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Abstract

Compared to legged robots, animals and humans can perform much faster
and larger turns, even when they run at high speeds. Such rapid turns
require the body of a runner to reorient dynamically and in synchrony with
its redirection during stance. While it is clear that foot placement affects
both direction and orientation, the functional relationship between the
three is not well understood. Understanding this relationship could lead to
more advanced controllers for turning maneuvers in legged robots as well as
to deeper insights into the turning behavior of animals including humans.
To develop this relationship, we build on the established spring-mass model
for running, replacing its point mass with a rigid body and off-center hip
joints. Generalizing ideas from the theory of spring-mass running, we
develop controllers for the rigid body version of this model that execute
stable running at high speed (5m/s) and synchronous turning between -25°
and 45° in deadbeat fashion, on terrain with large uncertainties up to 20%
of the rest leg length. We also develop an analytical model for turning
dynamics of legged running systems using a simplified and empirical
model of forces and kinematics, that qualitatively approximates turning
behaviors without the need for the full order dynamics. Our work not
only provides a holistic analysis of turning behaviors of running systems
with integrated rotational dynamics but also presents a terrain agnostic
leg placement strategy for these systems to achieve synchronous turning
at high speeds.
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Chapter 1

Introduction

1.1 Problem Statement

Turning is an important aspect of legged locomotion. Animals and humans are

adept at performing quick and large turns, even when they run at high speeds.

Legged robots do not exhibit such agility while performing turning maneuvers at

high running speeds. This is mainly due to the constraint that rapid running turns

need to be synchronous i.e. the center body of the running system should reorient

dynamically and in synchrony with its redirection during stance. Asynchronous

turns are undesirable as the misalignment of the system’s body orientation with its

movement direction at the end stance will negatively impact the ability of the system

to reach a desired target state in the consecutive step significantly.
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Figure 1.1: Synchronous and asynchronous turns

Fig. 1.1a shows the top view of a legged running system at the beginning of

stance phase, with its center body(The black triangle on the periphery of the body

represents the face of the body) aligned with its initial movement direction (direction

of the Center of Mass(CoM) velocity vector). By the end of the stance phase, the

system has turned and changed its course into a new movement direction. The turn

is synchronous if the center body’s orientation about the roll and pitch axes remains

unchanged and its orientation about the yaw axis (the front of its face) is aligned

with the new movement direction as depicted in Fig. 1.1b and asynchronous if the

center body’s face is misaligned with the new movement direction as depicted in Fig.

1.1c.
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Past research has established that foot placement affects both turning direction

and body orientation [1], [2], but the functional relationship between the three is not

well understood. If this is well understood,

1. More advanced controllers for legged locomotion can be developed

2. Additional insights into human and animal turning dynamics can be gained

1.2 Background

Although researchers studied the dynamics of running turns in the context of biological

and mechanical legged systems, there is a relative obscurity in the understanding of

leg placement’s influence on redirection of a bipedal running system’s CoM velocity

and the reorientation of its center body. This is due to the fact that a majority of

the existing literature on the dynamics of running turns

1. is empirical.

2. focuses on multi-legged systems (4 or more legs)

Raibert et al [2] were one of the first to develop heuristics to achieve a net turning

motion in a quadruped without changing the heading direction, effectively yawing

in place. The magnitude of yawing is based on a heuristic that the torque about

the yaw axis is proportional to the angle between the line connecting the hips and

the line connecting the feet. More recently in [3], the authors derived heuristics to

make a quadruped turn at a rate of 2 rad/s while running at a speed of 1.5 m/s by

analyzing simulation data. While these heuristics work well for quadrupeds running

at low speeds, whether or not they can be transferred to a bipedal system running at

3



CHAPTER 1. INTRODUCTION

higher speeds remains unknown.

In [4], the author developed heuristic control algorithms for leg placement-based

running and turning for a biped by analysing human data and tested them in

simulation for running speeds between 2.5 and 5 m/s. The leg placement positions

were expressed as functions of the stance time and the difference in the current

velocity and the desired velocity of the runner in x and y directions. Perkins &

Waldron [5] formulated heuristic control laws that place the outer leg closer to the

vertical, and the inner leg farther in front of the hip at touchdown at the beginning

of the stance phase of a bipedal runner, running at 3 m/s. The sharpest turn that

could be achieved was at 45o. Neither of these controllers accounts for the angular

momentum induced in the center body while running and assume that the mass is

concentrated as a point mass. While optimally tuned heuristics work well for the

systems they have designed for, they may not generalize well to other systems.

Alongside heuristics, legged locomotion researchers used simplified models for run-

ning to study legged turning dynamics and formulate leg placement based controllers.

One such model is an inverted pendulum model(IPM).

Figure 1.2: The inverted pendulum model(IPM) and the linear inverted pendulum
model(LIPM)

In the IPM, the running system is modeled as a point mass connected to the top

4
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of a rigid leg of constant length which is pivoted on tho the ground on the other end

through stance(Fig.1.2). One of the first approaches that use the IPM to stabilize

gait through foot placement defines foot placement as a linear function of the position

and velocity of the system’s CoM at touchdown [6]. Other researchers have also used

the IPM to study legged systems and enhance stability through one or a sequence of

leg placements [7, 8, 9].

Figure 1.3: The 2D 3D Spring Mass Models

Another simplified gait model that was used to study running dynamics by many

researchers was the 2D spring mass model(2D SMM), where the system is modeled as

a point mass bounding on a mass-less spring leg in the sagittal plane(Fig. 1.3). The

SMM is a better model for studying running dynamics as it mimics running ground

reaction forces of humans more closely than the IPM[10]. The 3D SMM, an extension

to the 2D SMM for motion in three dimensions was also developed and used in the

past to study as well as develop controllers for turning[1, 11, 12, 13, 14]. A popular

method among the research community was using the SMM to construct a single step

5
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return map and analyze it to find leg placements in the form of touchdown angles

to achieve locally stable gaits in 2D [12, 15, 16] as well as 3D [1, 17] in theory and

simulation.

This thesis draws some of its inspiration from the work on deadbeat control of

3D SMM running and steering by Wu & Geyer [1]. The authors extend the available

deadbeat control ideas for 2D running systems to a 3D running system by adding an

additional control input in the form of the angle of splay, alongside the existing angle

of attack based control from 2D SMM. By varying the angle of attack and splay as

inputs, the authors build a time-based deadbeat controller using which the runner

can be made to track a target apex height to maintain stability while changing its

running direction based on the desired target requirement. They also analyze the

system’s robustness to change in terrain and achieve stable running and turning till

up to 30% of the rest leg length.

Although these simplified models offered valuable insights into the dynamics of

legged locomotion and helped researchers and scientists push the field forward, their

major limitation is that they are all point mass based models and only account for the

linear dynamics of the running systems, completely ignoring the rotational dynamics.

So, when controllers built based on these models are transferred to real robots, they

require supplementary controllers that regulate the rotational dynamics of the center

bodies of the running systems, often times interfering with the original controller and

deteriorating its performance. If the influence of the rotational dynamics of the center

body on the runner’s linear dynamics is accounted for, this problem will be solved,

but none of these models have the ability to account for the rotational dynamics of

6



CHAPTER 1. INTRODUCTION

the system.

Researchers in the past have also used additional appendages to achieve redirection

of the system movement as well as to reorient the center body at will during flight

[18, 19, 20, 21]. While inertial appendages help perform turning maneuvers rapidly

and efficiently, they are not absolutely necessary. Many four-legged animals like hares

and gazelles as well as two legged-animals like humans and ostriches can perform

rapid turning maneuvers without tails.

Turning dynamics of running systems was studied extensively in the context

of biological systems as well. However, a majority of the research was focused on

animals with four or more legs [22, 23, 24, 25] as the multi-contact nature of such

systems can be exploited to generate turning behaviors more easily. One of the first

works that attempt to draw relationships between foot placement, redirection and

reorientation of a human runner was the work by Jindrich et al. [26]. The authors

relate leg placement in the transversal plane to the ratio of body reorientation and

redirection given the running velocity and stance time using an analytical model.

It was derived for preset, sinusoidal patterns in the fore-aft and mediolateral leg

forces, with the body orientation of the system restricted in the transverse plane, for

small redirections. Whether or not these relationships generalize well to larger, more

dynamic turns remains unknown.

The simplified legged running models in current literature only use point masses

to approximate running dynamics and completely ignore the rotational dynamics

of the center body. In order to understand the influence of leg placement on the

redirection of the CoM velocity as well as the reorientation of the center body during

7



CHAPTER 1. INTRODUCTION

stance, a simplified model for legged running that also accounts for the center body

rotational dynamics is necessary. So in the next chapter, we propose one such model

and use that to study turning dynamics in further chapters.

1.3 Approach

We first develop the rigid-body spring mass model (RBSMM), an extension to the 3D

SMM with realistic rotational dynamics. Using the RBSMM, we construct a single

step apex return map, which is a discrete mapping of the system states at one apex

to those at the consecutive apex of a legged running system to encapsulate the model

behavior, similar to [1]. This process is explained in detail in chapter 2.

We then verify the validity of RBSMM for running turns by comparing the results

from the return map generated with those computed using an analytical model for

running turns, developed purely based on simplified models for forces and kinematics.

Various steps involved in the development of the analytical model are described in

detail in chapter 3.

Lastly, we draw functional relationships between leg placement and synchronous

turning through constrained optimization on the single step apex return map. Along-

side understanding how leg placement, redirection and reorientation are interwoven,

we also build a controller to achieve stable and synchronous running turns on the

RBSMM in simulation. The functional relationships and the controller’s performance

in simulation are presented in chapter 4.

8



Chapter 2

The Rigidbody Spring Mass Model

In this chapter, we first introduce the Rigid body spring mass model (RBSMM) and

its dynamics. We then describe the process of single step apex return map generation

using the RBSMM. Lastly, we compare the model behavior extracted from the return

map with the one computed using the analytical expressions from [26] to validate the

RBSMM.

2.1 Model Definition

To study the turning dynamics of legged running systems, we build on the 3D Spring

Mass Model (3D SMM) based on the previous work by [1], [11], [12], [13], [14] and

develop the Rigidbody Spring Mass Model (RBSMM) . In the RBSMM, the point

mass of a 3D SMM is replaced with a rigid body of mass m and moments of inertia

Ixx, Iyy and Izz about the principle body axes xb, yb, zb(Fig. 2.1). A mass-less spring

9



CHAPTER 2. THE RIGIDBODY SPRING MASS MODEL

of rest length l0 and stiffness k is connected to the rigid body through a hip joint,

hxm away from the center of mass in the sagittal axis.

xb
yb

zb
h

l0

Figure 2.1: The Rigidbody Spring Mass Model(RBSMM)

A ”step” of this model is a combination of an initial flight phase that starts at

apex i, a stance phase and a secondary flight phase that occurs after the stance

phase and ends when the body has reached apex i + 1. An apex is described as

the highest point in the flight, with the y-axis(yb) aligned with the velocity vector

ẏ. Coordinates with the subscript i were used to denoted the system states and

parameters at the initial apex and those with the subscript i+ 1 represent the system

states and parameters at the consecutive apex.

10
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2.2 Model Dynamics

2.2.1 Initial flight phase (apex i till touchdown):

β

α 

zi
yi
.

x y

z

Figure 2.2: RBSMM-Initial apex

The initial flight phase is modeled as a rigid body with mass m and moments of

inertia Ixx, Iyy and Izz about the principle axes which follows a ballistic trajectory

with a forward velocity of ẏi from apex i located at [0, 0, zi]. The body frame of

the model(xb, yb, zb) is aligned with the inertial frame(x, y, z) at the apex, whose

origin is at the ground level(Fig. 2.2). The initial orientation of the rigid body is

described by the quaternion q0. Quaternions were used to describe the orientation

in order to reduce the computation needed to perform expensive integrations that

come with rotation matrices while solving system dynamics. Pitch(φ), roll(Ω) and

11
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yaw(ψ) are also used to describe the orientation of the center body about x− y − z

axes respectively in some sections of this document for ease of use and intuitive

understanding.

The linear dynamics of the system can be expressed as

mr̈ = fnet (2.1)

where r is the location of the center of mass and fnet is the net force acting on

the body. As the motion of the system is ballistic in nature, the only force acting on

it is gravitation. Hence,

fnet =


0

0

−mg

 (2.2)

After the apex event, the swing leg orientation is parametrized by the angle of

attack α and the angle of splay β. The initial flight phase ends when the swing leg

makes contact with the ground, characterized by center of mass of the rigid body

reaching the touchdown height zTD = l0sin(α).

2.2.2 Stance phase (from touchdown till takeoff):

Stance phase can be divided into 3 stages:

1 Touchdown: Touchdown is when swing leg makes contact with the ground at a

point FP (foot position) and this point remains fixed through stance (slipping

and friction limits are ignored)(Fig. 2.3). The coordinates of the foot position

12
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are defined as 
xFP

yFP

zFP

 =


h+ l0 cosα sinβ

l0 cosα cosβ

0

 (2.3)

β

α 

β

α 
l0

x y

z

Figure 2.3: RBSMM-Touchdown

2 Mid-stance: The system reaches mid-stance stage when the spring has reached

its maximum compression, i.e. the CoM is at its lower most point of stance(Fig.

2.4). After this stage, the spring extends, releasing all the accumulated energy

propelling the system into its next flight phase.

3 Takeoff: The system reaches takeoff condition when the spring has reached

its rest length(Fig. 2.5). At this point, the spring leg loses contact with the

ground.

13
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β

α 

β

α x y

z

Figure 2.4: RBSMM-Midstance

β

α 

β

α 

dθ

x y

z

Figure 2.5: RBSMM-Takeoff
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Stance Phase Dynamics

Unlike the free-falling flight phase, the rigid body rebounds on a mass-less spring

through stance. A wrench Fnet acts on the body at the hip joint, which affects its

rotational and translational dynamics.

The translational dynamics of the rigid body in the stance phase are described by

mr̈ = f leg +


0

0

−mg

 (2.4)

where

f leg = k(l0 − l)
l

l
(2.5)

with l = ‖l‖ being the current leg length.

From f leg, the double integration that relates linear accelerations to velocities and

positions of the CoM of the rigid body thus be represented by

ṙ =
1

m

∫ k(l0 − l)
l

l
+


0

0

−mg


 dt+ ṙ0 (2.6)

and

r =

∫
ṙ dt+ r0 (2.7)

Once fleg is computed, the net torque acting on the rigid body can be computed

15
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as

τ net = h× f leg (2.8)

To reduce the complexity of the system, rotational dynamics are easier to track

in the body frame. The rate of change of angular velocity of the rigid body (ω̇b)is

expressed as

Ibω̇b = τnetb − ωb × Ibωb (2.9)

Here, Ib is the constant inertia matrix of the rigid body and τnetb is the net torque

acting on the body. τnetb can be computed from τnet using quaternion rotation.

τ netb = q∗ ◦ τ net ◦ q (2.10)

where q is the quaternion that represents the orientation of the rigid body.

Using the body frame torques computed using Eq. 2.10, the double integration

that relates angular accelerations to orientations of the rigid body thus be represented

by

ωb =

∫
I−1
b

(
τ netb − ωb × Ibωb

)
dt+ ωb0 (2.11)

q =

∫
1

2
(q ◦ ωb) + q0 (2.12)

Thus ṙ, r, ωb and q can be computed by integrating over initial states with the

dynamics governing every consecutive state by using Eq. 2.6, 2.7, 2.11 and 2.12

16
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respectively.

2.2.3 Secondary flight phase (from takeoff till apex i+ 1):

After the stance phase, the system propels into a flight phase where it takes an

upward ballistic trajectory till it reaches another apex, apex i + 1. The step ends

when the system reaches the apex i+ 1.

β

α 

β

α 

zi+1
yi+1
.

dθ

Figure 2.6: RBSMM-Apex 1
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CHAPTER 2. THE RIGIDBODY SPRING MASS MODEL

2.3 Return Map Generation

2.3.1 Behavior Function

The behavior of the RBSMM is captured by an apex return map. An apex return

map is a discrete mapping of the system states between apex i and the consecutive

apex i+ 1.

The system states

The system starts with an initial CoM position ri = (0, 0, zi) where zi is the apex

height and with a forward velocity of ṙi = (0, ẏi, 0). The body frame is assumed to be

aligned with the inertial frame initially, represented by the quaternion qi = (1, 0, 0, 0)

and has zero angular velocity, i.e. ωbi = (0, 0, 0). So, the state vector of the system

at apex i can be represented as

si =

[
ri ṙi qi ωbi

]
(2.13)

The control inputs

The control problem deals with methods to identify the control inputs that can be

varied to drive the model to a desired state from a given set of initial conditions. The

parameter vector of the RBSMM can be characterized as

pi =

[
Es m Ib g k l0 α β

]
(2.14)
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Similar to [1], we choose α and β, the two angles that represent the swing leg

orientation as the control inputs.

u =

[
α β

]
(2.15)

2.3.2 Discrete Representation of the RBSMM behavior

Using the system states si and the control inputs u, a single step apex return map R

was constructed by scanning over all the possible initial conditions and control inputs.

The return map thus created can be represented as

si+1 = R(si, u) (2.16)

As control inputs, α was chosen within the range of [45o, 90o] discretized at 0.5o

intervals and beta in the range of [−90o, 90o] discretized at 1o intervals. The initial

apex height zi was considered in the range from [0.71, 2.27]m at an interval of 0.005m,

the minimum value being the lowest apex height that can be achieved, given the

control inputs and the maximum value being the height at which all the system energy

gets converted to potential energy. All the other parameters in the parameter vector

pi other than α were kept constant while the return map was being computed. As

the actions of the system are completely passive in nature and other opposing forces

like friction and air resistance have been ignored, the total system energy remains

constant throughout and hence the system is conservative in nature. Hence, Eq. 2.16
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can be simplified to

(z, θ, q, ωb)i+1 = R(zi, α, β) (2.17)

where dθ is the angle at which the system redirects into a new movement direction

every consecutive step which is computed as

dθ = tan−1

(
−ẋi
ẏi

)
(2.18)

with θi+1 = θi + dθ

Using the aforementioned ranges, a return map of resolution 91x181x313 in

α− β − zi was generated.

2.3.3 Computational Setup

The apex return map R was computed using MATLAB2019b and Simulink on a

MATLAB Cluster with 32 workers where each worker is one core of an Intel i-7 3rd

generation processor. The cluster has a memory of 32GB, however only a fraction of

it was utilised for the necessary computation.
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2.4 Control of the trunk orientation during

stance

2.4.1 Why do we need to control the trunk orientation?

One of the primary objectives of this work is to identify control policies that can drive

the RBSMM to turn synchronously while maintaining gait stability. From the return

map R computed, it is evident that control combinations that drive the RBSMM to

reach a desired goal state passively are quite scarce. In Fig. 2.7, there are no leg

placement combinations where roll, pitch are both zero, though it is a requirement

for synchronous turns.

Turning synchronously while maintaining gait stability requires controlling the

CoM height and velocity vector direction and the center body’s orientation and

angular velocity. However, to control so many parameters with only two control

inputs (α and β) makes the system highly underactuated and reduces the number

of desired outcomes greatly. Hence, active torques are to be applied to control the

trunk during stance in order to drive the system into a desired state (Fig. 2.8).

2.4.2 Control of the centre body

A simple PID controller was used to regulate the roll and pitch of the system to zero.

However, another problem springs from this- The rigid body cannot yaw anymore due

to the force vector passing through its CoM with the aggressive control of its roll and

pitch. This might seem non-intuitive at first, but with infinite torques continuously
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Figure 2.7: Passive Dynamic Behavior of the RBSMM
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Figure 2.8: Active control to regulate the orientation of the center body

driving the roll and pitch to zero (effectively aligning the transverse plane of the body

frame parallel to the transverse plane of the world frame) would cause this. This

problem prevents the system from achieving synchronous turning. Hence, additional

torque is also required about the z-axis to reorient the centre body to align the body

y-axis (yb) with the new movement direction of the system. So, the target of the PID

controller controlling the body orientation is to maintain 0 roll and pitch and yaw

same as dθ, the change in the velocity vector direction, i.e. the turning angle. The

PID controller used can be represented as

uactive(t) =


τφ

τΩ

τψ

 = kp.e+ ki

∫ t

0

e dt+ kd
d

dt
e
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(2.19)

where kp, ki and kd are proportional, integral and derivative gains respectively and e

is the error vector e is defined as

e =


0− φerr

0− Ωerr

dθ − ψerr


The torques that were applied to control the centre body’s orientation cause

reaction forces that affect the leg force profiles, which in turn affect the system

dynamics. After incorporating these reaction forces into the model, a single step apex

return map was computed again with the same discretization as the one described in

the subsection 2.3.2. The resulting return map was analysed to formulate a control

policy in chapter-4.

2.5 Results & Discussion

Due to the highly underactuated nature of the RBSMM, it is impossible to achieve

redirection in the system CoM velocity and align the orientation of the center body

with the new movement direction simultaneously. However, similar to the case of the

3D SMM steering [1], redirection of the CoM velocity can be achieved in a feed-forward

manner, solely through leg placement. To align the center body orientation with the
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new movement direction, active torques have to be applied to it in a feedback fashion

as discussed in the section 2.4.2. This makes all possible leg placements result in

synchronous turns. From Fig 2.9a, it can be noticed that all combinations of α and

β cause synchronous turns (ratio of the yaw angle ψ and the redirection angle dθ

becomes 1). However, leg placement has a significant influence on the total power

required to synchronize the yaw angle ψ and redirection angle dθ. Fig 2.9b depicts

the total power required to regulate the rolling and pitching of the body to zero and

drive the yaw of the center body to align with the redirection. Evidently, certain leg

placements require lesser energy to achieve synchrony than the others.

a) b)

Figure 2.9: Power consumed to achieve synchronicity

From the return map generated using the RBSMM with active torques, we

computed the reorientation(yaw motion, ψ) of the center body and the redirection of

the CoM velocity(dθ). We also computed the values of reorientation and redirection
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Figure 2.10: Comparison of the reorientation to redirection behaviors predicted by
Jindrich et al.[26] and observed in the return map
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predicted by the expressions from [26]. Upon close inspection, it is clear that the

reorientation ψ and the redirection dθ behaviors observed from the return map R are

quite different from those predicted by Jindrich et al. [26]. To understand the source

of this discrepancy, we develop an analytical model with similar assumptions as of

the former but with a few modifications. Our analytical model is explained in detail

in the next chapter.
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Chapter 3

The Analytical Model

To further investigate the disagreement between the turning behavior exhibited by the

RBSMM proposed in chapter 2 and the analytical model of planar turning developed

by Jindrich et.al[26], we created an analytical turning model with similar simplifying

assumptions to those made in [26]. The aim of this analytical model for turning on

compliant legs is to:

1. Identify the source of discrepancy, if any, between the turning behaviors observed

in R and the analytical model from [26].

2. Develop a simple model that does not require the full order dynamics to

approximate turning behaviors of legged running systems

3. Validate the results from the turning behaviors observed from the RBSMM

return map
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3.1 Problem Formulation

We aim to establish a relationship between the redirection of the CoM velocity vector

and the reorientation of the center body similar to [26], and with the leg placement

position(FP ) as well. So we propose a simplified model where a body of mass m and

moment of inertia of Iz about the longitudinal axis, traveling with a forward speed v

along the initial movement direction at the beginning of the stance phase as shown in

Fig. 3.1a and seeks to change its movement direction by an angle dθ by placing its leg

at a point FP on the ground in a stance time period of t. The ideal scenario would

be the one where the center body reorients exactly as much as dθ, making the yaw

angle ψ = dθ and the turn synchronous by the end of the stance phase(Fig. 3.1b).

The leg is assumed to be a mass-less spring of stiffness k and rest length l0

connected to the body at the hip joint H, hm away from the CoM on the frontal

axis(Fig. 3.1b). We make a few more simplifying assumptions as well to reduce the

complexity of the model, such as:

1. The motion is strictly restricted to the transverse plane, meaning the center

body cannot roll or pitch

2. The center of mass of the system is travelling at a constant speed v throughout

the stance phase, in a constant time period t

3. The motion of the leg is linear relative to the CoM throughout the stance phase

4. The fore-aft force Fx is half-sinusoidal spring leg force and the mediolateral

force Fy is close to full-sinusoidal spring leg force (Fig. 3.2)

5. The motion is symmetric about mid-stance
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Figure 3.1: Analytical model
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Figure 3.2: Spring leg forces

This model was used to derive expressions for the reorientation of the center

body and the redirection of the CoM velocity in the transverse plane as a function

of leg placement position and then derive an expression for the ratio of the angle of

reorientation to the angle of redirection similar to [26].
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3.2 Expression for the reorientation of the center

body

The yaw dynamics of the system are given by

τ = Izψ̈ (3.1)

resulting in the differential equation

ψ̈ =
1

Iz
[Fy(t).xFP − Fx(t).yFP ] (3.2)

where xFP and yFP are the x and y components of the foot position. Here, we

approximate Fx(t) and Fy(t) by time averages Fx and Fy (Fig. 3.1b) for the sake of

simplicity.

We first compute the solution to the differential equation 3.2 assuming general

averaging forces Fx and Fy. In the second part of this section, the average leg force

in the mediolateral and fore-aft directions are calculated.

The model proposed by Jindrich et al. in [26] integrates the fore-aft leg force Fy

to zero as it has an odd symmetry about mid-stance, and only uses the mediolateral

leg force Fx to derive algebraic expressions that relate redirection and reorientation.

When a force that has an odd symmetry is applied on a body, it first accelerates and

then decelerates it, bringing it to rest eventually. Even though the final velocity of the

body is zero, the force would have displaced the body. Similarly, the fore-aft force Fy

acting on the center body would displace it by a certain yaw angle. We incorporate
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the effect of the fore-aft force Fy on the model dynamics and the displacement caused

by it with an aim to approximate turning behaviors more accurately. In order to do

that, the solution to 3.2 through stance must be obtained in two parts:

1. From touchdown(TD) till mid-stance(MS) and

2. From mid-stance(MS) till end-stance(ES)

The initial conditions for the second part ( ψi2 and ψ̇i2 ) will be the final values for

the quantities ψ and ψ̇ of the first part ( ψf1 and ψ̇f1 respectively).

Integrating 3.2 from touchdown(t = 0) till mid-stance(t = tMS = yFP/v), with

initial conditions ψi0 = 0 and ψ̇i0 = 0, we get

ψ̇f1 =
yFP
Izv

[
Fy.xFP − Fx.yFP

]
(3.3)

and

ψf1 =
y2
FP

2Izv2

[
Fy.xFP − Fx.yFP

]
(3.4)

where ψ̇f1 and ψf1 are the yaw velocity and the yaw angle of the center body at

mid-stance.

After mid-stance, the fore-aft force direction inverts. Hence Fy in 3.2 should be

replaced by −Fy. Hence the equation 3.2 becomes

ψ̈ =
1

Iz

[
−Fy.xFP − Fx.yFP

]
(3.5)

Integrating 3.5 from mid-stance(t = tMS = yFP/v) till end-stance(t = tES =
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2yFP/v), with initial conditions ψi2 = ψf1 and ψ̇i2 = ψ̇f1 , we get

ψ̇2)f = −yFP
Izv

(2Fx) (3.6)

and

ψf2 =
y2
FP

Izv2

(
−2FxyFP + FyxFP

)
(3.7)

Hence, the yaw angle at the end of stance can be expressed as

ψ =
y2
FP

Izv2

(
−2FxyFP + FyxFP

)
(3.8)

where xFP = h+ l0 cosα sinβ and yFP = l0 cosα cosβ. After deriving the expression

for reorientation of the center body, an expression for redirection can be derived as

shown in the next section.

3.3 Redirection of the CoM velocity

The redirection of the CoM velocity is assumed to depend only on the linear dynamics

in the mediolateral direction. It is approximated as

dθ ≈ ∆vx
v

(3.9)
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where ∆vx is the change in velocity accumulated in the mediolateral direction. It can

be readily computed from the change in linear momentum,

m∆vx =

∫ tend

0

Fx(t)dt (3.10)

The change in mediolateral velocity follows a half sine wave shape, so the medio-

lateral force can be approximated as

Fx(t) = Fmax
x sin

(
πt

tend

)
(3.11)

From equations 3.10 and 3.11, we can compute the change in velocity accumulated in

the mediolateral direction as

∆vx =
1

m

∫ tend

0

Fmax
x sin

(
πt

tend

)
(3.12)

where tend =
2yFP
v

Upon integration equation 3.12, we get

∆vx =
4Fmax

x yFP
mvπ

(3.13)

We know that
2

π
Fmax
x = Fx. So from 3.13, 3.9 becomes

dθ =
∆vx
v

=
−2yFPFx
mv2

(3.14)

Hence, the redirection of the CoM velocity vector at the end of stance can be

expressed as
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dθ =
−2yFPFx
mv2

(3.15)

3.4 Ratio of the reorientation angle to the

redirection angle

To compare our results with those published in [26], we also calculate the ratio of the

reorientation angle(ψ) to the redirection angle(dθ). The ratio,

ψ

dθ
=

y2
FP

Izv2

(
−2FxyFP + FyxFP

)
−2yFPFx
mv2

(3.16)

which simplifies to

ψ

dθ
=
myFP

2IzF x

[
2F xyFP − F yxFP

]
(3.17)

In order to compute ψ or dθ, we need F x and F y. We compute these expressions

as shown in section 3.5.

3.5 Average Forces

The average forces Fx and Fy are estimated from the leg force

f leg = k(l0 − l)
l

l
(3.18)
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Here, the leg vector l = rh−rFP , goes from the footpoint FP to the hip h. Thus, the

average fore-aft force Fy will be negative from touchdown till mid-stance and positive

from mid-stance to end-stance. The average mediolateral force will be negative for

outward steps(β0 > 0) and positive for inward steps(β0 < 0).

mediolateral force

The mediolateral force rises until mid-stance and then drops, following a sinusoidal

shape. The maximum is achieved at mid-stance, at which the CoM and hip are

parallel to the footpoint (yFP = 0). Maximum mediolateral force can be calculated

by the expression

Fmax
x = k(l0 − lmin)

lx,min
lmin

(3.19)

where

lmin=
√
z2
TD + x2

FP =
√
l20 − y2

FP=
√
l20 − l20 cos2 α0 cos2β0 and

lx,min = xFP = h+ l0 cosα0 sinβ0.

After substituting the values of lmin and lx,min in Eq. 3.19, we get

Fmax
x = −k(h+ l0 cosα0 sinβ0)

(
1√

1− cos2α0 cos2β0

− 1

)
(3.20)

Assuming Fx(t) has is a half sinusoid, the average force resolves to

Fx =
2

π
Fmax
x (3.21)

Hence,
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F x = − 2

π
k l0 cosα0 sin β0

(
1√

1− cos2 α0 cos2 β0

− 1

)
(3.22)

Fore-aft force

Unlike the mediolateral force, the appropriate average Fy of the fore-aft force is more

difficult to determine. It is an odd function with respect to mid-stance and can be

roughly approximated as a complete sine wave. However, the maximum Fmax
y is

reached before mid-stance and can not be determined by simple algebra. We thus

compute the maximum by root finding of the actual fore-aft force. The actual fore-aft

force is given by the expression

Fy(t) = k(l0 − l(t))
ly(t)

l(t)
(3.23)

where ly = yFP (t) and yFP (t) = yFP − vt. then Fy(t) becomes

Fy(t) = −k (yFP − t v)

(
l0√

l0
2 + t2 v2 − 2 yFP t v

− 1

)
(3.24)

To find the maximum force in the y-direction, we need compute argmax(Fy(t))

and estimate the force at that time instant. This is done by solving

∂Fy(t)

∂t
= 0 (3.25)
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Solving equation 3.25, we get

tmax =


yFP−

√
(l03−l0 yFP

2)
2/3

−l02+yFP
2

v

yFP +

√
(l03−l0 yFP

2)
2/3

−l02+yFP
2

v

 (3.26)

Out of the two solutions above, the first one pertains to the peak before mid-stance

and the second one to the peak after mid-stance.

With tmax =
yFP−

√
(l03−l0 yFP

2)
2/3

−l02+yFP
2

v
, we compute

Fy =
2

π
Fy(tmax)

= − 2

π
kl0

(
1

(1− cos2 α0 cos2 β0)1/3
− 1

)
√

(1− cos2 α0 cos2 β0)2/3 + cos2 α0 cos2 β0 − 1

(3.27)

3.6 Results & Discussion

Using equations 3.8 and 3.14 of the analytical model, we scan over the control inputs

alpha and beta similar to section 2.3 to compute the system states ψ and dθ at the

apex i+ 1. Fig.3.3a depicts the reorientation of the center body ψ as observed from

the return map R and Fig.3.3b depicts the reorientation predicted by the analytical

model.

Upon comparison, from Fig.3.3, it is evident that the reorientation behaviors

predicted by the analytical model proposed in this chapter are qualitatively similar

to the reorientation behaviors computed using the full dynamics return map R. By

increasing the complexity of the analytical model, the variance between both the plots

40



CHAPTER 3. THE ANALYTICAL MODEL

Figure 3.3: Comparison of yaw motion observed in the return map and from the
analytical model

can be minimized but the aim was to create a simple model that can represent the

turning dynamics of legged running systems well enough using simplified equations.

Similarly, Fig.3.3a depicts the redirection predicted by the analytical model and

Fig.3.4b depicts the redirection of the CoM velocity dθ as observed from the return

map R. Upon comparison, it can be deduced that the redirection angles predicted by

the analytical model are qualitatively similar to the ones observed from the return

map R.

By integrating the fore-aft force in 2 stages (from touch down till mid-stance

and from mid-stance till end-stance), its effect on turning behaviors can be realized.

Including the effect of the fore-aft force on turning dynamics and using spring leg force

profiles instead of preset sinusoids, our model offers a more accurate representation

of turning properties of the RBSMM than the one offered by Jindrich et. al. [26]. To
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Figure 3.4: Comparison of redirection observed in the return map and from the
analytical model

the best of our knowledge, this is the first work that provides a holistic model for

turning dynamics in its analytical form as well as verifies its validity using a simplified

running model (RBSMM) numerically.

The agreement between the analytical model and the numerical results from the

return map validates the RBSMM as a more realistic alternative for studying running

turns than other simplified gait models. These results motivated us to proceed with

building a controller to achieve stable running and synchronous turning, which we

discuss in detail in the next chapter.
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Controller for stable running and

turning with center body

In this chapter, we identify the control inputs u that drive the initial state of the

system to an arbitrary target state by analysing the model behavior, represented by

the return map R. Using these control inputs, we formulate a deadbeat control policy

for synchronous and stable running turns on uneven terrain.

4.1 Formulation of the Deadbeat Control Policy

Similar to the 3D SMM deadbeat control policy proposed by [1], we develop a deadbeat

controller that selects leg placement positions that prioritize apex height tracking

against ground disturbances over redirection as apex height has a higher influence on

the stability of the system. The idea is to track the target apex height and a desired
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turning angle in a feed-forward fashion and a PID controller maintains the center

body orientation at a desired state in a feedback manner.

We achieve the feed-forward control in two stages:

1. Given an apex height zi, identify the set of control inputs [α β] that take the

system to a desired apex height z∗ with an error of 0.01m.

2. From the set of control inputs identified in the previous step, select one control

input [α β] that causes the least possible error in the desired redirection angle

dθ∗

Fig. 4.1 depicts the 2 stages of the constrained optimization process for an

arbitrary target apex height z∗=1m and redirection of dθ∗ = 15o, for a system

originating at an initial apex height zi =1m. Each filled grid block in the figure

denotes a leg placement position that satisfies the constraints applied through the

optimization process. Initially, all the grid blocks are filled, implying that all possible

leg placements under consideration result in a secondary flight phase for the given

initial apex height, i.e. the system doesn’t fail and fall into the ground.

In the first stage of optimization for this example, we first filter out the leg

placement positions that drive the system to reach a target apex height of 1m with a

±0.01m error. These leg placements are represented as filled blocks in the second

grid of the Fig. 4.1.

In the second stage of optimization for this example, we isolate one leg placement

position that drives the system to a redirection angle of 15o with minimum error from

the leg placements filtered out in the previous stage. This leg placement is depicted

in the 3rd grid as a filled block. In this example, through constrained optimization,
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Figure 4.1: Availability of solutions after each stage of constrained optimization on
the behavior function represented as orange blocks on the grid in α and β

.
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we we identified an angle of attack α[zi = 1m, dθ∗ = 15o, z∗ = 1m] and an angle of

splay β[zi = 1m, dθ∗ = 15o, z∗ = 1m] that drives the system to a set of desired target

states from an initial target state.

By following the constrained optimization steps as specified, we constructed the

tables α[zi, dθ
∗, z∗] and β[zi, dθ

∗, z∗]. These tables are the control policies that drive

a system with the initial states (z, dθ)i into the target states (z, dθ)∗. If the system’s

initial apex height zi restricts the range of target apex heights and target redirections,

the control policy picks the nearest neighbor height and then a nearest neighbor

redirection error.

4.2 Model Behaviour

Fig. 4.2 and Fig. 4.3 shows the discretized model behavior for two different initial

heights zi . The control inputs α and β are represented as foot point locations relative

to the CoM of the center body, projected onto the transverse plane.

The discrete functions zi+1[α, β, zi] and dθ[α, β, zi] are well behaved and their

projection on the transverse plane forms an elliptical disk segment. Unlike the the

3D SMM behavior observed by Wu Geyer [1], the behavior of the RBSMM is not

symmetrical about the frontal axis due to the off- centred hip joint through which

the leg force acts on the center body (Fig. 4.2a&b and Fig. 4.3c&d).

The Foot positions that result in equal apex heights z1 form concentric ellipse

segments with decreasing heights, radially. Similarly, the configurations with equal

redirections dθ form rays depicted in black in Fig. 4.2c and 4.3c. With respect

to the frontal axis, outward placement of the right leg results in positive redirec-
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tions(away from the sagittal plane) and inward leg placements result in negative

redirections(towards the sagittal plane). However, a smaller range of negative turns

is possible as opposed to positive turns and vice versa with the other leg in the con-

secutive stride. As a result, individual behavior goals may not always be achievable

simultaneously. For instance, a target redirection of dθ∗ = −30o and a target height of

z∗ = 0.95m cannot be achieved with the right leg but a target redirection of dθ∗ = 30o

and a target height of z∗ = 0.95m can be achieved (Fig. 4.2c and Fig. 4.3c).

47



CHAPTER 4. CONTROLLER FOR STABLE RUNNING AND TURNING WITH
CENTER BODY

z 1
(m
)

b)a)

z1=

c)

Figure 4.2: Numerical representations of model behavior for an initial apex heights
zi= 1.05m.
(a) Apex height zi+1[α, β, zi] as functions of leg placement projected onto horizontal
plane.
(b) Redirection of the CoM dθ[α, β, zi] as functions of leg placement projected onto
horizontal plane.
(c) Closeup section with apex height and redirection behaviors overlaid as contour
plots. Contour lines show leg placement positions [xFP , yFP ] that produce the same
apex height zi+1(ring sections) or redirections dθ (rays).
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Figure 4.3: Numerical representations of model behavior for an initial apex height
zi= 0.95m.
(a) Apex height zi+1[α, β, zi] as functions of leg placement projected onto horizontal
plane.
(b) Redirection of the CoM dθ[α, β, zi] as functions of leg placement projected onto
horizontal plane.
(c) Closeup section with apex height and redirection behaviors overlaid as contour
plots. Contour lines show leg placement positions [xFP , yFP ] that produce the same
apex height zi+1(ring sections) or redirections dθ (rays).
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4.3 Time-based control policy formulation

Research in the past has exploited the ballistic flight trajectory of the 2D SMM to

develop time-based control policies by embedding the deadbeat behavior across a

range of apex heights instead of selecting one leg placement for one target apex state

[27],[28], [29]. This results in a control policy that continuously varies the angle of

attack α through the flight phase as a function of the fall-time ti, accommodating

for the variation in the landing height, helping the system achieve robust running on

terrains with disturbances up to 30% of the leg length without directly being aware of

the terrain disturbances. More recently, Wu Geyer [1] has designed similar time-based

control policies in both α and β for the 3D SMM owing to the fact that α[zi, dθ
∗, z∗]

belongs to the pair of control input for α and β for any given [zi, dθ
∗, z∗][1]. This

enabled the 3D SMM achieve robustness to change in ground disturbances up to 30%

of the rest leg length.

A similar control policy can be constructed for the RBSMM by converting the

existing apex height based control policy into fall-time-based control policy. Fig. 4.4

depicts the apex height based control policy to achieve a target height of z∗ = 1m as

contour plots. For this target height, all possible initial heights zi ∈ [0.9, 1.1]m can

be projected to zi+1 = z∗ in a single step. From the Fig. 4.4, it can be deduced that

the system can achieve steady state running (zi = zi+1 = 1m) for desired redirections

∈ [−25o, 45o].

We utilise the same transformation used by Wu Geyer [1] to build a time-based

control policy that does not need terrain awareness to achieve stable running and
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Figure 4.4: Control policy to achieve z∗ = 1m.
Control tables α [zi, dθ

∗, z∗] and β [zi, dθ
∗, z∗] are shown as contour plots for all possible

initial heights zi with ranges of target redirections dθ∗. The red line indicates the
steady-state control zi = zi+1 = z∗.
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synchronous turning. The time-based policy uses the ballistic nature of the system

through the flight phase and replaces the initial apex height zi with a function of

time. The height of the CoM of the system through the flight phase can be expressed

as

zflight = zTD +
1

2
gt2 (4.1)

where zTD = l0sinα, which is the CoM height at touchdown. Using this relation,

the control table α[zi, dθ
∗, z∗] can be transformed into a time-based control table as

shown in Eq 4.2.

α[zi, dθ
∗, z∗]→ α[ti, dθ

∗, z∗] (4.2)

where the time elapsed since apex ti =

√
2

g
(zi − l0 sin α[zi, dθ∗, z∗]).

Fig. 4.5 represents the varying angles of attack α for a system starting at an

initial apex height zi as a function of the fall-time, in the sagittal plane for ease of

understanding. Even though the terrain is unobserved, the angle of attack α is varied

as a function of time such that whenever the leg makes contact with the ground, the

angle of attack is the appropriate one to drive the system to a target apex height

of z∗ with respect to the ground level at the foot point. The varying leg positions

parametrized by α in the sagittal plane are depicted in the Fig. 4.5 as green dotted

lines. The trajectory represented in red in the Fig. 4.5 is for the flat ground case,

where the fall-time is ti. If there is a depression ahead, the angle of attack becomes

steeper as the fall-time increases. This phenomenon is depicted in the black and blue

trajectories in the Fig. 4.5. Based on this law, the system can be driven to a desired

apex height z∗ even without terrain awareness.

The α control table is only half of the joint pair of control inputs [α β]. The
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z*

z*
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Figure 4.5: Apex height based leg placement control policy implemented as a time
law on terrain with uncertainty

β control table can also be transformed in the same way. The transformed control

tables for a targeted apex height z∗ = 1m are shown in the Fig.4.6. The red line

indicates the steady state control of zi = zi+1 = z∗.

β[zi, dθ
∗, z∗]→ β[ti, dθ

∗, z∗] (4.3)

The controller has no memory of the older system states before the current step.

Each step of a continuous run will be treated as a completely isolated step with the

final system states of the previous step as the initial system states of the current step.

So it is vital that the initial system states at each step match with the original initial

system states used while computing the return map. Deviations from this cause the

controller to deviate from its expected behavior.
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Figure 4.6: Control policy to achieve z∗ = 1m.
Control tables α [ti, dθ

∗, z∗] and β [ti, dθ
∗, z∗] are shown as contour plots for different

fall times ti with ranges of target redirections dθ∗. The red line indicates the steady-
state control zi = zi+1 = z∗.
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4.4 Results & Discussion

4.4.1 Performance of the control policy in simulation

Figure 4.7: Random terrain with disturbances up to ±0.1m to test the performance

The time-based control policy constructed as per Eq. 4.2 and 4.3 was tested

for robustness to changes in terrain height. A terrain with random disturbances

of ∆z = ±0.1m (up to 20% of the rest leg length) distributed uniformly across

the ground as 1mx1m tiles were generated. The generated terrain is shown in the

Fig. 4.7. The system was initialized at an apex height z0 = 1m and a forward

velocity of v0 = 5ms−1 with its center body perfectly aligned with the global frame.

At every consecutive apex, a new target redirection dθ∗ was generated at random

and the system was supposed to track the redirection requirement with minimum

error, synchronously while maintaining its stability against the rough terrain. The

performance of this controller against the aforementioned disturbances in terrain is

presented in Fig. 4.8.
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Fig. 4.8a shows the aerial view of the random navigation trail created for 200

steps of running ( 500m long). At every consecutive apex, a new target redirection

dθ∗ in the range of −25o to 45o was generated, which are marked as red points and

the resulting CoM trajectory as a blue line, respectively with a maximum terrain

disturbance of ∆zg = 0.2m. The occurrence of changes in terrain experienced along

this path between consecutive steps is shown in Fig. 4.8b.

Fig. 4.8c shows the error in target apex heights reached by the system in the

presence of terrain irregularities for a run of 200 steps without stumbling. Although

the total energy is varying constantly due to the active torques applied, the system

remains stable throughout the run with a mean absolute error of 0.0127m in apex

height, where the maximum allowed error for apex height tracking is 0.02m. Fig.

4.8d shows the error in target redirections reached by the system in the presence of

terrain irregularities. The error becomes larger with increasing terrain irregularity,

though it stays under ±3o in the majority of scenarios. Hence, the controller can

achieve terrain blind synchronous running turns while maintaining gait stability and

is robust to irregularities in terrains up to 20cm, which is 20% of the rest leg length

l0.

4.4.2 Discussion

Using the single step apex return map generated using the RBSMM, we developed

functional relationships between leg placement positions and synchronous turns, which

were shown in Fig. 4.2 and Fig. 4.3. These relationships differ significantly from

the ones observed in Fig. 2 of [1]. When the authors of [1] attempted to implement
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Figure 4.8: Performance of time-based control with target height z∗ = 1m.
(a) Aerial view of random navigation trail with 200 steps with way points (red points),
resulting in the CoM trajectory (blue line), respectively.
(b) Histogram of encountered step changes.
(c) Error in apex height εz = zi+1 − z∗ as functions of ground level zg.
(d) Corresponding redirection errors εdθ = dθ − dθ∗.
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Figure 4.9: Maximum redirection dθ∗ = 70o in 2 consecutive steps
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the deadbeat controller they formulated on a real-world sagittal planar biped, the

robot required additional controllers to counteract the pitching caused by [1]’s leg

placement strategy. These additional controllers interfered with the original deadbeat

controller, so additional modifications were necessary [30]. By incorporating the

effects of the center body control on the linear dynamics of the feed-forward system

while computing the return map, the controller proposed in this chapter can be more

readily transferred on to a real robot.

Using these functional relationships, we developed a controller to achieve syn-

chronous running turns at high speeds, while maintaining gait stability. The controller

is deadbeat for target redirection in the range of −25o to 45o while using the right

leg in stance and −45o to 25o while using the left. While the maximum redirection

that can be achieved in a single step is 45o, the maximum redirection that can be

achieved in 2 consecutive steps is limited to 70o (Fig. 4.9). Multiple steps are needed

if the desired redirection lies outside the specified redirection ranges.

We also embedded this control law in time to derive a terrain agnostic time-based

control policy that can execute stable running and synchronous turning on terrain with

uncertainties up to 20% the rest leg length (20cm). If the terrain has uncertainty, the

controller selects control inputs from the control tables α[ti, z
∗, dθ∗] and β[ti, z

∗, dθ∗],

as a function of ti, the period of free fall since apex till touchdown. If the uncertainty

is positive, i.e. there is an increased elevation in the ground level from the previous

step, the controller returns a shallower angle of attack α and returns a steeper α

if the uncertainty is negative, for a desired turning angle dθ∗. A corresponding β

is also selected similarly. For instance, if the system with an initial apex height
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zi = 1m is attempting to track an apex height of z∗ = 1m and achieve a redirection

of dθ∗ = −10o simultaneously on flat ground, the time of flight ti becomes 0.1733secs

and the controller returns an α of 58.5o. If there is an elevation of ∆zg = +10cm in

the ground level at the spot of landing, the effective apex height becomes zi = 0.9m,

making the time of flight ti 0.1570secs and the controller returns α of 56o. Similarly,

and the controller returns an α of 60o if there is a depression of ∆zg = −10cm for a

time of flight ti = 0.2184secs.
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Conclusions

5.1 The big picture

From this work, we gained a deeper understanding of the influence of rotational

dynamics of the center body on a running system’s turning dynamics and stability. To

the best of our knowledge, this is the first attempt at modeling rotational dynamics

of a spring-legged running system’s center body, unlike the point-mass models like

the SMM and LIPM. From the proposed RBSMM, we draw functional relationships

between leg placement position in the transverse plane, the system stability, the

redirection of the runner’s CoM velocity and the reorientation of its center body(4.2

and Fig. 4.3). Using this information, we developed a time-based running and steering

controller to successfully achieve robust running and synchronous turning of a bipedal

running system(RBSMM) on terrains with large uncertainties up to 20% of the rest

leg length l0.
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5.2 Comparison to existing controllers

Simplified running models are generally a lower-order representation of the full-order

dynamics of running. Due to this, the dynamics omitted out for simplicity have to

be accounted for, by using additional control strategies, which oftentimes interferes

with the simplified model’s assumed dynamics [31], [30]. Alternatively, explicitly

modeling the full-order dynamics of a system is complex and time-consuming. The

proposed RBSMM offers the right balance between the system complexity required

to account for the additional dynamics and the simplicity needed for easy planning.

In fact, the planning problem with the RBSMM is minutely more complex than the

planning problem of the 3D SMM waypoint navigation [1] while accounting for the

rotational dynamics of the center body. This system can be used more readily to

build advanced controllers for bipedal robot running because the model more closely

mimics a bipedal running system with a center body with an off-centered hip joint

and alternate leg placement for each consecutive stride.

5.3 Key contributions

In this thesis, we make 3 major contributions:

1. In chapter 2, we introduced the rigid body spring mass model(RBSMM), a

simplified running model that accounts for the rotational dynamics of running

systems alongside linear dynamics. Unlike the 3DSMM turning controls pro-

posed in [1], completely passive control of the RBSMM is not possible, due to

the highly underactuated nature of the system. So we introduced a decentralized
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control method and used it to control the apex height tracking and redirection

passively in a feed-forward manner and the active feedback control employed

to regulate the body reorientation to be synchronous with the redirection. We

also develop functional relationships between leg placement, redirection of the

CoM velocity and the reorientation of the center body using the RBSMM.

2. In chapter 3, we derived an algebraic relationship between leg placement,

redirection of the CoM velocity and the reorientation of the center body using a

simplified analytical model for running turns by modeling forces and kinematics

during turning maneuvers. It was also shown that the turning dynamics

observed in the return map are qualitatively similar to the ones computed from

the analytical model, which validates the RBSMM’s ability to approximate

turning dynamics of running systems more accurately than other simplified gait

models.

3. In chapter 4, we developed functional relationships between leg placement and

synchronous turning through constrained optimization on the single step apex

return map. Using these relationships, we built a deadbeat controller to achieve

stable running and synchronous turning of the RBSMM, which is robust to

terrain uncertainties of up to 20% of the rest leg length and demonstrated

its performance in simulation. We also embedded this controller in a time-

based control policy which does not require terrain awareness to produce stable

running and turning gaits.
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5.4 Scope for future research

Through this work, we attempt to fill the lapses in understanding of the influence leg

placement in turning behaviors of running systems. We draw functional relationships

between the foot placement position and the turning dynamics of the RBSMM. We

also use these relationships to build robust controllers for terrain unaware running and

turning on terrains with uncertainties without complicating the planning problem too

much. The results show great promise in simulation. It remains to be seen how well

these control policies transfer to physical robot hardware, and it opens up exciting

avenues for future research.

The analytical model proposed in chapter 3 can be used to draw parametric

insights into the turning dynamics of legged running systems.

While the controller proposed in chapter 4 attempts to restrict roll and pitch

motions of the center body to zero, this is not a mandate. When humans execute

running turns, a small amount of rolling in the trunk was observed [32]. Even for

straight-line running, while or controller regulates the yaw of the center body to

be zero (to align the body y-axis with the global y-axis), humans yaw their pelvis

in clockwise and counter-clockwise directions alternatively through their running

gait[33]. So, by relieving the feedback controller slightly and slowing the center body

to roll pitch and yaw by small amounts, might reduce the effort currently being made

to execute turning maneuvers. Allowing the center body to rotate too much might

affect the stability of the system as well. So a right balance of the center body’s

freedom to rotate and the stability must be determined.
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SMM based controllers proposed in the past for robots did not account for the

rotational dynamics and the angular momentum of the center body. So these methods

resorted to supplementary controllers that interfere with these controllers built based

on the lower-order dynamics of the running system. The proposed controllers in this

thesis were built by incorporating the rotational dynamics of the center body and a

method to regulate them in the model design itself.

The controller that regulates the center body orientation requires 3 state inputs:

the roll(φ), pitch(ω) and yaw(ψ) angles, which can be extracted from an IMU.

Similarly, the system also needs to calculate the time of flight for which it needs

a clock and a way to identify apex and touchdown conditions. The apex can be

identified as a point where the vertical velocity of the system is zero, which can be

acquired from the IMU as well. As for the identification of touchdown condition,

actuators in the leg with torque feedback or a force sensor in the robot’s feet will

suffice. Hence, there is no need for global sensors or terrain awareness for the controller

to work.
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