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Abstract

Search and Rescue is a task where the rescuers need to be cognitively
agile, strategically consistent and efficient to save as many trapped victims
as possible. However, in such a dynamic scenario, the rescuers’ mental
models may be outdated, and it may be difficult to coordinate with other
rescuers under a time constraint and cognitive overload. In this thesis,
we propose to develop agents based on Machine Theory of Mind (MToM)
to infer the beliefs, intentions, and desires of the rescuers from their
observations and actions. By generating a mental model, an agent can
intervene when it detects a rescuer might act based on a false belief. We
also study approaches on using data from a different map to learn robust
neural agents. Finally, we study the paradigm of imitation learning to
learn policies from expert trajectories, and propose a sample efficient
method over existing baselines.

iv



Acknowledgments

I would start by sincerely thanking my advisor Prof. Katia Sycara for
taking me in as an advisee. I wanted to try a relatively new field considering
my existing background in computer vision and medical image analysis.
Diving into a new research topic can be fun and exciting, but can be
hard to navigate too. I thank Prof. Katia for helping me to navigate the
deep waters of research in theory of mind and imitation learning. I would
like to thank Prof. Changliu for her insightful discussions and support.
Also a huge thanks to my labmates Ankur, Tejus, Vidhi, Siddharth,
Akshay, Keitaro, Yisha, Swami for their immense support and long hours
of thoughtful discussions. I would also like to thank Prof. Kayhan and
team members at Batmanlab - Sumedha, Li, Ke, Brian, and others, with
whom I had the chance to explore some medical research.

Finally, I would like to thank my mom and dad, for their immense
emotional and mental support. I would also thank my brother Rohan for
his endearing presence. In reality, no amount of thanks is enough for their
belief in me and my abilities. Without their love and support, I would
not have been fortunate enough to conduct such exciting research in a
top-notch university, far, far away from home.

v



Funding

This work was supported by DARPA Award HR001120C0036. Any
opinions, findings and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views
of the Defense Advanced Research Projects Agency (DARPA).

vi



Contents

1 Introduction 1

2 Background 3
2.1 Theory of Mind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Search and Rescue Task . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Agent Observations . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Imitation Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Related Work 11

4 Predicting Human Strategies in SAR 15
4.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1.1 Evidence accumulation approach . . . . . . . . . . . . . . . . 17
4.1.2 Neural sequence models . . . . . . . . . . . . . . . . . . . . . 18

4.2 Experiment setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2.1 Task scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2.2 Human trajectories collection . . . . . . . . . . . . . . . . . . 20
4.2.3 Human observer experiment . . . . . . . . . . . . . . . . . . . 20

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Transfer Learning for navigation and triage prediction 23
5.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.1.1 USAR Domains . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.1.2 Agent Observations . . . . . . . . . . . . . . . . . . . . . . . . 27
5.1.3 Navigation Prediction . . . . . . . . . . . . . . . . . . . . . . 29
5.1.4 Triage Strategy Prediction . . . . . . . . . . . . . . . . . . . . 29

5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2.1 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2.2 Triage Strategy Prediction with Transfer Learning . . . . . . . 33

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6 Augmenting GAIL with BC for sample efficient imitation learning 37
6.1 Pretraining in Imitation Learning . . . . . . . . . . . . . . . . . . . . 38

vii



6.1.1 Suboptimal performance of warm-started neural networks . . . 39
6.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.3.1 Low dimensional control tasks . . . . . . . . . . . . . . . . . . 43
6.3.2 Effect of temporal dependencies on Behavior Cloning . . . . . 46
6.3.3 Effect of annealing . . . . . . . . . . . . . . . . . . . . . . . . 47
6.3.4 Imitation learning with RL in Grid World environments . . . 48
6.3.5 Imitation Learning in Image-based Environments . . . . . . . 49

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7 Conclusions 53

A Appendix 55
A.1 Predicting Human Strategies in SAR . . . . . . . . . . . . . . . . . . 55

A.1.1 Evidence accumulation approach . . . . . . . . . . . . . . . . 55
A.1.2 Architecture details for neural-based sequence models . . . . . 56
A.1.3 Human observation experiments . . . . . . . . . . . . . . . . . 57

Bibliography 59

When this dissertation is viewed as a PDF, the page header is a link to this Table of Contents.

viii



List of Figures

4.1 Human participants as rescuer see the view in (a). Human observers
view the replay of the trajectory as in (a) and the bird’s eye view of
the environment as in (b). . . . . . . . . . . . . . . . . . . . . . . . . 19

5.1 The Original Maps of Sparky (left) and Falcon (right). Red stars
indicate start locations. . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2 Map of the three versions of Falcon: easy, medium, and hard collected
in [27]. Grey indicates walls, Magenta indicates blockages, and Cyan
is for openings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.3 The Architecture of the Navigation Prediction Process . . . . . . . . 28
5.4 Graph transfer among different maps . . . . . . . . . . . . . . . . . . 31
5.5 Transfer in Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.6 Transfer learning on triage strategy prediction . . . . . . . . . . . . . 34

6.1 Performance of different imitation learning algorithms on MuJoCo
tasks. All methods are tested with 3 random seeds. . . . . . . . . . . 42

6.2 Performance of our method with and without discriminator training.
Notice that our method outperforms BC even with random rewards
from the discriminator, which shows that adding a temporal depen-
dency in behavior cloning improves performance significantly. . . . . . 45

6.3 Performance of our method with and without annealing the tradeoff
parameter. Notice that the final performance decreases with increasing
value of α because the advantage term due to BC contributes in
addition to the advantage of RL term, thus rendering the agent prone
to overfitting. Our method reaches the best asymptotic performance
and is more sample efficient than its constant α variations. . . . . . . 46

6.4 Performance in GridWorld environments. From left to right, the
reward curves are for 8× 8, 10× 10, 12× 12 grids respectively. Note
that our method performs better than GAIL consistently across grid
sizes. Behavior cloning is implemented by setting α = 1 within our
framework for ease of implementation (therefore the reward curve for
behavior cloning). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.5 Reward curves on Car Racing environment . . . . . . . . . . . . . . . 50

ix



List of Tables

4.1 Comparison of strategy prediction accuracy. . . . . . . . . . . . . . . 21

6.1 Performance of imitation learning algorithms. For each method, agents
are trained with three random seeds. Final performance is measured
by averaging across 60 rollouts for each method, 20 rollouts for each
seed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.2 Performance on Car Racing environment . . . . . . . . . . . . . . . . 49

A.1 Comparison of baselines for triage strategy prediction . . . . . . . . . 56

x



Chapter 1

Introduction

Consider a scenario where an office building gets damaged during an earthquake and

has victims who need to be rescued. Victims would have varying degrees of injury,

and therefore human rescuers have to develop appropriate search, navigation and

victim triaging strategies so as to save the largest number of victims in limited time.

The earthquake may have caused serious structural perturbations, such as blockages

that limit the ability of the rescuers to reach certain areas.

In this thesis, we provide initial results of a computational agent that observes

the environment and the behavior of a human rescuer (in a simulation environment)

and predicts the beliefs, intents, and actions of the rescuer. This is the first step

towards developing an agent that can provide assistance to the human based on their

mental model and state. The assistance will consist of sparse interventions when

the player deviates from the optimal actions for the task. Anticipatory assistance is

important in dynamic and dangerous situations. By predicting the rescuer’s mental

model, the agent can warn the human to avoid recently collapsed and unstable areas,

or give advice to mitigate human cognitive limitations, such as limited and short-term

memory over current localization. This helps the human avoid duplicate effort by

revisiting areas that have already been searched. Moreover, neural computational

agents require huge amounts of data to learn such patterns, which is difficult and

expensive to obtain. Therefore, we need approaches that use a small amount of

human data as a ”bootstrap” for a generative model that generates more data over

the distribution. This generated data can be used to train our agents as well.
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1. Introduction

In this work, we look at a baseline approach to train such computational models,

build a transfer learning framework to use data from other maps, and finally build

imitation learning agents that can generate more data from the given ”expert data”.

The thesis is organized as follows: first, we explore the background required to

formulate the tasks mentioned above. Then, we discuss some recent and older related

work in the literature. Next, we propose each of the three methods in the following

chapters. Finally, we conclude the document.
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Chapter 2

Background

2.1 Theory of Mind

Humans are social creatures, who participate in day-to-day interactions with other

humans. This requires understanding of the other person’s behavior and their

intentions and desires, which are usually inferred from their statements and expressions,

as they are the only things that are directly observed. Each human is aware of their

own mental model and how their mind works, via directly introspection of their

mind. The human doesn’t, however, have direct access to the mental models of

other humans, and therefore must infer their latent mental models from their visible

actions.

Theory of Mind (ToM) [49] refers to the innate ability of humans to infer other’s

minds by the assumption that other minds are analogous to their own. ToM allows

a human to attribute beliefs, desires and intentions of others via past actions and

behavior, to predict future actions and behavior. This helps the human to engage

in social interactions and account other humans to modify their own mental model

of how to perform certain actions. Humans develop a complete theory of mind

with social or other experiences over many years. A person who does not have a

completely developed theory of mind may indicate a sign of congitive or developmental

impairment.

Machine theory of Mind (MToM) [49] aims to use this theory to train a machine

learning algorithm to build a MToM agent that observes a human/machine’s ob-
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2. Background

servations and actions in an environment, and makes inferences about its theory of

mind, including prediction of belief states, intentions, and desires. For brevity in

this subsection, we refer to the MToM agent as simply the agent and the observed

entity as the player. To make an inference about intentions and detection of false

beliefs, MToM agents generally possess more information than the player that is being

observed by the agent. ToM models do not reference the player’s underlying structure

(their actual mental models) but make predictions about their future actions. MToM

uses this salient feature of ToM models to build its prediction models without actually

modelling the players it predicts.

The agent needs a strong prior about different types of players, over which it can

then finetune after observing the actions of the player. This is similar to how we have

a certain set of priors of how other humans behave (altruistic, greedy, calculative,

random, etc.) and then based on the actions of a certain person, we update our theory

of mind of that person. To learn a generalizable prior (encoded in its parameters),

MToM uses a meta-learning [16] framework to build models of the players it encounters.

Meta-learning has found huge successes in learning and adapting to new datasets

with one to few examples (commonly known as few-shot learning) [68]. During

meta-training the agent learns to adapt its parameters to input traces of behavior

from different players and output predictions of future behavior. This learning to

adapt parameters for different players is what constitutes meta-learning (learning to

learn). During meta-testing, the agent takes behavior traces from a novel player as

input, and adapts its parameters to predict the future behavior of the player.

In [49], the architecture of the model, which is called the ToMnet is described.

The ToMnet consists of three modules:

1. Character Net: The character network is designed to characterize the given

player, by parsing its past episode trajectories. Given a set of trajectories

{τij}
Npast
i

j=1 for player i, the character net fθ, where θ denotes learnable parameters,

outputs a player-trajectory embedding echarij = fθ(τij). Then, the final character

embedding of the player is given by echari =
∑

j e
char
ij .

2. Mental state net: The mental network takes the current trajectory of the

player τik and outputs an estimate of the mental state of the player. The mental

state net is given by gφ, where φ denotes learnable parameters. Let the current
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2. Background

trajectory of the player contain observations and actions for t timesteps. The

mental state embedding for the player for the given time is therefore given

by ementali = gφ([τik]0:t−1, e
char
i ). Note that the mental state embedding also

depends on the character emebedding, which can be useful in determining

mental states of the player like cognitive workload (some players may find it

easier to do the same tasks than others resulting in a lower cognitive overload

for them).

3. Prediction net: Finally, the goal of the prediction network is to leverage

the character and current mental state of the player to predict the future

actions of the player. Given the prediction net π, the output action is given

by a deterministic or probabilistic value π̂(.|xt, echar, emental). In addition to

the action, other values such as successor representations, or usage of certain

environment entities can be predicted by the prediction net. In practice, the

prediction net uses a shared torso, and different heads for different predictions.

The full training of the MToM using meta-learning has been summarized in

Algorithm 1.

Algorithm 1 Machine Theory of Mind

procedure MToM({τij}i=1:N,j=1:Npast
i

, {τik}i=1:t, T , α)

θ, φ, ψ = RANDOM INIT()

for p = 0 to T − 1 do

Sample player i ∈ RANDINT(1, N)

echari ←
∑Npast

i
j=1 fθ({τij})

ementali ← gφ({τik}, echari )

âik ← πψ(.|xt, echari , ementali )

Let Θ = (θ, ψ, φ).

Update parameters.

Θ← Θ− α∇Θl(âik, aik)

end for

end procedure

5



2. Background

2.2 Search and Rescue Task

The USAR mission requires a human player/rescuer to work in an indoor environment

in a limited time where victims were scattered. The rescuer is equipped with a

medical kit which enabled them to triage victims in a few seconds. A device that

beeps to report if one or more live victims were inside a room was utilized, however the

human participant may or may not have understood the significance of the beeping.

Knowledge of the beeping was a condition that was varied in different trials, i.e. in

some conditions the participant was told the meaning of the beep at the beginning

of the experiment, whereas in other conditions, the participant may not have been

given this information. High rewards were given when seriously injured victims were

saved, and low ones for slightly injured victims. The Rescuer State and Field of

View Contents update at a rate of 10Hz, all other observations are asynchronous

events. The sensor of the agent collects various events of rescuers in the input stream,

including but not limited to participant location, yaw, pitch, information of the

victims interacted, contents of the Field of View (FoV), events indicating opening /

closing doors, entering / exiting rooms, start / end triage, beep message for detecting

victim in the nearby room. The location and FoV messages appear at a rate of 10Hz.

When the rescuers are in front of the door of a room, the detecting device sends out

a beep message to give them a hint on if there are victims inside this room.

To train agents and evaluate the ability of agents to evaluate players, multiple

USAR task domains were developed using two distinct building layouts: a smaller

map with fewer rooms (referred to as Sparky), and a larger, more complex map

(referred to as Falcon). For each domain, victims were placed in specific locations

of the environment, and the environment was perturbed with blockage and holes on

the walls, which are not initially known to rescuers, but are encountered as rescuers

navigate the environment. Blockages in the hallways and rooms might make certain

paths in the map impassable, while holes on the walls opened other possibilities for

navigation.

For prediction of rescuer navigation, a total of four task domains were created by

varying the location of victims and perturbations: a single variant of the Sparky map,

and three variants of the Falcon map of increasing difficulty (Falcon-easy, Falcon-

medium, Falcon-hard). For prediction of rescuer triage strategy, we created two

6



2. Background

domains using the Falcon environment. The first domain, Falcon-2victim, contains

victims of two severity levels, which are common to all domains: regular victims

require 7 seconds to triage, and critical victims require 15 seconds to triage, and will

expire 5 minutes after the start of the mission. The second domain, Falcon-3victim,

introduces an additional victim severity level, medium victims, which require 12

seconds to triage and will expire 7 minutes into the mission.

2.2.1 Agent Observations

The agent observes a stream of information containing the following values from the

rescuer’s trajectory:

• Rescuer State: The position and orientation of the rescuer in the environment

• Field of View Contents: Blocks of interest (e.g., victims) that are present

in the rescuer’s field of view

• Victim Interaction Events: Including starting, completing, and abandoning

triage attempts

• Environment Interaction Events: Including opening or closing doors, and

entering or exiting rooms

• Victim Location Device: Emitted beep when the rescuer is near a room

containing an untriaged victim.

Given the player’s behaviors and the agent’s observations of these variables, the

goal is to predict the navigation and triage strategy of the player as part of the theory

of mind intent and action predictions.

2.3 Imitation Learning

Given an environment, humans may or may not act suboptimally. In the case that

they act optimally (or near-optimally) for a task, we would like to build artificial

agents (policies) that imitate their behaviors and actions. One way of doing this is to

formulate the task as a reinforcement learning problem, and design a reward function

for the policy to learn from. However, designing such a reward function may be

challenging, or even impossible due to the intractability of the state-space (designing

7



2. Background

reward functions for a self-driving car, for example). However, for such tasks, we have

a set of expert trajectories who operate with respect to an underlying reward function

which is hard or impossible to quantify. The problem of learning to perform these

tasks from expert demonstrations is the problem of Imitation Learning. Imitation

Learning has several popular approaches, which are discussed in this section.

1. Behavior cloning: A simple way to learn a policy from expert trajectories

is to simply “‘copy” the expert action at any given state. This is commonly

known as behavior cloning. Behavior cloning is a simple technique that works

in the asymptotic case when we have huge amounts of expert data, enough

to cover huge portions of the state-space. With fewer and fewer data, there

is the problem of compounding errors, where the errors in predicted actions

drift the policy progressively further from states with high occupancy as per the

expert. In the case of less data, the actions at states further from the expert

states are states where the policy is not trained, and can therefore act randomly.

Therefore, the method is limited in its usage.

2. Inverse Reinforcement Learning: In the beginning of the section, we dis-

cussed the intractability of designing the reward function by hand. However,

given the expert trajectories, one can learn a reward (or cost) function under

which the expert performs optimally. The reward function will also discourage

the policy from encountering state-action pairs which have low reward as per

the expert trajectories.

The major problem with such an approach is that there are an arbitrarily high

number of reward functions that can satisfy this requirement. Therefore, choice

of a reward function among these possible candidates becomes a problem. Some

of the natural criteria to select a reward function which is more ”meaningful”

than other reward functions are proposed in the original IRL paper [46]. One

of the criteria is to make any single step deviation from the policy π to be

as costly as possible. This is equivalent to increasing the difference of the Q

functions for the expert action from all non-expert actions. Mathematically, we

find a reward function that maximizes:∑
s∈S

(
Qπ(s, a1)− max

a∈A\a1
Qπ(s, a)

)

8



2. Background

Moreover, following Occam’s Razor, we may want to favor ‘simpler’ reward

functions and therefore have a weight decay-like penality of the form −λ‖R‖1

where λ is a coefficient. Minimizing the L1-loss will lead to a sparse reward

function, which is in line with the ‘simple reward function’ criteria. For large

state spaces where enumeration is not possible, one can also use state features

φ1 . . . φm and formulate a reward function that is linear in these features, i.e.

R(s) =
∑
j

αjφj(s)

This makes optimization easy to handle constraints on the Q funcions since they

can be calculated easily using linearity of expectations. Multiple works have

built upon this idea in various ways, which we discuss in the related section.

3. Adversarial Imitation Learning: For environments with large state and

action spaces, behavior cloning is a suboptimal algorithm, and IRL is an expen-

sive one. The limitation of most IRL algorithms stem from their inefficiencies

in solving the RL problem (finding the optimal policy for a given intermediate

reward function) in an inner loop (the outer loop being finding the optimal

reward function itself). Although IRL returns a reward function from which a

policy may be learnt, the optimal reward function is not necessary. AIL methods

use this as motivation to directly return a policy which imitates the expert,

bypassing the intermediate IRL step completely. The Generative Adversarial

Imitation Learning (GAIL) framework first shows that policies and state-action

occupancy measures are uniquely related to each other. Next, the IRL is the

dual of the occupancy matching problem. Using these ideas, finding a policy

that imitates the expert is the problem of matching the state-action occupancy

measures of the policy and the expert. A GAN framework is used where the

discriminator is used to measure the discrepancy between the expert and policy

state-action occupancies. The GAIL algorithm is given in Algorithm 2.

9



2. Background

Algorithm 2 Generative Adversarial Imitation Learning

1: procedure GAIL(Expert trajectories τE = {τ1 . . . τn}, T , α)

2: Init policy θ,Discriminator φ ∼ RANDOM INIT()

3: for i = 0 to T − 1 do

4: Sample trajectories τi ∼ πθ

5: lD ← Eτi [log (Dφ(s, a))] + EτE [log (1−Dφ(s, a))]

6: φ← φ− α∇φlD

7: lP ← Eτi [log (πθ(a|s))Q(s, a)]− λH(πθ)

8: where Q(s, a) = Eτi [log (Dφ(s, a)) |s0 = s, a0 = a]

9: θ ← θ + α∇θlP

10: end for

11: end procedure

10



Chapter 3

Related Work

Disaster scenario in indoor environments has been considered and looked into by [61],

[14] where the crowd flow has been analyzed with simulated agents. Though these

techniques assess simple fork in the corridor structures for navigation with simulated

agents only, we study human participants and their biases in a larger simulated setting

as an office building with many such structures. Neural sequence models have shown

promising results in several domains like trajectory prediction [20] [44]. In particular,

the transformer [67] is a popular attention mechanism for sequence modeling tasks and

achieves state-of-the-art results on various benchmarks. But these models require a

large amount of training data. As it is particularly challenging to obtain large human

data in our setting, we discuss approaches with limited human data and our design

of faux-human agents. LSTMs do not deal with irregularly sampled observations by

default. To alleviate this problem, a model-agnostic representation of time [31] can

be learnt and fed as an additional input. An alternative approach is to update the

hidden state of the predictor between observations, such as through the use of an

learned ordinary differential equation [57]. Methods based on Theory of Mind (ToM)

framework reason in joint belief-intent space to reason about the demonstrator’s

behavior. Previous work [4] has shown that inferences using ToM models closely

match predictions of human observers. However, these results were demonstrated in

smaller settings, and it is challenging to scale Bayesian inference using ToM models

to large environments such as ours. Incorporating ToM with neural networks is

shown to be successfully to reason about machine agents, where ground truth about
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3. Related Work

the internals of the decision making are available. But these approaches are yet to

be applied to reason about human mental state. Unlike settings with a single goal

in 11x11 sized grid-worlds without any structural priors [49], we consider a more

realistic multi-goal task setup where the agent can be attributed with different types

of strategies. The challenge of understanding humans’ beliefs from behavior has also

been studied in [52] where humans are assumed to act optimally but have incorrect

knowledge of environment dynamics. We observe a similar case in our task setup

where differing internal perspective on task complexity leads to variations across

human behaviors.

For the past decade, transfer learning has been studied extensively [48, 63, 65, 75,

76] . It has been recently used in reinforcement learning, where multiple tasks are

learnt instead of a single one. Knowledge gained in some Markov Decision Processes

can be leveraged to speed up the solutions of others [6, 7, 8], In computer vision,

Joint Distribution Adaptation is proposed for robust transfer learning [38], which

jointly adapts the marginal and conditional distribution. Domain invariant features

of the source and target are extracted for visual object recognition [5].

Transfer learning applied to graphs has recently gained attention. [12] proposes

a network transfer learning framework using the adversarial domain and graph

convolution. Although training and test data still require having the same feature

space and distribution, new tasks that share similar representations can be resolved

easier in [35], and this work transfers the geometric information from source to target.

Graph-based domain mapping is used to identify previously encountered games, and

this provides a good starting place for learning [34]. With graph based skill acquisition,

[35] and [60] capture community detection from a connectivity graph, and speed up

learning using the transferred knowledge. The theoretical grounded framework for

the transfer learning of GNNs can be found in [74].

There are works on training an agent to navigate while adapting to new envi-

ronments, including [73] where knowledge is transferred from previous navigation

tasks using a successor-feature-based RL algorithm. In [42], the autonomous agent

is trained to navigate in diverse city environments, while performing transferred

tasks of navigating in target new locations. We build upon our previous work on

the observing and predicting agent [28] by incorporating a graphical representation

of the environment, amenable to inference using graph embedded Recurrent Neural

12
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Network models and transfer to new domains (i.e., environment layouts). We refer

readers to [27] [28] for the data collection process where rescuers are equipped with

Minecraft skills.

Our approach to navigation prediction builds upon the Transfer Learning Diffusion

Convolutional Recurrent Neural Network (TL-DCRNN) architecture presented in

[41] to infer participant navigation, partitioning each domain’s map utilizing the

concept of a “clique” in a graph (a set of connected nodes) to form our clique group

assignment for graph division. The original work predicts on traffic flow based on

the Diffusion Convolutional Recurrent Neural Network (DCRNN) model proposed in

[36]. It was able to predict the traffic flow of one city using the data collected from

another. In our work, instead of using the partition for cities [40], we partition the

graph based on the spatial recognition of the rescuers when performing the search

task.

To mitigate the compounding errors in the naive supervised approach, [55] train

an iterative algorithm where at each time step t, the policy πt learns the expert

behavior on the trajectories induced by π1 . . . πt−1. [55] also introduce a stochastic

mixing algorithm based on [13]. The initial policy starts off as the expert policy,

and at each iteration, a new policy is obtained by training on the trajectory induced

by the previous policy πt−1. The policy at timestep t is obtained by a geometric

stochastic mixing of the expert and the previous policies. [56] train a policy using

the expert demonstrations, generate new trajectories and use the expert to correct

the behavior in these new trajectories iteratively. Although this method performs

much better in a variety of scenarios, it requires access to the expert, which might be

very expensive.

Another approach to tackling the problem is to use Inverse Reinforcement Learning.

Inverse reinforcement learning attempts to find a reward function which best explains

the behavior by an expert. Inverse reinforcement learning has shown successes in

variety of tasks, including gridworld environments, car driving simulations, route

inference based on partial trajectories, and path planning. The reward function is

modeled as a linear function of the state features, and the weights are learned to

match the feature expectations of the expert and the learnt policy [1], [51]. [77]

use the principle of maximum entropy to disambiguate the underdefined problem

of multiple possible rewards. Other methods like [50] use priors and evidence from
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expert’s actions to derive probabilistic distributions over rewards.

Recently, adversarial imitation learning methods have shown successes in a variety

of imitation tasks, from low dimensional continous control to high dimensional

tasks like autonomous driving from raw pixels as input. [26] propose a framework

for directly extracting a policy from trajectories without performing reinforcement

learning inside a loop. This approach utilizes a discriminator to distinguish between

the state-action pairs induced by the expert and the policy, and the policy uses the

output of the discriminator as the reward. Different approaches build on top of

this method, with [37] proposing an algorithm that can infer the latent structure

of the expert trajectories without explicit supervision. This approach maximizes a

mutual information term between the trajectory and the latent space to capture the

variations in the trajectories. GAIL was further extended by [17] to produce a scalable

inverse reinforcement learning algorithm based on adversarial reward learning. This

approach gives a policy as well as a reward function. These approaches have led to

faster imitation learning in both low and high dimensional tasks.
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Chapter 4

Predicting Human Strategies in

SAR

In a search and rescue scenario, rescuers may have different knowledge of the environ-

ment and strategies for exploration. Understanding what is inside a rescuer’s mind

will enable an agent to proactively assist them with critical information that can

help them perform their task efficiently. The first part of the work is to build models

of the rescuers based on their trajectory observations to predict their strategies. In

our efforts to model the rescuer’s mind, we use human trajectories in the Minecraft

environments mentioned in Section 2.2. More specifically, we focus on the Falcon

maps with different perturbations because of the decent amount of complexity in

triage and navigation strategies that can occur. This becomes the first step towards

building a MToM model that can predict future behaviors of the player based on their

past trajectories. For simplicity, instead of encoding a prior in the form of a character

embedding, we restrict the set of possible behaviors in triage and navigation strategies

by binning them into certain distinct groups. This is based on the assumption that

individual deviations from these triage strategies and navigation patterns is minimal,

which we found to be a valid assumption given the data. We use these biases to train

neural sequence models which predict the triage strategies.
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4. Predicting Human Strategies in SAR

4.1 Approach

To train the neural sequence models, we require a large amount of data. Since it

is expensive to collect such a large dataset of human behavior in this setting, we

augment our dataset of trajectories with a collection of faux-human agents. The

faux-human agents are AI agents designed to quickly search the map and triage

as many victims as possible. Since our navigation and triage strategies fall into

different categories, the faux-humans we design are based on rules that implement

these strategies. These agents are then run on maps with different perturbations

in victim locations and rubble, to obtain trajectories that capture the variability in

the actions taken for a particular high-level strategy. To avoid the complexity of

performing actions in a big 3D space in the Minecraft environment, we reduce the

state-space by discretizing the environment at the block level, and reducing it to a

2D minimap instead. For this, we use the Minigrid environment as the environment

of choice, to which we transfer the Falcon maps for faux-human data collection and

easy visualization. These faux-humans act ‘optimally’ under the given strategies and

do not show spikes of random/suboptimal behavior like humans. Humans do not

always act rationally, and therefore, these naive faux-human agents’ behavior may

be quite different from human behavior. We ameliorate this issue by collecting a

small set of pilot human data and incorporating the rescuers’ observed biases into

the faux-human agents.

Some of the observed biases in the rescuer’s decision-making were: (1) choosing

subgoals in a soft-optimal manner (modeled using the Boltzmann distribution), (2)

planning over room sequences instead of low-level actions, and (3) using greedy

frontier-based search for short-horizon combined with long term planning aligned

with the cliques in the graph representation of areas of a map. We thus obtain a rich

and diverse set of faux-human agents that incorporate human biases while optimizing

for the task objective.

We model the rescuer’s intent across the victim saving (triaging) strategies, and

navigation behavior in terms of next area to visit. First, we consider two victim

saving strategies - saving the critically injured first (selective) or saving whoever

comes first (opportunistic) - formulating it as a binary classification problem. These

preferences tend to change in humans with time and proximity to the victims, making
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it a challenging sequential binary prediction task. For example, a rescuer may start

the mission with ’opportunistic’ strategy but may switch to be ’selective’ on seeing

the critically injured victims die. Another case where the rescuer may switch saving

strategy is when a less critically injured (green) victim is close by in an area that is

hard to reach later, we can expect a change in preference from being selective only

to attend to the victim nearby. Second, given the area segments of the rooms and

corridors from the original floorplan, we formulate the next location prediction as a

multi-class classification problem. Both approaches are sequential classification tasks,

where we learn to predict from the observations of a given trajectory.

We evaluate neural sequence models like RNNs and multi-head attention based

transformer model [67] on our dataset. We compare this approach with a rule-based

evidence accumulation method for prediction. This rule-based system is effective

when we know the relevant evidence to track based on the rescuer’s decision-making

model and its knowledge state. In contrast, the neural sequence model learns what

evidence to use and how to use it in an end-to-end manner using data.

4.1.1 Evidence accumulation approach

In this approach, we are explicitly incorporating full knowledge of SAR task and

admissible strategies. We maintain a belief over the likelihood over each of the

classes for the strategy prediction per human trajectory. At the initial state with

no evidence, let the belief vector have a uniform distribution for each strategy as a

prior. We assume access to a library (or a look-up table) for evidences ei and their

corresponding operation fi to update the belief. Throughout the rescuer’s trajectory,

this approach provides a way to update the likelihood sequentially depending on the

evidence for each strategy/intent and predict the one which is the most likely, as

shown in Algorithm 3.
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Algorithm 3 Evidence accumulation algorithm to predict most likely strategy/intent

1: procedure Evidence accumulation(Rescuer trajectory τn0 , evidence library

E = {e1 : f1(b), . . . em : fm((b))}, Condition set of strategy/intent C of size d)

2: Belief vector bt =
[

1
d
, . . . 1

d

]
at t = 0;;

3: for t ∈ {0 . . . n− 1} do

4: if evidence et found in τ to then

5: Obtain a function from the evidence library ft = E(et);

6: Update belief vector bt+1 = ft(bt);

7: end if

8: i = arg max bt+1 ;

9: most likely condition at time t = C[i] ;

10: end for

11: end procedure

Though the evidence accumulation algorithm depends on knowing every ei and

its appropriate operation fi to update the belief, it provides an upper bound on the

prediction, limited with only individual differences and momentary variations. For

specific evidences used for triage and next location prediction, refer to the Appendix

A.1.

4.1.2 Neural sequence models

In settings where we have sufficient data in terms of the rescuer’s trajectory but

with no knowledge of specific evidences for prediction, we need to learn to infer

them implicitly from their trajectory data. In this case, we train neural sequence

models on faux human trajectories to evaluate their performance on the human

data. For victim triaging strategy, we train the three variants of recurrent neural

networks, namely LSTM + RNNDecay [57], LSTM + RNN-ODE [57] and LSTM +

Time2Vec [31]. We observed the best performance of LSTM + Time2Vec [31] and

use this model for comparison in table 4.1. For detailed analysis of all three methods,

refer table A.1 in Appendix A.1. The input to each of the models is a sequence

of observations, each of which consists of vector representation of the time, the 2D

coordinates, and the condition of the victim seen (critically injured or not). For the
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Figure 4.1: Human participants as rescuer see the view in (a). Human observers view
the replay of the trajectory as in (a) and the bird’s eye view of the environment as in
(b).

next location prediction, we formulate the input as a sequence of areas visited. When

the rescuer enters a new area segment, we take as input all the previously visited

areas to predict the next area that they will transition to. We use a 2-layered 2-head

Transformer model [67], which is neural network of encoder – decoder structure with

partial masking of input for sequential prediction. Unlike the evidence accumulation

approach, we do not provide the map connectivity. Rather, it is inferred from the

input sequences by the network. We provide further details for both the models in

Appendix A.1.

4.2 Experiment setup

4.2.1 Task scenario

We build a damaged office building in Minecraft environment as the task scenario for

rescuers. The game screen and a 2D map layout of this environment are shown in

Fig 4.1.

The scenario in the Minecraft environment represents a structurally damaged

office building after an unspecified incident. Initially, it contains 26 area segments

consisting of corridors, rooms, and elevators. The current building layout and segment

connectivity were changed by perturbations such as collapses, wall openings, and

sporadic fires. There are 20 injured victims inside the building who need to be rescued.

Out of these, five victims are severely injured (yellow) and might die if not treated in
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time. Other victims are denoted in green. in Fig 4.1. Both victims depend on the

first responders’ help to stabilize and evacuate out of the building.

4.2.2 Human trajectories collection

Eight participants were recruited to collect real human trajectories in the search and

rescue task. Participants were given detailed instructions on the search task and

the virtual environment they would interact with. Each participant completed the

same searching task 3 times on maps with 3 different perturbations. In each of the

15-min trial, human participants were asked to control a rescuer avatar and search for

victims in the building. Player’s position, interaction history and field of view were

recorded as the game log in a sampling rate of 10Hz. In total 24 trajectories were

collected from human players, 6 out of which were excluded from following analysis

because of incomplete data record.

4.2.3 Human observer experiment

To provide a sound baseline of our agent prediction, we provide the same Theory

of Mind inference task to human observers. The gameplay screen recordings and

minimap videos were segmented by ‘decision points’ at which behaviors occur such

as spotting a victim or leaving a room. Segments were viewed in the order recorded

so that prior segments can inform judgments. Human observers were asked to

supply a prediction of the expected action and choose among alternative beliefs and

intentions from menus. The action taken was then presented at the start of the

following sequence. Fifty workers on Amazon MTurk participated in the observation

experiment. They were asked to predict five different types of rescuers’ action in

corresponding decision points. Refer to Appendix A.1 for a detailed definition of

decision points and online survey design.

4.3 Results

The results shown in Table 4.1 highlight the prediction performance of our com-

putational agent as compared to the human observers. To evaluate our approach,
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Table 4.1: Comparison of strategy prediction accuracy.

Prediction Method Triage strategy Next location

Human observers 65.50% 58.20%
Evidence accumulation 98.80% 68.53%
Neural sequence 70.74% 66.98%

we compare it to an evidence accumulation method that explicitly incorporates all

available background knowledge and thus provides an upper bound for the expected

performance. The human observers were evaluated on a selected set of 10 decision

timesteps for 18 human trajectories, while the two approaches were tested at every

decision timestep relevant for triaging and next location prediction. The evidence

accumulation approach is our intended upper bound for prediction accuracy. Within

this setting, we observe that both computational methods outperform humans at the

prediction tasks.

For triage strategy prediction, we obtain a high performance of 98.80% with

evidence accumulation approach. This is a sequential binary classification task for

which the selected evidence and belief update functions incorporate most of the

domain knowledge. The neural sequence modeling approach implicitly infers from

the trajectory observations and performs with an accuracy of 70.74%. The next

location prediction is a 26-way multi-class classification, and a harder task than triage

prediction. In this case, we found that devising exact evidences is challenging as

human rescuers tend to be stochastic in the next location selection and therefore,

we observe about 68.53% average prediction accuracy. The neural sequence models

achieves a close performance with accuracy of 66.98%.

Overall, we observe that the computational methods outperform humans at both

the prediction tasks. The results highlight evidence accumulation is a good enough

approach to incorporate domain knowledge in limited data setting and can serve as an

upper bound to the neural sequence model’s performance. Further, neural sequence

models can perform comparable to evidence accumulation approaches when the tasks

get more complex, which makes it challenging to encode all the required evidences

and their corresponding belief update functions for strategy prediction.
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4.4 Discussion

This work aims to develop artificial agents that provide anticipatory assistance to

human rescuers in disaster relief. Anticipatory assistance is important especially

for dangerous and dynamic environments, such as disaster relief. To provide such

assistance, the agent would observe the human and the environment and try to predict

human’s actions from observed behavior, so as to be able to e.g. warn the human of

dangerous dynamic changes or mitigate shortcoming resulting from human cognitive

limitations, such as limitations of memory or confusion over localization (e.g. the

human spends redundant effort in revisiting places they have already searched). We

have obtained initial encouraging results compared with humans in the role of the

assisting agent.

One of the bottlenecks that we observed was the difficulty of obtaining human

data for bigger maps. Sparky being a map with more manageable size was tractable

to work with, however, the algorithms do not tend to scale much. For instance, the

Falcon map is at least 4 times the size of Sparky, and the Saturn map is ∼4 times the

size of Falcon map. Collecting data on Sparky and transferring learnt representations

from the smaller map to the larger maps may be a viable strategy rather than training

from scratch which will require more trajectories. In the next chapter, we try to

tackle this problem with transfer learning, TL-DCRNN, and attention based models.
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Chapter 5

Transfer Learning for navigation

and triage prediction

In the previous chapter, we worked on both evidence based and neural prediction

models for predicting human navigation and triage strategies. The entire suite of

experiments was performed on the Sparky map, which is a smaller variant of the

Search and Rescue maps. For bigger maps, the neural models need to adapt to a

quadratic increase in the state space (we assume that the height of the map does

not scale along with the length and width of the map) . However, collecting the

same amount of data would not be sufficient due to curse of dimensionality and

overparameterization of neural networks. Therefore, transfer learning and curriculum

approaches are needed where the MToM agents are progressively trained on maps of

increasing size.

To build an agent providing assistance to human rescuers in an urban search and

rescue task, it is crucial to understand not only human actions but also human beliefs

that may influence the decision to take these actions. Developing data-driven models

to predict a rescuer’s strategies for navigating the environment and triaging victims

requires costly data collection and training for each new environment of interest.

Transfer learning approaches can be used to mitigate this challenge, allowing a model

trained on a source environment/task to generalize to a previously unseen target

environment/task with few training examples.

In an urban search and rescue (USAR) task, human rescuers may navigate better
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and rescue more victims with the help of an artificial agent that observes and predicts

their navigation and rescue activities, and opportunistically intervenes to give them

assistance. Simple assistance and guidance include reminding rescuers not to revisit

an area already visited, how to efficiently go to desired places, and whether they are

likely to find victims that they would consider high priority in saving. The utility of

an agent’s advice to rescuers is dependent on the accuracy of agent’s predictions of

the rescuer’s intents; interventions based on incorrect predictions may be misleading.

Behavior prediction in an USAR task is challenging due to various factors, including

but not limited to (a) incomplete information about where victims are, (b) changes

in environmental and victim conditions , and (c) difficulty in obtaining data on

rescue missions performed by humans. In a natural disaster scenario, such as after

an earthquake, traversability of a building may change due to holes opening in walls

or debris blocking passages, requiring rescuers to form ad-hoc navigation strategies

during exploration. Rescuers also may be faced with decisions regarding triage

(providing essential medical care to victims) priority. For example, a rescuer may

decide to temporarily disregard lightly injured victims in order to search for and

triage critical victims first, triaging lightly injured victims later.

In USAR tasks, real data is expensive to obtain, and is usually associated with

unique configurations of the environment. This raises the question: how can an

agent learn navigation and victim triage prediction in USAR task that can efficiently

generalize and transfer to more complex environments and tasks? Representation

and abstraction of spatial recognition in the humans has been studied widely. The

knowledge human navigation relies on can be primarily characterized by a labeled

graph [11]. Instead of perceiving environments into a global coordinate system, this

cognitive map built from local information cannot guarantee geometric consistency

[72]. There is a general agreement that people have hierarchical representations of

space [10, 21, 25, 64], and this typically leads to the wrong answer to trick questions

such as “What direction is Reno from San Diego?” (Answer: Northwest). Many people

know San Diego is in California and Reno is in Nevada, and the spatial perception on

state locations misleads that on cities. Similar effects are found on a local scale where

people cluster buildings and other landmarks together into regions. Distances between

locations within a cluster are judged to be shorter than they actually are, while the

distance between locations in different clusters are judged to be longer. Simulations of
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learning and question answering based on this hypothesized hierarchical organization

have been developed and analyzed in various works [54], [69], [39]. The goal of the

work in this chapter is to develop transfer learning methods that provide zero- or

few-shot transfer for human navigation and triage strategies from a source domain to

a more complex target environment and task. In particular, we developed effective

transfer learning techniques for navigation prediction from a smaller to a larger indoor

environment and for a larger number of victim injury criticality classes. In this

work, we used the 3D Minecraft platform [15, 30] as a testbed. Specifically, we used

the Sparky and Falcon maps from our USAR environments as source and target

environments respectively. Both source and target environments represented building

interior spaces. The two environments had different room layouts, and we collected

human rescuer navigation trajectories while they performed the simulated USAR

tasks. In this paper, we demonstrate several benefits of our approach: (1) the agent

is able to make good predictions on the navigation and triage strategy of rescuers,

(2) its prediction accuracy grows fast even with a small input number of trajectories,

(3) the convergence time of training process is shortened significantly in the target

domain while not affecting the accuracy, and (4) the experiment demonstrates the

potential of transfer learning for USAR missions.

5.1 Approach

The transfer-learning agent we developed is able to predict the navigation and triage

activities of rescuers in the source task, using training data from human Minecraft

players. The agent divides the space using graph methods and utilizes the TL-DCRNN

to predict navigation when the rescuers search for victims; it also uses LSTM to

predict triage strategies when the rescuers found victims and made decisions. In

this work, we transfer the prediction model which is trained with the old scenarios,

to predict the navigation and rescue activities of human rescuers in an unobserved

situation. The implementation code has been released.1

1https://github.com/sophieyueguo/tl navi
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5.1.1 USAR Domains

To train agents and evaluate the ability of agents to transfer to new domains, multiple

USAR task domains were developed using two distinct building layouts (shown in

Figure 5.1): a smaller map with fewer rooms (Sparky), and a larger, more complex

map (Falcon). For each domain, victims were placed in specific locations of the

environment, and the environment was perturbed with blockage and holes on the

walls, which are not initially known to rescuers, but are encountered as rescuers

navigate the environment. Blockages in the hallways and rooms might make certain

paths in the map impassable, while holes on the walls opened other possibilities for

navigation. For prediction of rescuer navigation, a total of four task domains were

created by varying the location of victims and perturbations: a single variant of the

Sparky map, and three variants of the Falcon map of increasing difficulty (Falcon-easy,

Falcon-medium, Falcon-hard), shown in Figure 5.2.

For prediction of rescuer triage strategy, we created two domains using the Falcon

environment. The first domain, Falcon-2victim, contains victims of two severity levels,

which are common to all domains: regular victims require 7 seconds to triage, and

critical victims require 15 seconds to triage, and will expire 5 minutes after the start

of the mission. The second domain, Falcon-3victim, introduces an additional victim

severity level, medium victims, which require 12 seconds to triage and will expire 7

minutes into the mission.

The USAR mission required a human player/rescuer to work in an indoor envi-

ronment in a limited time where victims were scattered. The rescuer is equipped

with a medical kit which enabled them to triage victims in a few seconds. A device

that beeps to report if one or more live victims were inside a room was utilized,

however the human participant may or may not have understood the significance of

the beeping. Knowledge of the beeping was a condition that was varied in different

trials, i.e. in some conditions the participant was told the meaning of the beep at the

beginning of the experiment, whereas in other conditions, the participant may not

have been given this information.
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Figure 5.1: The Original Maps of Sparky (left) and Falcon (right). Red stars indicate
start locations.

5.1.2 Agent Observations

The agent observes a stream of information containing the following values from the

rescuer’s trajectory:

• Rescuer State: The position and orientation of the rescuer in the environ-

ment,

• Field of View Contents: Blocks of interest (e.g., victims) that are present

in the rescuer’s field of view,

• Victim Interaction Events: Including starting, completing, and abandoning

triage attempts,

• Environment Interaction Events: Including opening or closing doors, and

entering or exiting rooms,

• Victim Location Device: Emitted beep when the rescuer is near a room

containing an untriaged victim.

The Rescuer State and Field of View Contents update at a rate of 10Hz, all other

observations are asynchronous events.
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Figure 5.2: Map of the three versions of Falcon: easy, medium, and hard collected in
[27]. Grey indicates walls, Magenta indicates blockages, and Cyan is for openings.

Figure 5.3: The Architecture of the Navigation Prediction Process
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5.1.3 Navigation Prediction

The navigation prediction task involves the agent predicting the next room a test

(unknown) human will enter next, predicted at particular time intervals. Figure 5.3

illustrates the main components / processes of our architecture (blue blocks) and data

flow between the components (grey blocks). In addition to the agent’s observation

stream listed above, the agent is provided with a map of the environment and victim

and environmental perturbations (e.g. , debris blockages and openings in walls),

from which it generates a graph-based representation of the environment. The agent

updates the representation based on victims and environment perturbations observed

by the rescuer in the agent’s data stream. Features are extracted from the graph-based

representation, and a TL-DCRNN model is used to forecast future features, from

which room visitation predictions can be made.

Note: The navigation strategy prediction was done by one of my co-authors

Yue Guo. Please refer to our paper for more information on the graph architecture

proposed for navigation strategy prediction.

5.1.4 Triage Strategy Prediction

In the triage task, the agent predicts over time the next victim type the human

rescuer will triage. We hypothesize that a rescuer’s triage strategy is agnostic to the

location of the victim, and only depends on the reward that a rescuer gets in triaging

a victim of a particular severity class of injuries.

Triage Strategy

We formulate the triage strategy prediction as a classification problem, using a

sequence of Field of View observations (specifically, the location and severity of

victims within the rescuer’s Field of View) and observation timestamp as input.

Based on the set of victim severity levels, we identify four categories of strategies

a rescuer can employ for triaging victims:

1. Strict: Rescuer exclusively triages critical victims during the first 5 minutes,

medium victims from 5–7 minutes and regular victims from 7–10 minutes. In
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the Falcon-2victim domain, the rescuer following this strategy will triage regular

victims from 5–10 minutes.

2. Slack: Rescuer triages critical and medium victims as they are discovered

during the first 7 minutes, then triage regular from 7–10 minutes.

3. Preemptive: Rescuer triages victims as discovered regardless of victim severity.

4. Probabilistic: Rescuer triages a discovered victim only if the expected number

of victims that can be triaged in the remaining time is less than the number of

victims remaining in the environment. The rescuer is made aware of the total

number of victims from each severity class, and can therefore calculate both

the expected and remaining number of victims.

Note that in the Falcon-2victim domain, the Strict and Slack strategies are

equivalent, and is therefore considered a single category for this domain.

Attention based LSTM

We use a sinusoidal embedding for the position of the victims and the timestamp,

following the works of [66]. At every timestep, we collect the list of victims, and

use a common feedforward network Eψ to convert the information into embeddings.

To consider the case of no victims, we also include a “dummy” victim embedding

at each timestep. Let there be Nt victims at time t. Each victim is depicted by a

tuple of severity level, r, and (x, y) locations i.e. vti = (rti , x
t
i, y

t
i), i ∈ {1 . . . Nt}.

This representation is fed into the feedforward network to get the victim embedding

ei = Eψ(vi). The embeddings are given by {ei}
∣∣∣Nt
i=1
∪ {e0} where e0 is the learned

dummy victim embedding. This set of embeddings is passed into a self-attention

network Aθ where θ are the learnable parameters, giving us modified embeddings

{fi}Nti=0 = Aθ

(
{ei}Nti=0

)
. Next, we take the average of these embeddings as the

“summary” vector that goes into the LSTM, st =
∑Nt
i=0 fi
Nt+1

. This architecture allows

us to account for variable number of victims at each timestep without making the

architecture task specific. This vector is used as input to the LSTM. The final triage

strategy prediction yt is given by the LSTM equation yt = softmax(gφ(ht)), ht, ct =

LSTM(st, ht−1, ct−1), where ht, ct are the hidden and context state of the LSTM, and

gφ is a feedforward network. The recurrent architecture allows the network to predict
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Figure 5.4: Graph Level Transfer Learning on Navigation Prediction among Different
Maps and Perturbations

Figure 5.5: Grid Level Transfer Learning on Navigation Prediction from Map Sparky
to Map Falcon Easy

the triage strategy by taking into account the historical behavior of the player in

terms of which victims they triaged (can be inferred from a change of victim state to

“saved”) and which victims are neglected.

5.2 Results

We performed a series of experiments to evaluate the agent’s ability transfer prediction

models trained on a source domain to a target domain in the USAR domains described

in Section 5.1.1. To train and evaluate the networks, we used a previously collected
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set of trajectories generated by human participants on the Falcon map variants [27],

and collected trajectories generated by human participants on the Sparky map. In

each experimental run, a single human participant navigated a given map and triaged

victims, accumulating score points for each triaged victim. Score point were allocated

in ascending order on seriousness of injury. Each participant was assigned to only

one map or map variant, in the experiment. In other words no participant repeated

the experiment in two or more maps.

For navigation strategy prediction, there were 8 trajectories of map Sparky for

training, 138 trajectories of map Falcon for training, and 33 trajectories of map

Falcon for test. Trajectories of different map Falcon perturbations were considered as

different trials. For triage strategy prediction, we used a rule-based agent conditioned

on rescue strategy to generate trajectories in the Falcon map. For domains for

triage prediction (Falcon-2victim, Falcon-3vicim), we generated 100 trajectories for

each triage strategy, resulting in a total of 300 trajectories for the Falcon-2victim

domain and 400 trajectories for the Falcon-3victim domain. To introduce variation

in the trajectories, we introduced perturbations in victim locations by making the

victims do a “random walk” around their starting locations. Victim severity levels

were also randomized in each training run. From each rescue strategy, we used

up to 70 trajectories for training, 10 for validation, and 20 for testing. Evaluating

the transferability of the prediction models to new domains involves pre-training

a model on trajectories from a source domain (e.g., Falcon-easy), and evaluating

the performance of the model on predicting trajectories from a target domain (e.g.,

Falcon-hard) after performing additional training on trajectories from the target

domain.

5.2.1 Evaluation Metrics

For evaluating navigation prediction, we used Mean Average Error (MAE), as used

in [36] and [41],

MAE(f , f̂) =
1

|Ω|
∑
i∈Ω

|fi − f̂i|
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where the ground truth is represented by f = f1, f2...fT , the predictions are

represented by f̂ = f̂1, f̂2...f̂T , and Ω referred to the observed samples.

For triage strategy prediction, we used the mean accuracy over time (MAT) as

our final evaluation metric. In the initial stages, the prediction can be random due to

lack of rescuer’s behavior data around the victims. Therefore, the average is taken

only after one minute. Given a sequence of observations O and the ground truth

rescue strategy c, the metric is given by:

MAT(O, c) =
1

|O|
∑
t

I(yt = c)

where yt is the predicted strategy at timestep t. c is one of the four classes mentioned

in Section 5.1.4.

5.2.2 Triage Strategy Prediction with Transfer Learning

In this section, we compare the performance of the model trained on the harder

Falcon-3victim domain from scratch, and transferring a model pre-trained on the

easier Falcon-2victim source domain, and finetuning on few trajectories from the

Falcon-3victim target domain, reducing the required training data and time. We

therefore perform the following experiments:

1. Models trained on the Falcon-3victim domain from scratch, i.e. without fine-

tuning, with a varying number of training trajectories.

2. Models pre-trained on the Falcon-2victim domain as a source domain with

maximum number of training trajectories, and transferring the model to the

Falcon-3victim as the target domain by finetuning with varying number of

target-domain trajectories.

The results are shown in Figure 5.6. The dotted plot shows the test accuracy with

70 training trajectories in the Falcon-2victim domain. We train with 1, 2, 5, 10, 20

and 50 training trajectories from each strategy. Finetuning improves generalization

performance even given a small number, such as 2, of finetuning trajectories from

target Falcon-3victim. In our case, the source task does not contain information about

the target task at all (for example, no Falcon-2victim trajectory contains information

about medium severity victims), so the finetuning indeed improves generalization.
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Figure 5.6: Transfer learning on triage strategy prediction

Moreover, using even as few as 30 trajectories for finetuning the Falcon-2victim source

model reaches the performance of the Falcon-3victim model trained from scratch with

all trajectories (green constant line in the figure) and for more than 30 finetuning

trajectories, it outperforms the Falcon-3victim model.

5.3 Discussion

We built an agent that makes predictions on the navigation and rescue strategies

of a human rescuers in a simulated urban search and rescue mission. We showed

experimentally that: (a) using an abstract representation, i.e graphs enables efficient

navigation strategy transfer from source to target domains from smaller to large maps

with different victim and perturbation configurations; (b) for triage strategy, training

a source model with smaller number of victim classes and adding a few finetuning

trajectories form the target domain with larger number of triage victim classes, is

not only high performing and efficient, but surprisingly outperforms a model trained

from scratch in the target domain, while also converging faster. This is an interesting

finding and we will explore it further in additional domains in future work. We also

plan to study transfer with a team of rescuers instead of a single one. This is a very

challenging task, not only because of the increase in the number of humans but also

because of the inter-dependency of rescuer policies since they coordinate as a team.

These works, however, can still benefit if we can build faux-human players that
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can imitate these humans from nothing but their trajectories. This would allow us to

generate more trajectories from these faux-humans that we can use to train these

methods. The final part of the thesis aims to build an imitation learning framework

that is significantly faster than existing IL methods, and also works with bigger state

spaces.
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Chapter 6

Augmenting GAIL with BC for

sample efficient imitation learning

In this chapter, we attempt to solve the problem of imitation learning, where a task

has to be performed by an agent using only expert demonstrations. The agent cannot

query for more information from the expert in an iterative manner. One approach to

solve the problem is to use behaviour cloning, where learning from demonstrations has

been formulated as a supervised learning task. However, supervised learning assumes

the data to be i.i.d. which is an incorrect assumption since the action taken at a state

influences the future actions that the expert might take. Here, the i.i.d. assumption

is with respect to the transition function. In behavior cloning, the assumption is that

the action for a given state will not influence the distribution of states that the agent

sees later on. Due to this incorrect assumption, behavior cloning cannot deal with

covariate shift. Therefore, the ‘best’ action for a state is chosen from the expert and

no other environment dynamics are considered. However, in RL, the log-probabilities

are weighted by the Q-function, which encode the dynamics of the transition function

and rewards from future states.

This i.i.d. assumption leads to compounding errors in behaviour cloning, and a

large number of expert state action pairs must be provided to mitigate this error.

GAIL, on the other hand, is very sample efficient in terms of the number of expert

trajectories required but is very sample inefficient in terms of environment interactions.

Environment interactions in many such scenarios require massive amounts of compute
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time and space. This is all the more problematic in real-world problems where

additional concerns of safety, wear and tear and cost also kick in. This calls for the

need of sample efficient algorithms which require minimal environment interactions.

Off-policy imitation learning may be a viable strategy, however, truly off-policy

data is hard to learn from ([18]). Off-policy algorithms are also difficult to implement

and often require delicate replay buffer manipulations. Off-policy may also not be an

option when there are ethical or privacy related issues regarding persistent storage of

data (EU regulations, for example). To that end, we propose a strategy to perform

imitation learning in an on-policy manner to outperform GAIL in terms of sample

efficiency. This method uses the fact that behavior cloning is a fast learning procedure

but cannot be used as a pre-training step for GAIL as shown in the experiments

section. This method is fast to implement into an existing GAIL implementation.

Scalability of the environments in Minecraft is an issue for reinforcement and

imitation learning environments which are brittle in learning, with respect to training

seeds, batch size, and hyperparameters. Our work in this chapter aims to mitigate

the stability issue so that training on environments with large state spaces becomes

feasible. To validate our work to the community, we also run experiments on commonly

used continuous control environments (MuJoCo) and an image-based environment

(Car Racing) as well.

6.1 Pretraining in Imitation Learning

GAIL and BC offer complementary benefits for imitation learning, namely, asymp-

totic optimality and fast convergence respectively. Therefore, a natural question

to ask would be if there are any obvious ways combine the two while keeping their

respective benefits. One approach that has found repeated mentions in the literature

is pretraining with BC and then finetuning the policy with GAIL. Although this

sounds like a reasonable strategy, our empirical results show that pretraining with

behaviour cloning did not help and the agent learns a suboptimal policy as compared

to GAIL trained from scratch. This observation is not uniquely found by us, as

demonstrated by [58], where they show that GAIL pretrained with behaviour cloning

failed to reach optimal performance as compared to GAIL trained from scratch. The

following subsection discusses the effect of warm-started neural networks, and why
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that may hinder learning in GAIL after pretraining with behavior cloning.

6.1.1 Suboptimal performance of warm-started neural

networks

Pre-training networks has shown a number of successes in deep learning, from image

classification to natural language inference among others. The success of pretraining

lies in the fact that it can be used on a base model that can be used to finetune

later to domain specific tasks with little data. However, [23] show that random

initialization is very robust and performs no worse than pretrained networks. The

networks take longer to train than pretrained networks, but their generalization

errors are almost always better than that of pretrained networks as shown in their

work. This holds especially true when networks are trained with less data, which

is surprising. [3] takes this a step further and shows that warm starting a network

might lead to poorer generalization although the training losses may be the same. In

the context of imitation learning, behaviour cloning does not train with all the expert

trajectories because some validation data is required to prevent overfitting. GAIL,

however, can work with all of the data, and training can stop when the discriminator

loss becomes stable or after a fixed number of environment interactions. Since the

policy is warm-started with a fraction of the expert data during behavior cloning, it

may lead to an overall poor generalization error when trained on the entire set of

trajectories during GAIL training.

6.2 Approach

The motivation for our method is inspired by the fact that optimizing the behavior

cloning term alone leads to the agent learning a mapping from states to actions in a

few iterations. However, the i.i.d. supervised training objective does not consider

the sequential decision making aspect at all. Since there is no information about

the transition dynamics or the value of following an action at a state (Q-function),

behavior cloning would be suboptimal unless a lot of data is provided. However, even

in a limited data setting, behavior cloning can still learn important features that map

states to probable actions. GAIL, on the other hand, is simply reinforcement learning
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with a learnt reward function which is provided by the discriminator. However, the

rewards provided by the discriminator are not informative in the beginning of the

training procedure, and changes along with the policy that adapts to this reward

function. The uninformative rewards do not provide any strong signal that the agent

can use to map states to expert actions. Experiments in Section 6.3.2 shows that

simply adding a temporal dependency to the behavior cloning term can improve

convergence speed over GAIL without even training the discriminator.

Formally, consider the behavior cloning loss which is given by:

LBC = −EτE [log(π(a|s))]

In adversarial imitation learning, we also train a discriminator D parameterized

by ω. The discriminator is trained by minimizing the loss

LD = −EτE [log(Dω(s, a))]− Eτπ [log(1−Dω(s, a))]

And the policy is trained using a policy gradient algorithm:

LP = −Eτπ [log(πθ(a|s))Aω,ψ(s, a)]

where the advantage A is estimated using the value network Vψ and the discriminator

Dω:

Aω,ψ(s, a) = − log(1−Dω(s, a)) + γEs′∼T (s′|s,a) [Vψ(s′)]− Vψ(s)

Let the expert trajectories be denoted by a datasetD, whereD = {(s1, a1), (s2, a2), . . . (sN , aN )},
containing tuples of states si and actions taken by the expert ai. Let the state-action

visitation probability be denoted by ρ(s, a). The behavior cloning term can also be

written as:

LBC = −
∑
s,a

ρE(s, a) log(π(a|s)) = −
∑
s,a

ρπ(s, a)

[
ρE(s, a)

ρπ(s, a)
log(π(a|s))

]
= −Eτπ

[
ρE(s, a)

ρπ(s, a)
log(π(a|s))

]

This is nothing but a simple manipulation based on importance sampling that allows
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us to directly add this term to the GAIL term, giving us the final loss function:

LBC = −Eτπ
[(

ρE(s, a)

ρπ(s, a)
+ Aω,φ(s, a)

)
log(π(a|s))

]
The new advantage term inside the RL term intuitively adds an advantage for greedily

following the expert action at a given state. Since the expert is only available indirectly

in the form of samples and assuming a deterministic policy, the value ρE(s, a) can be

replaced with a Kronecker delta function

ρE(s, a) = δD(s, a) =

1 if (s, a) ∈ D

0 otherwise

This leads to a very interesting interpretation of the first advantage term. If the

expert did not perform some action then there is zero advantage in performing that

action, but if the expert does perform the action a at state s, the advantage term

is 1
ρπ(s,a)

which gives more advantage to the agent for following this behavior if the

agent does not follow this behavior already. If the agent takes action a at state s and

so does the expert, then the advantage term is close to 1, which is still positive, but

the advantage decreases as the agent starts imitating the expert more precisely.

More generally, a weighted sum of the behavior cloning and GAIL term can be used

with coefficients α and 1− α with α ∈ [0, 1] resulting in the following policy gradient

term:

−Eτπ
[(
α
ρE(s, a)

ρπ(s, a)
+ (1− α)Aω,φ(s, a)

)
log(π(a|s))

]
= αLBC + (1− α)LP

However in a practical scenario, with lack of data, the behavior cloning term may

lead to overfitting and choice of α becomes crucial. Setting α too high can lead to

the GAIL term not having enough impact, and setting it too low does not provide

the apparent benefit of fast feature learning from the BC term. However, we observe

that α only needs to be high in the initial stages, and can be ignored in the later

stages of training since GAIL rewards would become informative then. Therefore,

simulated annealing is a very elegant way to set the value of α.

Simulated annealing is used in optimization techniques for approximating the
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global optimum of a function. A common use of annealing is done in the learning

rate in training of deep neural networks. [47] optimize a sequence of gradually

improving mosaic functions that approximate the original non-convex objective using

an annealing scheme. [19] use an exponentially moving average of the parameters of

the target Q function at each time step. [29] use an annealing scheme to stabilize

training in the context of semantic segmentation in medical images.

Figure 6.1: Performance of different imitation learning algorithms on MuJoCo tasks.
All methods are tested with 3 random seeds.

Following these works, we use simulated annealing. The weighing parameter α is

annealed out such that as the number of iterations t→∞, the optimization looks

identical to GAIL, which provides better asymptotic performance. Specifically, at

iteration t, we train the policy using the following loss:

L
(t)
Total = αtLBC + (1− αt)LP

where αt ∈ [0, 1]. Note that αt = 0 corresponds to training with GAIL, and αt = 1
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corresponds to behaviour cloning. In our case, we anneal αt from 1 to 0, which

transitions the gradients from a greedy action-matching behaviour to gradually

accounting for more long term reward. The policy produces better-than random

behaviour in the initial iterations which provides the discriminator with better

trajectories from the policy. The tradeoff parameter is annealed using an exponential

decay αt = αt0, with α0 ∈ (0, 1).

6.3 Experiments

Ant HalfCheetah Hopper Reacher Walker2d
BC 2967.09± 1223.82 −389.14± 1166.19 1776.43± 858.93 −86.74± 11.25 788.82± 579.34

GAIL 2732.78± 1107.56 4546.93± 117.10 3035.83± 720.62 −9.78± 2.26 6718.34± 935.17
BC+GAIL 1237.88± 725.48 3808.17± 1298.91 14.13± 30.32 −9.77± 3.04 712.16± 542.22

RED −4952.94± 1551.64 −626.47± 384.42 684.52± 478.09 −49.69± 42.90 940.27± 82.59
SAIL 2750.59± 938.21 4584.18 ± 86.88 2307.69± 1198.76 −14.31± 11.84 5993.21± 793.99
Ours 3941.69 ± 944.67 4558.09± 89.50 3554.35 ± 165.73 −7.98 ± 2.66 6799.93 ± 387.85

Random −327.04± 790.06 −922.94± 97.30 15.17± 30.58 −136.72± 23.96 −3.03± 4.49
Expert 4066.96± 695.57 4501.09± 119.37 3593.06± 19.64 −3.92± 1.78 6512.85± 1116.62

Table 6.1: Performance of imitation learning algorithms. For each method, agents
are trained with three random seeds. Final performance is measured by averaging
across 60 rollouts for each method, 20 rollouts for each seed.

6.3.1 Low dimensional control tasks

We evaluate the proposed algorithm on a variety of continuous control tasks in MuJoCo.

Specifically, we test our method on the Ant, Hopper, Half Cheetah, Reacher,

and Walker2d environments. We compare our algorithm with the following baselines:

• Behavior cloning: Behavior cloning is a greedy approach to imitation learning.

Although behaviour cloning is very fast since it does not require environment

interactions, its asympotic performance is not optimal unless a lot of data is

provided. Since our experiments do not use iterative data collection, we do

not use the other behavior cloning baselines which use iterative feedback from

experts [55], [56].

• GAIL: Adversarial imitation learning has been successful in a lot of environ-

ments. However, adversarial methods are shown to be unstable, and in the

43



6. Augmenting GAIL with BC for sample efficient imitation learning

presence of low amounts of data, can take a long time to converge.

• BC+GAIL: [26] mention that GAIL can be trained to converge faster by

pretraining it with behavior cloning. However, they do not report the results

for this baseline. [58], however, report that GAIL pretrained with behavior

cloning does not work as effectively as GAIL. To make the baseline fairer, we

also train the discriminator to differentiate between expert versus pretrained

policy trajectories.

• SAIL: [71] is the only other method that claims to improve sample efficiency of

GAIL without resorting to off-policy methods. Although, our experiments show

that the claim is only partly true, since the asymptotic performance is not at par

with GAIL (except for HalfCheetah where it performs only marginally better).

The method also produces high variance policies across different random seeds

which is not desirable.

• Random Expert Distillation: [70] is used in SAIL and it does not use

adversarial training to learn a reward function. This method is also more

sample efficient than GAIL, but that is only in the first few environment

interactions and the peak performance is not as good as GAIL. Our results are

consistent with the results reported in [71].

We use the code provided by [32] for implementing all baselines. For all experiments,

we use a shared value and policy networks, which is an MLP with 2 hidden layers

containing 64 hidden units with tanh nonlinearities, followed by their individual heads.

For our algorithm, we choose α0 according to the iterations taken for αt to reach the

value 0.5, which we denote as the ‘half-life’. The half-life H is related to the value

of α0 as αH0 = 0.5 =⇒ α0 = (0.5)
1
H . We choose a half-life of 10 iterations across

all experiments, which corresponds to α0 ∼ 0.933. This value was found empirically

by running the behavior cloning baseline and setting it equal to half the number of

epochs it took for behavior cloning to converge. All algorithms (except the BC+GAIL

baseline) are trained from scratch. Each algorithm is run across 3 random seeds, as

done in [59]. The behavior cloning algorithm is trained only on 70% of the data,

and 30% is used for validation. For all other experiments, all of the data is used.

Note that although our loss contains a behavior cloning term, it does not require

any validation data. The final performance of each method is evaluated by taking an
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average of 20 episodes for each seed. The final performance is shown in Table 6.1 and

the reward curves are shown in Figure 6.1.

Figure 6.2: Performance of our method with and without discriminator training.
Notice that our method outperforms BC even with random rewards from the discrim-
inator, which shows that adding a temporal dependency in behavior cloning improves
performance significantly.

Our method performs consistently across all the environments, whereas GAIL is

very slow and behaviour cloning never reaches the best performance. SAIL seems to be

outperforming GAIL initially, however, GAIL catches up and has better asymptotic

performance than SAIL. SAIL also has a very high variance compared to other

methods, potentially due to amplification of the variance of the two rewards used in

their algorithm. The authors report the best agent performance across all seeds, which

obscures the overall stability of the method. RED performs suboptimally because

there is no feedback received from the agent to the reward function for adjusting its

reward. Our method is very sample efficient as it learns much faster than GAIL, and
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in a lot of cases, converges to a slightly higher reward than GAIL.

6.3.2 Effect of temporal dependencies on Behavior Cloning

Figure 6.3: Performance of our method with and without annealing the tradeoff
parameter. Notice that the final performance decreases with increasing value of α
because the advantage term due to BC contributes in addition to the advantage of
RL term, thus rendering the agent prone to overfitting. Our method reaches the best
asymptotic performance and is more sample efficient than its constant α variations.

In Section 6.2 we hypothesized that behavior cloning fails most likely due to

miscalibrated actions at out-of-distribution states. To analyse this effect we train

agents with the our method, but we do not train the discriminator. The second

term Aω,φ will not provide any useful signal since the discriminator is not trained.

Therefore, the only useful signal can come from the behavior cloning term, and the

GAIL term ensures that policy is trained with these uninformative advantage terms.

Since the GAIL term is uninformative, we cannot anneal the value of α, otherwise
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the random rewards can interfere with the agent’s learning. Therefore, we fix α = 0.5

for this experiment. Figure 6.2 contains the performance of using our method with

random rewards from the discriminator. The sample efficiency is better than GAIL,

and the asymptotic performance is better than behavior cloning, which suggests that

behavior cloning can be a powerful candidate for imitation learning. The untrained

GAIL is also plotted to show the effect of potential reward bias that may occur. We

observe that reward bias does not contribute to the task reward, with the exception

of Hopper. This baseline is better than behavior cloning because the agent learns to

output more random actions at the states which are outside the expert distribution

because the uninformative advantage function does not prefer any action over the

other in those states. The agent learns to perform the expert action at the states that

are in the distribution of the expert. In contrast, behavior cloning never encounters

out-of-distribution states during its training, and might output less random actions in

those states due to network miscalibration [22]. The positive reward function offers

bias only in encouraging survival and not necessarily in achieving a high task reward.

6.3.3 Effect of annealing

Next, we show the effect of annealing versus a fixed value of α on the final performance

in all the MuJoCo tasks. To show that overfitting might be an issue, we limit

the number of expert trajectories available to the imitation learning algorithms.

Specifically, we use only 1 full expert trajectory for learning. The reward curves in

Figure 6.3 demonstrate that as the value of α increases, the agent learns to imitate

faster, but the asymptotic performance does not reach as far as the agents with a

lower value of α. This is the speed versus performance tradeoff associated with α. To

have the best of both worlds, α is annealed from a high value which promotes faster

learning, and is annealed to 0 for better peak performance. The graphs show that

the agent with annealing learns faster and achieves the best performance, especially

in Ant and Walker environments.
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6.3.4 Imitation learning with RL in Grid World

environments

Imitation learning can also be used to provide a signal in addition to the environment

rewards to enable faster learning ([9], [45], [24]), especially if the environment rewards

are sparse. We use a gridworld environment as used in [62]. We evaluate on the

“Key-Door” task, where the grid is divided into two rooms. The agent has to pick up

a key, open the locked door and move to the goal location in the other room. The

wall, key, door, goal location and agent are initialized at a different location every

time, making the task harder. The agent recieves a reward of 1 for reaching the goal

location, and 0 otherwise. This sparse reward does not provide information about

the preconditions that need to be satisfied to reach the goal, i.e. picking the key

and unlocking the door. The expert trajectories, however, contain this information

and the agent is rewarded in the short-term horizon for imitating these behaviors.

Therefore, imitation learning can be an extra learning signal for faster learning.

We use the code provided by [62] and extend it for training the imitation learning

algorithms. The input is a H ×W grid corresponding to the object present in each

grid cell. To prevent the problems of reward bias in this setting [33], we follow

the work of [37] and opt to use a Wasserstein GAN ([2]) framework which provides

a reward that can be positive or negative. In addition, we use the REINFORCE

algorithm as another baseline which uses the sparse reward. Experiments show that

imitation learning can significantly boost learning compared to a sparse reward signal.

The expert trajectories are collected from an A* agent. We test with grid sizes of

8, 10, and 12 to analyse the effect of progressively tougher environments. We use

a total of 200, 350, and 500 expert trajectories for grid sizes 8, 10, 12 respectively.

Since expert trajectories are small, there are a lot of unvisited states, and behavior

cloning is expected to perform very suboptimally.

Figure 6.4 provides a comparison of all baselines. Behavior cloning performs

suboptimally for all grid sizes, and its performance worsens with increasing grid size.

Policy gradient learns slowly owing to a sparse reward function. In the case of grid

size 12, REINFORCE only reaches about 70% of the performance of GAIL and our

method after 30M steps. The performance of the BC+GAIL baseline drops to 0 after

the behavior cloning stage, and never recovers, showing similar effects to that of the
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Figure 6.4: Performance in GridWorld environments. From left to right, the reward
curves are for 8×8, 10×10, 12×12 grids respectively. Note that our method performs
better than GAIL consistently across grid sizes. Behavior cloning is implemented by
setting α = 1 within our framework for ease of implementation (therefore the reward
curve for behavior cloning).

MuJoCo experiments. This suggests that pretraining with behavior cloning is not a

good option across environments and different RL implementations. However, our

method reaches the same performance much faster than GAIL.

6.3.5 Imitation Learning in Image-based Environments

To demonstrate the effectiveness of incorporating the behavior cloning term into

GAIL, we compare the variety of methods on Car Racing, a continous control task.

In this environment,the agent must learn to keep a car on track from a top view of the

car. We train an expert using PPO and collect 20 trajectories from randomly selected

tracks. To train all agents, we concatenate the last four frames as the state as a single

frame does not encode time dependent variables like velocity and acceleration. This

setting is the same as [43] for training agents without learning recurrent networks.

Score
Random −75.01± 4.10

BC 695.36± 97.63
GAIL 419.82± 198.61

BC+GAIL 594.86± 263.12
Ours 732.55 ± 45.73

Expert 740.42± 86.36

Table 6.2: Performance on Car Racing environment
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Figure 6.5: Reward curves on Car Racing environment

The results in Table 6.2 demonstrate that our method learns a policy that recovers a

near-optimal policy from the expert trajectories. GAIL tends to fail because the agent

has to learn image features from a noisy reward signal coming from the discriminator,

which is significantly harder than MuJoCo due to curse of dimensionality. Since

this environment can be solved greedily in most parts without solving the credit

assignment problem, behavior cloning is already a very strong baseline [53]. Our

method uses this aspect of behavior cloning and is able to recover a policy. The

reward curve in Figure 6.5 shows that our method is at least 10x sample efficient than

GAIL without resorting to any off-policy schemes. A model pretrained with behavior

cloning starts off with a very good score, but the noisy GAIL reward interferes with its

performance and this baseline also performs suboptimally. Our method is relatively

stable and spares the usage of a lot of environment interactions.

6.4 Discussion

As demonstrated, we show that our method provides stability in adversarial imitation

learning, especially in low dimensional tasks with less expert data and in high

dimensional tasks where adversarial learning methods are unstable. In both low and

high dimensional tasks, we observe that behavior cloning learns in a few iterations

but performs suboptimally. GAIL learns much slower than behavior cloning but
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reaches optimal performance. Pre-training with BC collapses due to problems with

initialization and warm starting, and the policy does not converge to peak performance

during GAIL training. Our method combines the best of both worlds by maintaining

optimal asymptotic performance, and learns in upto an order of magnitude faster

than GAIL. Experiments on different types of environments demonstrate that our

method improves substantially on GAIL by covering up for its one major weakness,

its sample efficiency, without compromising on its stability or ease of implementation.
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Chapter 7

Conclusions

Developing Machine Theory of Mind models for search and rescue scenarios is a

challenging task. Search and Rescue tasks are based on navigation, memory of objects

of interest that are seen, and good decision making. A theory of mind agent can

observe a rescuer and make inferences about their belief states from observations

and actions. Furthermore, the MToM agent can use these inferences to predict thei

high level actions, such as the victims they will rescue, or the navigation strategy

they follow. As a first step, we implemented rule-based and neural agents for triage

strategy and navigation strategy prediction. To scale up the neural agents to maps

of larger sizes and increasing complexity, we leverage a transfer learning scheme from

trajectories in a smaller map to transfer knowledge into a larger map. This strategy

can be used in a curriculum learning fashion with maps of increasing complexity,

which can lead to MToM agents with better generalization capabilities. Finally, we

explore the paradigm of imitation learning, which aims to learn a policy from expert

trajectories alone. These policies can then be used to collect more “faux human”

trajectories which will provide a richer dataset to train on. We deal the problem

of sample efficiency and convergence speed of GAIL and augment it with a novel

strategy to enable faster learning.

These steps are a foundational cornerstone of building scalable, functional and

robust MToM models.
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Appendix A

Appendix

A.1 Predicting Human Strategies in SAR

A.1.1 Evidence accumulation approach

For victim triage prediction, an event when the rescuer ignores less-critical victim

is an evidence, say e1. The corresponding update f1 will increase the likelihood of the

selective triage strategy in the belief vector bt for the current time t. Similarly, if a

less-critical victim is triaged upon sight, it is evidence e2 for increasing the likelihood

of opportunistic victim triage strategy.

For next location prediction, the map connectivity of the perturbed environ-

ment serves as a useful domain knowledge. We capture the layout as a graph where

nodes are the area segments and the edges denote that areas are connected. At each

step ei = (x, y) where x, y are position coordinates of the rescuer, which is in turn

used to infer the area segment. The corresponding fi increases the likelihood of each

connected area depending on (1) the out degree of the node representing the area,

and (2) the distance of the rescuer’s position to that area. Another evidence is based

on the fact that the rescuer is on an exploration task, which means they are unlikely

to go to already visited areas and so, we decrease the likelihood of the area segments

that have been visited.
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A.1.2 Architecture details for neural-based sequence

models

Victim triage strategy: We formulate the input to the neural network model

as a sequence based on every event when a victim comes into the field of view of

the rescuer, and when the rescuer finishes triaging a victim. We train LSTM +

RNNDecay [57], LSTM + RNN-ODE [57] and LSTM + Time2Vec [31]. For the most

part, we use the original architecture’s hyperparameters except choosing batch size 1,

and decay half-life as 60. The networks are trained to minimize the cross entropy

loss with the groundtruth label with Adam optimizer with AMSGrad technique with

learning rate 3e-4 and weight decay for regularization as 1e-5.

Table A.1: Comparison of baselines for triage strategy prediction

Prediction Method Accuracy

Evidence accumulation 98.80%
LSTM + RNNDecay [57] 63.03%
LSTM + RNN-ODE [57] 67.44%
LSTM + Time2Vec [31] 70.74%

Next room prediction: We formulate the input as a sequence of rooms that

the player moves to. For example such a sequence from a rescuer’s trajectory is:

‘Stairwell Starting Point’, ‘Center Hallway Lobby’, “Women’s Bathroom”, ‘Center

Hallway Lobby’, ‘Elevator 1’, ‘Center Hallway Lobby’, ‘Center Hallway’, ‘Room 211’,

‘Room 213’, ‘Room 218’, ‘Right Hallway’, ‘Room 216’, ‘Room 209’, ‘Center Hallway’,

‘Room 208’, ‘Center Hallway’, ‘Room 210’, ‘Room 207’, ‘Room 210’, ‘Center Hallway’,

‘Room 215’, ‘Center Hallway’, ‘Room 208’, ‘Room 203’, ‘Room 201’, ‘Left Hallway’,

‘Center Hallway Lobby’, “Men’s Bathroom”, ‘Center Hallway Lobby’, ‘Left Hallway’,

‘Room 205’, ‘Left Hallway’, ‘Left Hallway’, ‘Center Hallway’, ‘Room 211’, ‘Room 213’,

‘Room 218’, ‘Right Hallway’, ‘Room 220’ .

Since there are 26 area segments in the chosen map, we learn to predict the next

room given a sequence of previously visited rooms. We use a neural network of 2-head,

2-layer transformer model, that is an encoder – decoder structure with multi-head

attention over the masked sequence. We learn the first layer as a 26 dimensional

embedding of each room area in the masked input sequence. This is processed by
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Transformer encoder with hidden state dimension as 8. We use 5 steps for propagation

through time. The rest of the hyperparameter are the same as existing pytorch code

on transformer models 1. Finally, the output is decoded by a linear weights such that

each dim corresponds to the log likelihood of that being the next room.

A.1.3 Human observation experiments

Materials

In total 18 rescuer trajectories were used in the human observation experiment.

Depending on the performance of original rescuer, the length of each trajectory

range from 8 minutes to 15 minutes. Based on the collected human trajectories, we

generated following materials: game screen recording videos, dynamic minimap videos

and a static building layout image. Human observers can watch the first person

screening recording of rescuers to understand what they were doing, and refer to the

dynamic/static maps to help locate the rescuers’ current location and navigation

path. Video materials were were segmented by ‘decision points’ at which behaviors

occur such as spotting a victim or leaving a room. The decision points are explained

below.

• Triage decision points

Definition: When a victim block enters rescuer’s FOV.

Prediction task: Will the rescuer triage the victim in front of him?

• Navigation decision points

Definition: When a room entrance (door/hole) enters rescuer’s FOV.

Prediction task: Will the rescuer enter the room in front of him?

• General decision points

Definition: When the rescuer finishes triaging a victim / leaving a room.

Prediction task:

What is the next location the rescuer will go?

What is the rescuer’s triage strategy?

What is the rescuer’s knowledge condition?

1https://github.com/pytorch/examples/tree/master/word_language_model
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At each of the different decision points, human observers were given different prediction

tasks including predicting next room and triage strategy of the securer etc. They were

asked choose among alternative locations or strategies from menus. Video segments

were viewed in the order recorded so that prior segments can inform judgments.

The actual action taken by the rescuer in video was then presented at the start of

the following sequence. The total number of decision points in one trajectory is

around 300, which is too demanding for human observers to annotate. We sampled

10 decision points for each type and generated 30 video segments with corresponding

prediction questions for each trajectory.

Procedure

50 human observers were recruited from Amazon Mechanical Turk. Participant

accessed the online survey on their own computer. A detailed instruction was given

to observers about the searching environment and the prediction task they need

to complete. Then the observers need to pass a quiz about basic knowledge of

our experiment in order to process to the formal task. Each observer was assigned

one trajectory from human rescuer. In each of the 30 trials, human observers were

presented a video clip and the prediction questions. The length of this human

observation experiment is around 45 minutes.
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[56] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation
learning and structured prediction to no-regret online learning. In Proceedings
of the fourteenth international conference on artificial intelligence and statistics,
pages 627–635, 2011. 3, 6.3.1

[57] Yulia Rubanova, Ricky TQ Chen, and David Duvenaud. Latent odes for
irregularly-sampled time series. arXiv preprint arXiv:1907.03907, 2019. 3,

63

http://www.sciencedirect.com/science/article/pii/S0925231219315802
http://www.sciencedirect.com/science/article/pii/S0925231219315802
http://arxiv.org/abs/1802.07740
http://arxiv.org/abs/1805.08010


Bibliography

4.1.2, A.1.2, A.1

[58] Fumihiro Sasaki, Tetsuya Yohira, and Atsuo Kawaguchi. Sample efficient imita-
tion learning for continuous control. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=BkN5UoAqF7.
6.1, 6.3.1

[59] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.
6.3.1

[60] Farzaneh Shoeleh and Masoud Asadpour. Skill based transfer learning with
domain adaptation for continuous reinforcement learning domains. Applied
Intelligence, 50(2):502–518, 2020. 3

[61] Samuel S. Sohn, Seonghyeon Moon, Honglu Zhou, Sejong Yoon, Vladimir
Pavlovic, and Mubbasir Kapadia. Deep crowd-flow prediction in built envi-
ronments, 2019. URL https://arxiv.org/abs/1910.05810. 3

[62] Sainbayar Sukhbaatar, Emily Denton, Arthur Szlam, and Rob Fergus. Learning
goal embeddings via self-play for hierarchical reinforcement learning. arXiv
preprint arXiv:1811.09083, 2018. 6.3.4

[63] Chuanqi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao Yang, and
Chunfang Liu. A survey on deep transfer learning. In International conference
on artificial neural networks, pages 270–279. Springer, 2018. 3

[64] Adriana Tapus, Shrihari Vasudevan, and Roland Siegwart. Towards a multilevel
cognitive probabilistic representation of space. In Human Vision and Electronic
Imaging X, volume 5666, pages 39–48. International Society for Optics and
Photonics, 2005. 5

[65] Matthew E Taylor and Peter Stone. Transfer learning for reinforcement learning
domains: A survey. Journal of Machine Learning Research, 10(7), 2009. 3

[66] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.
In NIPS, 2017. 5.1.4

[67] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez,  Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.
In Advances in neural information processing systems, pages 5998–6008, 2017. 3,
4.1, 4.1.2

[68] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Match-
ing networks for one shot learning. Advances in neural information processing
systems, 29:3630–3638, 2016. 2.1

[69] Horatiu Voicu. Hierarchical cognitive maps. Neural Networks, 16(5-6):569–576,

64

https://openreview.net/forum?id=BkN5UoAqF7
https://arxiv.org/abs/1910.05810


Bibliography

2003. 5

[70] Ruohan Wang, Carlo Ciliberto, Pierluigi Amadori, and Yiannis Demiris. Random
expert distillation: Imitation learning via expert policy support estimation. arXiv
preprint arXiv:1905.06750, 2019. 6.3.1

[71] Ruohan Wang, Carlo Ciliberto, Pierluigi Vito Amadori, and Yiannis Demiris.
Random expert distillation: Imitation learning via expert policy support estima-
tion. CoRR, abs/1905.06750, 2019. URL http://arxiv.org/abs/1905.06750.
6.3.1

[72] William H Warren. Non-euclidean navigation. Journal of Experimental Biology,
222(Suppl 1), 2019. 5

[73] Jingwei Zhang, Jost Tobias Springenberg, Joschka Boedecker, and Wolfram
Burgard. Deep reinforcement learning with successor features for navigation
across similar environments. In 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 2371–2378. IEEE, 2017. 3

[74] Qi Zhu, Yidan Xu, Haonan Wang, Chao Zhang, Jiawei Han, and Carl Yang.
Transfer learning of graph neural networks with ego-graph information maxi-
mization. arXiv preprint arXiv:2009.05204, 2020. 3

[75] Zhuangdi Zhu, Kaixiang Lin, and Jiayu Zhou. Transfer learning in deep rein-
forcement learning: A survey. arXiv preprint arXiv:2009.07888, 2020. 3

[76] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu
Zhu, Hui Xiong, and Qing He. A comprehensive survey on transfer learning.
Proceedings of the IEEE, 109(1):43–76, 2020. 3

[77] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind K Dey. Maximum
entropy inverse reinforcement learning. In Aaai, volume 8, pages 1433–1438.
Chicago, IL, USA, 2008. 3

65

http://arxiv.org/abs/1905.06750

	1 Introduction
	2 Background
	2.1 Theory of Mind
	2.2 Search and Rescue Task
	2.2.1 Agent Observations

	2.3 Imitation Learning

	3 Related Work
	4 Predicting Human Strategies in SAR
	4.1 Approach
	4.1.1 Evidence accumulation approach
	4.1.2 Neural sequence models

	4.2 Experiment setup
	4.2.1 Task scenario
	4.2.2 Human trajectories collection
	4.2.3 Human observer experiment

	4.3 Results
	4.4 Discussion

	5 Transfer Learning for navigation and triage prediction
	5.1 Approach
	5.1.1 USAR Domains
	5.1.2 Agent Observations
	5.1.3 Navigation Prediction
	5.1.4 Triage Strategy Prediction

	5.2 Results
	5.2.1 Evaluation Metrics
	5.2.2 Triage Strategy Prediction with Transfer Learning

	5.3 Discussion

	6 Augmenting GAIL with BC for sample efficient imitation learning
	6.1 Pretraining in Imitation Learning
	6.1.1 Suboptimal performance of warm-started neural networks

	6.2 Approach
	6.3 Experiments
	6.3.1 Low dimensional control tasks
	6.3.2 Effect of temporal dependencies on Behavior Cloning
	6.3.3 Effect of annealing
	6.3.4 Imitation learning with RL in Grid World environments
	6.3.5 Imitation Learning in Image-based Environments

	6.4 Discussion

	7 Conclusions
	A Appendix
	A.1 Predicting Human Strategies in SAR
	A.1.1 Evidence accumulation approach
	A.1.2 Architecture details for neural-based sequence models
	A.1.3 Human observation experiments


	Bibliography

