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Abstract

We investigate the roles of body kinematics, dynamics, and objects for 3D
human pose estimation using a head-mounted camera. Human kinematics
models play a key role in encoding the natural range of human motion,
while dynamics models can react to the spatial arrangement between
humans and objects in the scene. Thus, we propose a method for object-
aware 3D egocentric pose estimation that tightly integrates kinematics
modeling, dynamics modeling, and scene object information. Unlike prior
kinematics or dynamics-based approaches where the two components are
used disjointly, we synergize the two approaches via dynamics-regulated
training. At each timestep, a kinematic model is used to provide a target
pose using video evidence and simulation state. Then, a prelearned
dynamics model attempts to mimic the kinematic pose in a physics
simulator that computes the new simulation state. By comparing the
pose instructed by the kinematic model with the pose generated by the
dynamics model, we can use their misalignment to further improve the
kinematic model. By factoring in the 6DoF pose of objects (e.g., chairs,
boxes) in the scene, we demonstrate for the first time, the ability to
estimate physically-plausible 3D human-object interactions using a single
wearable camera. We evaluate our egocentric pose estimation method in
both controlled laboratory settings and real-world scenarios.
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Chapter 1

Introduction

This thesis focuses on the problem of egocentric human pose estimation. From a video

captured by a single head-mounted wearable camera (e.g ., smartglasses, action camera,

body camera), we aim to infer the wearer’s global 3D full-body pose and interaction

with objects in the scene, as illustrated in Fig. 1.1. This is important for applications

like virtual and augmented reality, sports analysis, and wearable medical monitoring,

where third-person views are often unavailable and proprioception algorithms are

needed for understanding the actions of the camera wearer. However, this task is

challenging since the wearer’s body is often unseen from a first-person view and the

body motion needs to be inferred solely based on the videos captured by the front-

facing camera. Furthermore, egocentric videos usually capture the camera wearer

interacting with objects in the scene, which adds additional complexity in recovering

a pose sequence that agrees with the scene context. Despite these challenges, we show

that it is possible to infer accurate human motion and human-object interaction from

a single head-worn front-facing camera.

Egocentric pose estimation can be solved using two different paradigms: (1) a

kinematics perspective and (2) a dynamics perspective. Kinematics-based approaches

study motion without regard to the underlying forces (e.g ., gravity, joint torque) and

cannot faithfully emulate human-object interaction without modeling proper contact

and forces. They can achieve accurate pose estimates by directly outputting joint

angles but can also produce results that violate physical constraints (e.g . foot skating

and ground penetration). Dynamics-based approaches, or physics-based approaches,

1



1. Introduction

Figure 1.1: From egocentric videos, we infer physically-plausible 3D human pose and
human-object interaction.

study motions that result from forces. They map directly from visual input to control

signals of a human proxy (humanoid) inside a physics simulator and recover 3D poses

through simulation. These approaches have the crucial advantage that they output

physically-plausible human motion and human-object interaction (i.e., pushing an

object will move it according to the rules of physics). However, since no joint torques

are captured in human motion datasets, physics-based humanoid controllers are hard

to learn, generalize poorly, and are actively being researched [36, 50, 51, 56].

However, unique challenges exist in modelling human dynamics in egocentric

vision. Firstly, physics-based humanoid control itself (without visual grounding) is an

active research area in vision and graphics [5, 36, 50, 51, 56, 57]. Since no joint torque

information is typically captured in human motion datasets and modern physics

simulations are not end-to-end differentiable, dynamics-based methods are often

optimized through reinforcement learning (RL). In turn, popular RL methods are

either limited to mimicking a single clip of motion [36, 56], require high-quality motion

capture (MoCap) as input [51], or are constrained to a single type of interaction

[5]. Secondly, the handful of works that factor in egocentric visual input and human

dynamics [54, 55] are limited to recovering simple motions (walking, running, hopping

etc.), as estimating non-periodic actions such as sitting down and stepping on a box

requires modeling complex and diverse human-object interaction which is challenging.

2



1. Introduction

Thirdly, direct mapping from video to control signals induces compounding errors

and covariate shift, which causes large body center drift and catastrophic failures

such as losing balance or missing the object. To perform these complex actions in a

physics simulator that conforms to the egocentric video evidence, the joint modeling

of the human kinematics, dynamics, and scene context is needed.

In this work, we argue that a hybrid approach merging the kinematics and

dynamics perspectives is needed. Leveraging a large human motion database [29],

we first learn a task-agnostic dynamics-based humanoid controller to mimic a wide

variety of human behaviors, ranging from every day motion to dancing and kickboxing.

The controller is general-purpose and can be viewed as providing low-level motor skills

of a human. After the controller is learned, we train a scene-aware kinematic policy

to specify the target poses for the controller to mimic. One approach to specify the

target motion is to let the kinematic model produce estimates only based on the visual

input [50, 55, 57]. This approach only uses the physics simulation as a separate post-

processing step: the kinematic model is never aware of the simulation state and may

output unreasonable target poses. We propose to synchronize the two perspectives by

designing a kinematic policy that guides the controller and receives timely feedback

(rewards) through comparing its target pose and the resulting simulation state. Our

model thus serves as a high-level motion planning module that adapts intelligently

based on the current simulation state. In addition, since our kinematic policy

only outputs poses and does not model joint torques, it can learn directly from

kinematic poses acquired by motion capture (MoCap). While poses from MoCap can

provide a initial-guess of target motion, our model can search for better solutions

through trial and error. This learning process, dubbed dynamics-regulated training,

jointly optimizes our model via supervised learning and reinforcement learning, and

significantly improves its robustness to real-world use cases.

This thesis is organized as follows: in Chapter 2 we will review the background

works in this area, spanning from third person pose estimation, first person pose

estimation, and physics-based humanoid control. Chapter 3 will introduce our

proposed methods on human dynamics modelling, kinematics modelling, and the

hybrid approach that synergize the two components. Here we describe our approach

to learn a general-purpose humanoid controller from a large MoCap dataset that

can perform a broad range of motions inside a physics simulation; our object-aware

3



1. Introduction

kinematics model that factors in the current scene context; finally, our dynamics-

regulated training procedure that synergizes kinematics, dynamics, and scene context

for egocentric vision. Experiments on a controlled motion capture laboratory dataset

and a real-world dataset are included in Chapter 4. These experiments demonstrate

that our model outperforms other state-of-the-art methods on pose-based and physics-

based metrics, while generalizing to videos taken in real-world scenarios. Finally,

Chapter 5 discusses the limitation, social impact, and future work.

4



Chapter 2

Background

2.1 Third-person human pose estimation.

The task of estimating the 3D human pose (and sometimes shape) from third-person

video is a popular research area in the vision community [2, 10, 11, 12, 14, 21, 23, 24, 28,

32, 34, 40, 53, 57, 58], with methods aiming to recover 3D joint positions [14, 25, 34, 45],

3D joint angles with respect to a parametric human model [2, 21, 23, 28], and dense

body parts [11]. Notice that all these methods are purely kinematic and disregard

physical reasoning. They also do not recover the global 3D root position and are

evaluated by zeroing out the body center (root-relative). A smaller number of works

factor in human dynamics [4, 38, 42, 48] through postprocessing and physics-based

trajectory optimization. These approaches can produce physically-plausible human

motion, but since they do not utilize a physics simulator, they can not faithfully

model human-object interaction. SimPoE [57], a recent work on third-person pose

estimation using simulated character control, is most related to ours, but 1) trains a

single and limited humanoid controller per dataset; 2) designs the kinematic model

to be independent from simulation states.

5



2. Background

2.2 Egocentric human pose estimation.

Compared to third-person human pose estimation, there are only a handful of attempts

at estimating 3D full body poses from egocentric videos due to the ill-posed nature

of this task. Most existing methods still assume partial visibility of body parts in the

image [39, 47, 52], often through a downward-facing camera. Among works where

the human body is mostly not observable [20, 33, 54, 55], Jiang et al . [20] use a

kinematics-based approach where they construct a motion graph from the training

motions and recover the pose sequence by solving the optimal pose path. Ng et al . [33]

focus on modeling person-to-person interactions from egocentric videos and inferring

the wearer’s pose conditioning on the other person’s pose. The works most related

to ours are [19, 54, 55] which use dynamics-based approaches and map visual inputs

to control signals to perform physically-plausible human motions inside a physics

simulation. They show impressive results on a set of noninteractive locomotion tasks,

but also observe large errors in absolute 3D position tracking–mapping directly from

the visual inputs to control signals is a noisy process and prone to error accumulation.

In comparison, our work jointly models kinematics and dynamics, and estimates a

wider range of human motion and human-object interactions while improving absolute

3D position tracking. To the best of our knowledge, we are the first approach to

estimate the 3D human poses from egocentric video while factoring in human-object

interactions.

2.3 Humanoid control inside physics simulation.

Our work is also connected to controlling humanoids to mimic reference motion

[5, 6, 15, 36, 37, 51, 56] and interact with objects [5, 30] inside a physics simulator.

The core motivation of these works is to learn the necessary dynamics to imitate or

generate human motion in a physics simulation. Deep RL has been the predominant

approach in this line of work since physics simulators are typically not end-to-end

differetiable. Goal-oriented methods [1, 5, 30] does not involve motion imitation and

are evaluated on task completion (moving an object, sitting on a chair, moving based

on user-input etc.). Chao et al . [5] propose a hierarchical reinforcement learning

approach to generate realistic sitting motion. Their framework is goal-oriented and

6



2. Background

evaluated based on task completion, so their RL agent only needs to master a subset of

possible sitting motions from different initialization positions to successfully complete

the action. In our case, humans We also do not limit our human-object interaction to

sitting, and show that our framework generalizes (but is not limited to) actions such

as stepping on a box, pushing a box, and avoiding obstacles. Mere et al . [30] design an

approach for enabling humanoid full-body manipulation and locomotion in simulation.

They use a phased task in which the task policy is trained to solve different stages of

the task and show impressive results in human object manipulation. Similarly, their

controller is goal-oriented and not grounded on video evidence. Soonhan et al . [15]

use an action representation in which the target pose is the sum of the kinematic pose

and the output of the policy network. Inspired by their work, we also employ this

residual action representation to accelerate training and improve stability. Our task

is also related to DeepMimic [36, 37], the Residual Force Controller (RFC) [56], and

physics-based controllers for graphics [1, 51]. While DeepMimic and RFC have shown

remarkable results in imitating human motion, they are limited to performing a single

clip of human motion. Bergamin et al . [1] mainly focus on controlling a humanoid

through a gamepad and can only perform limited locomotion motion. Won et al .

[51] develop an impressive dynamics controller that can perform thousands of human

motion clips or motions generated by pretrained target pose generators. However,

it is limited to perform high-quality MoCap data and requires generator-specific

fine-tuning to generalize to unseen target motion generators. It also does not model

human-object interaction. In contrast, our dynamics controller is general and can

be used to perform everyday motion and human-object interactions estimated by a

kinematic motion estimator without task-specific fine-tuning.

7
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Chapter 3

Methods

The problem of egocentric pose estimation can be formulated as follows: from a

wearable camera footage I1:T , we want to recover the wearer’s ground truth global

3D poses q̂1:T . Each pose q̂t , (r̂pos
t , r̂rot

t , ĵ
rot

t ) consists of the root position r̂pos
t ,

root orientation r̂rot
t , and body joint angles ĵ

rot

t of the human model. Here we

adopt the popular SMPL [27] human model and the humanoid we use in physics

simulation is created from the kinematic structure and mean body shape defined by

the SMPL. Our framework first learns a Universal Humanoid Controller (UHC) from

a large MoCap dataset (Sec. 3.1). The learned UHC can be viewed as providing the

lower level muscle skills of a real human, trained by mimicking thousands of human

motion sequences. Using the trained UHC, we learn our kinematic policy (Sec. 3.2)

through dynamics-regulated training (Sec. 3.3). At the test time, the kinematic

policy provides per-step target motion to the UHC, forming a closed-loop system

that operates inside the physics simulation to control a humanoid. The result of the

UHC and physics simulation is then used as input to the kinematic policy to produce

the next-frame target motion, as depicted in Fig. 3.1. As a notation convention, we

use ·̃ to denote kinematic quantities (obtained without using physics simulation), ·̂
to denote ground truth quantities, and normal symbols without accents to denote

quantities from the physics simulation.

9
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Figure 3.1: Overview of our dynamics-regulated kinematic policy. Given an egocentirc
video I1:T , our initialization module πinit

KIN (I1:T ) computes the object states õ1:T ,

camera poses h̃1:T , and image features φ1:T . We then roll out our per-step kinematic
policy πstep

KIN together with the Universal Humanoid Controller to output physically-
plausible pose qt inside a physics simulator.

3.1 Dynamics Model - Universal Humanoid

Controller (UHC)

3.1.1 Formulation.

To learn a task-agnostic dynamics model that can be tightly integrated with a

kinematic model, we design our controller’s state space to only rely on the current

simulated pose qt and target pose q̂t+1 and remove all phase or sequence-level

information found in prior arts [36, 37, 56]. This design allows us to train on an

order of magnitude larger dataset of human motion [29] with only pose information

and significantly improve our models’ ability to mimic diverse and unseen motions.

Formally, we model controlling a humanoid to follow a reference motion q̂1:T as a

Markov Decision Process (MDP) defined as a tupleM = 〈S,A, Pphysics, R, γ〉 of states,

actions, transition dynamics, reward function, and a discount factor. The state S,

reward R, and transition dynamics Pphysics are provided by the physics simulator,

while action A is computed by the policy πUHC. At each timestep t, the agent in

state st takes an action sampled from the policy while the environment generates the

10



3. Methods
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Figure 3.2: Overview of our Universal Dynamics Controller. Given a frame of target
pose and current simulation state, our UHC πUHC can dirve the the humanoid to
match the target pose.

next state st+1 and reward rt.

State. The state st , (qt, q̇t) of the humanoid contains the character’s current pose

qt and joint velocity q̇t. Here, the state st encapsulates the humanoid’s full physical

state at time step t. It only includes information about the current frame (qt, q̇t) and

does not include any extra information, enabling our learned controller to be guided

by a target pose only.

Action. The action at specifies the target joint angles for the proportional derivative

(PD) controller [44] at each degree of freedom (DoF) of the humanoid joints except

for the root (pelvis). We use the residual action representation [15]: qdt = q̂t+1 + at,

where qdt is the final PD target, at is the output of the control policy πUHC, and q̂t+1

is the target pose. The torque to be applied at joint i is: τ i = kp ◦ (qdt − qt)−kd ◦ q̇t
where kp and kd are manually specified gains and ◦ is the element-wise multiplication.

As observed in prior work [56, 57], allowing the policy to apply external residual forces

ηt to the root helps stabilizing the humanoid, so our final action is at , (∆q̃dt ,ηt).

Policy. The policy πUHC(at|st, q̂t+1) takes in the current humanoid state st and

the target pose q̂t+1 to compute the action at for the time step t. Its workflow and

architecture can be seen in Fig. 3.2. The network πUHC(at|st, q̂t+1) is implemented

as a multiplicative compositional policy (MCP) [35] with eight motion primitives,

11



3. Methods

each being an Multi-layer Perceptron (MLP) with two hidden layers (512, 256).

The composer is another MLP with two hidden layers (300, 200) and outputs the

multiplicative weights w1:n
t for the n motion primitives. As studied in MCP [35],

this hierarchical control policy increases the model’s capacity to learn multiple skills

simultaneously. The output action at is represented by a Gaussian distribution

with a fixed diagonal covariance matrix Σ following the formulation of the Policy

Gradient algorithm. at ∈ R75 is a vector concatenation of the target angles of the

PD controller mounted on the 23 no-root joints (each has 3 DoF), plus the residual

force [56]: ηt ∈ R6. Recall that each target pose q̂t ∈ R76, q̂t , (r̂pos
t , r̂rot

t , ĵ
rot

t )

consists of the root position r̂pos
t ∈ R3, root orientation in quaternions r̂rot

t ∈ R4

, and body joint angles in Euler angles ĵ
rot

t ∈ R69 of the human model. The use

of quaternions and Euler angles follows the specification of Mujoco [46]. Given

the input st and q̂t+1, our UHC first transforms the inputs to a feature vector

using T AC

(
qt, q̇t, q̂t+1, Ddiff(q̂t+1, qt)

)
to output a 640 dimensional vector that is a

concatenation of the following values:

T AC : (qt, q̇t, q̂t+1, Ddiff(q̂t+1, qt))→ (h′qt , q
′
t, q̂
′
t, (qt − q̂t), q̇t, (ψt − ψ̂t), (j

pos
t −ĵ

pos

t ),

(j ′pos
t − ĵ

′pos

t ), (jrot
t − ĵ

rot

t ), (j ′rot
t − ĵ

′rot

t ))

(3.1)

It consists of: root orientation h′qt ∈ R4 in agent-centric coordinates; simulated

pose q′t ∈ R74 (q′t , (r′zt , r
′rot
t , jrot

t ), root height r′zt ∈ R1, root orientation r′rott ∈ R4,

and body pose jrot
t ∈ R69 expressed in Euler angles) in agent-centric coordinates; target

pose q̂′t ∈ R74 in agent-centric coordinates; (qt − q̂t) ∈ R76 is the difference between

the simulated and target pose (in world coordinate), calculated as (qt− q̂t) , (r̂pos
t −

rpos
t , r̂rot

t 	 rrot
t , ĵ

rot

t 	 jrot
t ), where 	 calculutes the quaternion difference; q̇t ∈ R75 is

the joint velocity computed by Mujoco; (ψt − ψ̂t) ∈ R1 is the difference between the

current heading (yaw) of the target and simulated root orientation; (jpos
t − ĵ

pos

t ) ∈ R72

and (j ′pos
t − ĵ

′pos

t ) ∈ R72 are joint position differences, calculated in the global and

agent-centric space, respectively; (jrot
t − ĵ

rot

t ) ∈ R96 and (j ′rot
t − ĵ

′rot

t ) ∈ R96 are joint

rotation (quaternion) differences, calculated in the global and agent-centric space,

respectively. Note that our feature vector contains redundant information and can be

further simplified.
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Reward function. For UHC, the reward function is designed to encourage the

simulated pose qt to better match the target pose q̂t+1. The imitation reward

function per timestep, similar to the reward defined in Yuan et al . [56] is as follows:

rUHC
t = wjrrjr + wjprjp + wjvrjv + wresrres, (3.2)

where wjr, wjp, wjv, wres are the weights of each reward. The joint rotation reward rjr

measures the difference between the simulated joint rotation jrot
t and the target ĵrot

t

in quaternion for each joint on the humanoid. The joint position reward rjp computes

the distance between each joint’s position jpos
t and the target joint position ĵpos

t . The

joint velocity reward rjv penalizes the deviation of the estimated joint angular velocity

j̇
rot

t from the target ̂̇jrot

t . The target velocity is computed from the data via finite

difference. All above rewards include every joint on the humanoid model (including

the root joint), and are calculated in the world coordinate frame. Finally, the residual

force reward rres encourages the policy to rely less on the external force and penalize

for a large ηt:

rjr = exp
[
−2.0

(
‖jrot

t 	 ĵ
rot

t ‖2
)]
, rjp = exp

[
−5

(∥∥∥jpos
t − ĵ

pos

t

∥∥∥2
)]

,

rjv = exp[−0.005

∥∥∥∥j̇rot

t 	
̂̇jrot

t

∥∥∥∥2

], rres = exp
[
−
(
‖ηt‖

2)] . (3.3)

3.1.2 Training procedure.

Data processing. We train our controller on the AMASS [29] dataset, which

contains 11505 high-quality MoCap sequences with 4000k frame of poses (after

removing sequences involving human-object interaction like running on a treadmill).

The original AMASS dataset contains 13944 motion sequences, and around 2600

of them contain human-object interactions such as sitting on a chair, walking on a

treadmill, and walking on a bench. Since AMASS does not contain object information,

we can not faithfully recreate and simulate the human-object interactions. Thus, we

use a combination of heuristics and visual inspection to remove these sequences. For

instance, we detect sitting sequences through finding combinations of the humanoid’s

13
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root, leg, and torso angles that correspond to the sitting posture; we find walking-

on-a-bench sequences through detecting a prolonged airborne period; for sequences

that are difficult to detect automatically, we conduct manual visual inspection. After

the data cleaning process, we obtain 11299 motion sequences that do not contain

human-object interaction for our UHC to learn from.

Data sampling and optimization. At the beginning of each episode, a random

fixed length sequence (300 frames) is sampled from the dataset for training. While

prior works [50, 51] uses more complex motion clustering techniques to sample

motions, we devise a simple yet empirically effective sampling technique by inducing

a probability distribution based on the value function. For each pose frame q̂j in the

dataset, we first compute an initialization state sj1: sj1 ,
(
q̂j,0, q̂j

)
, and then score

it using the value function to access how well the policy can mimic the sequence q̂j:T

starting from this pose: V (sj1) = vj. Intuitively, the higher vj is, the more confident

our policy is in mimicing this sequence, and the less likely we should pick this frame.

The probability of choosing frame j, comparing against all frames J in the AMASS

dataset, is then P (q̂j) =
exp(−vj/τ)∑J
i exp(−vi/τ)

where τ is the sampling temperature. We

employ Proximal Policy Optimization (PPO) [41] to find the optimal policy π∗UHC

that maximizes the expected discounted return E[
∑T

t=1 γ
t−1rt].

3.1.3 Implementation Details.

Proxy humanoid. The proxy humanoid we use for simulation is created auto-

matically using the mesh, bone and kinematic tree defined in the popular SMPL

[27] human model. Similar to the procedure in [57], given the SMPL body vertices

V = 6890 and bones B = 25, we generate our humanoid based on the skinning weight

matrix W ∈ RV×B that defines the association between each vertex and bone. The

geometry of each bone’s mesh is defined by the convex hull of all vertices assigned

to the bone. The mass of each bone is in turn defined by the volume of the mesh.

To simplify the simulation process, we discard all body shape information from the

AMASS [29] dataset, and use the mean body shape of the SMPL model. Since

AMASS and our MoCap dataset are recorded by people with different height, we

manually adjust the starting height of the MoCap pose to make sure each of the

humanoid’s feet are touching the ground at the starting point of the episode.
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Hyperparameters. We train our Universal Humanoid Controller for 10000 epoches,

which takes about 5 days. Hyperparameters for training the UHC can be found in

Table 3.1:

Table 3.1: Hyperparameters used for training the Universal Humanoid Controller.

γ Batch Size Value Learning Rate Policy Learning Rate PPO clip ε Covariance Std

Value 0.95 50000 3× 10−4 5× 10−5 0.2 0.1

wjr wjp wjv wres Sampling Temperature

Value 0.3 0.55 0.1 0.05 2

3.2 Kinematic Model – Object-aware Kinematic

Policy.

3.2.1 Formulation.

To leverage the power of our learned UHC, we design an auto-regressive and scene-

aware kinematic policy to generate per-frame target motion from egocentric inputs.

We synchronize the state space of our kinematic policy and UHC such that the

policy can be learned with or without physics simulation. When trained without

physics simulation, the model is purely kinematic and can be optimized via supervised

learning; when trained with a physics simulation, the model can be optimized through

a combination of supervised learning and reinforcement learning. The latter procedure,

coined dynamics-regulated training, enables our model to distill human dynamics

information inside UHC learned from large-scale MoCap data into the kinematic

model and learns a policy more robust to convariate shifts. In this section, we will

describe the architecture of the policy itself and the training through supervised

learning (without physics simulation).

3.2.2 Scene context modelling and initialization.

To serve as a high-level target motion estimator for egocentric videos with potential

human-object interaction, our kinematic policy needs to be object-aware and grounded

with visual input. To this end, given an input image sequence I1:T , we compute
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the object states õ1:T , image features φ1:T , and (optional) camera trajectory h̃1:T as

inputs to the kinematic policy. Notice that only our kinematic model factors in the

scene context, enabling us to train our kinematic and dynamics model independently.

The object states, õt , (õclst , õ
pos
t , õrot

t ), is modeled as a vector concatenation of the

main object-of-interest’s class õclst , 3D position õpos
t , and rotation õrot

t . õt is computed

using an off-the-shelf object detector and pose estimator [17]. When there are no

objects in the current scene (for walking and running etc.), the object states vector is

set to zero. The image features φ1:T contains crucial information about the wearer’s

movement and is computed using an optical flow extractor [43] and ResNet [13].

Since visual input can be noisy and modern smartglasses and bodycams are often

equipped with built-in SLAM or Visual Inertial Odometry (VIO) [9, 49] capabilities,

we utilize this additional data modalitiy and compute the 6DoF camera pose from

input Images. Using an off-the-shelf VIO method [16], we extracts camera trajectory

as: h̃t , (h̃
pos

t , h̃
rot

t ) (position h̃
pos

t and orientation h̃
rot

t ) . Notice that the camera

trajectory h̃t information is optional but can further improve the performance of our

framework as shown in our ablation studies (Sec. 4.4).

To provide our UHC with a plausible initial state for simulation, we estimate

q̃1 from the scene context features φ1:T , õ1:T ,and h̃1:T . We use an Gated Recurrent

Unit (GRU) [7] based network to regress the initial agent pose q̃1. Combining the

above procedures, we obtain the context modelling and initialization model πinit
KIN:

I1:T → q̃1,φ1:T , õ1:T , h̃1:T .

3.2.3 Training kinematic policy via supervised learning.

After initialization, a per-timestep model πstep
KIN is used to compute the next frame pose.

At each timestep t we aim to estimate the next frame pose base on the next frame ob-

servations: we obtain an egocentric input vector c̃t through the agent-centric transfor-

mation function c̃t = T AC(q̃t,φt+1, õt+1, h̃t+1) where c̃t , (r̃′rott , j̃
rot

t ,φt+1, õ
′
t+1, h̃

′
t+1)

contains the current agent-centric root orientation r̃′rott , joint angles j̃
rot

t , image feature

for next frame φt+1, object state õ′t+1, and camera pose h̃
′
t+1. From c̃t, the kinematic

policy πstep
KIN computes the root angular velocity w̃t, linear velocity ṽt, and next frame

joint rotation j̃
rot

t+1. The next frame pose is computed through a finite integration

module T finite with time difference δt = 1/30s:
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Algorithm 1 Learning kinematic policy via supervised learning.

1: Input: Egocentric videos I and paired ground truth motion dataset Q̂
2: while not converged do
3: MSL ← ∅ . initialize sampling memory
4: while M not full do
5: I1:t ← random sequence of images I1:T from the dataset I
6: q̃1,φ1:T , õ1:T , h̃1:T = πinit

KIN(I1:T ) . compute scene context and initial pose
7: for i← 1...T do
8: c̃t ← TAC(q̃t,φt+1, õt+1, h̃t+1) . compute agent-centric input features

9: q̃t+1 ← T finite(π
step
KIN(c̃t), q̃t)

10: store (q̃t, q̂t) into memory MSL

11: end for
12: end while
13: πstep

KIN,π
init
KIN ← supervised learning update using data collected in MSL for 10

epoches.
14: end while

ω̃t, ṽt, j̃
rot

t+1 = πstep
KIN(c̃t), q̃t+1 = T finite(ω̃t, ṽt, j̃

rot

t+1, q̃t). (3.4)

When trained without physics simulation, we auto-regressively apply the kinematic

policy: the input c̃t+1 for the timestep t + 1 is computed using the output of the

timestep t. This procedure is outlined at Alg. 1. At the beginning of each training

epoch, we sample random sequences of input images and compute the estimated

kinematic pose. After sampling sufficient sequences from the dataset for the epoch,

we optimize the kinematic policy through mini-batched gradient descent using the

Adam optimizer. Since all mentioned calculations are end-to-end differentiable, we

can directly optimize our πinit
KIN and πstep

KIN through supervised learning by comparing

the estimated kinemaitc pose q̃1:T with ground truth q̂1:T . Our loss is computed as

the difference between the desired and ground truth values of the following quantities:

agent root position (r̂pos
t vs r̃pos

t ) and orientation (r̂rot
t vs r̃rot

t ), agent-centric object

position (ô′pos
t vs õ′pos

t ) and orientation (ô′rot
t vs õ′rot

t ), and agent joint orientation

(ĵ
rot

t vs j̃
rot

t ) and position (ĵ
pos

t vs j̃
pos

t , computed using forward kinematics). Given a

sequence of kinematic poses of T time steps:
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LSL =

T∑
i=1

‖r̃rot
t 	r̂

rot
t ‖2+‖r̃

pos
t −r̂

pos
t ‖2+‖õ

′rot
t 	ô

′rot
t ‖2+‖õ

′pos
t −ô′pos

t ‖2+‖j̃
rot

t 	ĵ
rot

t ‖2+‖j̃
pos

t −ĵ
pos

t ‖2.

(3.5)

3.3 Dynamics-Regulated Training.

So far, our kinematics and dynamics model has been largely disjoint; the kine-

matic model trained through auto-regressively applying itself has no way of gaining

information about physical plausibility and can exhibit typical issues residing in

purely kinematic pose estimation methods (foot skating, penetration, unrealistic joint

bending etc). To tightly integrate our kinematic and dynamics models, we design

a dynamics-regulated training procedure, where the kinematic policy learns from

explicit physics simulation. In the procedure described in the previous section, the

next-frame pose fed into the network is computed through finite integration and

is not checked by physical laws: whether a real human can perform the computed

pose is never verified. Intuitively, this amounts to mentally think about moving in

a physical space without actually moving. Combining our UHC and our kinematic

policy, we can leverage the prelearned motor skills from UHC and let the kinematic

policy act directly in a simulated physical space to obtain feedback about physical

plausibility. The procedure for dynamics-regulated training is outlined in Alg. 2. In

each episode, we use πinit
KIN and πstep

KIN as in Alg. 1, with the key distinction being: at

the next timestep t+ 1, the input to the kinematic policy is the result of UHC and

physics simulation qt+1 instead of q̃t+1. qt+1 explicitly verify that the q̃t+1 produced

by the kinematic policy can be successfully followed by a motion controller. Using

qt+1 also informs our πstep
KIN of the current humanoid state and encourages the policy

to adjust its predictions to improve humanoid stability.

Dynamics-regulated optimization. Since the physics simulation is not differen-

tialbe, we cannot directly optimize the simulated pose qt; however, we can optimize

qt through reinforcement learning and q̃t through supervised learning. As we know

that q̂t is a good guess reference motion for UHC, we can directly optimize q̃t via

supervised learning as done in Sec. 3.2 using the supervised loss LRL defined in Eq.
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Algorithm 2 Learning kinematic policy via dynamics-regulated training.

1: Input: Pre-trained controller πUHC, egocentric videos I, and paired ground truth motion
dataset Q̂

2: Train πinit
KIN, π

step
KIN using Alg. 1 for 20 epoches (optional).

3: while not converged do
4: Mdyna ← ∅ . initialize sampling memory
5: while Mdyna not full do
6: I1:t ← random sequence of images I1:T

7: q1 ← q̃1,φ1:T , õ1:T , h̃1:T ← πinit
KIN(I1:T ) . compute scene context and initial pose

8: s1 ← (q1, q̇1) . compute intial state for simulation
9: for i← 1...T do
10: ct ← TAC(qt,φt+1, õt+1, h̃t+1) . compute agent-centric features using simulated

pose qt
11: q̃t+1 ∼ T finite(π

step
KIN(ct), qt) . sample from πstep

KIN as a guassian policy
12: st ← (qt, q̇t)
13: st+1 ← Pphysics(st+1|st,at), at ← πUHC(at|st, q̃t+1) . phyics simulation using πUHC

14: qt+1 ← st+1, r
KIN
t ← reward from Eq. 3.6 . extract reward and qt+1 from

simulation
15: store (st,at, rt, st+1, q̂t, q̃t+1) into memory Mdyna

16: end for
17: end while
18: πstep

KIN ← Reinforcement learning updates using experiences collected inMdyna for 10 epoches.

19: πinit
KIN, π

step
KIN ← Supervised learning update using experiences collected in Mdyna for 10

epoches.
20: end while

3.5. Since the data samples are collected through physics simulation, the input qt

is physically-plausible and more diverse than those collected purely through auto-

regressively applying πstep
KIN in Alg. 1. This way, our dynamics-regulated training

procedure performs a powerful data augmentation step, exposing πstep
KIN with diverse

states collected from simulation.

However, MoCap pose q̂t is imperfect and can contain physical violations itself

(foot-skating, penetration etc.), so asking the policy πstep
KIN to produce q̂t as reference

motion regardless of the current humanoid state can lead to instability and cause

the humanoid to fall. The kinematic policy should adapt to the current simulation

state and provide reference motion q̃t that can lead to poses similar to q̂t yet still

physically-plausible. Such behavior will not emerge through supervised learning and

require trial and error. Thus, we optimize πstep
KIN through reinforcement learning and

reward maximization. We design our RL reward to have two components: motion

imitation and dynamics self-supervision. The motion imitation reward encourages
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the policy to match the computed camera trajectory h̃t and MoCap pose q̂t, and

serves as a regularization on motion imitation quality. The dynamics self-supervision

reward is based on the insight that the disagreement between q̃t and qt contains

important information about the quality and physical plausibility of q̃t: the better q̃t

is, the easier it should be for UHC to mimic it. Formally, we define the reward/loss

for πstep
KIN as:

rKIN
t = −LRL = whpe

−45.0(‖hpos
t−h̃

pos
t ‖2) + whqe

−45.0(‖hrot
t	h̃

rot
t ‖2) + wgt

jve
−0.005(‖j̇rott 	

̂̇
j
rot
t ‖2)+

wgt
jr e
−50.0(‖jrott 	ĵ

rot
t ‖2) + wdyna

jr e−50.0(‖jrot	j̃rott ‖2) + wdyna
jp e−50.0(‖jpost −j̃

pos
t ‖2),

(3.6)

whp, whq are weights for matching the extracted camera position h̃
pos

t and ori-

entation h̃
rot

t ; wgt
jr, w

gt
jv are for matching ground truth joint angles ĵ

rot
and angular

velocities
̂̇
j

rot

t . wdyna
jr , wdyna

jp are weights for the dynamics self-supervision rewards,

encouraging the policy to match the target kinematic joint angles j̃
rot

t and positions

j̃
pos

t to the simulated joint angles jrot
t and positions jpos

t . As demonstrated in Sec.

4.4, the RL loss is particularly helpful in adapting to challenging real-world sequences,

which requires the model to adjust to domain shifts and unseen motion.

3.3.1 Test-time evaluation.

At the test time, we follow the same per-episode procedure outlined in Alg 2 and

Fig.3.1 to roll out our policy to obtain simulated pose q1:T given a sequence of images

I1:T . The only difference being instead of sampling from πstep
KIN(ct) as a Guassian

policy, we output the mean action directly.

Table 3.2: Hyperparameters used for training the kinematic policy.

γ Batch Size Value Learning Rate Policy Learning Rate PPO clip ε Covariance Std

Value 0.95 10000 3× 10−4 5× 10−4 0.2 0.04

whp whq wgt
jr wgt

jv wdyna
jr wdyna

jp

Value 0.15 0.15 0.2 0.1 0.2 0.2
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3.3.2 Implementation details.

The kinematic policy is implemented as a Gated Recurrent Unit (GRU) [7] based

network with 1024 hidden units, followed by a three-layer MLP (1024, 512, 256)

with ReLU activation. The value function for training the kinematic policy through

reinforcement learning is a two-layer MLP (512, 256) with ReLU activation. We use

a fixed diagonal covariance matrix and train for 1000 epoches using the Adam [22]

optimizer. Hyperparameters for training can be found in Table. 3.2.
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Chapter 4

Experiments

4.1 Datasets.

As no public dataset contains synchronized ground-truth full-body pose, object pose,

and egocentric videos with human-object interactions, we record two egocentric

datasets: one inside a MoCap studio, another in the real-world. In the following

sections, we will describe the dataset capture procedure and their statistics in detail.

4.1.1 MoCap dataset.

Our MoCap dataset (202 training sequences, 64 testing sequences, in total 148k

frames) is captured in a MoCap studio with three different subjects. Each motion

clip contains paired first-person footage of a person performing one of the five tasks:

sitting down and (standing up from) a chair, avoiding an obstacle, stepping on a

box, pushing a box, and generic locomotion (walking, running, crouching). Each

action has around 50 sequences. The locomotion part of our dataset is merged from

the egocentric dataset from EgoPose [54] since the two datasets are captured using

a compatible system. MoCap markers are attached to the camera wearer and the

objects to get the 3D full-body human pose and 6DoF object pose. To diversify

the way actions are performed, we instruct the actors to vary their performance for

each action (varying starting position and facing gait, speed etc.). We followed the

Institutional Review Board’s guidelines and obtained approval for the collection of
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Table 4.1: Speed analysis of our MoCap dataset and real-world dataset. Unit:
(meters/second)

MoCap dataset

Action Mean Min Max Std

Sit 0.646 0.442 0.837 0.098
Push 0.576 0.320 0.823 0.119
Avoid 0.851 0.567 1.084 0.139
Step 0.844 0.576 1.029 0.118

Real-world dataset

Action Mean Min Max Std

Sit 0.556 0.227 0.891 0.171
Push 0.526 0.234 0.762 0.127
Avoid 0.668 0.283 0.994 0.219
Step 0.729 0.395 1.092 0.196

this dataset. To study the diversity of our MoCap dataset, we plot the trajectory

taken by the actors in Fig. 4.2. We can see that our trajectories are diverse and are

spread out around a circle with varying distance from the objects. Table 4.2 shows

the speed statistics for our MoCap dataset.

4.1.2 Real-world dataset.

Our real world dataset (183 testing sequences, in total 55k frames) is captured in every-

day settings (living room and hallway) with an additional subject.

Figure 4.1: Our real-world
dataset capturing equipment.

It contains the same four types of interactions

as our MoCap dataset and is captured from a head-

mounted iPhone using a VR headset (demonstrated

in Fig.4.1). Each action has around 40 sequences.

As can be seen in the camera trajectory in Fig. 4.2,

the real-world dataset is more heterogeneous than

the MoCap dataset, and has more curves and banks

overall. Speed analysis in Table 4.2 also shows that

our real-world dataset has a larger standard deviation

in terms of walking velocity and has a larger overall

spread than the MoCap dataset. In all, our real-world dataset has more diverse

trajectories and motion patterns than our MoCap dataset, and our dynamics-regulated

kinematic policy can still estimate the sequences recorded in this dataset.

Notice that our framework is starting position and orientation invariant, since all
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Real-world Dataset:

Mocap Dataset:
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Figure 4.2: Trajectory analysis on our MoCap and real-world datasets. Here we
recenter each trajectory using the object position and plot the camera trajectory.
The starting point is marked as a red dot.

of our input features are transformed into the agent-centric coordinate system using

the transformation function T AC.

4.2 Evaluation metrics.

We use both pose-based and physics-based metrics for evaluation. To evaluate the

3D global pose accuracy, we report the root pose error (Eroot) and root-relative mean

per joint position error [23] (Empjpe). When ground-truth root/pose information is

unavailable (for real-world dataset), we substitute Eroot with Ecam to report camera

pose tracking error. We also employ four physics based pose metrics: acceleration

error (Eacc), foot skating ( FS), penetration (PT), and interaction success rate (Sinter).

Eacc (mm/frame2) compares the ground truth and estimated average joint acceleration;

FS (mm) is defined the same as in Ling et al . [26]; PT (mm) measures the average

penetration distance between our humanoid and the scene (ground floor and objects).

Notice that our MoCap dataset has an penetration of 7.182 mm and foot sliding of

25



4. Experiments

Table 4.2: Speed analysis of our MoCap dataset and real-world dataset. Unit:
(meters/second)

MoCap dataset

Action Mean Min Max Std

Sit 0.646 0.442 0.837 0.098
Push 0.576 0.320 0.823 0.119
Avoid 0.851 0.567 1.084 0.139
Step 0.844 0.576 1.029 0.118

Real-world dataset

Action Mean Min Max Std

Sit 0.556 0.227 0.891 0.171
Push 0.526 0.234 0.762 0.127
Avoid 0.668 0.283 0.994 0.219
Step 0.729 0.395 1.092 0.196

2.035 mm per frame, demonstrating that the MoCap data is imperfect and may not

serve as the best target motion. Sinter is defined as whether the objects of interest

has been moved enough (pushing and avoiding) or if desired motion is completed

(stepping and sitting). If the humanoid falls down at any point, Sinter = 0.

• Root error: Eroot compares the estimated and ground truth root rotation and

orientation, measuring the difference in the respective 4 × 4 transformation

matrix (M t):
1
T

∑T
t=1 ‖I − (M tM̂

−1

t )‖F . This metric reflects both the position

and orientation tracking quality.

• Mean per joint position error: Empjpe (mm) is the popular 3D human pose

metric [21, 23, 24] and is defined as 1
J
‖jpos− ĵ

pos
‖2 for J number of joints. This

value is root-relative and is computed after setting the root translation to zero.

• Acceleration error: Eacc (mm/frame2) measures the difference between the

ground truth and estimated joint position acceleration: 1
J
‖j̈pos − ̂̈jpos

‖2.

• Foot sliding: FS (mm) is computed similarly as in [26], i.e. FS = d
(
2− 2h/H

)
where d is the foot displacement and h is the foot height of two consecutive

poses. We use a height threshold of H = 33 mm, the same as in [26].

• Penetration: PT (mm) is provided by the physics simulation. It measures the

per-frame average penetration distance between our simulated humanoid and

the scene (ground and objects). Notice that Mujoco uses a soft contact model

where a larger penetration will result in a larger repulsion force, so a small

amount of penetration is expected.

• Camera trajectory error: Ecam is defined the same as the root error, and

measures the camera trajectory tracking instead of the root. To extract the
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camera trajectory from the estimated pose qt, we use the head pose of the

humanoid and apply a delta transformation based on the camera mount’s

vertical and horizontal displacement from the head.

• Human-object interaction success rate: Sinter measures whether the desired

human-object interaction is successful. If the humanoid falls down at any point

during the sequence, the sequence is deemed unsuccessful. The success rate

is measured automatically by querying the position, contact, and simulation

states of the objects and humanoid. For each action:

Sitting down: successful if the humanoid’s pelvis or the roots of both legs

come in contact with the chair at any point in time.

Pushing a box: successful if the box is moved more than 10 cm during the

sequence.

Stepping on a box: successful if the humanoid’s root is raised at least 10

cm off the ground and either foot of the humanoid has come in contact

with the box.

Avoiding an obstacle: successful if the humanoid has not come in contact

with the obstacle and the ending position of the root/camera is less than

50 cm away from the desired position (to make sure the humanoid does

not drift far away from the obstacle).

4.3 Comparison with state-of-the-art

4.3.1 Baseline methods.

To show the effectiveness of our framework, we compare with the previous state-of-

the-art egocentric pose estimation methods: (1) the best dynamics-based approach

EgoPose [55] and (2) the best kinematics-based approach, also proposed in [55],

PoseReg. We use the official implementation and augment their input with additional

information (õt and h̃t) for a fair comparison.
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Table 4.3: Quantitative results on pose and physics based metrics on the MoCap and
real-world Dataset.

MoCap dataset

Method Physics Sinter ↑ Eroot ↓ Empjpe ↓ Eacc ↓ FS ↓ PT ↓

PoseReg 7 - 0.857 87.680 12.981 8.566 42.153
Kin poly: supervised learning (ours) 7 - 0.176 33.149 6.257 5.579 10.076

EgoPose 3 48.4% 1.957 139.312 9.933 2.566 7.102
Kin poly: dynamics-regulated (ours) 3 96.9% 0.205 40.443 7.064 2.474 0.686

Real-world dataset

Method Physics Sinter ↑ Ecam ↓ FS ↓ PT ↓ Per class success rate Sinter ↑

PoseReg 7 - 1.260 6.181 50.414
Sit Push Avoid Step

Kin poly: supervised learning (ours) 7 - 0.491 5.051 34.930

EgoPose 3 9.3% 1.896 2.700 1.922 7.93% 6.81% 4.87% 0.2%
Kin poly: dynamics-regulated (ours) 3 92.3% 0.476 2.742 1.229 98.4% 90.9% 100% 74.2%

4.3.2 MoCap dataset results.

Table 4.3 shows the quantitative comparison of our method with the baselines. All

results are averaged across five actions and all models have access to the same

inputs. We observe that our method, trained either with supervised learning or

dynamics-regulated, outperform the two state-of-the-art methods across all metrics.

Not surprisingly, our purely kinematic model performs the best on pose-based metrics,

while our dynamics-regulated trained policy excels at the physics-based metrics.

Comparing the kinematics-only models we can see that our method has a much

lower (79.4% error reduction) root and joint position error (62.1% error reduction)

than PoseReg, which shows that our object-aware and autoregressive design of the

kinematic model can better utilize the provided visual and scene context and avoid

compounding errors. Comparing with the dynamics-based methods, we find that the

humanoid controlled by EgoPose has a much larger root drift, often falls down to the

ground, and has a much lower success rate in human-object interaction (48.4 % vs

96.9%). Upon visual inspection in Fig. 4.3, we can see that our kinematic policy can

faithfully produce human-object interaction on almost every test sequence from our

MoCap dataset, while PoseReg and EgoPose often miss the object-of-interest (as can

be reflected by the large root tracking error). Both of the dynamics-based methods

has smaller acceleration error, foot skating, and penetration; some even smaller than

MoCap (which has 2 mm FS and 7mm PT).
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Figure 4.3: Results of egocentric pose and human-object interaction estimation from
the MoCap datset.

4.3.3 Real-world dataset results.

The real-world dataset is far more challenging, having similar number of sequences

(183 clips) as our training set (202 clips) and recorded using different equipment,

environments, and motion patterns. Since no ground-truth 3D poses are available,

we report our results on camera tracking and phsycis-based metrics. As shown in

Table 4.3, our method outperforms the baseline methods by a large margin in almost

all metrics: although EgoPose has less foot-skating (as it also utilizes a physics

simulator), its human-object interaction success rate is extremely low. This can be

also be reflected by the large camera trajectory error, indicating that the humanoid

is drifting far away from the objects. The large drift can be attributed to the domain

shift and challenging locomotion from the real-world dataset, causing EgoPose’s

humanoid controller to accumulate error and lose balance easily. On the other hand,

our method is able to generalize and perform successful human-object interactions,

benefiting from our pretrained UHC and kinematic policy’s ability to adapt to new

domains and motion. Table 4.3 also shows a success rate breakdown by action. Here

we can see that “stepping on a box” is the most challenging action as it requires the

humanoid lifting its feet at a precise moment and pushing itself up. Note that our
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UHC has never been trained on any stepping or human-object interaction actions

(as AMASS has no annotated object pose) but is able to perform these action. As

motion is best seen in videos, we refer readers to our supplementary video.

4.4 Ablation Study

4.4.1 Evaluation of the Universal Humanoid Controller

Table 4.4: Evaluation of motion imitation
for our UHC using target motion from the
H36M dataset.

H36M dataset

Method Sinter ↑ Eroot ↓ Empjpe ↓ Eacc ↓

DeepMimic 0.0% 0.609 107.895 28.881

UHC w/o MCP 89.3% 0.200 36.972 4.723

UHC 92.0% 0.194 40.424 3.672

To evaluate our Universal Humanoid

Controller, we use the popular Human

3.6M (H36M) dataset [18]. We first fit

the SMPL body model to ground truth

3D keypoints similar to the process in [31]

and obtain motion sequences in SMPL

parameters. Notice that this fitting pro-

cess is imperfect and the resulting motion

sequence is of less quality than the orig-

inal MoCap sequence. These sequences

are also never seen by our UHC during training. As observed in Moon et al . [31], the

fitted SMPL poses have a mean per joint position error of around 10mm. We use the

train split of H36M (150 unique motion sequences) as the target pose for our UHC

to mimic. We use a subset of metrics from egocentric pose estimation to evaluate

the motion imitation results of UHC. Namely, we report Sinter, Eroot, Empjpe, Eacc,

where the human-object interation Sinter indicates whether the humanoid has become

unstable and falls down during the imitation process. The baseline we compare

against is the popular motion imitation method DeepMimic [36]. Since our framework

uses a different physics simulation (Bullet [8] vs Mujoco [46]), we use an in-house

implementation of DeepMimic. From the results shown in Table 4.4, we can see that

our UHC can imitate the unseen motion in H36M with high accuracy and success

rate, and outperforms the baseline method significantly. Upon visual inspection, we

can see that the failure cases often result from losing balance while the humanoid

is crouching down or starts running suddenly. Since our controller does not use any

sequence level information, it has no way of knowing the upcoming speedup of the
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target motion and can result in instability. This indicates the importance of the

kinematic policy adjusting its target pose based on the current simulation state to

prevent the humanoid from falling down, and signifies that further investigation is

needed to obtain a better controller. For visual inspection of motion imitation quality

and failure cases, please refer to our supplementary video.

4.4.2 Dynamics-regulated Training

Table 4.5: Ablation study of different com-
ponents of our framework.

Component Metric

SL Dyna reg RL VIO Sinter ↑ Ecam ↓ FS ↓ PT ↓

3 7 7 3 73.2% 0.611 4.234 1.986

3 3 7 3 80.9% 0.566 3.667 4.490

3 3 3 7 54.1% 1.129 7.070 5.346

3 3 3 3 92.3% 0.476 2.742 1.229

To evaluate the importance of our com-

ponents, we train our kinematic policy

under different configurations and study

its effects on the real-world dataset, which

is much harder than the MoCap dataset.

The results are summarized in Table 4.5.

Row 1 (R1) corresponds to training the

kinematic policy only with Alg. 1 only

and use UHC to mimic the target kine-

matic motion as a post-processing step. Row 2 (R2) are the results of using dynamics-

regulated training but only performs the supervised learning part. R3 show a variant

trained without the estimated camera pose from VIO. Comparing R1 and R2, the

lower interaction success rate (73.2% vs 80.9%) indicates that exposing the kinematic

policy to states from the physics simulation serves as a powerful data augmentation

step and leads to a model more robust to real-world scenarios. R2 and R4 show the

benefit of the RL loss in dynamics-regulated training: allowing the kinematic policy

to deviate from the MoCap poses makes the model more adaptive and achieves higher

success rate. R3 and R4 demonstrate the importance of intelligently incorporating

extracted camera pose as input: visual features φt can be noisy and suffer from

domain shifts, and using techniques such as SLAM and VIO to extract camera poses

as an additional input modality can largely reduce the root drift. Note that our

kinematic policy without using extracted camera trajectory outperforms EgoPose

that uses camera pose in both success rate and camera trajectory tracking. Upon

visual inspection, the humanoid in R3 largely does not fall down (compared to in

EgoPose) and mainly attributes the failure cases to drifting too far from the object.
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Table 4.6: Results of our dynamics-regulated kinematic policy on the test split of
MoCap and real-world datasets using different random seeds. The “loco” motion
in the MoCap dataset corresponds to the generic locomotion action, containing all
sequences from the EgoPose [55] Dataset.

MoCap dataset

Sinter ↑ Eroot ↓ Empjpe ↓ Eacc ↓ FS ↓ PT ↓ Per class success rate Sinter ↑
Sit Push Avoid Step Loco

96.87%± 1.27% 0.21± 0.01 39.46± 0.52 6.27± 0.1 3.22± 0.11 0.69± 0.03 100% 97.20%± 3.96% 100% 86.70%± 4.71% 97.4%± 3.63%

Real-world dataset

Sinter ↑ Eroot ↓ FS ↓ PT ↓ Per class success rate Sinter ↑
Sit Push Avoid Step

92.17%± 1.41% 0.49± 0.01 2.72± 0.03 1.03± 0.16 94.7%± 4.20% 93.10%± 1.84% 100.0% 77.1%± 2.37%

4.4.3 Stochasticity

Our kinematic policy is trained through physics simulation and samples a random

sequence from the MoCap dataset for each episode. Here we study the stochasticity

that rises from this process. We train our full pipeline with three different random

seeds and report its results with error bars on both the MoCap test split and the real-

world dataset. As can be seen in Table 4.6, our method has very small stochasticity and

maintains high performance on both the MoCap test split and the real-world dataset,

demonstrating the robustness of our dynamics-regulated kinematic policy. Across

different random seeds, we can see that “stepping” is consistently the hardest action

and “avoiding” is the easiest. Intuitively, “stepping” requires precise coordination

between the kinematic policy and the UHC for lifting the feet and pushing up, while

“avoiding” only requires basic locomotion skills.
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Chapter 5

Conclusions

5.1 Failure Cases and Limitations

Although our method can produce realistic human pose and human-object interaction

estimation from egocentric videos, we are still at the early stage of this challenging

task. Our method performs well in the MoCap studio setting and generalizes to

real-world settings, but is limited to a predefined set of interactions where we have

data to learn from. Object class and pose information is computed by off-the-shelf

methods such as Apple’s [17], and we only factor in the 6DoF object pose in our

state representation and discard all other object geometric information. The lower

success rate on the real-world dataset also indicates that our method still suffers

from covariate shifts and can become unstable when the shift becomes too extreme.

Our Universal Humanoid Controller can imitate everyday motion with high accuracy,

but can still fail at extreme motion. To enable pose and human-object interaction

estimation for arbitrary actions and objects, better scene understanding and kinematic

motion planning techniques need to be developed.

5.2 Conclusion and Future Work

In this paper, we tackle, for the first time, estimating physically-plausible 3D poses

from an egocentric video while the person is interacting with objects. We collect a
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motion capture dataset and real-world dataset to develop and evaluate our method,

and extensive experiments have shown that our method outperforms all prior arts.

We design a dynamics-regulated kinematic policy that can be directly trained and

deployed inside a physics simulation, and we purpose a general-purpose humanoid

controller that can be used in physics-based vision tasks easily. Through our real-world

experiments, we show that it is possible to estimate 3D human poses and human-

object interactions from just an egocentric view captured by consumer hardware

(iPhone). In the future, we would like to support more action classes and further

improve the robustness of our method by techniques such as using a learned motion

prior. Applying our dynamics-regulated training procedure to other vision tasks such

as visual navigation and third-person pose estimation can also be of interest.

5.3 Broader social impact.

Our overall framework can be used in extracting first-person camera wearer’s physically-

plausible motion and our humanoid controller can be a plug-and-play model for

physics-based humanoid simulation, useful in the animation and gaming industry for

creating physically realistic characters. There can be also negative impact from this

work. Our humanoid controller can be used as a postprocessing tool to make computer

generated human motion physically and visually realistic and be misused to create

fake videos using Deepfake-like technology. Improved egocentric pose estimation

capability can also mean additional privacy concerns for smart glasses and bodycam

users, as the full-body pose can now be inferred from front-facing cameras only. As

the realism of motion estimation and generation methods improves, we encourage

future research in this direction to investigate more in detecting computer generated

motion [3].
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