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Abstract
There has been exciting recent progress in using radar as a sensor for robot navi-

gation given its increased robustness to varying environmental conditions. However,
within these different radar perception systems, ground penetrating radar (GPR) re-
mains under-explored. By measuring structures beneath the ground, GPR can provide
stable features that are less variant to ambient weather, scene, and lighting changes,
making it a compelling choice for long-term spatio-temporal mapping.

In this work, we present a set of approaches for robots to naturally reason about
subsurface information for robust localization and mapping in unknown environments.
First, we propose a novel method for place recognition using GPR measurements for
robot localization. We achieve this by horizontally stacking one-dimensional GPR
measurements into two-dimensional images. This is followed by a spatial correla-
tion network over learned image features to correct for translational drift. We find
that this approach improves GPR-based localization performance compared to en-
gineered heuristics as it can learn distinct features in often noisy and repetitive images.

Second, we propose a GPR-based simultaneous localization and mapping (SLAM)
method that does not require re-visitation by explicitly modeling the relationships
among linear features, such as pipes and geologic fractures, commonly found in real-
world scenes. We formulate this as inference over a factor graph to jointly estimate
latent Hough line features and robot states. We find that this approach effectively
reduces drift perpendicular to line observations and allows us to simultaneously
reconstruct the underground environment features and estimate the robot state.
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Chapter 1

Introduction

1.1 Motivation

(a) (b) (c) (d) (e)

Figure 1.1: Instances where GPR-based positioning is most effective: (a) place recognition, (b) semi-static environ-
ments, (c) occlusion, (d) challenging weather, (e) sparsely featured environments.

Ground penetrating radar (GPR) is a electromagnetic tool used for underground inspection, but
it has the potential to be used for localization and mapping. Unlike traditional robotics sensing
modalities, like LIDAR and cameras, GPR performs robustly in challenging, visually degraded
environments, and is mostly invariant to spatio-temporal changes. Examples of visually degraded
environments are shown in Figure 1.2, which include dirt, dust, and inclement weather. Robots
must operate robustly to perform critical tasks and often are not accessible to repair. These
challenges require fault-tolerant sensing, motivating the use of GPR for localization and mapping.
Figure 1.1 depicts common robotics challenges where GPR-based positioning can perform effec-
tively.

GPR performs robustly in visually degraded environments, such as fog, snow, rain, and dust.
Prior work by Ort et al. has effectively used GPR for localization for autonomous navigation in
varying inclement weather conditions [80]. During this work, GPR and GPS together enabled
robust lane tracking during different challenging weather scenarios.
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Figure 1.2: Examples of visually degraded settings where robots must perform robustly, which include search and
rescue [106], planetary exploration [101], and self-driving vehicles [29].

GPR measurements are more invariant to spatio-temporal change than traditional sensor
measurements since subsurface features are often consistent over time. Suppose that a robot is
operating in a subsurface mine where the line of sight environment may change due to mining
operations. However, subsurface features should remain mostly unchanged, making GPR a
relevant sensor for vehicle positioning.

While the advantages of GPR as a positioning method are prevalent, GPR-based perception
is an unsolved challenge. GPR data is notoriously difficult to interpret since image generation
has a complex dependency on subsurface composition and radar physics, which itself varies
with sensors and variations in subsurface electromagnetic properties. As opposed to cameras
and LIDAR, which provide very rich context about a robot’s position in an environment, GPR
measurements only provide information about the subsurface immediately around the robot.
These sensor benefits and limitations motivate our research on identifying representations to
meaningfully use subsurface information for localization and mapping.

1.2 Scope and Approach
In this thesis, we describe different methods for localization and mapping using GPR sensors. We
develop these methods using a low cost, off-the-shelf, single channel GPR system.

The first part of this thesis discusses the design of a platform to acquire and process GPR data,
specifically for localization and mapping. This system and GPR data is shown in Figure 1.3.

The second part of this thesis–on localization–explores a novel approach for place recognition
through comparison of GPR submaps. We describe the shortcomings of possible representations
(single traces, point clouds, unprocessed images) and different sensor models to estimate a robot’s
trajectory. We show our results with actual GPR data collected in three GPS-denied environments
with the experimental test rig discussed in the first part.

2



Figure 1.3: Single channel GPR data depicting subsurface stratification and an underground pipe.

The third part of this thesis–on simultaneous localization and mapping–leverages common
linear and continuous underground structures to enable simultaneous localization and mapping
using GPR sensors. This method relaxes the requirement to revisit previous positions or to
maintain a prior map of the environment, a common limitation of GPR-based positioning systems.
Linear features are common in the real-world, often taking the form of subsurface pipes and
geologic fractures [92, 109]. We demonstrate our method using simulated and real-world data.

1.3 Organization

This thesis is organized as follows. In Chapter 2, we cover background theory on SLAM, factor
graphs, ground penetrating radar, and signal processing. In Chapter 3, we describe the design
of a GPR localization and mapping platform, consisting of an experimental rig and signal pre-
processing approach. In Chapter 4, we describe the theory and implementation of our GPR
localization method. In Chapter 5, we describe a GPR-based simultaneous localization and
mapping (SLAM) system. In Chapter 6, we conclude this thesis and propose future work to enable
robust, real-world deployment of GPR-based positioning systems.

1.4 Contributions

In Chapter 3, we describe the design of a system to collect and process GPR data. Our main
contributions are:

1. An experimental rig for GPR localization and mapping data collection.

2. A signal processing routine to preserve underground features needed for localization and
mapping.
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3. An open source dataset for evaluating GPR localization and mapping techniques.

In Chapter 4, we propose a localization formulation based on GPR submaps and a learned
sensor model. To the best of our knowledge, this is the first GPR-based localization technique
relying on smoothing-based methods. Our main contributions are:

1. A formulation of the GPR localization problem as inference over a factor graph without a
prior map.

2. A learnable GPR sensor model based on submaps.

3. Experimental evaluation on a test platform with a single-channel GPR system operating in
three different GPS-denied environments.

In Chapter 5, we present a full SLAM system that jointly infers robot states and underground
line features. To the best of our knowledge, this is the first formulation for SLAM using subsurface
features. Here, our contributions are:

1. A method to discretely model line features in a GPR radargram for positioning.

2. A SLAM framework that estimates line parameters over multiple robot observations.

3. Results from simulated and real-world experimentation.
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Chapter 2

Background

In this chapter, we introduce the topics of simultaneous localization and mapping (SLAM) and
ground penetrating radar (GPR). We begin by providing an overview of the traditional SLAM
problem. Then, we introduce factor graphs for solving probabilistic inference problems. We then
describe how GPR systems operate and some common representations for GPR data.

2.1 SLAM and Factor Graphs

2.1.1 Introduction to state estimation

When robots do not have access to ground truth position and orientation information, they must
estimate these critical parameters from noisy sensor data. Sensors can provide proprioceptive
(e.g. measurements from a wheel encoder or inertial sensor) and exterioceptive information
(e.g. capture relative positions with respect to a map) [75]. Proprioceptive sensors drift over
time since integration of noisy measurements causes error to accumulate. In these cases, we
wish to use external information, such as a scan of the robot’s surroundings, to correct for this error.

In some applications, a robot must localize within a known map of an environment. In a
traditional localization problem, a robot can know the location of a set of landmarks and use this
information for trajectory estimation [18]. However, we often do not have a priori knowledge of a
robot’s operating environment, requiring us to construct a model of the robot’s environment. This
process is known as mapping. The problem of estimating a robot’s pose while also building a map
of the surrounding environment is known as simultaneous localization and mapping, abbreviated
as SLAM [102].

A traditional SLAM problem is visualized in Figure 2.1. In this example, a camera is moved
around an unknown office environment. A computer extracts features from an image and as
the camera moves, triangulates their 3-dimensional position. While the robot creates a map of
the environment, it is able to localize itself within the environment. When a robot re-observes
some region within a map, a loop closure occurs, which can be leveraged in SLAM to correct for
accumulated drift.
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Figure 2.1: Example of simultaneous localization and mapping in an office environment from [76]. The estimated
trajectory of the system is shown as blue keyframes. The map of the environment is shown as colorized points.

In the SLAM problem, we estimate the joint density of the robot’s states (X ) and map
consisting of landmark sites (L) conditioned on sensor measurements (Z) [61, 72]. We define
the robot’s states over time as X = {xt}Tt=1, landmark locations as L = {lm}Mm=1, and robot’s
sensor measurements as Z = {zn}Nn=1. We wish to infer robot’s states and landmark locations
that maximize the conditional density p(X ,L|Z). Therefore, the optimal solution to the SLAM is
the maximum a posteriori (MAP) estimate defined as:

X̂ , L̂ = argmax
X ,L

p(X ,L|Z) (2.1)

∝ argmax
X ,L

p(Z|X ,L)p(X ,L) (2.2)

2.1.2 Factor Graphs
Classical positioning systems often use filtering-based approaches, such as the Extended Kalman
Filter (EKF) [58, 96]. Filtering-based approaches are commonly used today, but can suffer from
high computational cost and accumulated linearization errors [99]. In order to mitigate some of
these challenges, we use smoothing-based methods, which have been proven to be more accurate
and efficient than filtering-based approaches [18].

A factor graph is a bipartite graph with two types of nodes: variables x ∈ X and factors
φ(·) : X → R. Variable nodes are the latent states to be estimated, and factor nodes encode
constraints on these variables, such as measurement likelihood functions.
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The smoothing problem is often solved using MAP inference. While MAP inference is
known to be an NP-Hard problem [94], conditional independence assumptions between associated
variables enables allows us to represent the joint probability as:

p(X ,L,Z) = p(x0)
N∏
n=1

p(zn|xαn , lβn)
T∏
t=1

p(zt|xt−1,xt) (2.3)

log p(X ,L,Z) = log p(x0) +
N∑
n=1

log p(zn|xαn , lβn) +
T∑
t=1

log p(zt|xt−1,xt) (2.4)

Typically we assume that the data association D = {(αn, βn)}Nn=1 of robot poses xαn and
landmarks lβn is known a priori. Additionally, we often make a simplifying assumption that
measurements are drawn from a zero-mean Gaussian distribution:

z0 = x0 + ν0 (2.5)
zn = h(xαn , lβn) + νn (2.6)
zt = h(xt−1,xt) + νt (2.7)

where, ν0, νn, and νt are noise terms drawn from a Gaussian distribution with covariance Σ0,
Σn, and Σt respectively. z0 is the prior term that constrains the first pose in the optimization. This
term is often given small Σ0 to ground the optimization. h is a measurement function that maps
latent variables to a measurement prediction. Since we are estimating the values of the latent
variables that maximize the joint likelihood, we can remove constant terms in the factorization
and write the individual densities as:

p(x0) ∝ exp{−1

2
||z0 − x0||2Σ0

} (2.8)

p(zn|xαn , lβn) ∝ exp{−1

2
||zn − hn(xαn , lβn)||2Σn

} (2.9)

p(zt|xt−1,xt) ∝ exp{−1

2
||zt − h(xt−1,xt)||2Σt

} (2.10)

By manipulating the MAP objective, we show that maximizing the posterior probability
proportional to the negative log probability of the joint probability:

X̂ , L̂ = argmax
X ,L

p(X ,L|Z) (2.11)

∝ argmax
X ,L

p(X ,L,Z) (2.12)

= −argmin
X ,L

log p(X ,L,Z) (2.13)

Given the objective defined in Equation 2.13, we can write joint density using the factorized
measurement distributions as:
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Figure 2.2: Example factor graph based on [30].

X̂ , L̂ = argmin
X ,L

(||z0 − x0||2Σ0
+

N∑
n=1

||zn − hn(xαn , lβn)||2Σn
+ (2.14)

T∑
t=1

||zt − h(xt−1,xt)||2Σt
)

This objective can be written more generally by combining all measurements and latent
variables into a single state vector X :

X̂ = argmin
X

N∑
i=1

||zi − hi(X)||2Σi
(2.15)

2.1.3 Performing MAP Inference

Since the measurement function is often nonlinear, the MAP objective can be solved using non-
linear least squares optimization. These problems cannot be solved directly and require an initial
estimate and an iterative solution [30]. A variety of algorithmic approaches have been used to
solve this problem, including steepest decent, Gauss-Newton (GN), Levenberg-Marquardt, and
Powell’s Dogleg [30].

In addition to these classical optimization approaches, incremental solvers, such as iSAM2, can
be used for real-time estimation, which is appropriate for the incremental nature of SLAM [57].

2.1.4 Front-end of SLAM

The graphical back-end of the SLAM system often assumes that the graph structure is known
a priori by the front-end. In order to effectively reason about the world, a robot must convert
raw sensor data into structured representations. The front-end is responsible for data preparation,
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modeling, and association to extract spatial relations between individual observations.

The front-end varies for different sensor modalities. For LIDAR-based SLAM systems, scan
alignment is a tool to identify odometry from related scans [114]. Visual SLAM systems utilizing
monocular or stereo cameras often rely on sparse feature-based representations [71, 76]. Prior
work in RGB-D-based SLAM systems often use direct methods that utilize all pixels in the input
frame in the estimation problem [78].

2.2 Ground Penetrating Radar

2.2.1 Introduction to GPR
GPR is a tool for subsurface imaging that uses radio waves to probe low loss dielectric mate-
rials [3]. GPR systems transmit electromagnetic (EM) waves and receive scattered reflections
from interfaces of different dielectric properties. These interfaces often have several different
classifications, which include:

1. Boundary: stratification and layering of the subsurface.

2. Point: a defined object with limited extent.

3. Line: often continuous structures, such as pipes and fractures.

GPR systems measure the two way travel time of the signal transmitted and received by the
antenna [28]. Physical modeling of GPR systems of varying topology have been extensively
reviewed in [3, 27, 95]. Applications of GPR systems in different domains have been described in
great depth in [14, 103].

2.2.2 GPR in Robotics
Most use of GPR in the robotics domain has been for passive inspection, which includes excavation
of subsurface objects [47], planetary exploration [40, 45, 63], mine detection [79, 91], bridge
deck inspection [62], and crevasse identification [107].

2.2.3 Data Representations
1D A-Scans

An A-scan, otherwise known as a 1D trace, is formed by measuring the amplitude response of
a scattered EM wave. Since the subsurface is lossy, the received signal attenuates as a function
of depth, conductivity, permittivity, and permeability [3]. In order to effectively compensate for
this loss and produce an interpretable image, a gain function is applied to amplify relevant features.

A trace contains three noticeable components: the air wave, the ground wave, and the non-
line-of-sight reflected signal. The air wave is the observed signal directly after transmission. The
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Figure 2.3: Components of received signal by GPR systems from [43]. Tx is the transmitting antenna and Rx is the
receiving antenna.

ground wave is the reflection from the air-ground interface. In ground-coupled antennas, this
may not be visible. This characteristic is most noticeable with air-coupled antennas, where there
is an air gap between the antenna and the ground [31, 43]. The remaining component of the
trace is a combination of the reflected signal and noise. The ability to detect a relevant feature
is defined by the radar system’s sensitivity, which can be measured by the system’s signal-to-
noise ratio (SNR), constant false alarm rate (CFAR), and other metrics [95]. These different
components to the signal are shown in Figure 2.3. An example of an A-scan is shown in Figure 2.4.

Traces can be transformed from a timescale to a depth scale based on the signal velocity
in the subsurface. This value can obtained by performing a velocity calibration, which can be
accomplished by fitting a hyperbola to a feature observation or by specifically defining the depth
based on assumptions or known information. In most cases, a single velocity model is used to
characterize depth. In cases where stratification is more present, a multi-velocity model can be
implemented.

2D B-Scans

A B-scan, otherwise known as a brightness scan, is a collection of equally spaced, one-dimensional
traces, formatted as a two-dimensional image. Features, like pipes, appear in a B-scan as
hyperbolas. These features occur since the radiation emitted by the antenna often follows a conical
shape, causing the signal to propagate outward to features around the antenna. As the sensor
gets loser to the feature, the depth of the reflection should decrease. Given this physical context,
we often assume that the feature’s location is co-located with the top of a hyperbola. Figure 2.5
conveys how these hyperbolic features appear in the data.

Volumetric Information

GPR data can also be represented as a three-dimensional volume. There are two ways to construct
this representation: an multi-channel sensor or a grid scan with a single-channel sensor. In both
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Figure 2.4: A-scan obtained over a subsurface pipe. (a) scenario where radar is located above the top of a subsurface
pipe. (b) resulting reflection from the pipe observed in proceed trace. The trace contains amplitude information as a
function of time, which corresponds to depth.

approaches, signals are interpolated to construct the volume.

It is typically unfeasible for human interpreters to perceive volumetric data. Thus, different
processing techniques are used to simplify the presentation of volumetric information. These
include:

1. Slicing the volume to view relevant B-scans or horizontal layers [35].

2. Making the voxel transparency inversely proportional to the signal amplitude [46]. One
limitation of this approach is that if the volume is large, occlusion will remain and it will
be difficult to visualize prevalent features. An example of this representation is shown in
Figure 2.6(a).

3. Applying a minimum amplitude threshold [46]. This approach risks removing potentially
important lower amplitude features. Since the threshold is often characteristic of the en-
vironmental condition and signal processing, a user must empirically determine the best
value that visualizes the desired features. An example of this representation is shown in
Figure 2.6(b).

2.3 Other Radar-based Perception
Prior Work

Radar-based perception has been shown to perform more robustly than conventional spatial or
visual sensors in inclement weather [4, 12, 70, 83, 93]. Work in this space typically involves a
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Figure 2.5: Hyperbolic features in GPR data. (a) description of common scenario with multiple views of a subsurface
pipe through antenna motion. (b) corresponding GPR B-scan image depicting two way travel time from signal
propagation in spatial domain. Visualization based on [46].
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Figure 2.6: Sparse three-dimensional representations for GPR data retrieved from [46]. (a) transparency-based
volume visualization. (b) threshold-based visualization.

rotating millimeter-wave FMCW scanning radar [12, 93] or fixed array radar relying on beam-
forming [13, 49]. These radar systems are intended to mimic LIDAR and capture surface-level
geometry. Radar data is often more noisy than LIDAR, requiring additional post-processing
to extract meaningful information [10, 105]. This information has been used for egomotion
estimation [4, 10, 11, 21, 22, 85], place recognition [41], re-localization [88], localization within
satellite images [100], registration to LIDAR point clouds [84], and semantic segmentation [59].

Comparison with GPR

Similar to traditional automotive or scanning radar applications, GPR also has good performance
in challenging weather conditions. The primary difference between these different radar sensing
modalities is that traditional scanning radar systems provide view of the surrounding environment
around the robot while GPR simply looks at the region directly below the robot. GPR data is
limited since odometry information between sequential GPR measurements is difficult to interpret
and would not be as accurate as scan alignment from scanning radar systems.

We believe that GPR is most effective for long-term navigation, especially in cases where
the surface environment changes. This is because subsurface features are often more stable
than surface features. Thus, GPR is particularly suitable for positioning in previously mapped
environments or environments with rich subsurface features, but sparse, repetitive, and / or
changing surface features.
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Chapter 3

System Design

In this chapter, we describe the design of a GPR system for collecting and processing data for
GPR-based localization and mapping. In Section 3.1, we describe the SuperVision platorm, a
custom experimental test rig produced for data collection and experimentation. In Section 3.2,
we describe features in GPR data and a signal pre-processing approach designed for localization
and mapping. In Section 3.3, we describe the CMU-GPR dataset, which consists of relevant
navigation data along with GPR signal pre-processing utility functions for the robotics research
community.

3.1 SuperVision Test Platform

3.1.1 Sensor Selection

We constructed a manually-pulled test rig named SuperVision shown in Fig. 3.1 for data acqui-
sition. SuperVision uses a quad-core Intel NUC for compute and wirelessly transmits onboard
data from an XSENS MTI-30 9-axis Inertial Measurement Unit, YUMO quadrature encoder with
1024 PPR, and a Sensors and Software Noggin 500 GPR. Readings from the IMU magnetometer
were excluded due to intermittent magnetic interference commonly found in indoor environments.
Ground truth data was acquired by a Leica TS15 total station. The base station logs measurements
from the onboard computer and the total station to ensure consistent timing. The flow of data
during experimentation is summarized in Figure 3.2.
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Figure 3.1: Experimental setup for GPR subsurface perception datasets.

Figure 3.2: Data logging setup for SuperVision testing.
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3.1.2 Antenna Placement

(a) (b)

Air Launched Ground Coupled

Figure 3.3: (a) GPR image constructed with 2.5cm antenna-ground separation. (b) GPR image constructed with
ground-coupled antenna configuration.

In our testing, we found that GPR antenna placement was a critical design decision. Our initial
design suspended the radar system 2.5cm above the ground to maintain a fixed transformation
between the IMU and GPR sensor. While a fixed sensor setting like this is most common for
localization systems, the small air gap between the GPR and the ground introduced ground energy
losses and multi-path interactions causing poor depth penetration and repetitive ringing. To
address this, we added a passive suspension to the GPR system so as to maintain constant ground
contact. This improved depth penetration as shown in the right image of Fig. 3.3(c). We address
methods to improve the robustness and applicability of our system in Section 6.2.

3.2 Signal processing

3.2.1 Global and Local Features in GPR Data

We define two types of features in GPR data: global features and local features. Global features
define general and consistent information about an environment, such as consistent stratification.
An example of these types of features is shown in Figure 3.4.

Local features capture irregular information that causes GPR scans in the same environment
to be distinct and heterogeneous. Local features can include points (e.g. rocks), lines (e.g. pipes),
and irregular texture or variation. An example of a radargram with substantial texture is shown in
Figure 3.5.
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Figure 3.4: Global features present in GPR data. In this example, the robot moves from soil to sidewalk, causing a
change in general banding features in the B-scan.

Figure 3.5: GPR radargram containing distinct texture from [6].
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3.2.2 Signal Pre-processing for GPR Localization and Mapping

o0 o1 ot-2 ot-1 ot

wstart
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Wheel Enc. 
Positions: wend

x x

Figure 3.6: Overview of GPR image construction. (a) Unprocessed localized traces received by the device. (b)
Horizontally stacked traces from (a), where the amplitudes correspond to pixel intensity. (c) Measurements after
filtering and gain. (d) Final image after thresholding.

Digital signal processing techniques are needed to improve the signal-to-noise ratio of the received
GPR signal, counteract signal attenuation, and remove recurrent artifacts that are intrinsic to
GPR systems. Measurements ot arrive from each position as a 1D discrete waveform called a
trace, which are locally averaged to reduce noise and resampled to form a uniformly spaced
image [36]. In order to increase the signal-to-noise ratio (SNR), a process called stacking is used.
This involves averaging multiple observations in roughly the same location to reduce incoherent
noise from individual traces.

Receiving signals often contain a low frequency component and DC bias caused by saturation
and inductive coupling, requiring a dewow filter, which involves a DC subtraction and low-cut
filter parameterized on the radar’s center frequency and bandwidth [55]. Since the receiving
antenna begins listening for a signal prior to transmission, we define the varying zero time
of the signal as the first negative peak of the trace. We then apply a finite impulse response
(FIR) filter to remove high frequency noise with less signal distortion compared to the standard
bandpass filter [55]. In order to counteract attenuation, we multiply the signal by a Spreading and
Exponential Compensation (SEC) gain function,

G = exp(a · t) · tb (3.1)

where, a is the exponential gain constant and b is the power gain constant [50]. These parameters
must be tuned for different environments since attenuation is a property of the material and
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Filter Type Application Level Motivation
Dewow Trace Remove DC bias and inductive coupling
Finite Impulse Response Trace Reduce high frequency noise
Background Subtraction Window Remove repetitive ringing
SEC Gain Trace Amplify signal attenuation
Wavelet Image Reduce high frequency noise

Table 3.1: Filter sequence for GPR signal pre-processing.

Figure 3.7: Experimental rig data acquisition in different environments.

environmental condition.

GPR images have global and local context. Global features such as horizontal layers encode
information about the general environment of a system, which can include boundaries like layers
of asphalt in roads. Local features, which include pipes and point objects, provide salient features
needed to effectively localize. To maintain prominent global features, we subtract the mean trace
over all prior submaps (as opposed to over each submap) to remove repeated artifacts introduced
by the radar while emphasizing local features. The signal processing process is summarized in
Table 3.1 and shown in Figure 3.6.

3.3 CMU-GPR Dataset

Several open source distributions are available to process [51, 77] and simulate [104] GPR data.
In this section, we describe our open-source CMU-GPR dataset, which contains SuperVision
sensor data in indoor and outdoor environments as well as utility functions for GPR image con-
struction [9]. To the best of our knowledge, this is the first open source dataset for GPR-based
perception1,2. We are excited to hear about the release of the GROUNDED localizing GPR dataset,
which will further support researchers in the GPR-based localization and mapping space [81].

1The CMU-GPR dataset is available at https://github.com/rpl-cmu/CMU-GPR-Dataset.
2A video describing our dataset is available at https://youtu.be/y3XiDmFilwQ.
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Figure 3.8: Testing environments for CMU-GPR dataset.

3.3.1 Data

The CMU-GPR dataset contains short trajectories from three distinct, GPS-denied environments:
a basement (nsh b), a factory floor (nsh h), and a parking garage (gates g). These environments
are shown in Figure 3.8. The dataset consists of 15 sequences where the manually-pulled experi-
mental rig revisits previous locations, whether through forward-backward motion or by closing
loops. Several distinct trajectories contain similar features, which are relevant to research on
re-localization using subsurface information and further described on the project website. Ad-
ditionally, we provide trajectories from outdoor environments that do not contain ground truth
information, which can be used for training models.

Figure 3.9(a) shows the directory structure for a single trajectory sequence. Each zip file
contains data from a sequence, where each .csv represents a different measurement type. The
maximum size of a zipped dataset file is 4 GB. The formats for each measurement type are
summarized in Figure 3.9(b).

3.3.2 Development Tools

Along with relevant datasets for localizing GPR, we provide utility code, written in Python,
which processes the raw GPR data to construct images. We provide a modular routine to process
one-dimensional measurements and construct an image with uniform spacing is described in
Section 3.2. Additionally, we provide a script to generate submaps, which can be used for training
or evaluating GPR sensor models.

Utility code to process raw GPR signals and images is provided in
signal processing utils.py and used in metric gpr image.py. The implementa-
tion accepts raw, unevenly spaced GPR images and produces processed brightness scans. The
base pipeline performs rubber band interpolation, mean background subtraction, dewow filtering,
triangular bandpass filtering, zero time correction, SEC gain, wavelet denoising, and gaussian
filtering.
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Figure 3.9: (a) Directory layout for the CMU-GPR dataset. (b) Data format by sensor measurement type.
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Figure 3.10: API for constructing processed images from CMU-GPR dataset.

Beyond processing the raw data, the utility code also simplifies image acquisition. The
MetricGprImage object stores the GPR dataset and allows the client to access images based
on the time of acquisition. The ImageConstructor object is even more abstract, allowing the
client to create a traditional radargram of the entire sequence or automatically generate all valid
submap images.

3.3.3 Trajectory Data Types
We primarily collected two forms of trajectories: forward-backward motion and circular loops. In
both trajectory types, GPR measurements can be registered to correct accumulated drift. Data was
collected in a variety of indoor and outdoor environments. Some testing environments are shown
in Figure 3.7.

3.3.4 Relevance to the Robotics Community
Our motivation for providing this contribution is to encourage others in the field to take similar
steps in making GPR-based perception datasets available to researchers. We believe that pro-
viding this data to the research community will spur further development of robust GPR-based
localization systems for real world deployment.
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Chapter 4

GPR-based Localization

4.1 Introduction

GPR-based localization can enable robust robot positioning in challenging, unstructured envi-
ronments where conventional visual or spatial localization systems fail. GPR measurements are
mostly invariant to spatio-temporal change, like different weather or changes in scene appearance,
since the subsurface changes less frequently and extremely than the surface-level environment.

Consider an operational subsurface mine where continuous drilling and blasting changes
the line-of-sight appearance of the scene and creates unexplored environments. These types of
large-scale changes could cause visual and spatial localization systems to perform poorly. While
the visual environment may change, subsurface features are typically invariant and can be used to
recognize the system’s location. GPR has broad relevance for localization in other unstructured
environments, such as indoor areas with large crowds that would obscure a robot’s field of view.

In this chapter, we will describe localizing GPR. In Section 4.2, we will discuss prior contribu-
tions in the space of localizing GPR (LGPR) as well as preliminary theory on IMU preintegration
and learned sensor models. In Section 4.3, we describe our localization system named Ground
Encoding. Our system models the localization problem with a smoothing objective and uses a
learned sensor model to predict transformations between non-sequential GPR images. In Sec-
tion 4.4, we describe GPR submap representations. In Section 4.5, we describe the methods used
for the learned GPR sensor model, which include feature learning, submap comparison, spatial
correlation, and transform prediction. In Section 4.6, we describe methods used to train GPR
sensor models. In Section 4.7, we discuss how these transform predictions are added to the factor
graph optimization. Finally, in Section 4.8, we show that the proposed learned sensor model has
improved localization performance over traditional engineered feature comparison approaches
used in prior work through qualitative and quantitative evaluation with real-world data.
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Figure 4.1: Concept diagram for localizing GPR system described in [24].

4.2 Background and Related Work

4.2.1 Prior Work on Localizing GPR (LGPR)

Research on localizing GPR originated at MIT Lincoln Laboratory, where Cornick et al. developed
a custom GPR device for vehicle localization [24]. A concept of their proposed design is shown
in Figure 4.1.

GPR System Design

During this work, a novel ultrawideband, stepped frequency continuous wave (SFCW), mul-
tichannel GPR sensor was designed with localization in mind [37]. The system operated at
low frequencies (100-400 MHz), which was shown to be more robust, repeatable, and easier
to correlate than higher frequency (e.g. 1 GHz) GPR sensors. 11-channels data channels were
recorded by continuously sweeping through a 12 element array. In order to capture more dense
data, the spacing between elements is 12.7cm, which is about one tenth of a center frequency
wavelength. This is more narrow than conventional multichannel GPR sensors to better register
scans to baseline data.

The antenna was particularly designed for lane tracking and yields polarized measurements.
Meaning that the system needed to follow a nearly parallel heading to the generated map.

Localization

The LGPR system developed in [24] requires a prior map for measurement registration. First,
a local grid is developed, which is queried from a database given an approximate GPS coor-
dinate. Given the current scan, a particle swarm optimization (PSO) is used to estimate the
five-dimensional state of the sensor, consisting of latitude, longitude, height, heading, and roll.
The PSO compares the sweep data to the interpolated grid map using an engineered heuristic fit
criterion defined by:
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Figure 4.2: Particle swarm optimization registration approach for LGPR system described in [24].

J =

∑
i,d(Ai,dBi,d)√∑

i,d(Ai,d)
2
∑

i,d(Bi,d)2
(4.1)

This registration approach is summarized in Figure 4.2.

Localization, Autonomy, and Seasonal Variation

Later work by Ort et al. built extended LGPR development by Cornick et al. to enable fully
autonomous vehicle operation in varying weather conditions using an LGPR sensor [80, 81].
In this development, the same radar array and registration approach from [24] was used. The
LGPR measurements were used by the system’s localization platform through two instances of an
Extended Kalman Filter (EKF). One filter estimates the system velocities from wheel encoder and
inertial data and the other filter fuses these velocities with the LGPR-GPS correction.

With the state estimate produced by the two EKFs, a pure pursuit controller is used to drive
the vehicle toward the reference path. With this pipeline in place, effective trajectory estimation,
planning, and control were enabled by combining proprioceptive information from odometric
sensors and exterioceptive information from the LGPR sensor.

One component of this work was to test LGPR performance in varying weather conditions. In
the evaluation across different weather conditions, it is apparent that GPR measurements acquired
in rain and snow were less correlated to the a priori map than in clear weather using the heuristic
correlation for registration. It is observed that performance is especially poor when comparing
data collected in rainy conditions to the reference map created in clear, likely dry, conditions.
These results are summarized in Figures 4.3 and 4.4.
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Figure 4.3: Correlation of test run and LGPR map in different weather conditions from [80].

Figure 4.4: Error comparison from ground truth in varying weather conditions from [80].
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Engineered Model Baseline

For evaluating our approach, we also consider a baseline engineered GPR model that makes use
of a correlation metric similar to prior work [24, 80]. This engineered GPR model is incorporated
as factors in the graph in the same way as our learned GPR model discussed in Section 4.5. In our
system, we incorporate the point location of the maximum Pearson product-moment correlation
to add as a measurement in the graph. The correlation is defined as:

r(A(T ), B(T )) =

∑
r,cAr,c(T )Br,c(T )√∑

r,cAr,c(T )2
√∑

r,cBr,c(T )2
(4.2)

where, Ar,c(T ) = St−k(T, r, c)−mean(St−k(T )), Br,c(T ) = St(T, r, c)−mean(St(T )), r is the
submap row, c is the submap column, and T is the transformation from St−k to St used to only
compare the shared region between the submaps.

Specifically, we estimate the transformation along the x-direction of the robot’s motion. This
is obtained by solving the optimization that maximizes the correlation from Equation 4.2,

zt−k,t = K argmax
T

(r(A(T ), B(T ))) (4.3)

where, K is a constant that converts submap pixel space to robot motion space.

4.2.2 IMU Preintegration

Our approach uses the method discussed in [39] for integrating inertial measurements and their
uncertainty on the manifold SO(3). The IMU receives accelerometer and gyroscope measure-
ments denoted by zimut = [ãt ω̃t], which are affected by additive white noise η and a time-varying
bias bt.

Preintegrated measurements define relative motion increments that are independent of the
pose si = [Ri, pi], and velocity vi of state xi, which avoids additional computation during
relinearization. The preintegrated measurement model is defined as:

∆R̃ij = RT
i Rj exp(δφij)

∆ṽij = RT
i (vj − vi − g∆tij) + δvij

∆p̃ij = RT
i

(
pj − pi − vi∆tij −

1

2
g∆t2ij

)
+ δpij

(4.4)

Where the error in the propagated rotation, velocity, and position is: η∆
ij =̇ [δφij, δvij, δpij]

T ∼
N (09×1,Σij).
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r∆Rij
=̇ log

((
R̃ij(b̄

g
i ) exp

(
∂∆R̄ij

∂bg
δbg
))T

RT
i Rj

)
r∆vij=̇R

T
i (vj − vi − gδtij)

−
[
∆ṽij(b̄

g
i , b̄

a
i ) +

∂∆v̄ij
∂bg

+
∂∆v̄ij
∂ba

δba]

]
r∆pij=̇R

T
i (pj − pi − vi∆tij −

1

2
g∆t2ij)[

∆p̃ij(b̄
g
i , b̄

a
i ) +

∂∆p̄ij
∂bg

δbg +
∂∆p̄ij
∂ba

δba
]

(4.5)

The functions ∆R̃ij(b̄
g
i ), ∆ṽij(b̄

g
i , b̄

a
i ), and ∆p̃ij(b̄

g
i , b̄

a
i ) are a first-order expansions of Equation 4.4

to relax the constant bias assumption, which are derived in [39].

In order to assume that our noise is sampled from a zero mean Gaussian distribution, we model
the slowly time-varying IMU biases as Brownian motion [108]. The change in bias between two
consecutive poses is often modeled as:

bgj = bgi + ηbgd, baj = bai + ηbad (4.6)

where ηbgd and ηbad have zero mean and covariance Σbgd=̇∆tijCov(ηbg) and Σbad=̇∆tijCov(ηba).
ηbg and ηba are Brownian noise terms. The model described in Equation 4.6 can be integrated into
the factor graph as:

||rbij ||2 =̇ ||bgj − b
g
i ||2Σbgd + ||baj − bai ||2Σbad

(4.7)

4.2.3 Learned Sensor Models
Learning-based methods provide an alternate option to model complex sensor measurements.
Prior work in visual SLAM has produced dense depth reconstructions from learned feature repre-
sentations of monocular camera images [17, 26]. In computer vision, spatial correlation networks
have been used to learn optical flow and localize RGB cameras in depth maps [19, 20, 38].

Recent work on object state estimation using tactile feedback has demonstrated the effective-
ness of learned sensor models in factor graph inference [97]. In this work, Sodhi et al. introduced
a learned observation model to predict relative object poses from different keyframes. These
predictions are fused with physics and geometric factors in a factor graph framework to estimate
latent object poses.

4.3 Learned Feature-based Localization Formulation

4.3.1 Overview of Approach
We propose an approach that allows for correction of accumulated odometry drift without any
prior map information. In the absence of a prior map, we must reason over multiple GPR mea-
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Figure 4.5: Estimating poses for a ground vehicle using subsurface measurements from Ground Penetrating Radar
(GPR) as inference over a factor graph. Since GPR measurements are challenging to correlate, a relative transformation
is learned between submaps to correct the system’s pose.

surements together to be able to infer the latent robot location. We formulate this inference
problem using a factor graph, which is now common with many modern localization and SLAM
objectives [17, 18, 26, 30, 97]. GPR, inertial, and wheel encoder measurements are incorporated
into the graph as factors to estimate the system’s latent state, consisting of position, orientation,
velocity, and IMU biases. To incorporate measurements into the graph, a sensor model is needed
to map measurements to states. For GPR sensors, a priori models are typically challenging to
obtain since image generation has a complex dependency on subsurface composition and radar
physics. Instead, we learn relative sensor models that map non-sequential GPR image pairs to
relative robot motion. The relative motion information in turn enables us to correct for drift
accumulated when using just proprioceptive sensor information. Our main contributions are:

1. A formulation of the GPR localization problem as inference over a factor graph without a
prior map.

2. A learnable GPR sensor model based on submaps.

3. Experimental evaluation on a test platform with a single-channel GPR system operating in
three different GPS-denied environments.

Our localization approach is summarized in a supplementary video1 and in Figure 4.5.

4.3.2 Problem Formulation

We formulate our GPR localization problem as inference over a factor graph. A factor graph is
a bipartite graph with two types of nodes: variables x ∈ X and factors φ(·) : X → R. Variable
nodes are the latent states to be estimated, and factor nodes encode constraints on these variables

1Our approach is summarized in this supplementary video https://youtu.be/HXXgdTJzqyw
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such as measurement likelihood functions.
Maximum a posteriori (MAP) inference over a factor graph involves maximizing the product

of all factor graph potentials, i.e.,

x̂ = argmax
x

T∏
t=1

φt(x) (4.8)

Under Gaussian noise model assumptions, MAP inference is equivalent to solving a nonlinear
least-squares problem [30]. That is, for Gaussian factors φi(x) corrupted by zero-mean, normally
distributed noise,

φt(x) ∝ exp

{
−1

2
||ft(x)− zt||2Σt

}
⇒ x̂ = argmin

x

T∑
t=1

||ft(x)− zt||2Σt

(4.9)

where, ft(x) is the measurement likelihood function predicting expected measurement given cur-
rent state, zt is the actual measurement, and || · ||Σt is the Mahalanobis distance with measurement
covariance Σt.

For the GPR localization problem, variables in the graph at time step t = 1 . . . T are the
6-DOF robot poses st ∈ SE(3), velocities vt, and IMU biases bt, i.e. xt = [st vt bt]

T . Factors in
the graph incorporate different likelihoods for GPR, IMU, and wheel encoder measurements. At
every time step t, new variables and factors are added to the graph. Writing out Eq. 4.9 for the
GPR localization objective,

x̂1:T =argmin
x1:T

T∑
t=1

{
||fgpr(xt-k, xt)− zgprt-k,t||

2
Σgpr

+

||fwh(xt-1, xt)− zwht-1,t||2Σwh
+

||fimu(xt-1, xt)− zimut-1,t||2Σimu

} (4.10)

This objective in Eq. 4.10 is solved online every time step using an efficient, incremental solver
iSAM2 [57].

4.4 Submap Construction
Traditional GPR systems provide a one-dimensional trace ot at each position, which does not
provide enough information to effectively determine a system’s unique position. A collection
of traces represents a local fingerprint that may contain valuable information for localization.
Our approach involves constructing submaps St based on integration of local wheel encoder
measurements wxt (Fig. 3.6). A submap is approximated by sampling discrete GPR measurements
from a continuous distribution of GPR measurements using an interpolation function F̂ to create
a uniformly sampled image,

St = F̂ ({(ōt, wxt ) | wxstart ≤ wxt < wxend}) (4.11)
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transformation. Factors denoting the measurement likelihoods from GPR, inertial, and wheel encoder measurements
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Figure 4.7: Forward-backward trajectory from Figure 4.6 broken down into submaps.

where, ōt is the locally averaged GPR measurement, described in Section 3.2, at time t and wxt is
the wheel encoder measurement at time t.

We use a rule-based method that maps a set of wheel odometry and angular velocity measure-
ments to a decision of whether a short trajectory is a valid submap. This involves ensuring that
the z-axis gyroscope reading and y-axis accelerometer measurement are within an acceptable
threshold and that wheel encoder measurements are strictly increasing or decreasing, meaning
that forward-backward motion is not present in a submap.

In summary, a submap representation is needed to efficiently solve the localization prob-
lem since it more adequately models the dependency between neighboring traces in an image.
The image-based representation is a subsurface fingerprint that is more descriptive than a one-
dimensional trace. Example submaps for a forward-backward trajectory is shown in Figure 4.7.
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Figure 4.8: Autoencoder architecture used for feature learning. A raw GPR radargram is provided to a ResNet-18
autoencoder, which reduces the image to a series of feature activations. A second ResNet decodes these activation
maps to reconstruct the original image.

4.5 Learned Sensor Model
One key insight of our approach is to learn a sensor model directly to register similar GPR
submaps. Prior approaches to GPR measurement registration described in [24, 80] rely on particle
swarm optimization, which can be non-deterministic, difficult to characterize performance, and
computationally expensive [8]. In this approach, we learn a function that maps two non-sequential
poses to a relative transformation.

Prior engineered registration approaches perform poorly when:
1. images change when viewed from different angles due to antenna polarization.

2. signal characteristics vary over time.

3. signal characteristics with changes to the physical environment.

Our approach leverages the strengths of the nonparameteric optimization-based methods using
a spatial correlation layer, which is used to compare measurements through relative motion in
subsampled space. Our pipeline is described in greater detail in the following sections and is
summarized in Figure 4.6.

4.5.1 Feature Learning
Identifying the function that directly maps submaps to transformations is prone to overfitting
because of noise and aliasing in the original radar submaps. To learn the function that relates
two similar submaps St−k and St, an intermediate feature representation ft−k and ft is needed. A
ResNet-18 auto-encoder is used to obtain k feature activation maps that contain relevant features
for localization like vertical edges. The autoencoder is trained with an L1 reconstruction loss to
preserve the sparsity of features in the original submap.
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Figure 4.9: Summary of spatial correlation layer for submap transform prediction. Feature activation maps are
provided to a spatial correlation function, which computes a curve of image correlations with translation. The
maximum values of each curve are compiled into a correlation vector.

4.5.2 Submap Comparison
Prior to identifying transformations in the data, we perform an average pooling on the row-wise
standard deviation of submap images to check for salient features. If submaps St−k and St contain
valid features, a linear correlation network checks whether they share common features using a
method further described in Spatial Correlation and Transform Prediction.

4.5.3 Spatial Correlation
If submaps contain salient features and are correlated, we predict a relative 1D transformation
snett−k,t using a two stage approach. We first construct a set of cost curves by comparing each
feature map St−k,i and St,i for all k using Equation 4.2 for feature activation map pixel space. We
then evaluate the argmax of each cost curve, which is encoded in a vector as shown in Figure 4.9.

Modeling the transformation directly between two images tended to overfit to training data
and produced incorrect transform predictions as shown in Figure 4.10(a). The spatial correlation
layer simplifies transform prediction by naturally embedding an argmax in the learning process,
reducing the learning problem to linear regression as shown in Figure 4.10(b). This approach is
generally relevant for predicting transformations between images and volumes for GPR and likely
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Figure 4.10: Actual versus predicted transformation (a) without spatial correlation and (b) with spatial correlation.
The spatial correlation layer converts it into a linear relationship, simplifying the learning process for the transform
prediction network.

other sensing modalities.

While the system produced is staged, alternative approaches can utilize backpropagation
through the spatial correlation layer to streamline the learning process [38] and even backpropaga-
tion through the graph optimization [113].

4.5.4 Transform Prediction

The transform prediction network learns weights for different filters and a scale factor to convert
pixel space to metric range space (e.g. distance in meters). The spatial correlation vector is pro-
vided to a fully-connected regression network to identify the relative transformation snett−k,t. Then,
the network learns to provide higher weight to filters that are better correlated with the desired
translation, reducing the effect of filters that encode common patterns in the data like horizontal
banding. The transform prediction network is trained using Huber loss against supervised ground
truth data sgtt−k,t acquired by a robotic total station.

4.6 Training the Transform Prediction Network

4.6.1 Ground Truth Positions

The first method identifies pairs of non-sequential poses from a collection of trajectories using
ground truth measurements from a robotic total station. Heading estimates were used by computing
finite differences between sequential ground truth measurements. Points were placed in a cKD

36



Figure 4.11: Examples of transformations from green coordinate frame to red coordinate frame identified using
ground truth data.

Figure 4.12: Sliding frames from odometry integration depicting synthetic motion. Frames contain the original
submap image, reconstruction from the autoencoder, reconstruction loss, and a subset of activation maps.

tree, enabling efficient lookup of neighboring points. Examples of transformations are shown in
Figure 4.11.

4.6.2 Artificial Homography

The second method computes artificial homographies between GPR submaps to identify one-
dimensional transformations between sequential poses using odometry data. While odometry data
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drifts over time, it can provide locally accurate transformation predictions. An example of an
artificial homography is shown in Figure 4.12. We found that training using both ground truth
and artificial homography methods produced consistent results. However, we decided to use the
artificial homography method for training the evaluation transform prediction network since more
data can be generated and only one-dimensional transformations were needed.

4.7 Factor Graph Optimization

4.7.1 GPR Factor
Measurements from GPR are incorporated into the graph as factors with the cost from Equa-
tion 4.10. The relative GPR factor has a quadratic cost penalizing large residual values and is
defined as,

||fgpr(xt-k, xt)− zt-k,t||2Σgpr
:= ||s−1

t st-k 	 zgprt-k,t||
2
Σgpr

(4.12)

where, zgprt-k,t is the predicted relative transformation from the transform prediction network, s−1
t st-k

is the estimated relative pose transformation between two variable nodes in the graph, and 	
represents the difference between two manifold elements.

4.7.2 IMU Preintegration
For incorporating IMU measurements in the graph, we use the IMU preintegration factor de-
scribed in Section 4.2.2 and proposed in [39]. The preintegration factor locally integrates multiple
high-frequency accelerometer and gyroscope measurements into a single compound preintegrated
IMU measurement. This has the advantage of combining the speed and complexity benefits of
filtering-based methods along with the accuracy of smoothing methods.

The IMU factor term from Equation 4.10 can be expressed as a residual over the differences
in orientation ∆Ri,j , velocity ∆vi,j , and position ∆ti,j ,

||fimu(xt-1, xt)− zt-1,t||2Σimu
= ||rIij ||2 + ||rbij ||2 (4.13)

where, {i, j} are state index pairs between which preintergration is performed. We perform the
preintergration between consecutive states, i.e. {i, j} := {t-1, t}. Here, rIij = [rT∆Ri,j

, rT∆vi,j , r
T
∆ti,j

]T

is the preintegration error residual and rbij is bias term estimation errors. We refer the reader to
[39] for more details on these residual error terms.

4.7.3 Wheel Encoder Factor
Wheel encoder measurements are incorporated into the graph between sequential poses {st−1, st}.
The relative wheel encoder factor is defined as,

||fwh(xt-1, xt)− zwht-1,t||2Σwh
:= ||s−1

t st-1 	 zwht,t-1||2Σwh
(4.14)

where, zwht-k,t is the relative difference between two poses measured by the wheel encoder.
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4.7.4 Optimization

We solve the optimization using the efficient incremental solver iSAM2 [57] at each timestep.
Preintegrated IMU measurements are seamlessly added between estimation steps to reduce the
size of the estimation problem by better representing high frequency inertial information as
described in Section 4.2.2. GPR constraints are added assuming known data association with the
measurement obtained from the engineered and learned sensor models.

4.8 Experimental Results

We evaluate our GPR-based localization system in three distinct, GPS-denied environments: a
basement (nsh b), a factory floor (nsh h), and a parking garage (gates g). We discussed our
experimental setup in Section 3.1. We then provide an ablation of validation losses from different
learned and engineered GPR sensor models in Section 4.8.1. We finally evaluate our entire
GPR-based localization system and demonstrate the effects of adding GPR information in the
graph optimization in Section 4.8.2.

4.8.1 GPR Factor Learning

We now evaluate the performance of different GPR models to be used in the factor graph. Ta-
ble 4.1 compares losses for the baseline engineered models against our learned GPR sensor
model discussed in Section 4.5 for different choices of network architectures. The loss here is
the mean-squared error that we saw in Equation 5.7 against ground truth transformations. We
use the Huber loss function for robustness to outliers. engineered is the baseline correlation
approach discussed in Section 4.2.1 which resembles prior work [24]. zeroth is a zeroth-order
model that predicts the average relative transform of the training dataset. corr-feat are acquired
by concatenating the argmax values of the discrete cost curves from the spatial correlation of
autoencoder activation maps as described in Section 4.5. linear and nonlinear refer to the linear
and nonlinear activation functions in the fully-connected layers.

The engineered model has notably high losses as there can be many false positive matches
since the GPR image data often has similar amplitude with subtle features. In comparison, we see
that the different learned GPR model architectures have much lower losses, with linear, corr-feat
model type having the best performance. We also found that spatial correlation features corr-feat
generalized much better than using vectorized autoencoder feature maps directly.

4.8.2 Factor Graph Optimization

We finally demonstrate the effect of the GPR sensor model on odometry drift correction through
a qualitative and quantitative evaluation. The best performing model from Table 4.1, linear,
corr-feat, was selected as the learned model in this evaluation. We compare the engineered and
learned model with the ground truth trajectory and the results from an oracle model. The oracle
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Table 4.1: Validation losses for different GPR models (cm)

Dataset
Model type gates g nsh b nsh h Combined

engineered 97.66 88.07 100.24 95.33
zeroth 17.81 137.97 23.30 59.49
linear, corr-feat 14.81 2.88 3.90 7.40
nonlinear, corr-feat 14.96 3.09 4.06 8.97

model predicts the ground truth relative pose transformation, representing the lower error bound of
the GPR factor. The covariance parameters in the graph are fixed and the same across sequences.

4.8.3 Qualitative Evaluation
Both trajectories in Fig. 4.13 were collected in a modern parking garage with homogeneous and
repetitious subsurface features, making the test challenging for our GPR system. Additionally,
non-deterministic reflections from nearby cars and walls were present in the dataset. As shown,
the sensor model relying on engineered features identifies incorrect transformations by comparing
processed submaps directly, causing substantial drift. This is also reflected in Fig. 4.15, where
incorrect loop closures cause the engineered model to have greater error than odometry alone. We
see that the learned model recovers the robot’s poses close to the true trajectory and matches the
oracle performance closely.

4.8.4 Quantitative Evaluation
Fig. 4.14 shows the RMSE of the absolute trajectory error described in [98]. Errors were computed
over 7 sequences in gates g, 5 sequences in nsh b, and 3 sequences in nsh h (15 sequences overall).
Odometry measurements had greater error in the gates g set since loops and turns were more
common. To better compare sensor models, an oracle provided identical loop closure observations
to both engineered and learned models. The learned model outperformed the engineered model
in all sequences. The engineered model would often produce false detections in sparsely featured
environments, causing a large variance in performance. Repetitive structures and noise in the
processed image caused the engineered model to perform poorly. The learned sensor model
performed consistently better by decomposing the image into feature activation maps, containing
prominent structures and edges in the data that are easier to compare. The learned model nearly
performs as well as the oracle detector, the model’s lower error bound.
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Figure 4.13: Qualitative evaluation of vehicle trajectory estimate over time. (a) The robot follows a trajectory that
loops over itself twice. (b) The robot starts moving on the vertical segment, then moves along the horizontal segment,
before finally revisiting the vertical segment. In both cases, the learned sensor model follows the ground truth data
better than the engineered method despite receiving the same loop closure detections.

R
M

SE
 A

T
E

 (
m

)

R
M

SE
 A

T
E

 (
m

)

R
M

SE
 A

T
E

 (
m

)

(odometry) (engineered) (learned) (oracle)

gates_ g sequence nsh_ b sequence nsh_ h sequence

(a) (b) (c)

(odometry) (engineered) (learned) (oracle) (odometry) (engineered) (learned) (oracle)

Figure 4.14: RMSE Absolute Trajectory Error (ATE) for each testing environment.

4.8.5 Optimizer Runtime
By leveraging the efficient incremental iSAM2, we were able to obtain real-time performance
using localizing GPR. In Figure 4.16, we show 22 minutes of operation consisting of all the
sequences in location nsh b. Despite estimating 2,000 latent parameters and the addition of loop
closure events, the optimizer runtime does not exceed 0.08 seconds. Spikes in optimizer timing
occur at measurement relinearization events.
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Figure 4.16: Optimizer runtime for entire duration of nsh b trials.
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Chapter 5

GPR-based Localization and Mapping

5.1 Introduction

Figure 5.1: Image depicting straight line underground pipes from [82].

In Chapter 4, we propose an approach for GPR localization that requires re-visitation of previous
locations in order to correct for accumulated odometric drift. In this chapter, we describe a novel
approach for GPR-based positioning that simultaneously estimates robot states and underground
landmarks, relaxing the re-visitation constraint. In this approach, we model these landmarks as
lines, which are commonly observable as underground pipes [15, 60] and in geology [5]. An
example operating environment for this SLAM with lines approach is shown in Figure 5.1. GPR
submaps often contain individual observations of these linear features, thus, multiple observations
of the same landmark are needed to estimate the landmark line parameters.
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In Section 5.2, we describe different line parameters widely adopted by the computer vision
and robotics communities. We also describe how lines can be recognized in GPR data. In
Section 5.3.2, we describe the structure of the GPR SLAM problem and show how we represent
line parameters in a factor graph. In Section 5.4, we describe an observation model for lines in
GPR data. In Section 5.5, we derive a custom factor for modeling these line observations in the
graph optimization using a Hough line parameterization. In Section 5.6, we show how these line
measurements and geometry are incorporated in the graph optimization. Finally, in Section 5.7,
we perform a qualitative and quantitative evaluation of the proposed GPR line SLAM method in
simulation and real-world settings.

5.2 Background and Related Work

5.2.1 Line Parameters in R2

Slope intercept form is limited for line parameterizations due to instability when the line slope is
infinite, which occurs when a line is vertical. In order to prevent this degenerate case, the normal
line parameterization is used. In this form, a line is parameterized by its algebraic distance ρ and
angle of its normal θ from the origin. The equation of a line corresponding to this representation
is:

x0 cos θ + y0 sin θ = ρ (5.1)

where x0 and y0 is an arbitrary point on the line [33]. This parameterization became pop-
ularized in the Hough transform [48] to find lines, curves, and parameterized shapes in im-
ages [44, 67, 90].

5.2.2 Line Parameters in R3

In three-space, Plüker coordinates are an efficient representation for directed lines, which are
unique up to a scale factor. This parameterization is summarized in [66]. This representation has
been used for visual SLAM with lines [111, 112].

5.2.3 Hyperbola Detection in GPR Data
In Section 2.2.3, we describe that features in GPR B-scans are generically represented as hy-
perbola. Due to the importance of hyperbola in GPR data, prior work has addressed automatic
classification of these features [23, 25, 42, 52, 53, 54, 69, 74, 86].

Many prior approaches use artificial neural networks to identify textures corresponding to
hyperbola in images [16, 64, 87]. Some promising work provides additional structure to these
networks by adding column-connection clustering (C3), which separates different components
of the hyperbola into different clusters [32]. This hyperbola classification system is shown in
Figure 5.2. Similar staged systems have also leveraged classical computer vision techniques, like
a Histogram of Oriented Gradients feature descriptor, which can be combined with an MLP to
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(a) (b) (c)

Figure 5.2: Automated hyperbola detection in GPR B-scan from [32]. (a) post-processed GPR B-scan. (b) Masked
image containing hyperbola. (c) Hyperbolic curves overlaid on B-scan.

classify hyperbolic features [7]. Other data intensive approaches, such as using a Faster RCNN
for classification, have also been used for this application [65].

5.3 GPR Simultaneous Localization and Mapping Formula-
tion

5.3.1 Overview of Approach

    
  

  xt

    
  

  xt-k1

    
  

  xt-k2

    
  

  xt-k3

Trajectory GPR Submap Start  Posit ionLinear Feature

Figure 5.3: Trajectory of robot observing continuous linear feature. The red lines are GPR submaps. In each submap,
a prominent hyperbola feature is found, representing an observation of the linear landmark.
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Existing approaches to GPR-based positioning require a priori models of the robot’s operating
environment or re-visitation of previously observed spaces. In this approach, we relax this re-
visitation constraint by explicitly modeling linear subsurface features as landmarks in a SLAM
objective. The system proposed creates submaps as produced in Chapter 4, but is equipped with
a line detector, which identifies feature locations in images. Once the feature is localized in the
image, the distance from the robot’s current position to the linear feature can be computed, which
can be added to a custom factor described in Section 5.6 that constrains the robot pose with the
line. Our main contributions are:

1. Defining a line feature representation for GPR data using Hough line parameters.

2. Simultaneously infer latent robot states and line parameters in a factor graph optimization.

3. Experimental evaluation in simulated and real-world settings.

A high-level description of our approach is shown in Figure 5.3.

5.3.2 Problem Formulation

st -k-1 st -k

vt -k-1 vt -k

bt -k-1 bt -k

st st+ 1

vt vt+ 1

bt bt+ 1

l i

...

...

...

...

...

...

...

...

...

Figure 5.4: Graph of robot states and multiple observations of a single line-feature.

Similar to the problem formulation described in Section 5.3.2, we solve the MAP inference
problem by minimizing the following objective:
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x̂1:T , l̂1:N =argmin
x1:T

T∑
t=1

{
||fgpr(li, xt)− zgpri,t ||2Σgpr

+

||fwh(xt-1, xt)− zwht-1,t||2Σwh
+

||fimu(xt-1, xt)− zimut-1,t||2Σimu

} (5.2)

where li is the i-th landmark observed at time step t. In this instance, zgpri,t is the distance from
the robot’s current pose to the line feature identified in the GPR submap. The graph structure
depicting this problem is shown in Figure 5.4.

5.4 Line Measurement Model

Figure 5.5: Forward distance measurement from robot to feature in GPR submap.

In order to identify the location of lines in GPR submaps, we identify the maximum location of
the hyperbola. In experimentation, hyperbola classification is performed manually. However, au-
tomated hyperbola extraction algorithms have been extensively explored in literature as described
in Section 5.2.3. The distance from the maximum point to the latest measurement is simply the
forward distance from the robot to the line. This physical measurement is shown in Figure 5.5.
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5.5 Line Geometry

World Frame

Robot  Frame

Imaginary robot  line 
parallel to feature

Figure 5.6: Process to compute distance from robot to linear feature as a function of robot pose and line parameters.

We define the line parameters by an angle θl and normal length ρl as described in Section 5.2.1.
The robot is able to observe its forward distance, f , to the line by localizing a linear feature in
a submap as described in Section 5.4. We also define an imaginary line rrl that intersects the
robot’s position (xr, yr) in R2 and share the same angle θl. We can then write this imaginary line
in normal form, which is shown in Equation 5.3.

ρrl = xr cos θl + yr sin θl (5.3)

Then, we can identify the length along the normal from the feature line to the imaginary robot
line as:

d = ρl − ρrl (5.4)

Given the robot’s orientation and the line’s orientation, we then know that θl− θr is how much
the robot would need to turn to align with the pipe’s normal direction θl. With this length definition
and the robot’s pose, we can find the cosine of the difference between the robot’s heading and line
angle as:

cos(θr − θl) =
d

f
(5.5)

Finally, we solve for f to find the forward distance from the robot to the linear feature to get
the desired length from the robot’s pose to the ith line feature:
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f =
d

cos(θr − θl)
(5.6)

This approach is summarized in Figure 5.6.

5.6 Factor Graph Optimization
Line Factor

Line measurements are incorporated into the factor graph in the first term of Equation 5.2. Given
the geometric model described in Section 5.5, we can define the relative GPR-line factor is defined
as:

||fgpr(li, xt)− zi,t||2Σgpr
:= ||ρl − (xr cos θl + yr sin θl)

cos(θr − θl)
− zgpri,t ||2Σgpr

(5.7)

where zgpri,t is the forward distance from the robot to the line observed in the submap as
described in Section 5.4, || · ||Σgpr is the Mahalanobis distance with measurement covariance Σgpr,
and 	 is the difference between two manifold elements.
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Figure 5.7: Recipe for determining initial values for line parameters in optimization.

Initial Values for Line Parameters

The angular parameter, which is classified as a Rot2, is difficult to estimate in the factor graph
optimization because of its nonlinear cost landscape. With arbitrary or zero initialization, the angle
parameter will often converge to a local minima, which could vary substantially with the true value.

In order to reduce the propensity of this challenge, we introduce a baseline hyperparameter
to initialize the length and angle quantities in the optimization. Measurements must be greater
than the minimum baseline, a hyperparameter set that describes the minimum acceptable distance
between two line observations. Given these two measurements, we can compute an initial estimate
of the Hough line parameters, which are provided to the optimizer.

The optimization pipeline is structured in four stages (summarized in Figure 5.7): batch
optimization using only odometry data, finding approximate line location given a robot pose and
line measurement, selection of candidate line points for initial parameters, and joint optimization
with line observaitons and odometry data. The optimization with pure odometry data provides us
with approximate locations of line observations. We use Levenberg-Marquardt to perform this
optimization after the trajectory sequence as a batch. However, the same process can be applied
to the incrementally generated trajectory.

Next, we determine the approximate line location given the estimated robot poses using only
odometry data. The submap trajectories are expected to be linear and continuous, meaning that
the line position can be obtained using the line measurement described in Section 5.4 and the
current robot pose. Therefore the relative transformation from the robot to the line is described by:

TLR =

[
I3 [zgpri,t , 0, 0]T

03 1

]
(5.8)

Given this definition of the position of the line in the robot’s frame, we can obtain the
approximate global position of the line by post-multiplying the relative transformation as:

TLG = sRGT
L
R (5.9)
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The position component of the TLG can be obtained by simply extracting the relevant informa-
tion from the homogeneous transformation. We sequentially compare all other line observations
to the first line measurement until the minimum baseline criteria is satisfied. The first points are
likely most accurate since the odometry trajectory will drift over time.

Once we have identified our two candidate line observations, we determine the initial point
slope form (y = mx+ b) of the approximate line can be easily obtained. From this equation, we
can compute the normal to the line by:

n = [ny, nx]
T =

[
− m√

m2 + 1
,

1√
m2 + 1

]T
(5.10)

The estimated normal is used to find the approximate Hough angle parameter:

θ̃l = atan2(ny, nx) (5.11)

The approximate Hough line length along the normal can then be found by:

r̃l =
b√

m2 + 1
(5.12)

These values are finally provided as initial values to the optimization defined in Equation 5.2.

5.7 Experimental Results

5.7.1 Overview of Methods

In experimentation, we compare different approaches: odometry, Localization, SLAM without
re-visitation (1 line), SLAM without re-visitation (2 lines), and SLAM with re-visitation. Odometry
consists of the integration of wheel encoder and IMU measurements. Localization uses the method
described in Chapter 4. SLAM without re-visitation (1 line) estimates the line-feature parameters
along with the robot state in the optimization as described in Section 5.3.2 with one line. SLAM
without re-visitation (2 line) estimates the line-feature parameters along with the robot state in the
optimization as described in Section 5.3.2 with two lines. SLAM with re-visitation jointly uses the
constraints from localization and the line observations SLAM without re-visitation (1 line) in the
optimization.

5.7.2 Simulated Experiments

Simulation Environment

To have accurate ground-truth data about the location of linear features, we created a planar simula-
tion environment (operating in SE(2)). In this environment, a robot follows a trajectory described
by a series of waypoints and outputs simulated odometry and distance-to-line measurements.
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Ground Truth Traj. Localizat ionOdometry Start  Posit ion
SLAM 

without  re-visitat ion 
(1 line)

SLAM
without  re-visitat ion 

(2 lines)

(a) (b) (c)

Figure 5.8: Qualitative comparison of simulated trajectories. Localization and SLAM approaches in (a) and (b)
improve the trajectory estimate. SLAM without re-visitation (1 line) is not shown for figure clarity.

Ground Truth Line Line with re-visitat ion
(1 line)

Line without  revisitat ion
(1 line)

Line without  revisitat ion
(2 lines)

(a) (b) (c)

Figure 5.9: Qualitative comparison of estimated line features from trajectories in Figure 5.8. In (a) and (b), the line
parameters are well-estimated. The line with re-visitation approach yields improved performance since the angle
parameter is initialized closer to the true value.

Qualitative

The SLAM without re-visitation (2 lines) approach typically tracks the ground truth trajectory
best. The SLAM with re-visitation trajectory often performed slightly better than the localization
approach for cases where re-visitation occurs. In all cases, localization and SLAM approaches
performed better than odometry alone as expected. One particular reason why SLAM without
re-visitation (1 line) does not perform as well as localization is because the factor only reduces
error normal to the line feature. In the presence of only one line, drift will still accumulate along
the other axis. This problem is partially corrected in SLAM without re-visitation (2 lines).

Additionally, the SLAM with re-visitation method produces better line estimates since the
initial trajectory estimate is more accurate than the odometry trajectory. Since the initial trajectory
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estimate is more accurate, the line is initialized with more correct initial Hough parameters. See
Section 5.6 for additional context on line initialization.

SLAM without re-visitation does not perform well in cases with long trajectories with a small
baseline exists, since drift will continuously acrue along the line.

An ablation of three estimated trajectories with these approaches is shown in Figure 5.8. The
corresponding line-features estimated for SLAM without re-visitation and SLAM with re-visitation
are shown in Figure 5.9.

Quantitative

For these different approaches, we evaluated absolute trajectory error (ATE) similar to experi-
mentation performed in Section 4.8. The SLAM without re-visitation (2 lines) approach typically
had the lowest ATE. The ATE for localization and SLAM with re-visitation performed better then
SLAM without re-visitation (1 line) since more re-visitation events occurred over line observations.
The SLAM without re-visitation (1 line) approach reduced error compared to odometry, which is
particularly meaningful when the trajectory does not contain re-visitation events. These results
are compared in Figure 5.10.

In addition to comparing ATE, we additionally compare the error of the Hough line feature
parameter estimates. The SLAM with re-visitation produces more accurate line length estimates
compared with SLAM without re-visitation (1 line). In SLAM with re-visitation, the weight applied
to the localization component is higher than the weight applied to line observations. This causes
the robot to rely less on the line parameters, which converge to the localization trajectory. SLAM
without re-visitation (2 lines) has higher line length error since there are more degrees of freedom
in the optimization, meaning that there can be multiple line lengths that reduce error.

The results for the line angle parameter differ from that of the line length parameter. The SLAM
with re-visitation approach performs better than SLAM without re-visitation (1 line) approach.
This occurs since the first batch optimization used to determine the initial line parameters, as
described in Section 5.6, is more accurate. This is because the localization typically is more
accurate than the odometry trajectory, leading to better initial values for the line parameters. SLAM
without re-visitation (2 lines) performs better than SLAM without re-visitation (1 line), but not as
well as SLAM with re-visitation. Thus, we observe that the performance of line angle parameter
estimation is coupled with good initial value estimation.

5.7.3 Real-World Results

Test Setting

The real-world test described in this section was performed in a flat parking garage environment
(gates g location). The data is available as a part of the CMU-GPR dataset described in Section 3.3.
We used the SuperVision experimental test rig for data acquisition and a robotic total station for
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Figure 5.11: RMSE of line of estimated Hough line parameters for simulated data.
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(a) (b) (c)

Figure 5.12: Qualitative comparison of SLAM approaches for GPR-based positioning in real-world environment.
(a) two images of the test environment. (b) estimated trajectories using GPR-based SLAM methods. (c) estimated
features from GPR-based SLAM methods.

ground truth position information as described in Section 3.1. Images of the test environment are
shown in Figure 5.12(a). The ground truth line chosen is an approximation of a feature observed
in the experimental GPR data.

Qualitative Results

When comparing trajectory types, it is apparent that the trajectory estimated with SLAM without
re-visitation is more consistent with the ground truth trajectory perpendicular to the line feature.
Localization and SLAM with re-visitation produced similar results and better aligned with the
entire trajectory. This is expected since the trajectory contains re-visitation events. This approach
reduces error over both dimensions as opposed to a single dimension from modeling line ob-
servations. The qualitative trajectory results of the different SLAM approaches are shown in
Figure 5.12(b).

Both SLAM without re-visitation and SLAM with re-visitation approximate the Hough angle
parameter well, but have large error in the normal line length. While error does exist, the
approximated line appears to intersect with the estimated trajectory approximately where the
true line intersects the ground truth trajectory. Drift orthogonal to the line causes the estimated
trajectory to appear oversized, which is not corrected by line observations. The qualitative line
feature results of the different SLAM approaches are shown in Figure 5.12(c).

Quantitative Results

ATE and RMSE for Hough line parameters are shown for this example in Table 5.1. Since
the trajectory contained several loops, the localization approach performed best as expected.
SLAM without re-visitation produced results better than odometry, but not as well as SLAM
with re-visitation since error is only constrained the dimension orthogonal to the line. Both
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Table 5.1: Trajectory and landmark error for real-world testing

Traj. Type RMSE ATE [m] RMSE Length [m] RMSE Theta [rad]

Odometry 0.803 - -
Localization 0.464 - -
SLAM without re-visitation 0.618 1.045 0.005
SLAM with re-visitation 0.487 0.787 0.012

SLAM approaches produced similar estimates for the Hough angle parameter, but did not well
approximate the normal length as described previously.
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Chapter 6

Conclusion

6.1 Contributions
In this thesis, we address the challenge of using underground information for robot localization
and mapping. We propose novel approaches for robot localization and feature-based SLAM using
GPR sensors and demonstrate improved positioning performance by incorporating subsurface
information with odometric sensors. These algorithms were tested using a custom experimental
rig outfitted with a low-cost, off-the-shelf, ground-coupled, single-channel GPR sensor. While
our evaluation was performed with a ground-coupled GPR system, our work can generalize for
air-launched GPR systems, improving the viability for real-world deployment. These methods
can also be applied to multi-channel systems, which generate 3D models of the underground
environment as opposed to 2D images. Some examples of these types of systems are shown in
Figure 6.1.

In Chapter 3, we describe the design, development, and testing of our experimental rig and
signal processing software. We detail some challenges of GPR antenna placement, the differences
between global and local information in GPR data, and signal pre-processing methods to improve
data quality for GPR-based localization and mapping. We also describe our open source CMU-
GPR dataset, which is available to researchers interested in GPR-based localization and mapping.

Figure 6.1: Different air-coupled and multi-channel GPR systems from [1, 2, 80] respectively.
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In Chapter 4, we present a GPR-based localization system that uses a learned sensor model to
position a robot in unknown, GPS-denied environments. We created submaps describing a robot’s
local environment by horizontally stacking GPR measurements. We then used an autoencoder to
find low-level feature embeddings that describe specific features in GPR submaps. We identified
that spatial correlation reduces the feature activations to a correlation vector, simplifying the
learning problem to linear regression. The correlation vector is provided to a transform prediction
network to predict relative pose transformations between non-sequential submaps. These transfor-
mations were then incorporated as measurement likelihoods in a factor graph, where the GPR
measurements corrected for accumulated drift of proprioceptive IMU and wheel encoder mea-
surements. We validated our system in three distinct environments, where we showed improved
localization performance over existing correlation-based approaches.

In Chapter 5, we proposed a SLAM approach that models GPR observations of linear un-
derground structures, like pipes. In this approach, we jointly infer robot states and Hough line
parameters in the factor graph optimization. We show that by modeling individual line observa-
tions, we can correct for odometric drift perpendicular to line features and enable GPR-based
positioning without re-visitation. Additionally, we describe a method to identify initial values for
line parameters to improve the likelihood of the optimizer convergence to the true line parame-
ters. We compare our GPR line SLAM approach with the prior localization-based approach in
simulated and real-world environments in sequences with re-visitation events.

6.2 Observations and Future Work
We see many avenues for extending the use of GPR in robotics and in challenging, unstructured,
real-world settings. In this work, we implement methods to reason about underground information,
which can improve the robustness of GPR-based positioning systems.

In Chapter 4, we represent GPR data as 2D image submaps. We observe that a 2D image
representation performs well compared to raw 1D traces, which do not provide unique enough
features, and 3D point clouds, which are sensitive to user-defined parameters, noise, and variable
subsurface composition. Additional work can leverage structures, such as points, curves, and
hyperbolae in GPR data to find improved representations for GPR data. Our learned sensor model
is trained using data collected at a single point in time and has not been tested for long-term
prior map registration. A similar approach can be used for long-term GPR scan registration by
identifying how features are affected by changes in subsurface moisture content. In the future, we
would like to extend this work by using data collected from highly accurate, multi-channel GPR
systems during different seasons and weather conditions to improve the robustness of prior map
registration. This is now feasible with the release of the GROUNDED dataset [81]. An example
of data from GROUNDED is shown in Figure 6.2.

In Chapter 5, we represent GPR data by line observations. In this work, we assume that
features are linear, which can be locally correct, but is not globally realistic. Future work should
model arbitrary curves with finite extent in the estimation problem. Estimation of parameters
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Figure 6.2: Data from GROUNDED localizing GPR dataset. Retrieved from [81].

has been explored in plane estimation [56, 110], lines [112], and curves in visual SLAM [73].
However, one variation that GPR-based positioning approaches must consider is that these pa-
rameters can often only be estimated by acquiring multiple measurements. Additionally, future
work can model line observations in three-space and leverage line parameterizations like Plüker
coordinates [66]. One limitation of the current Hough line parameterization is the challenge
of scale in the optimization. Specifically, when the line length is large, small changes in angle
cause large changes in line properties. This can be partially resolved using local line parame-
terizations, where the line can be defined in the local coordinate frame of its first robot observation.

An additional dimension to the GPR-based perception problem includes navigation in semi-
static environments. While some work has addressed long-term navigation with spatio-temporal
change [34, 68, 89], additional work can address how to model discrete and continuous changes
of environments over time. An example of this in the context of GPR is modeling the addition of
new underground features, like pipes, when they are observed.

GPR is a tool that can help enable robust navigation in unknown and challenging environments,
where traditional sensors typically fail. Future work should address more general representations
for underground information to help enable the adoption and deployment of real-world GPR-based
perception systems.
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