAM-capable sensors such
as LiDARs and RGB-D sensors, there have been few, if any, sensors for
confined spaces reconstruction, because such tasks require sensors that
are compact, operate in short-range, and can self-localize.

In this thesis, we propose a sensor framework based on monocular laser
profiling for confined spaces. This framework consists of a hardware
structure, a software pipeline, and a SLAM method. Sensor prototypes
designed using this framework are able to achieve photo-realistic 3D
reconstruction in real-time. To generate photo-realistic reconstruction,
conventional RGB-D sensors typically rely on multiple-camera suites to
separately capture 3D geometry and visual color; e.g., the RealSense D435
uses one stereo camera with a pattern projector for 3D measurement
and one monocular RGB camera for color. To minimize sensor size, the
proposed framework employs a single camera to achieve photo-realistic
reconstruction. This is achieved using our alternating-frame imaging
technique which alternately captures color and geometry information in
adjacent imaging frames by altering sensor states. A SLAM method
tailored to laser profilers is proposed to accurately localize the sensor
by tightly fusing laser, camera, and inertial measurements. Additional
sensors can also be integrated into the SLAM thanks to its modular factor
graph design.

This sensor framework’s ability to generalize to different sensor config-
urations enables it to tackle various confined spaces. In this thesis, we
propose two sensor prototypes named Blaser and PipeBlaser, both de-
signed under the framework. For the general confined space setting, the
Blaser prototype features a laser-stripe profiler and was designed to be
compact and short-range-capable. It boasts a 1-inch minimum sensing
range and is more than ten times smaller than Intel RealSense D435, one
of the smallest, if not the smallest, commercial SLAM-capable sensor.
For confined in-pipe environments, a more specialized prototype named
PipeBlaser is designed. It has a laser-ring profiler configuration and can
function in 12-inch diameter pipes. These two sensor prototypes exhibit
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vastly different configurations but are designed under the same sensor
framework with some modifications for corresponding applications.

A comprehensive qualitative and quantitative evaluation was performed
on both sensor prototypes in a variety of environments, demonstrating
their localization and mapping capability in a real-time fashion. We also
compare the sensor system to other state-of-the-art SLAM methods as
well as to a popular and capable RGB-D camera.
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Chapter 1

Introduction

Three-dimensional reconstruction is a fundamental problem in robotics and com-

puter vision. Various sensor systems with wide-ranging capabilities (e.g., range and

resolution), such as laser-stripe triangulators, RGB-D cameras, and LiDARs, and

corresponding algorithms [7, 35, 45, 61] have made accurate 3D scanning possible

in many types of spaces (e.g., indoor [8, 34, 58], outdoor [9, 39, 61], underwater

[42, 43, 47], etc), revolutionizing many civil and industrial fields. These sensor

hardware and software systems, in the authors’ view, operate in wide-open spaces

and are not well-suited, by design, for confined space operation. In fact, few, if

any, SLAM sensor systems for 3D reconstruction have been developed for confined

space operation. Such systems would be of great use for inspection applications,

even more so than in open spaces where abundant choices of external positioning

infrastructure, such as motion capture cameras and total stations, can be employed

to eliminate the need for SLAM capability; confined spaces, on the other hand, tend

to lack a positioning device. The challenge in building a sensor for confined space 3D

reconstruction comes from the following constraints: the sensor must be 1) compact

to fit into tight spaces; 2) able to operate at short-range; 3) able to perform SLAM

due to the lack of positioning infrastructure.

Current commercial off-the-shelf (COTS) sensors for 3D reconstruction are either

too large or dependent on external positioning infrastructure (e.g., robotic manipu-

lators, motion-capture cameras, etc). Kinect (Microsoft, Redmond, WA, USA) and

RealSense (Intel, Santa Clara, CA, USA) are two popular RGB-D camera families with
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1. Introduction

self-localization capability, but even the smallest model, RealSense D435, measures

90× 25× 25 mm in size and has a minimum sensing range of 105 mm. Popular for

mobile robots and autonomous vehicles, LiDARs boasts long range 3D measurement

but are typically even larger than RGB-D cameras, rendering them unsuitable for

confined spaces. On the other hand, highly accurate and compact laser profilers

such as optoNCDT (Micro-Epsilon, Raleigh, NC, USA) can achieve small sensor

foot prints as well as short-range measurement capabilities, but they only generate

per-frame 3D measurements and do not have localization capability; to perform 3D

mapping, external positioning devices are required. [30] introduced an ultra-compact

3D measurement sensor but also lacked self-localization capability.

In this thesis, we propose a sensor framework for high accuracy photo-realistic

mapping in confined space. This sensor framework consists of a hardware structure

design, a software pipeline, and a Simultaneous Localization and Mapping (SLAM)

method. We adopt laser profiling as the 3D geometric measurement approach. Laser

profilers are laser displacement sensors that collect depth data across a projected

laser line using camera-laser triangulation. Compared to other 3D measuring method

such as time-of-flight (ToF) or 2D pattern triangulation, laser profiling only measures

depth on a 1-dimensional line but with significantly higher accuracy which is usually

from sub-millimeter to micrometer level.

Based on the laser profiling approach, the sensor hardware is comprised of a

monocular color camera, a laser projector, and an additional Inertial Measurement

Unit (IMU) which helps with localization at almost no cost in sensor size. Additional

sensors can be added to further aid SLAM by formulating additional factors in the

factor graph. One challenge on the monocular sensor setup is to perform photo-

realistic 3D reconstruction, which requires the sensor to capture two types of data:

3D geometry and visual color for adding appearance to the 3D reconstruction. The

acquisition of these two data is typically achieved by using multiple cameras to

separately capture each data, e.g., Intel RealSense D435 uses one stereo camera with

a pattern projector for 3D measurement and one monocular RGB camera for color. In

the proposed sensor framework, we use the single camera to capture both information

using the alternating-frame imaging technique, where the camera alternately captures

images for laser profiling and images for visual coloring by altering camera exposure

and laser on/off state. This technique reduces the number of cameras needed for
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1. Introduction

photo-realistic reconstruction, thus minimizing the sensor’s size and cost.

The software of the sensor framework consists of two parts as shown in Figure

1.1: a pipeline of photo-realistic 3D reconstruction and supporting software. In

the reconstruction pipeline, software components including the alternating-frame

controller, sensor data pre-processing, and SLAM progressively processes sensor

measurements and outputs 3D reconstruction as well as sensor pose estimation.

Supporting software mainly contains a calibration tool and a software that analyzes

sensor sensitivity given the camera and the laser-camera placement configuration;

this software can also generate the configuration with the optimal sensitivity.

Photo-realistic 3D Reconstruction Software Pipeline Suppor ting Software

Laser-camera Extr insic 
Parameter Calibration

Sensor Sensitivity Analysis &  
Optimal Design Generation

RGB Cam era

Addit ional 
Sensors

6-Axis I M U

Alternating
Fram e

Image

Other 
Per ipheral 

D r ivers

Legend

Control

Factor graph-based
SLAM

Laser PCD

Odom etry

Sensor 
m easurem ent 
pre-processing

IMU &  
Additional 

Sensor 
Data

Laser 
Projector

Control Hardware

Drivers

Software

Output

Figure 1.1: Software of the proposed sensor framework.

At the center of the proposed software solution is the SLAM method tailored

for monocular laser profilers. Localization accuracy often determines reconstruction

quality since individual laser scans are registered to a global reference frame according

to the localization estimation. Since monocular SLAM suffers from scale ambiguity,

monocular visual-inertial (VI) sensor setup is the smallest sensor-suite that the

community uses to perform SLAM with metric scale. VI-SLAM methods have

achieved promising results and are nowadays widely used in mobile robots, smartphone

applications, and VR & AR. However, sensor motion in confined spaces is often much

slower and IMU measurements are much less excited, which undermines metric

scale estimation and localization accuracy. Therefore, we proposed a SLAM method

designed for laser profilers. In the SLAM method, the laser scans not only are

stitched together to generate a point cloud map but also help estimate the metric

scale of the SLAM. The accurate but dimensionally degenerated laser-line scans are

associated with visual features to effectively recover the metric scale, resulting in

3



1. Introduction

low-drift localization. Further more, a window-to-map tracking component aligns the

recent laser scans in the sliding-window to the historic map. In this way, mapping

consistency can be maintained under back-and-forth re-scanning motion. Mapping

consistency is important to the map’s visual quality and desirable for real-world

scanning applications.

The proposed sensor framework is able to generalize to various sensor configurations

in order to adapt to different real-world confined spaces. When adapting the framework

to a new sensor configuration, many of the software components can be reused with

little modification. In this thesis, we put forward two sensor prototypes that each

addresses a confined-space mapping challenge.

The first prototype named Blaser [5, 6] targets general confined spaces. The

prototype is designed to be as compact as possible while managing short-range

sensing. The Blaser prototype is equipped with a laser-stripe projector, a miniature

camera, and an Micro-Electr-Mechanical System (MEMS) IMU. It achieves a size of

27× 15× 10 mm, 14 times smaller than RealSense D435 in volume, and a sensing

range of 20-150 mm. Figure 1.2 shows the proposed sensor hardware as well as a

hand-held reconstruction result of a keyboard. The sensor size is mainly constrained

by the size of the camera and the laser diode as well as the baseline length between the

camera and the laser. Adequate baseline length is critical for the sensor’s sensitivity.

The second prototype named PipeBlaser is designed for confined pipe environ-

ments, specifically for 12-inch to 16-inch diameter pipes. The geometric integrity

of pipes are vital for the safety of operations. For natural gas pipes, the failure

of pipes can cause explosion and result in severe casualties [24, 54]. In-pipe 3D

reconstruction is a powerful tool for the analysis of pipe geometric integrity, such as

pipe diameter, geometric deformation, etc. In addition, photo-realistic appearance

of 3D reconstruction is also valuable since it can be used to detect defects including

finer cracks and corrosion. Although in-pipe 3D mapping technology exists, they

suffer from limitations. Many methods rely on visual Structure-from-motion (SfM)

which generates low-definition map. Although some methods use laser profilers with

high accuracy, they have limitations regarding localization due to the use of external

pose estimation aid, wheel encoders (which limit motion estimation to 1-dimensional),

and visual SLAM with strong assumptions on pipe diameter. We have not seen a

technology that generates high-definition map and performs 6 Degree-of-freedom

4



1. Introduction

Figure 1.2: An overview of the Blaser sensor. (a), (b) The proposed sensor hardware
prototype; (c) hand-held scanning with ground truthing experimental set up; (d)
the reconstructed colored point cloud of a keyboard, scanned without external
infrastructures.

(DoF) self-localization without making assumption on the pipe diameter.

In order to scan the cylindrical inner surface of pipes, the PipeBlaser employed

a laser-ring projector in tandem with a fisheye camera. The camera faces the axial

direction of the pipe and observes the entire laser ring to perform triangulation. The

projector mounted in front of the camera projects a laser-ring parallel to the radial

plane of the pipe, which allows the sensor to scan the pipe’s cross sections. An LED

array is added for active illumination inside dark pipes. The sensor uses the proposed

SLAM method to accurately estimate 6 DoF pose and stitches the laser scans into a

map accordingly. Figure 1.3 presents the prototype as well as the 3D mapping result

of a 16-inch diameter pipe.

Extensive experiments were performed on both sensor prototypes. The Blaser

sensor showed higher localization accuracy with the proposed SLAM method compared

to a state-of-the-art VI-SLAM method. It also demonstrated the SLAM framework’s

ability to maintain mapping consistency under repeated re-scanning, and displayed its
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Figure 1.3: An overview of the PipeBlaser sensor. (a) A conceptual drawing of the
PipeBlaser in a 12-inch diameter pipe; (b) the PipeBlaser sensor prototype; (c) the
PipeBlaser prototype in a 16-inch diameter pipe; (d) the reconstructed colored point
cloud of a 16-inch diameter pipe.

superior reconstruction quality compared to a COTS RGB-D camera. The PipeBlaser

prototype was evaluated in a 12-inch and a 16-inch diameter pipe, exhibiting photo-

realistic mapping and satisfactory localization accuracy.

The remainder of this thesis is structured as follows. Chapter 2 provides an

overview on the previous works in related fields including laser profilers, SLAM

with RGB-D cameras, monocular visual-inertial SLAM methods, and in-pipe SLAM

methods. Chapter 3 describes the Blaser prototype in terms of hardware design,

sensor model, and software pipeline. The proposed SLAM method for laser profilers

is described in detail in Chapter 4. Chapter 5 discusses the PipeBlaser prototype

in a structure similar to Chapter 3. Because the two prototype are designed under

the same framework, some similarities are omitted for brevity while differences are

highlighted. Modification to the SLAM method for in-pipe application are also

described. Chapter 6 offers experimental results on the Blaser scanning various
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household and industrial objects and the PipeBlaser performing mapping in two pipe

environments. Finally, Chapter 7 reviews the contributions of this thesis.
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Chapter 2

Related Work

In this chapter, we review a few types of 3D measurement sensors and corresponding

SLAM methods if exist.

Since the proposed sensor framework is based on laser profiling, we first introduce

the literature of laser profilers and related mapping work in Section 2.1. To the best

of our knowledge, there has not been a SLAM method developed for laser profilers,

and almost all related mapping work rely on external positioning aids to integrate

the laser scans.

Prior to this work, RGB-D sensors are considered by the community the smallest

SLAM-capable and low-cost sensor for accurate dense mapping. For this reason, we

also compare the proposed sensor with one RGB-D camera in the experiments. Section

2.2 provides an overview of the 3D measurement technologies used in RGB-D cameras

and a number of related SLAM methods. Since these cameras are able to capture

depth data of the entire camera field-of-view, SLAM can be achieved by aligning

point cloud frames to the previously built map. These SLAM methods, however,

cannot directly apply to the proposed sensor framework, which only measures depth

on a line instead of over the entire FoV.

The proposed sensor theoretically can achieve localization with metric scale by

performing visual-inertial SLAM (VI-SLAM) using the onboard camera and IMU.

However, the performance is usually poor since the IMU cannot be sufficiently excited

from the slow sensor motion in confined space. In spite of this, the proposed SLAM

method is inspired by many visual and inertial data processing methods introduced
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2. Related Work

in the VI-SLAM literature. For this reason, we provide an overview of VI-SLAM

methods in Section 2.3.

2.1 Laser profilers

A laser profiler typically consist of a camera and a laser-stripe projector. It projects

a laser-stripe onto the scanned surface and uses the camera to see the visible laser

stripe and triangulates it into 3D space. Therefore, this type of sensor is also known

as laser triangulators.

Active laser-stripe triangulation has been one of the mainstream 3D scanning

approaches for decades [51]. Thanks to the simple hardware design and inexpensive

components, laser-stripe triangulation is a popular choice for low-cost 3D scanning

systems such as the DAVID Laserscanner [59]. Many high accuracy profilers such as

Keyence Laser Profiler (Keyence Corporation, Osaka, Japan) and metallic surface

scanners [14] also adopt laser-stripe triangulation due to its high accuracy and relative

insensitivity to illumination compared to structured light.

There has been extensive work dedicated to reconstructing 3D models using laser

profilers or laser-stripe triangulation [7]. However, positioning devices or localization

aids are often needed to register individual scans. [38] uses a motorized gantry to

move the scanner in 3D space, associating each scan with a pose given by the gantry.

[59, 60] utilize a different triangulation method, where the camera is fixed while the

user moves the laser-stripe projector to scan the object like with a paint brush; a 3D

reference marker board is placed behind the object to help perform triangulation.

[43] performs under water 3D mapping using a laser profiler, but a Doppler Velocity

Log (DVL) together with other sensors are used to perform dead reckoning. There

has been little work that focused on localization using laser-stripe scanners alone

to enable infrastructure-free capability. This task is challenging because of the 3D

measurement characteristic of a laser profiler: it only generates 3D information on

the intersection of a 3D sheet of plane with the real-world surface. Therefore, there is

generally insufficient correlation between adjacent measurement frames under motion,

making it difficult to estimate frame-to-frame 6 Degree-of-freedom (DoF) motion.

10
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Figure 2.1: (a) Keyence commercial laser profiler capable of high accuracy 3D mea-
surement but without SLAM capability; (b)setup illustration of DAVID Laserscanner
[59] where a reference background is used to estimate the 3D laser plane position
relative to the camera; (c) 3D reconstruction result achieved in [38] using a motorized
gantry to provide pose of the laser profiler.

2.2 RGB-D Cameras and Related SLAM

Methods

RGB-D cameras nowadays are extremely popular choices for 3D reconstruction thanks

to their low costs and relative compactness. They are called RGB-D cameras since

each pixel of the camera image contains a RGB color and a depth measurement.

Structured light and time-of-flight are two core technologies behind today’s RGB-D

cameras. Structured light scanners project 2D invisible patterns of infrared (IR) light

onto the scanned surface and use another onboard IR camera to see and triangulate

the light pattern [19, 62, 63]. Time-of-flight sensors obtain depth of each pixel by

measuring the travel time of emitted light signals. Intel RealSense and Microsoft

Kinect are two popular and relatively low-cost RGB-D camera families and are widely

used in the development of RGB-D SLAM methods in the literature.

A number of RGB-D SLAM algorithms with promising results have emerged in

the past decade, including surfel-based [31, 58] methods and volumetric [8, 45, 57]. A

surfel is a surface element and can be viewed as a 3D point with attributes including

normal direction, size, color, etc. Surfel-based methods directly represent the world

with surfels generated from RGB-D images. Point cloud alignment are used to align

new frames to the surfel-map and adjacent surfels are fused together to limit the

grow of number of surfels. On the other hand, volumetric methods employ discretized

voxel-grid representations of the world, where each voxel stores its Signed Distance

Function (SDF) value and other attributes such as color. The SDF value is defined as
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the signed distance from the voxel to the nearest object surface being reconstructed.

The interior and exterior voxels of the object will store negative and positive SDF

values respectively. Therefore, the surface itself can be reconstructed by finding the

zero-crossing of the SDF. Localization can be performed via point cloud alignment.

[45] proposes a frame-to-map tracking approach where new measurement frames are

aligned to virtual frames generated by ray casting the map into the estimated camera

pose. Compared to the frame-to-frame tracking approach where each new image

frame is tracked against the previous frame, the frame-to-map tracking approach can

maintain mapping consistency. Since the predefined volume of the voxel-grid bounds

the size of the map, voxel hierarchies [17, 50] and voxel hashing [10, 34] are proposed

to allow flexible and fast memory allocation and access, improving the capability

of volumetric approach. Both approaches have achieved promising reconstruction

results as shown in Figure 2.2.

Figure 2.2: 3D reconstruction results obtained with RGB-D cameras using a volumetric
approach [10] (left) and a surfel-based approach [58] (right).

Different from laser profilers, the RGB-D point cloud measurement frames generally

ensures enough overlap between adjacent frames, allowing 6 DoF motion estimation

via point cloud alignment. Since the laser profilers only measures depth along a

single line, these RGB-D SLAM methods cannot be directly applied to laser-stripe

triangulators. Nevertheless, SLAM methods developed for RGB-D cameras provide

inspiration to this thesis. Inspired by the frame-to-map tracking approach in [45], this

thesis proposes a window-to-map tracking approach, described in Section 4.6, where

a sliding window of recent laser scans are aligned to the historic map to maintain

mapping consistency.

12



2. Related Work

2.3 Monocular Visual-Inertial SLAM

Heavily relying on the camera and the IMU on-board the laser profiler, the proposed

SLAM method shares similarities with monocular visual-inertial SLAM. Visual SLAM

has two main approaches. The indirect approach [4, 48] , also known as the feature-

based approach, first track visual feature points across input images and then estimate

camera motion based on the motion of feature points. On the other hand, the direct

approach [12, 13] directly utilizes pixel intensities instead of converting the image

into an intermediate feature representation. It estimate the motion that minimizes

difference in pixel intensities across different views of the same portion of the scene [3].

Since the direct approach does not need to extract features but rely on image gradient

instead, it functions well in feature-sparse or feature-less environments. However,

one drawback is its assumption that the environment’s brightness remains constant

when observed across different views, which makes it difficult to handle changing

illumination. On the other hand, feature-based methods can typically handle larger

motion by performing feature matching. In this thesis, feature-based approach is

preferred since the active illumination on the sensors violates the brightness constancy

assumption mandated by direct methods.

A key problem with monocular SLAM is that it is not able to estimate the scale

and is only able to estimate the visual structure up to an unknown scale factor. This

problem is recognized as the scale ambiguity problem. To overcome this issue, an IMU

is often incorporated to recover the metric scale [37, 48]. Based on the fusion method

of the inertial and the visual information, visual-inertial SLAM methods can be

classified as loosely- and tightly-coupled methods. The loosely-coupled approach uses

two estimators to separately process visual and inertial measurements and then fuses

the two estimations using filtering [18]. The tightly-coupled method jointly optimize

both measurements using one estimator. The tightly-coupled approach is often more

accurate and robust, while the loose-coupled method is generally computationally

efficient, making it favorable for robots with limited computation power such as small

unmanned aerial vehicles.

Although VI-SLAM is theoretically able to estimate the scale, we find that with

the proposed sensors the scale estimation is often significantly incorrect. The reason

behind this issue is two-fold: a) to achieve compact sensor sizes, we employed small,

13



2. Related Work

low-cost MEMS IMUs, which suffer from high measurement noises; b) the slow

sensor motion in confined spaces do not fully excite the IMU. Therefore, in the

proposed SLAM method, we mainly rely on the laser information instead of inertial

data to recover scale. In spite of this, we find inertial data useful in other aspects

of localization. The IMU by itself is able to accurately estimate the roll and the

pitch angle, making these quantities directly observable for the SLAM problem.

Furthermore, the IMU can briefly handle visually degenerated situations where the

camera encounters feature-less environments. For these benefits, the proposed SLAM

method still incorporates an IMU and fuses visual feature, inertial data, and laser

measurements. Since the computation load of tightly-coupled approach is usually

acceptable to desktop computers used in this thesis, we adopts the tightly-coupled

visual-inertial fusion approach for its superior accuracy.

2.4 In-Pipe SLAM

In-pipe 3D mapping is a valuable tool for the assessment of pipeline’s integrity.

Many common pipeline problems including corrosion, cracks, and distortion can be

determined using the map. There are two main approaches for in-pipe dense 3D

reconstruction: visual Structure-from-motion (SfM) [20, 22, 27, 29] and laser-ring

profiler [2, 21, 53, 55]. It should be acknowledged that other approaches also exist

for specific pipelines, such as pipe-profiling sonar is often employed for sewer pipeline

[11, 46], but they are beyond the scope of this thesis.

Visual SfM approach is able to generate dense 3D colored map. Since cameras

are now small enough to fit in narrow pipes, the visual SfM is the only mapping

option for pipes where a laser profiler cannot fit. One extreme example [20] used

a Scanning Fiber Endoscope (SFE), a extremely small imaging sensor, to perform

SFM. Since the SFE was merely 1.2 mm in diameter, the system could function

in 3-30 mm diameter pipes, and the authors demonstrated the sensor’s ability by

scanning a 7 mm diameter threaded hole. One challenge for the SfM approach is the

scale ambiguity issue of monocular SfM described in Section 2.3. There exist various

method to overcome this issue. In some works the pipe diameter is assumed to be

known and cylindrical shapes are fitted to the 3D map [29]. [27] extended this idea

by fitting conic shape to the map to account for scale drift. Similar to this thesis,
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[22] used two laser-dot triangulators to estimate the pipe diameter and constrain

the visual structure scale. Due to the sparsity of the 3D feature map, 3D cylindrical

models were fitted to the map and texture appearance was mapped onto the model.

The major disadvantage of visual SfM compared to laser profiling is with mapping

quality. Visual maps are usually sparser and less accurate geometrically than maps

obtained with laser profiling.

Laser-ring profilers are widely used when the geometric shape is of concern. Pipe

wall thickness and geometric shape distortion can both be identified from cross-section

scans. This type of profilers typically consists of a omnidirectional laser-ring project

and a fisheye or a catadioptric camera. By optimizing the sensor’s configuration, this

type of sensor can often reach sub-millimeter 3D measurement error. To register

individual scans into a 3D map, various methods have been proposed to measure

the sensor’s pose. [2] used an IMU to maintain the robot’s orientation and wheel

odometers to measure displacement along the pipe. This odometry method was able

to reach 0.03% drift rate but was limited to straight pipes and was vulnerable to wheel

slippage. An external stationary ranging station was employed in [53] to measure

the robot’s 6 DoF pose using three laser-dot range finders and a camera. In addition

to wheel odometry, [21] added another RGB camera for point cloud map coloring.

Similar to our proposed SLAM method, [55] adopted visual odometry but assumes a

known pipe diameter for the scale ambiguity issue. By tightly-coupling laser depth

information with visual data, our SLAM method makes no assumption regarding the

environment and can function in unknown-diameter or non-cylindrical pipes.
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Chapter 3

Blaser: Confined Space Scanner

The Blaser sensor prototype is designed to be compact to fulfill its application in

general confined spaces. This chapter discusses the hardware design, sensor model,

supporting software including calibration and sensitivity analysis, and the sensor

software framework for the mapping task.

3.1 Hardware Design

The proposed scanner hardware consists of an RGB CMOS camera, a MEMS-based

6-axis accelerometer and gyroscope, and a laser-stripe projector. The camera is

equipped with a wide-angle lens with an field of view angle of 160 degrees. A single

laser stripe pattern is created by refracting a thin laser beam through a cylindrical

lens. This laser stripe is projected to the region within the camera’s field of view.

There is also a white LED used to reduce motion blur and for color image illumination.

Figure 3.1 presents the detailed mechanical design. Since the laser stripe in the image

interferes with SLAM, the camera is required to capture images observing the laser

stripe as well as images without seeing the laser stripe. For this reason, we propose

the alternating-frame imaging technique where the camera alternately capture two

types of images with two laser and exposure settings. To enable this technique, the

red laser stripe can be toggled on/off in synchronization with our image shutter

trigger. Section 3.5.1 describes the detailed motivation and method of the alternating

frame imaging approach.
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3. Blaser: Confined Space Scanner

Figure 3.1: Hardware design of the Blaser sensor prototype. (a) The exploded-view of
the design showing the hardware components; (b) the assembled mechanical design;
(c) corresponding pictures of the sensor hardware.

3.2 Sensor Model

z=1
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Figure 3.2: Theory of operation: Laser depth is triangulated by projecting a camera
ray out from the camera origin and finding its intersection with the laser plane.

3D points on the laser stripe are recovered from 2D images using triangulation.

We model the projected sheet of laser light as a plane Πl : n ·X + d = 0 in 3D space,

where n is the normal direction (‖n‖ = 1), X is any point on the plane, and d is

a scalar parameter. The laser plane intersects with the physical world and forms a

visible laser stripe. The observed 2D laser stripe on the image is discretized into laser

pixels, and each laser pixel observation xi ∈ R2 corresponds to a 3D point Xi ∈ R3
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on the scanned surface in the 3D space, whose position can be estimated using

triangulation. This triangulation operation involves solving a ray-plane intersection

problem illustrated in Figure 3.2. In the figure, the normalized image plane is defined

as the plane z = 1 in the camera frame. The triangulation is described in (3.1), where

Xi denotes the triangulated 3D point and π−1c (·) denotes the back projection function

that projects a pixel position onto the normalized image plane. The 2D laser pixel xi

is first projected to the normalized image plane, and then a Line-of-Sight (LOS) ray

is cast from the camera optical origin C through the normalized image point. Finally

the corresponding 3D point position Xi on the incident laser stripe is inferred by

computing the intersection between the LOS ray and laser plane Πl:

Xi =
−d

n · π−1c (xi)
π−1c (xi) (3.1)

3.3 Sensor Calibration

Accurate calibration of all sensor components is a crucial prerequisite to accurate

SLAM. There are three groups of intrinsic and extrinsic parameters that need cali-

bration: camera intrinsic parameters, camera-IMU extrinsic relative pose described

by a Euclidean transformation, and the 3D position of the laser plane relative to the

camera.

To accommodate the relative large image distortion from the wide-angle lens, the

Kannala-Brandt camera model [28] is employed to model the image projection. The

Mei model [44] and the pinhole model, two other popular camera models, were also

tested, where the Mei model exhibited similar performance to the Kannala-Brandt

model and the pinhole model resulted in significantly larger reprojection error. The

camera model parameters were calibrated using the CamOdoCal tool [25]. The

extrinsic transformation between the camera and the IMU was calibrated using the

Kalibr tool [49].

A tool for calibrating the laser plane’s 3D position Πl was custom-developed. The

calibration process, visualized in Figure 3.3, uses images of a known-sized checkerboard

where the checkerboard is fully in the camera’s view and the laser stripe is projected

onto the checkerboard.
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a) Camera View c) Laser Plane Fitting Resultb) Calibration Setup

Figure 3.3: Calibration process and result visualization. (a) shows a camera image
with detected checkerboard and fitted laser line (blue). (c) shows 3D laser points
(red) and the fitted laser plane, for the user to examine the calibration result.

The process of this calibration is described in Algorithm 1. For each input

image, undistortion operation is first applied using the pre-calibrated camera intrinsic

parameter. Candidate laser pixels are then detected in the undistorted image. Since

these laser pixels should form a straight line on the image, a 2D line is fitted to

the candidate pixels using Random Sample Consensus (RANSAC) and outlier pixels

are discarded. To ensure the process has correctly identified the laser pixels, a

visualization is presented to the user. A visualization sample is shown in Figure

3.3, which shows inlier laser pixels (blue points), outlier laser pixels (yellow points),

the fitted laser line (green line), and the detected checkerboard corners. If the user

accepts this image, the checkerboard plane Πb is computed using Perspective-n-point

(PnP) method [36], and the incident laser points X in 3D space are triangulated by

first normalizing each inlier laser pixel xi and then casting a Line-of-Sight (LOS) ray

from the camera optical center through the normalized laser points to intersect with

Πb. Therefore, incident laser points can be interpreted as point samples of the laser

plane. The software finally solves the laser plane position Πb by first using RANSAC

to remove outliers and then using Singular Value Decomposition (SVD) to solve the

plane parameters.

3.4 Sensitivity Analysis

The sensitivity of the sensor is defined as the sensor’s response to a 1 mm depth

change. The response is the shift in pixels of the observed laser stripe on the image.
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Algorithm 1 Laser plane calibration

1: procedure Solve Laser Plane(images)
2: X← [·] . Empty set for incident 3D laser points
3: for each I ∈ images do
4: Undistort(I) . Using pre-calibrated camera model
5: xI ← DetectLaserPixels(I)
6: x′I ← RANSACFindLineInliers(x)
7: if UserInspectResults(I, x′I , xI) = pass then
8: Πb ← SolveCheckerboardPlane(I)
9: XI ← TriangulateLaserPixels(x′I ,Πb)
10: X.insert(XI)
11: end if
12: end for
13: Πl ← RANSACFit3DPlane(X)
14: return Πl

15: end procedure

Given an error bound of the laser detection algorithm in pixels, the sensor’s 3D

measurement error can be computed as the error bound divided by the sensitivity. As

an example, if the laser detection error is 0.5 pixel and the sensitivity is 5 pixel/mm,

the sensor’s 3D measurement error is 0.1 mm.

The sensitivity is a function of the camera model, the laser leaning angle defined

as the angle between the laser light and the camera’s optic axis (0 leaning angle

indicates the optical axis is parallel to the laser plane), the elevation angle along

the fan-shaped laser light, and depth. Although the baseline distance between the

laser projector and the camera also changes the sensitivity, it is often designed to be

as small as possible for compactness. An illustration of the elevation angle and the

depth definition is shown in Figure 3.4.

A custom software is developed to analyze the sensitivity. This software serves

three purposes: a) to characterize the sensor’s 3D measurement error; b) to study

the distribution of sensitivity over depth and elevation angle; c) to find the best

laser leaning angle in terms of sensitivity to achieve the optimal sensor design. Some

sample results generated by the software is shown in Figure 3.4. From the results,

it can be observed that the sensitivity does not change drastically with elevation

angle or laser leaning angle. Specifically, in terms of elevation angle, the sensitivity is
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slightly higher in the center than on the sides; in terms of laser leaning angle, the

sensitivity reaches the global maximum value near 40 degrees. The major factor

affecting the sensitivity is the depth: with a 45-degree leaning angle, the sensitivity

drops from 6 to 0.3 pixel / mm as depth increases from 1 inch to 4 inches.

Camera

Laser

 

Elevation

Depth

Res. 

Res.

Laser leaning angle
(degree)

(a) (b)

(c) (d)

Figure 3.4: Illustration of the sensor’s sensitivity analysis and sample result plots
generated by the sensitivity analysis. (a) Illustration of the definition of depth
and elevation angle; (b) Sensitivity analysis with depth, revealing severe sensitivity
decrease as depth increases; (c) sensitivity with elevation angle, showing sensitivity in
the center direction is slightly higher that off-center; (d) sensitivity with laser leaning
angle, showing sensitivity first increase as the leaning angle increases to 45 degrees
but then decreases rapidly.

3.5 Software Framework

The sensor software framework and the data flow are shown in Figure 3.5. This

framework contains sensor control, sensor data driver, data pre-processing, SLAM,

and dense colored mapping. The data flow starts with the sensor driver, where the
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Figure 3.5: Software framework and data flow visualization.

alternating-frame imaging driver controls the camera exposure and laser on/off in

synchronization and outputs two separate image streams in an alternating fashion.

These two image streams are named visual frames and profiling frames, denoted as

Iv and Ip respectively. Profiling frames serve the sole purpose of generating 3D laser

point cloud via laser stripe detection and triangulation. Visual frames are used for

feature-based SLAM, where visual features are detected and tracked. Other peripheral

drivers handles other on-board sensors, such as the IMU. IMU data is preintegrated

before fed to SLAM to reduce computation cost. The proposed SLAM method takes

in laser points, feature tracking data, and preintegrated inertial data and performs

a joint optimization in a tightly-coupled fashion. In the SLAM process, the laser

point cloud is also colored by associating laser points with visual frames. Finally, the

framework provides two outputs to the user: a 3D map represented as colored point

cloud and sensor pose estimation in a local reference frame.

3.5.1 Alternating-frame imaging

A highlight of our software is a custom designed sensor driver, which enables measuring

two unique types of information using a single camera sensor by alternating the sensor

between two configurations. In order to perform SLAM using the monocular profiler,
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the single on-board camera is required to fulfill two tasks: one is to track visual

content to estimate camera motion, and the other is to capture and triangulate the

laser stripe to generate dense 3D geometric data. However, these two tasks require

contradictory sensor configurations. Tracking visual content mandates that the image

to be neutrally exposes so that features can be stably detected and tracked. The

presence of the laser stripe will also interfere with feature-tracking, for it not only

result in false-positive features but also interrupts the tracking of any feature that

passes the laser stripe on the image. On the other hand, the laser triangulation task

requires that the image to be under-exposed such that the laser stripe exhibits high

contrast against the background; otherwise, the laser detection is often prone to errors

which burdens the SLAM.

The proposed alternating-frame imaging method addresses issue by alternating

the camera and the laser between two configurations and generates two interleaving

types of frames: visual frames Ile and profiling frames Ise. Thus, both the images

for camera motion estimation and the images for laser depth triangulation can be

captured at adjacent sample frames. Figure 3.6 illustrates the interleaving timing

sequence. The visual frame configuration, used for tracking visual features, has

longer exposure time with the laser turned off, generating neutrally exposed images

undisturbed by the laser stripe; The profiling frame for triangulating the laser stripe

are under-exposed in order to exhibit a high laser-to-background contrast. In addition,

the visual frames are also used to color the laser point cloud, enabling photo-realistic

3D reconstruction. Thus, this approach allows the monocular camera to capture

both color and geometric information with minimal time gap, in order to eliminate

the need for two separate cameras and thus reduce the sensor’s physical size that is

critical for confined space requirements.

A camera driver for the alternating-frame method is custom developed. The

driver software extensively use the Multimedia Abstraction Layer (MMAL) library

to communicate with and control the camera. Due to the sensor’s size constraint,

an low-cost camera without any triggering or synchronization support is chosen for

its small footprint. Shown in Figure 3.7, the driver software has three components:

receiving buffer, image encoder, and alternating-frame controller. To overcome the

lack of camera status output, the receiving buffer outputs a signal each time it receives

raw data from the camera. This timing signal triggers the alternating-frame controller
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Figure 3.6: Timing sequence of the alternating-frame imaging method. The camera
shutter alternates between long and short exposure ”on” times, keeping frame duration
constant for all frames. The laser’s state toggles synchronously with the alternating
exposure. This approach enables the monocular sensor to produce two sequence of
images in an interleaving fashion that provide RGB and depth information.

Figure 3.7: Alternating-frame camera driver software diagram. Due to the lack of
camera status output, a receiving buffer outputs a signal each time it receives raw
data from the camera. This signal triggers the sensor configuration alternation.

to toggle the camera exposure time and laser switch. This toggle has a delay to

account for the time lag between the camera frame finish and the receiving buffer

signal.

3.5.2 Laser stripe detection

For each Ise, we detect the laser stripe pixels using the center-of-mass method [15] and

then triangulate these pixels into 3D points as described in Section 3.2. To robustly

detect the laser-ring from the images, we propose a comprehensive computer vision

method which includes four steps. 1) A preprocessing step mitigates the noise of the

raw image using a median filter. 2) The filtered image is converted from RGB space
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Figure 3.8: Visualization of the laser detection process. The top left image shows the
input image captured by the camera. An thresholding operation in the HSV domain
segments out the region of interest, shown in the top right, that contains the laser
stripe. For each pixel column, the procedure first find a segment of pixels with high
intensities and then compute their center-of-mass in terms of intensity. In the bottom
left image, the yellow points show the bounds of the per-column pixel segment, and
the green points are the center-of-mass.

into HSV (hue-saturation-value) space, and image regions with red hue and relatively

large value (lightness) are segmented out. This HSV mask is then morphologically

dilated for better robustness. 3) In the resulting masked-out image, the laser points

are detected based solely on intensity. Since the sheet of laser light is parallel to the

x axis of the camera frame, we make the assumption that there is only one laser pixel

in each pixel column. Based on this assumption, for each pixel column we find the

pixel segment with the highest intensities and compute the center-of-mass location

of this segment. 4) Finally outliers of the laser points are detected and rejected by

grouping the points into geometrically consecutive segments and then discarding the

segments with short lengths. The steps described above are visualized in Figure 3.8.
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Chapter 4

Visual-laser-inertial SLAM

The proposed SLAM method fuses visual feature measurements, depth measurements

from laser scan, and inertial measurements to achieve high localization accuracy.

Each sensor plays a different role. Visual features serve as the main source of camera

motion estimation. The IMU helps handle abrupt motion and estimate orientation

thanks to its observability of roll and pitch angles. Finally, the laser points provide

the metric scale for the visual odometry and help maintain mapping consistency via

point cloud alignment. The proposed SLAM framework can be broken down to the

following components:

• A front-end that pre-process raw sensor data into visual features, 3D laser

points, and pre-integrated inertial data.

• An initialization process that bootstraps the optimization problem structure.

• An odometry component for camera motion estimation.

• A map appearance generator by associate each map point with a color estima-

tion.

• A mapping module which registers laser points into a point-based map repre-

sentation.

• A window-to-map tracking component that aligns current measurements to the

map to correct odometry drift.
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4.1 Front-end

The front-end pre-processes the three raw sensor data (visual images Iv, profiling

images Ip, and inertial data) into corresponding intermediate representations needed

by the SLAM. Specifically, from visual images we detect and track visual features.

From profiling images, the laser points are detected and triangulated into depth

information. The inertial data is preintegrated to save computation time in the

SLAM.

4.1.1 Visual front-end

The visual front end performs three tasks: feature detection and tracking, identifying

features-on-laser from all the features, and select keyframes.

Visual features F are extracted and tracked in each Iv image using KLT optical

flow [40]: existing features in the previous frame are tracked and new feature points

are extracted to maintain a minimum number of features. In order to maintain an

even distribution of features on the image, a minimum distance in pixels between

any two features is enforced. Each feature fi ∈ F is typically observed over multiple

consecutive frames where each observation is a 2D point on the image; the observation

of the feature fi in the jth frame is denoted as xj
i .

We define features-on-laser Fl as a subset of feature points F that are close to

the laser scan; for these features, the laser point cloud can help accurately estimate

feature depths. A feature f is defined to be a feature-on-laser if any of its observations

is close to the laser stripe pixels. Since visual frames do not see the laser stripe, we

assume that the motion is negligible between frames and we directly use laser stripe

pixels in adjacent Ip’s to check for this criteria. Each feature is associated with a

primary observation frame c∗f . For a features-on-laser fi ∈ Fl, its primary observation

frame is the frame whose observation of the feature is the closest to the laser stripe

in the adjacent profiling frame. For a feature fi 6∈ Fl, its c∗fi is defined as its first

observation frame.

Keyframes are a subset of Iv frames, an Iv frame becomes a keyframe if the

average feature parallax from the previous keyframe is sufficiently large or the number

of tracked features from the previous keyframe is too low. The usage of keyframes
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significantly benefits the computation efficiency and has been a popular approach

since its early introduction [33].

4.1.2 Profiling front-end

For each Ip, we detect the laser stripe pixels using the center-of-mass method [15]

described in Section 3.5.2 and triangulate these pixels to obtain corresponding 3D

laser points using the method in Section 3.2.

4.1.3 Inertial front-end

Preintegration is a commonly used technique to handle inertial integration efficiently

by avoiding repeated computation. We perform preintegration following the works in

[16, 48].

4.2 Initialization

Since the factor graph formulation in Section 4.3 requires an initial estimation of

keyframe poses and feature depths, an initialization is required to bootstrap the

estimator. The initialization is a two-step structure-from-motion (SfM) process that

first attempts to establish a transformation between two keyframes using two-view

geometry and then estimate other keyframe poses in the sliding window. The laser

information is also incorporated into the initialization to ensure a correct scale of the

visual structure.

We initialize the sliding window-based SLAM framework for the initial estimation

of keyframe poses and feature depths using the following procedures. 1) First find two

keyframes in the sliding window with enough parallax, such that the first frame is the

primary observation frame of several features-on-laser. The large parallax benefits the

accuracy in transformation estimation. 2) The up-to-scale transformation between

the two frames is estimated using the eight-point algorithm [23] with an arbitrary

scale s0. 3) Depth d̂ of all the common feature points in the two frames are estimated

using triangulation. 4) The correct scale ŝ of the visual structure is then estimated

using each feature-on-laser’s closest laser pixel’s depth d̄: ŝ = s0 · (
∑K

i d̄i/d̂i)/K. The
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two keyframes’ poses and feature depths are then corrected using ŝ. This step uses

the laser information to estimate the visual structure’s scale. It should be pointed

out that for a feature fi ∈ F , its closest laser pixel’s depth is usually not the same

value as the feature’s true depth; however, they are usually close enough and the

estimated scale is often only slightly incorrect. Once initialized, the sliding window

optimization is typically able to converge to the correct scale quickly thanks to a

more accurate projective association method. 5) Given the initialized structure of the

two keyframes, poses of other keyframes in the sliding window are estimated using

the perspective-n-point algorithm [36], and depths of the remaining feature points in

the sliding window are estimated using triangulation. 6) Finally, a bundle adjustment

(BA) optimizes all camera poses and feature depths in the sliding window.

If the above initialization procedure finishes successfully, the global reference frame

is set to be the camera reference frame of the first keyframe in the sliding window.

Poses of profiling frames Ip’s are estimated by interpolating between poses of adjacent

keyframes using inertial integration. Using these pose estimations, the individual

laser scans associated with each Ip can be registered into the global reference frame

and form a 3D point cloud. If any of the steps fails, such as the BA optimization

fails to converge, the initialization process is abandoned and will reattempt after the

arrival of a new keyframe.

Given an initialized camera motion trajectory and pre-calibrated extrinsic transfor-

mation between camera and IMU, we initialize the inertial-related variables including

biases, velocity and gravity using methods described in [48].

4.3 Sliding-Window-based Factor Graph

Formulation

We propose a tightly-coupled visual-laser-inertial SLAM (VLI-SLAM) formulation in

a sliding-window of keyframes. Ceres-Solver [1] is employed to solve the non-linear

least squares optimization problem. In a sliding window consisted of n keyframes

and m features with more than one observations, the full state vector X is defined in

Equation 4.1.
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Figure 4.1: Illustration of the sliding window-based visual-laser-inertial SLAM. The
sliding window is consisted of several keyframe poses, features observed by the
keyframes, laser point cloud observed in the time span of the sliding window, adjacent
laser point cloud in previously built map (if revisited), and inertial measurements.

X = [χ0, χ1, . . . , χn, λ0, λ1, . . . , λm]

χk =
[
Tw

ck
,vw

ck
,ba,bg

]
, k ∈ [0, n]

(4.1)

In Equation 4.1, χ denotes the states associated with each keyframe and λi denotes

the inverse feature depth of the ith feature in its primary observation frame c∗fi . Each

keyframe state χ contains a keyframe camera pose in the global reference frame Tw
c ,

the linear velocity of the camera relative to the global frame vw
c , the accelerometer

biases ba ∈ R3, and the gyroscope biases bg ∈ R3.

A combination of four types of residuals are minimized in the optimization

problem: the visual feature depth residual given laser point cloud, the visual feature

reprojection residual, the inertial measurement residual, and the marginalization

factor. An additional factor named the window-to-map tracking factor can be added

to correct local drift when re-visiting previous scanned areas. This factor is described

in Section 4.6. An illustration of the proposed SLAM formulation is shown in Figure

4.1, and Figure 4.2 shows the corresponding factor graph formulation.
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Figure 4.2: The factor graph formulation. The SLAM problem consists of five
types of factors: feature reprojection factor, inertial factor, marginalization factor,
feature-laser association factor, and window-to-map tracking factor.

4.3.1 Features-on-Laser Depth Residual

Depths of Fl can be accurately estimated using the depth prior from the registered

laser point cloud. The depth prior d̄i of a feature-on-laser fi ∈ Fl is computed using

projective data association involving four steps. 1) A feature LOS ray is cast in the

primary observation frame c∗fi , from the camera optic center through the normalized

feature point. 2) We find the patch of the 3D laser points that is near the feature

LOS ray. 3) A 3D plane is then fitted to these laser points and the intersection

between the plane and the feature LOS ray is computed to find d̄i. 4) Finally to

ensure the correctness of the projective association, the result is rigorously checked

with three criteria: the singular values of the plane fitting problem indicates that the

laser point patch is planar, the normal vector of the planar patch is not perpendicular

to the feature LOS ray, and the feature LOS ray passes through the center of the

patch. Intuitively, a feature that sits on a planar surface that faces the camera will

typically result in most accurate and robust projective feature-laser data association.

Therefore, these three criteria help rule out error-prone cases such as the vertices

of objects. Using these depth priors d̄, we introduce a residual for Fl described in

Equation 4.2.

rl(X ) =
∑
fi∈Fl

∥∥∥∥ 1

λi
− d̄i

∥∥∥∥2 (4.2)
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4.3.2 Feature Reprojection Residual

For each feature fi ∈ F , reprojection residuals defined in Equation 4.3 are evaluated

between the primary frame c∗fi and every other observation frame in the sliding

window C. In Equation 4.3, xj
i denotes the pixel observation of the ith feature in

the jth keyframe, and x∗i is the observation in c∗fi ; πc(·) denotes camera projection

function which maps a 3D point in the camera frame onto the image; π−1c (·) denotes

back projection function which maps a 2D image point onto the normalized image

plane; T ∈ SE(3) denotes a Euclidean transformation matrix.

rc(X ) =
∑
i∈F

∑
j∈C

∥∥∥∥πc(Tcj
w Tw

c∗fi

1

λi
π−1c (x∗i )

)
− xj

i

∥∥∥∥2 (4.3)

4.3.3 Inertial Measurement Residual

We follow the IMU measurement residual definition in [16, 48] to help estimate linear

velocity, IMU biases, and camera poses; details are not elaborated for brevity. Since

the laser point cloud provides metric scale information, IMU is not necessary for the

scanner to function but is still desirable for directly observing roll and pitch angles

and being able to handle abrupt motion.

4.3.4 Marginalization

To maintain a fixed problem size, old keyframes exiting the sliding window are

marginalized into a prior factor. We use Schur complement [26, 52] to carry out

the marginalization. We acknowledge that the marginalization factor uses different

linearization points than other factors that involves the same states, and some works

[18, 56] use the First Estimate Jacobian technique to fix the linearization point.

However, we observe that the drift of linearization point is usually negligible for the

states that are connected to the marginalization factor.
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Figure 4.3: Illustration of the color estimation of a laser pixel using projective
association.

4.4 Map Appearance Generation

Map appearance generation assigns an RGB color to each 3D laser point. This

process enables photo-realistic mapping, which is valuable to many applications.

Color information for each laser point is retrieved via projective data association

using several temporally adjacent keyframes. The association process is illustrated in

Figure 4.3 and described in Equation 4.4. Given a laser pixel xck
i in a profiling image

frame ck, we first transform the corresponding 3D laser point in the camera frame

Xck
i into the global reference frame vi. vi is then projected onto an adjacent keyframe

cj to find the associated visual pixel x
cj
i , whose RGB value is the estimation of the

laser pixel’s color. To reduce noise, this process is performed with several adjacent

keyframes and the averaged color is used as the final estimation.

x
cj
i = πc

(
Tcj

w Tw
ck

Xck
i

)
(4.4)

4.5 Mapping

We adopt a point-based map representation similar to [31, 58], where each map point

is generated from a laser point and contains the following attributes: position in the

global reference frame v ∈ R3, normal vector n ∈ R3, RGB color c ∈ R3, and weight
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w ∈ R. Laser points from a profiling frame are added to the map after that frame

exits the sliding window.

In order to prevent the map size from growing to infinity when the scale of the

scanned scene is finite, a merging operation of map points reduces map size. For each

laser point to add, if there exist a nearby map point p with compatible color and

normal, then the new point is merged into p; if not, the new point is added to the

map and its normal is estimated using nearest neighbors algorithm [32]. The merging

operation linearly combines the position and color attributes with a weighted average.

The normal vectors are re-computed for all map points near merged points. The

weight attribute is the number of times that a map point is merged with a new point.

4.6 Window-to-map Tracking

Back-and-forth scanning motion or similar motion patterns involving repeated scan-

ning is common with laser profilers. Users perform these motion patterns in order to

obtain a higher point density or to fill ”holes” in the map. However, the accumulation

of odometry drift, even when it is millimeter-level, violates the consistency of the

map when the profiler revisits a previously scanned region. The drift often manifest

in a mapping ”ghosting” effect where the map has multiple layers of point cloud.

To account for this issue and to maintain mapping consistency, many RGB-D

SLAM methods have adopted a frame-to-map tracking approach [31, 45, 58], where

new RGB-D measurement frames are aligned to the previous built map instead

of to the previous measurement frame. This approach can be recognized as map-

centric instead of localization-centric. However, with a laser profiler, laser points in

a single profiling frame are co-planar and geometrically insufficient to account for

6 DoF motion. Therefore, we propose a window-to-map tracking approach, where

the registered laser point cloud in the sliding window is aligned to the map. Since

odometry drift exists within the sliding window, a nonrigid Iterative Closest Point

problem is formulated where the laser point cloud of each Ip frame are treated as rigid,

but transformation between Ip’s in the sliding window are treated as nonrigid. This

is achieved by incorporating per-point point-to-plane residual defined in Equation

4.5 into the SLAM formulation. In Equation 4.5, vi is a laser point from an Ip in

the sliding window, and ck and ck+1 are the two temporally adjacent keyframes; f(·)
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denotes a pose interpolation function to estimate the Ip pose using its timestamp; vg
i ,

ng
i , and wi are attributes of the closest map point to vi, which is searched for using

KD-Tree.

ricp =
∑
i

wi

∥∥∥(vg
i − f

(
Tw

ck
,Tw

ck+1
, ti

)
vi

)
· ng

i

∥∥∥2 (4.5)

4.7 Solving Non-linear Least Squares

The non-linear least squares problem is solved using Dogleg, one of the popular trust

region optimization methods [41]. To improve the system robustness to outliers, we

use Cauchy loss function to reduce the influence of large residual values. To enable

the SLAM algorithm to run in real-time, a fixed number of optimization iterations

are carried out for each frame. As a result, the system may not be able to converge

in the beginning but can typically converge within seconds.
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Chapter 5

PipeBlaser: In-pipe Mapping

Sensor

The PipeBlaser sensor prototype is designed for 3D dense mapping in pipes as narrow

as 12-inch in diameter. The mapping system is consisted of multiple sensors, among

which the main sensing component is a laser-ring profiler. The profiler scans the inner

pipe surface using a laser-ring projector and uses an on-board camera to perform laser

triangulation. In addition to the sensor system, a vehicle platform is also designed to

drive the sensor along the pipe, although the sensor payload can be integrated to any

robot platforms.

This chapter discusses the hardware design, sensor model, calibration, sensitiv-

ity analysis, and software framework of the PipeBlaser prototype. Although the

PipeBlaser and the Blaser sensor has extremely different configurations and applica-

tions, they share many software components since they are designed using the same

mapping profiler framework. This demonstrates the proposed framework’s ability to

generalize to vastly different configurations for various real-world mapping tasks.

5.1 Hardware Design

The prototype hardware consists of three major components: the sensing component,

the on-board computer, and the vehicle platform. The vehicle platform serves the

purpose of driving the prototype along pipes and carry out experiments, and the
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sensor component can be detached from the vehicle and integrated onto other existing

robots for various applications. The PipeBlaser prototype is purposefully designed to

be compact to allow it to function in pipes as narrow as 12-inch in diameter. Figure

5.1 shows a rendered image of the PipeBlaser prototype mechanical design. The

sensing component measures 6 inches in width, 6 inches in height, and 10 inches in

length. The whole prototype including the vehicle platform measures 8 inches in

width, 8 inches in height, and 12 inches in length.

Figure 5.1: A rendered image of the PipeBlaser prototype mechanical design. The
prototype consists of multiple sensors, including a camera, an IMU, a laser-ring
projector, and a LiDAR. An on-board computer enables online SLAM and data
recording for post-analysis. A four-wheel-drive vehicle platform drives the sensor
along pipes.

Figure 5.2 shows the hardware component diagram. To achieve a comprehensive

sensing capability and to increase robustness, a variety of sensors are incoporated to

the PipeBlaser. The main mapping sensor is a laser-ring profiler comprised of a laser-

ring projector and a camera. The laser-ring is generated by projecting a laser beam

onto a conic mirror. An omnidirectional fisheye lens with 185-degree field-of-view

is used to observe the laser-ring as well as the pipe inner surface. We chose Ximea

MC050xG-SY camera in the consideration of its low-noise imaging quality, global

shutter, high frames-per-second (FPS), and hardware trigger support which is valuable

to the alternating-frame imaging and synchronization with other sensors. In the

balance of compactness and quality, we selected the Microstrain 3DM-CX5-10 IMU.
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An LED array is also integrated to actively illuminate the pipe for the camera. An

rotary encoder is attached to a passive caster to measure 1-dimensional displacement

and further decrease the localization drift. For computation, we installed an Intel

NUC computer to perform SLAM online and to record sensor data for post-processing

and analysis.

Figure 5.2: Hardware component diagram of the PipeBlaser prototype.

Although the above sensors are sufficient to carry out SLAM, a LiDAR is added

to the prototype. The LiDAR chosen is a Livox MID-70. Compared to conventional

rotary LiDARs like the Velodyne PUCK, the Livox has a scan pattern more suitable

for in-pipe environments and a short minimum measurement range of 5 cm which is

desirable for narrow pipes. However, the LiDAR exhibited large measurement error in

our characterization, especially at short ranges, and is therefore not used for SLAM.

It is added to the sensor suite because unlike the laser profiler which can only scan

the side of the sensor, the LiDAR have 3D measurement capability in front of the
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sensor which will be useful for path planning and navigation in the future.

A custom vehicle was designed to carry the sensor payload along pipes. This

vehicle has four powered wheels that are angled so that they make contact with a

12-inch diameter pipe at right angles. To control the vehicle in a long segment of

pipe, we use radio communication capable of transmitting commands over a range

of 800 meters. An on-board Micro Control Unit (MCU) decodes the radio signal,

controls the motors accordingly, and send control status information to the on-board

computer.

5.2 Sensor Model

3D points on the laser ring are recovered from 2D images using triangulation. The

sensor model of the laser-ring triangulator, shown in Figure 5.3, is very similar to

that of the laser-stripe profiler. Assuming the projected disk-shaped sheet of laser

light is perfectly co-planar, we model the laser light as a plane Πl : n ·X + d = 0

in 3D space, which intersects with the inner pipe surface and forms a visible laser

ring. The triangulation process is then the same as with the Blaser prototype which

is elaborated in Section 3.2.

v

u

z=1

Laser plane

Incident laser ring

LOS Ray

Laser pixels

Laser projector

Normalized Pt.

World Pt.

Figure 5.3: Theory of operation: for each laser pixel, a 3D laser point is triangulated
by projecting a line-of-sight ray of the pixel and finding its intersection with the laser
plane.
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5.3 Calibration

The calibration of the PipeBlaser sensor involves four groups of parameters: camera

model intrinsic parameters, camera-IMU extrinsic transformation, camera-LiDAR

extrinsic transformation, and the 3D position of the laser plane relative to the camera.

The camera model and the camera-IMU extrinsics are calibrated using the same

methods for Blaser, described in Section 3.3.

The camera-laser extrinsic parameters are calibrated using a custom-developed

calibration software. Most ring-laser sensors in the literature rely on mechanical

alignment to align the laser with the camera, which would require accurately fabricated

tools and is time-consuming. In contrary, the proposed sensor relies on a easier and

faster data-driven calibration process. This calibration software takes in images of

a checkerboard that intersects with the laser plane captured with the camera. It

then extracts the laser points from all these images and computes their 3D positions.

Finally, the 3D laser plane is fitted onto all these points. Figure 5.4 illustrates the

above process. The software process is the same as the Blaser calibration software,

whose algorithm and a detailed process description can be found in Section 3.3.

a) Calibration setup c) Plane-fitting to laser pointsb) Camera view

Error (m)

checkerboard

Camera

Laser

Laser plane

Figure 5.4: An illustration of the camera-laser extrinsics calibration process and the
visualized result of fitting a 3D laser plane to the collected sample laser points. (a)
The calibration uses images of a checkerboard which intersects with the laser disk,
forming a straight laser stripe on the checkerboard. (b) A sample raw image captured
by the fisheye camera. (c) The laser plane was fitted to more than six thousand 3D
sample points, resulting in 0.9 mm average point-to-plane error.

In the calibration of the PipeBlaser, more than six thousand sample points were

used to estimate the laser plane. The points were distributed over a disk shape around
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the laser projector and spanned over 800 millimeters in diameter. The plane fitting

returned accurate result: the average point-to-plane distance error reached 0.9 mm.

Although the LiDAR is not used for SLAM, we calibrate its transformation relative

to the camera to register its data with the rest of the sensors. The official Livox-SDK

is utilized for this task. The software takes in camera images and LiDAR point

clouds both observing a rectangular board. The camera-LiDAR data association is

performed by manually labelling the board corners on the image and in the point

cloud.

5.4 Sensitivity Analysis

In order to theoretically analyze the sensor’s sensitivity and facilitate the sensor pro-

totype design, we developed a realistic sensitivity analysis software. The sensitivity

of the sensor is defined as the image response (in pixels) of a 1 mm change in pipe

diameter, which is the higher the better. This software takes in camera model param-

eters to perform analysis on the chosen camera. The core of this software analyzes

the sensitivity given a pipe diameter and a baseline length, which is the distance

between the camera optical center and the laser plane. From a user perspective, this

software serves two purposes: one is to determine the best baseline length given a

pipe diameter to facilitate sensor hardware design for a given application, and the

other is to examine a sensor’s sensitivity in various pipe diameters given a baseline in

order to analyze a sensor prototype’s limitations.

Figure 5.5 shows sensor sensitivity with different pipe diameters and baseline

lengths. From the plots, the sensitivity decreases monotonically as the pipe diameter

increases. We can also conclude that the optimal baseline exists given a certain pipe

diameter. For 12-inch diameter pipe, the optimal baseline length is 14.9 cm, although

the high-sensitivity band is rather wide compared to that with smaller diameter value.

Furthermore, small baselines tend to perform well only under small diameters while

longer baselines offer more balanced sensitivities in a wide range of pipe diameters.

For the PipeBlaser prototype, we chose a baseline of 10 cm as a trade off between

sensitivity and compactness.
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Figure 5.5: Theoretical sensitivity analysis of the laser-ring profiler. The top figure
shows a 3D plot of sensitivity with pipe diameter and baseline length. The result
on the bottom left shows the sensitivity with pipe diameter given various baseline
lengths. This can be used to study a sensor’s performance limitations when using
it in different pipe sizes. The result on the bottom right shows the sensitivity with
baseline length given different pipe diameters. This function can help determine the
optimal sensor design for a certain application.
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5.5 Software Framework

The software framework of PipeBlaser is shown in Figure 5.6. This framework

comprises three components: sensor driver and controller, data pre-processing, and

SLAM. The sensor driver takes in measurement from three sensors: a camera, an IMU,

and a rotary encoder attached to a caster wheel. It also controls a laser projector and

a LED illumination array to enable the camera to capture both visual information for

camera motion estimation and the laser ring to generate geometric pipe cross-section

profiles. These two image types are captured in an interleaving fashion using the

alternating-frame imaging method, which is similar to the Blaser sensor. The raw

sensor data pass through the pre-processing pipeline to generate the intermediate

data representations required by the SLAM method. The pre-processing methods for

each sensor are described in Section 4.1 and 5.6.

Figure 5.6: PipeBlaser software framework for localization and photo-realistic map-
ping.

The alternating-frame imaging is similar to the Blaser prototype with differences

on the use of LED light and the camera control software implementation. Considering
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the darkness of in-pipe environments, an array of eight LED lights are installed

around the sensor. These lights are switched on for the visual frames and off for

the profiling frames. Since the compactness requirement is not as stringent on the

PipeBlaser as with the Blaser, we are able to opt for a larger but high-quality camera

which supports hardware triggering. We made use of the ”exposure-by-pulse-width”

function to trigger camera, which uses a voltage signal to make the camera exposure

active. This method enables accurate timing control, reducing the need for timing

headroom between frames and thus the camera FPS can be significantly increased.

Figure 5.7

Due to the presence of the laser projector mounting pole and the distortion from

the fisheye lens, some regions of the camera image do not see the pipe. An image

region-of-interest (ROI) mask generation software is developed to reject two types

of invalid regions: the area of the laser mounting pole, and the image border area.

Since fisheye lenses tend to have inferior imaging quality on the border, the software

rejects all the image pixels exceeding a user-defined field-of-view angle using image

inverse projection function. Figure 5.8 shows the two-step process of generating the

ROI mask.

The laser detection process is visualized in Figure 5.9 which is based on the center-

of-mass method similar to the laser stripe detection in Section 3.5.2. The process is

consisted of four steps. 1) Apply median filter to reduce image noise. 2) We perform

a binary thresholding mask operation on the image in HSV (hue-saturation-value)

space, keeping image regions with red hue and relatively large value (lightness). This

HSV mask is then dilated to for better robustness. An additional ROI mask excludes
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Figure 5.8: Process of generating the region-of-interest image mask. The software
first rejects the image border area exceeding a certain field-of-view angle and then
asks the user to manually label the laser mounting pole.

the image regions where the pipe is not visible. 3) The laser points are detected based

only on intensity. For each ray that emits from the image optic center to an outward

direction, we find the pixel segment with the highest intensities and compute the

center-of-mass location of this segment. 4) Outliers are rejected using the method in

Section 3.5.2.

5.6 SLAM

The VLI-SLAM proposed in Chapter 4 can be directly used for the in-pipe SLAM.

Two modifications are made to further tailor the SLAM method to the in-pipe

mapping problem. Firstly, the window-to-map tracking component is disabled since

in-pipe mapping tends to always travel forward and rarely scans back-and-forth.

Disabling this component reduces computation cost by relaxing the computation of

the normal of each map point and the merging of map points. Secondly, the encoder

information is added to the SLAM factor graph. The encoder is able to measure

displacement in the axial direction of the pipe more accurately than visual odometry,

and experiments show that it can reduce localization drift. We make the assumption

that the robot travels in a straight segment of pipe so that the encoder measures

motion in the axial direction. If other sensors indicate this assumption is violated,

the encoder information is not used. The factor graph formulation for the in-pipe

SLAM is shown in Figure 5.10

46



5. PipeBlaser: In-pipe Mapping Sensor

Figure 5.9: The laser ring detection process. (a) shows the original image captured
by the camera. In (b), the cyan region is the HSV mask, and the blue region is the
region-of-interest (ROI) mask. (c) visualizes the radial laser point detection. In (d),
the green pixels are the extracted laser points.

Encode

IMU

Feature reprojection

Marginalization

Feature-laser association

Keyframe states

Feature inverse depth

Figure 5.10: Factor graph formulation of in-pipe SLAM using PipeBlaser.
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Chapter 6

Experimental Results

6.1 Blaser

The Blaser sensor’s performance in hand-held 3D scanning is evaluated with real-world

scanning experiments. Targeting localization and mapping benchmarking as main

objectives, we first evaluated the localization accuracy of the proposed VLI-SLAM

in Chapter 4 against VINS-Mono, a state-of-the-art visual-inertial SLAM method,

using the same sensor hardware [48], followed by a comparison of colored point cloud

reconstruction against a popular COTS RGB-D camera, Intel RealSense D435. We

also showcase the scanning of several industrial and household objects in Figure

6.4. For applications were a positioning aid is present, it can replace the SLAM

module and the Blaser sensor can achieve drift-free 3D mapping. This capability is

demonstrated with a robot manipulator.

The experiments were conducted by hand-holding the sensor to scan a keyboard.

To mimic 3D scanning in confined spaces, the sensor was held at approximately

3 cm above the keyboard facing downward to achieve high triangulation accuracy

according to the sensitivity analysis in Section 3.4. The camera motion was kept slow

for map density and to test the SLAM’s ability to cope with low-excitation IMU data.

Because the laser stripe only covered three rows of keys at a time, we scanned the

keyboard using a back-and-forth zigzag motion pattern consisting of six passes to

incrementally cover the scene, visualized in Figure 6.1. The total trajectory length

was 185.4 cm and the average speed was 1.40 cm/s. Figure 1.2c shows the experiment
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setup, where the sensor was mounted on a 3D-printed handle attached with motion

capture markers for localization ground truth.

The sensor outputs Ip and Iv images of VGA resolution at 60 frames per second

(FPS) combined and inertial measurements (linear acceleration and angular velocity)

at 200 FPS. To achieve real-time SLAM, we used a sliding window size of 8 keyframes

and extracted 100 visual features from each Iv. On the testing PC with AMD Ryzen

3700x CPU, the average computation time was 29.8 milliseconds per frame.

6.1.1 Odometry Accuracy Evaluation

We evaluated the proposed VLI-SLAM method against VINS-Mono. A visual-

inertial SLAM method is chosen as benchmark because it the method that uses the

most sensing capability on the Blaser sensor suite. To evaluate the window-to-map

tracking component described in Section 4.6, we experimented with two versions of

the proposed SLAM method: one denoted as VLI-Odom with the window-to-map

tracking component turned off, and the other as VLI-SLAM with it turned on. The

ground truth trajectory was obtained using the Vicon motion capture system (Vicon

Industries, Hauppauge, NY, USA).

Figure 6.1 shows the estimated trajectories in the top-down view of VINS-Mono,

VLI-Odom, VLI-SLAM against ground truth, with absolute translational and rota-

tional errors analysis. In the error plots, the background colors divide the time period

into six segments corresponding to the six passes in the zigzag trajectory, starting

from the bottom-left. The performance statistics comparison are listed in Table 6.1,

where drift is defined as maximum error over trajectory length.

Based on this experiment, VINS-Mono showed significantly larger translational

drift compared to both VLI-Odom and VLI-SLAM, mainly due to inaccurate scale

estimation, which was caused by high measurement noise of the low-cost MEMS IMU

and low signal-to-noise ratio from the slow sensor motion. VLI-SLAM demonstrated

slightly better translational accuracy than VLI-Odom thanks to the window-to-map

tracking component, which reduced drift by registering current measurements with

historic information. Since this drift-correction is map-centric rather than localization-

centric, the mapping benefited more as described in Section 6.1.2. All three methods

showed similar rotation estimation performance.

50



6. Experimental Results

Figure 6.1: Trajectories in top-down view of the proposed SLAM methods, VINS-
Mono and ground truth and the associated translational and rotational errors. The
background color of error plots indicates different passes in the zigzag trajectory. The
top portion in the translational error plot is rescaled to accomodate the large error of
VINS-Mono.
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Table 6.1: Absolute localization errors and Drift rates

Error metric VINS-Mono VLI-Odom VLI-SLAM
t RMSE (cm) 5.1 0.39 0.32
t Max (cm) 8.6 0.86 0.60
t Drift (%) 4.6 0.46 0.32

r RMSE (rad) 0.022 0.014 0.023
r Max (rad) 0.030 0.033 0.035

r Drift (10−4 rad/cm) 1.6 1.8 1.9
t DriftAbs (%) 23.7 0.65 N/A

r DriftAbs (10−4 rad/cm) 4.3 3.1 N/A

One key performance metric for real-world 3D scanning is the absolute drift.

However, in this experiment, the drift growth often alternated between positive and

negative as the sensor motion changed direction, thus the average drift is smaller than

the absolute drift. Therefore, we segmented the trajectory into six passes. Within

each pass, drift is zeroed at the beginning to evaluate the absolute drift, which is then

averaged across the six passes. These translational and rotational drifts are denoted

as DriftAbs in Table 6.1. Since the window-to-map tracking would register the later

passes to the first one, VLI-SLAM is not evaluated for absolute drift.

6.1.2 3D Reconstruction Evaluation

The proposed sensor was compared against Intel RealSense D435 since it is one of the

smallest low-cost and infrastructure-free 3D scanner although still significantly larger

than the proposed sensor. RTAB-Map [35] was employed for SLAM using D435.

Table 6.2: Mapping RMSE statistics

Error metric VLI-Odom VLI-SLAM RealSense
Point-to-point (mm) 1.2 0.97 2.3
Point-to-plane (mm) 0.93 0.76 2.0

The reconstructed point clouds were geometrically evaluated using a ground truth

point cloud, which we obtained using a UR5e robot manipulator (Universal Robots,

Odense, Danmark) to scan the keyboard with the proposed scanner. The point-to-
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point and point-to-plane RMSEs are shown in Table 6.2, where the proposed sensor

with VLI-SLAM showed the smallest error. Figure 6.2 shows the mapping result after

each pass. The VLI-SLAM method was able to gradually complete the scan of the

entire keyboard and maintain mapping consistency. The repeated scanning also filled

”holes” which emerged when a new area was scanned for the first time.

Figure 6.2: Intermediate mapping result after each scan pass. There were in total
six passes to gradually complete the scan. The proposed VLI-SLAM was able to
maintain mapping consistency under the repeated scanning.

To qualitatively compare both the reconstructed color texture and geometrical

shape, we present the photo-realistic colored point clouds as well as spatially color-

coded point clouds in Figure 6.3.

Based on the results, the proposed sensor system was able to achieve 3D recon-

struction results with finer texture details as well as sharper geometries: comparing

Figure 6.3 (d) and (e), our sensor delivered superior reconstruction details on letters

and patterns of the keycaps; geometric structures were also sharper in (h) compared

to (g) which is more evidently shown in the sectional views (i) and (j). This confirmed

the claim that laser-stripe profilers are often able to achieve higher reconstruction

accuracy than structured-light based RGB-D cameras. The window-to-map tracking

component in VLI-SLAM significantly improved mapping consistency under back-

and-forth scanning motions. Figure 6.3 (c) and (f) show the partial point cloud of
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Figure 6.3: Comparison of point cloud reconstruction. (a) is a photograph of
the scanned scene. (d) and (g) are the photo-realistically and spatially colored
reconstruction results by RealSense. Reconstructed using the proposed sensor, (b)
and (c) show results using VLI-Odom, and (e), (f) and (h) are with VLI-SLAM. (i)
and (j) are the sectional views of (g) and (h) respectively with the red dashed lines
as the cutting planes.

(b) and (e) respectively in spatial color-coding. In (c) the point clouds from different

passes were clearly separated from each other due to SLAM drift, and in (f) the

point clouds were tightly aligned. We observe that although the window-to-map

tracking only slightly reduces localization error in Section 6.1.1, the mapping quality

was drastically improved. This demonstrated the proposed VLI-SLAM’s ability to

maintain mapping consistency under back-and-forth coverage scanning, which is a

common motion pattern for both laser-stripe profilers and other 3D scanners.

To comprehensively demonstrate the system’s scanning capability, we also include

the hand-held reconstructions of several other objects in Figure 6.4.

6.1.3 Mapping with External Positioning Aid

For applications that can provide external positioning aid and do not require lo-

calization capability, the Blaser can use external pose data to replace the SLAM

component and achieve drift-free mapping. Laser scans are registered to the global

reference frame to form a 3D map, and photo-realistic mapping is achieved using the
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Figure 6.4: Reconstruction using the proposed system of (a) a face mask, (b) a
multimeter, (c) a industrial aerospace part, and (d) a toy car.

same projective data association described in 4.4. To demonstrate this capability, we

mounted the Blaser onto the end-effector of a UR5e robot manipulator (Universal

Robots, Odense, Denmark) and scanned a medical prostate model. The experiment

setup and the 3D reconstruction result are shown in Figure 6.5.

6.2 PipeBlaser

We first evaluated the measurement performance of an existing sensor, which is the

Livox Mid-70 LiDAR. The PipeBlaser prototype’s performance is then evaluated in

two aspects: profiling accuracy and mapping accuracy. The profiling accuracy is

tested by using the sensor to generate cross-section profiles of a 12-inch diameter

pipe. The mapping experiment is performed using the custom vehicle platform to

drive the sensor inside a 12-inch pipe and a 16-inch pipe. In both environments the

robot travelled at 1.3 cm/s. The camera outputs Ip and Iv images of 1232× 1028

resolution at 90 FPS combined and inertial measurements at 200 FPS. The rotary

encoder generates 1000 pulses per revolution. Paired with a caster wheel of 300 mm

in circumference, the encoder has a displacemnt resolution of 0.3 mm.
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Figure 6.5: Using Blaser with a robot manipulator to scan a prostate model. (a)
Experiment setup. The Blaser was mounted onto the end-effector of the manipulator,
controlled by a 3D mouse. (b) The photo-realistic 3D reconstruction. When the
Blaser uses external pose estimation to replace SLAM, it can achieve drift-free 3D
reconstruction.

6.2.1 LiDAR 3D Measurement Characterization

Before the evaluation of the proposed sensor prototype, we first characterized the

performance of an existing LiDAR technology. Among multiple LiDAR candidates

including Livox Mid-70, Intel RealSense L515, and Velodyne Ultra Puck, we selected

the forward-facing Livox MID-70 Lidar as the best fit for this task. Its wide FoV

and the circular, nonrepetitive scanning pattern make it particularly suitable for

in-pipe depth sensing. Compared to the Velodyne Ultra Puck, the Livox is able

to obtain a full scan coverage of the pipe even when stationary. Figure 6.6 shows

the accumulated Livox point cloud over 0.1 to 0.5 seconds which contains 1 to 5

data frames respectively. During the acquisition of this data, the Lidar was placed

stationary inside a 12-inch diameter pipe. It can be observed that the Livox is able

to obtain a full and dense coverage of the pipe.

Our preliminary experiments have shown that the Lidar measurement is subject to

non-negligible error, including non-zero bias and large noise. This error is presented

in Figure 6.7, where a cross-section segmentation of the point cloud measurement is

compared to the ground truth parameter. This comparison reveals diameter mea-
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Figure 6.6: Accumulated Livox point cloud in a 12-inch diameter pipe while the Lidar
is stationary.

surement bias as large as approximately 4 inches (33% relative error). In comparison,

the proposed PipeBlaser exhibited significantly superior profiling accuracy in Section

6.2.2.

6.2.2 Profiling Evaluation

One major aspect of pipe inspection is the pipe diameter. Since the measured diameter

can indicate the thickness of the pipe wall, it is one of the most important aspects in

pipe geometric integrity. Using the PipeBlaser sensor, the diameter can be measured

from the cross-section profiles generated with each profiling image frame.

In a 12-inch diameter pipe, the ground truth diameter, measured using a digital

caliper, was 300.4 mm. The diameter measured by the PipeBlaser was 300.9 mm,

resulting in an absolute error of 0.5 mm and a relative error of 0.17%. The cross-

section profile and a sample profiling image in the 12-inch pipe are shown in Figure 6.8.

This result is consistent with the sensitivity analysis in Section 5.4. The sensitivity

at 12-inch diameter is approximately 1.0 pixel/mm. Given a laser stripe detection

error bound of 0.5 pixel, the theoretical diameter measurement error is 0.5 mm.
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Figure 6.7: Segmented pipe cross-section of the raw point cloud obtained from Livox
LiDAR with a ground truth diameter reference.

Figure 6.8: A sample profiling image captured in a 12-inch diameter PVC pipe
(ground truth diameter is 11.83 inches) and a cross-section profile generated using
the image.
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6.2.3 SLAM Evaluation

The mapping performance was evaluated in two pipe environments: a 12-inch diameter

white PVC pipe with taints and scratches on the inside and a 16-inch steel pipe which

is painted to resemble rust texture.In both pipes the experiments were performed in

the same way. We evaluated the localization drift using 3D-printed marker blocks

by attaching these unique markers to each end of the pipe. The localization drift is

calculated by comparing the distance between the two markers in the reconstructed

3D map and the manually measured distance.

In the 12-inch PVC pipe, the ground truth distance between the markers was 83

cm, and the 3D map distance was 82.5 cm, resulting in an absolute error of 0.5 cm

and a relative error of 0.6%. Figure 6.9 shows the reconstructed 3D map with marker

blocks. In this test the caster encoder data was not incorporated.

Figure 6.9: The reconstructed 3D map of a 12-inch diameter PVC pipe.

In the 16-inch PVC pipe, we evaluated the localization drift in the same way.

However, the caster encoder was incorporated, and we were able to evaluate the

localization performance with and without the caster encoder. In this test the ground

truth distance between the markers was 60.9 cm. Figure 6.10 shows the 3D mapping

result, and Table 6.3 shows the quantitative result. From the results, the localization

drift in the 16-inch pipe is higher than in the 12-inch pipe. This may be caused by the

inferior sensitivity in larger pipes as analyzed in Section 5.4. However, incorporating

the encoder data drastically improves the localization accuracy.
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Figure 6.10: The reconstructed 3D map of a 16-inch diameter mock-up steel pipe.

Table 6.3: In-pipe localization error evaluation

Sensors Meas. distance Abs. error (cm) Rel. error (%)
Camera, laser, IMU 59.9 1.0 1.7

Encoder, camera, laser, IMU 60.5 0.40 0.65
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Chapter 7

Conclusions

In this thesis, a sensor framework for confined space mapping is proposed. Based on

laser profiling technique, this framework can achieve compact size and infrastructure-

free 3D reconstruction with high definition. A hardware structure, a software pipeline,

and a SLAM method consists this comprehensive framework. Unlike conventional

sensors that requires multiple cameras to perform visual content tracking and 3D

geometry generation such as Microsoft Kinect and Intel RealSense, a novel imaging

technique is proposed which allows the monocular sensor framework to capture

both visual and geometric information ”simultaneously”. This technique relaxes the

need for multiple cameras to perform photo-realistic reconstruction, and significantly

reduces sensor footprint and cost.

The major contribution of this thesis is the Visual-laser-inertial SLAM (VLI-

SLAM), which is tailored to laser profiling scanners. The laser scans are not only used

to generate the 3D map but also to constrain the structure scale of visual odometry.

A feature-laser association method is proposed, where a 2D association method on the

image robustly bootstrap the SLAM system and a 3D projective association method

accurately estimates the depths of some visual features using the laser point cloud.

The mapping consistency issue for overlapping map regions under back-and-forth

scanning is also addressed with a window-to-map tracking method. This method

performs semi-rigid point cloud alignment between the sliding window and the map

to account for the minor drift within the sliding window.

Under the proposed sensor framework, two different sensor prototypes are devel-
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oped, each addressing a confined-space mapping challenge. A miniature sensor named

Blaser targets general confined space without prior knowledge and is designed with

compactness as the primary interest. Although more than ten times smaller than

one of the smallest, if not the smallest, commercial offering, it is fully capable of

performing infrastructure-free photo-realistic 3D reconstruction. To the best of the

authors knowledge, the Blaser prototype is the most compact RGB-D photo-realistic

reconstruction system for hand-held infrastructure-free 3D reconstruction, which pro-

vides a disruptive solution for a wide range of 3D scanning applications where sensor

form factor and ultra short sensing range are critical. The other more specialized

sensor prototype named PipeBlaser is designed for mapping inside 12-inch diameter

pipe environment. Utilizing a different laser-ring profiler but the same SLAM method,

the PipeBlaser can profile pipe cross sections and generate a dense map as it travels

inside the pipe. Unlike the previous works in pipe mapping, the proposed sensor

do not make any assumptions regarding the pipe shape and size and do not rely on

external positioning devices such as tether encoder or laser range finder.

Experimental evaluation on localization demonstrated our SLAM method’s per-

formance compared to a state-of-the-art visual-inertial SLAM method. Since laser

profilers has superior 3D measurement accuracy than RGB-D cameras, the recon-

struction is of higher definition: the mapping comparison suggest that the Blaser

sensor is able to capture finer details and sharper geometric shapes against a popular

but larger COTS RGB-D camera.
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[50] Florian Reichl, J Weiss, and Rüdiger Westermann. Memory-efficient interactive
online reconstruction from depth image streams. In Computer Graphics Forum,
volume 35, pages 108–119. Wiley Online Library, 2016. 2.2

[51] Giovanna Sansoni, Marco Trebeschi, and Franco Docchio. State-of-the-art and
applications of 3d imaging sensors in industry, cultural heritage, medicine, and
criminal investigation. Sensors, 9(1):568–601, 2009. 2.1

[52] Gabe Sibley, Larry Matthies, and Gaurav Sukhatme. Sliding window filter with
application to planetary landing. Journal of Field Robotics, 27(5):587–608, 2010.
4.3.4
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