
Towards Robust Planar Translations using Delta-manipulator Arrays

Skye Thompson1, Pragna Mannam2, Zeynep Temel2, and Oliver Kroemer2

Abstract— Distributed manipulators - consisting of a set of
actuators or robots working cooperatively to achieve a manipu-
lation task - are robust and flexible tools for performing a range
of planar manipulation skills. One novel example is the delta
array, a distributed manipulator composed of a grid of delta
robots, capable of performing dexterous manipulation tasks
using strategies incorporating both dynamic and static contact.
Hand-designing effective distributed control policies for such
a manipulator can be complex and time consuming, given the
high-dimensional action space and unfamiliar system dynamics.
In this paper, we examine the principles guiding development
and control of such a delta array for a planar translation task.
We explore policy learning as a robust cooperative control
approach, allowing for smooth manipulation of a range of
objects, showing improved accuracy and efficiency over baseline
human-designed policies.

I. INTRODUCTION

Distributed approaches to manipulation, such as those
seen in automated conveyors, smart surfaces, and planar
manipulators, have long served as valuable tools for use
in manufacturing and other domains. Such systems offer
an appealing flexibility and resilience in their capabilities,
achieved through the redundancy and bandwidth afforded by
their many cooperating actuators. The design and control
of distributed manipulators departs significantly from that
of more traditional robots. Many are best-suited to non-
prehensile and hardware-dependent manipulations with com-
plex, geometry-dependent dynamics, like vibration [1] or
wheeled conveying [2]. Designing these policies can be dif-
ficult even when manipulating known objects in a controlled
environment, particularly where wear-and-tear or manufac-
turing error may be present in the manipulator. Developing
robust approaches to distributed manipulation, capable of
manipulating unfamiliar objects, requires innovation in both
hardware design and control.

Our distributed manipulator is composed of a hexagonal
grid of delta robots. Individually, a delta robot is a 3
degree of freedom (DOF) parallel mechanism with a fixed
base and moving stage, originally designed for pick-and-
place and other high-speed, high-precision tasks [3]. With
a straightforward design and simple kinematics, the delta
is an appealing candidate for mass production. Recent ad-
vancements have allowed for the production of these robots

This material is based upon work supported by the National Science
Foundation under Grant No. 1659774 as well as an Amazon Research
Award.

1Skye Thompson is with CSAIL, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA, rsthomp@mit.edu

2Pragna Mannam, Zeynep Temel, and Oliver Kroemer are with The
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA,
pmannam,ztemel,okroemer@andrew.cmu.edu

0.26 unitsdelta
manipulator

Fig. 1: The delta array was represented by 64 robots with
3 actuators each in CoppeliaSim. The hexagonal packing
arrangement minimizes the gap between neighboring deltas’
workspaces.

at smaller scales, making it feasible to assemble groups of
small delta robots for cooperative manipulation tasks [4] [5].
By arranging these deltas in a grid, called a delta array, it
is possible to achieve a wide range of object manipulations,
combining a variety of manipulation strategies requiring both
stable contact and dynamic cooperation. The 3 degrees of
freedom of each individual delta afford incorporation of both
non-prehensile manipulations, like conveying, and contact-
based interactions, like grasping or pinning, within a single
approach.

However, it is unclear how well distributed manipulation
strategies that have been effective on other forms of hardware
translate to use on the delta array. Unlike the continuous
interactions of vibration plates and conveyors, delta arrays
require the use of finger-gaiting to effectively “walk” the
objects across their surface, with individual deltas repeatedly
making and breaking contact along the way. The guiding
principles behind control for this new type of hardware
have not yet been developed. We aim to identify a set
of factors that are important to consider when developing
cooperative control policies for the delta array, and to es-
tablish effective strategies for achieving smooth, efficient,
and accurate planar manipulations. We propose to develop
these principles through examination and experimentation at
each stage of design and control of the manipulator. We
begin by analyzing the finger-gaiting strategy necessary to
achieve planar translation on the delta array, evaluating how



different gait patterns and each individual delta’s trajectory
impact the manipulation. We then analyze the delta array’s
performance on a planar translation task, with and without
the presence of simulated manufacturing error, and attempt
to learn a correction for the introduced performance error.
Finally, we explore how the delta array’s capacity to execute
hybrid manipulation strategies, combining dynamic and static
contacts, can further improve translation performance.

II. RELATED WORKS

Previous work on the design and control of distributed
manipulators has focused primarily on industry applications,
and the forms of distributed manipulators most applicable to
them. Yaemglin et. al [2] focuses on automated conveyors or
other industrial systems. Some approaches, such as that used
by Bedillion et. al, rely on dynamics-dependent models of
known objects for consistent control [6], while that used by
Luntz et. al focuses instead on algorithmic models attempting
to guarantee the manipulated object will reach a certain pose,
regardless of dynamics [7].

These approaches, while informative, are not clearly anal-
ogous to those which would be effective on the delta array.
Dynamics calculations that may be feasible for a known set
of objects interacting with pins, or the surfaces of spinning
wheels, do not translate directly to a system with finger-
like points of contact with an object. Additionally, even the
most robust of these control approaches, such as the elliptical
and squeeze fields explored in Lunz et. al [7] and Bohringer
et. al [8], fail to generalize to objects of certain shapes
and sizes, for reasons not fully addressable by their system
design.The delta array uses a different model of interaction
than these previously explored systems, requiring closed-
form contact or finger-gaiting, where not all of the actuators
under an object are in contact simultaneously, requiring a
different control approach. From this, we conclude the work
of exploring the factors to consider in the design and control
of a delta array, or similar distributed manipulator, is vital in
guaranteeing it’s potential as a flexible, resilient manipulation
system. The unique traits of such a system - the three degrees
of freedom of each delta unit, and the difference in models
of contact and control between a delta and a wheel or pin
actuator - require a novel investigation.

Another relevant body of work addresses smart surfaces.
Barr et. al [9] explore the algorithmic and mechanical prop-
erties of a grid of single degree of freedom actuators, capable
of rising and lowering to manipulate objects on the surface.
This design resembles that of the delta array. However, unlike
the smart surface, an array of delta robots can translate
in the X, Y, and Z axes, granting them a wider range of
manipulative capabilities, and requiring a different focus of
control to execute those skills. Although the dynamics and
kinematics of the delta itself are thoroughly covered in [3],
we are not aware of any existing work exploring interactions
between delta robots, or the traits and capabilities of such
robots operating in unison. In this work, we explore the
factors to consider in the design and control of a delta array,

or similar distributed manipulator, that are vital in creating
a flexible, resilient manipulation system.

III. DELTA ARRAY SIMULATION

The delta array is assembled from a grid of 3-DOF
delta robots. Each delta consists of three arms, attached to
revolute joints at the base, connected through parallelograms
to universal joints at the end-effector. The workspace of
each delta robot is hemispherical, proportional to the lengths
of the legs, and the end-effector is constrained to a fixed
orientation. The delta array is composed of deltas packed in
a hexagonal arrangement with no overlapping workspaces of
adjacent deltas and minimal gaps in the workspace between
robots.

For our experiments, we generated a simulated model
of an 8x8 delta array in CoppeliaSim, as seen in Figure
1. Each delta manipulator was represented by a hexagonal
base and a cylindrical end-effector, controlled by prismatic
x-, y-, and z-joints to replicate the delta’s 3 translational
degrees of freedom. A sphere mounted on the end of the
end-effector represented each delta’s “fingertip”, with which
it could interact with the objects. Each finger was constrained
to move within the volume above its hexagonal base, which
falls within the delta’s allowable workspace, preventing it
from colliding with its neighbors. This simulation provides
a sufficient model of the interactions between the delta
array and a manipulated object for our analysis, as well as
allowing us to easily simulate additional conditions on the
array that may be difficult to replicate across experiments in
hardware, such as simulated manufacturing defects impacting
the workspace or range of motion of a delta.

IV. PLANAR MANIPULATION POLICIES

Planar manipulation - using a set of actuators to translate
or rotate objects in the XY plane - is the intended purpose of
common distributed manipulators, such as automatic convey-
ors or smart surfaces. For our purposes, planar manipulations
can both contribute to useful three-dimensional skills, such
as re-grasping, as well as provide insight on how the delta
array’s design can impact its general manipulative capacity.
Using the delta array, we also aim to be able to move objects
to specific poses on a plane, ideally in a manner that is
smooth, quick, and consistent across executions.

A common representation of planar manipulation policies
for distributed manipulators is the velocity field [7] [10]
[11]. Each actuator in the manipulator that is in contact
with the object can be treated as contributing some force
to the object to be manipulated, driving the object to a point
of equilibrium in the field. This model serves as a good
approximation of object behavior for existing distributed ma-
nipulation systems, but it is fundamentally dependent on two
primary assumptions: 1) the interaction between the objects
can be sufficiently approximated as a force originating at the
location of each manipulator, and 2) the object is sufficiently
large and appropriately shaped that the forces in contact with
it aggregate to the desired net force or state of equilibrium.
These assumptions hold relatively well for manipulation



systems consisting of wheels, electrical fields, or vibrating
plates. However, translation on the delta array is achieved
through the use of finger-gaiting, a technique in which only
a subset of the deltas are in contact with, and therefore
applying force to, the object at a given time. This necessitates
a closer analysis of the dynamics and control of the delta
array, to determine under which conditions this model serves
as a suitable approximation for successful manipulation of
an object.

Fig. 2: Three possible phase patterns of finger-gaiting on the
hexagonal grid. Each color represents a group of deltas that
move together.

We first address the impact of the finger-gaiting approach.
Multiphase finger-gaiting is a manipulation approach taking
advantage of the degrees of freedom of each manipulator
in the delta array, where separate groups of deltas moving
together in a staggered pattern, transferring the object be-
tween the deltas assigned to a given phase as they oscillate.
For a hexagonal packing, we explored three potential gait
patterns for a given manipulation - dividing the deltas into
two, three, or four groups as seen in Figure 2, where deltas
marked by the same color move together, i.e., they are in
the same phase of their cyclic movements. Our goal was
to determine how the use of different gait patterns impacts
the path and behavior of a translated object, and to establish
what restrictions the use of each pattern imposes on the set
of objects that can be successfully manipulated.

A. Gait Pattern Evaluation

To analyze the different gait patterns’ impact on object
behavior, we controlled each delta to move in a simple up-
down elliptical pattern with constant speed, in the desired
direction of translation, with a phase delay corresponding to
the gait pattern of the maneuver. The 3D path of each delta
is given as

x(t) = d1 cos(θ) cos(φ+ tπ/f)

y(t) = d1 sin(θ) cos(φ+ tπ/f)

z(t) = d2 sin(φ+ tπ/f)

where d1 and d2 are the major and minor axis lengths of
the ellipse, angle θ is the direction of translation in the
plane, and φ and f are the phase delay and frequency of
the oscillation respectively. This motion corresponds with a
velocity field pointing in a single direction with a uniform
magnitude across the surface of the delta array.

First, we compared 2-, 3-, and 4-phase gaits for translating
a square object of fixed side length across the surface of

the array, as illustrated in Figure 3. We found that gaits
with more phases tended to produce smoother trajectories,
with less vertical deviation, and a lower average acceleration,
likely due to the smaller phase delay between each phase
resulting in a more constant velocity, as the handoff between
deltas in a two-phase pattern involves stopping the object at
the end of each beat. However, the increased spacing between
deltas in the same phase caused a different form of instability
in the trajectory. We observed that with the higher-phase
gaits, the object was more likely to tip due to having fewer
points of contact with the array at any given time. We found
particularly pronounced instability for smaller objects with
fewer overall contacts with the array at any given time.

To explore this further, the translation test was repeated
with flat square objects of varying side lengths. The vertical
deviation, acceleration, and maximum roll, pitch, and yaw
deviations of the object across the trajectory were measured,
as shown in Figure 4. Performance on all gaits stabilized
when the surface area of the object to be translated was
approximately 8 times the area of the delta’s simulated
hexagonal workspace. This suggests a lower bound on the
surface area of manipulable objects, and indicates that use of
a higher-phase gait may limit the range of objects that can
be reliably manipulated.

V. INDIVIDUAL DELTA TRAJECTORIES

Having examined how the gait pattern of a delta array
may impact its manipulation capacity, we subsequently ex-
amined control of the individual deltas within the array. We
previously assumed that each delta would perform a simple
oscillating elliptical trajectory - but the optimal trajectory
may differ significantly from this assumption. We therefore
employ reinforcement learning to acquire delta trajectories
that result in smooth, stable object motions.

To improve the efficiency of manipulation using the delta
array, we aim to learn an improved trajectory that will
translate an object quickly and smoothly. We learn this
improved trajectory through episodic Relative Entropy Policy
Search, or REPS [12], a policy search approach that imposes
a constraint on the information loss of each updated policy
distribution to its predecessor. We focus on learning a lower-
level control policy for the vertical dimension zω(t), param-
eterized by ω, and keep the x and y trajectories the same
as before. Our control policy is represented as a series of N
weighted Gaussians centered at equally spaced timesteps

zω(t) =

∑N
i ωiN (t− µi, σi)∑N
i N (t− µi, σi)

with time t looping at the end of each cycle. This allows us
to parameterize a smooth trajectory with N control points
for efficient learning.

Our higher-level policy, π(ω), consists of an N -
dimensional Gaussian representing the weights used in the
lower-level policy zt. A set of weights, ω1..N , are sampled
from this Gaussian at the beginning of the episode and
used to define the cyclical trajectory to be executed. Each



2-Phase 3-Phase 4-Phase

Fig. 3: Analysis of the object trajectory for a planar translation skill using each gait pattern. Higher-phase gaits showed
smoother travel, with lower average acceleration and Z-axis deviation of the translated object, regardless of the direction of
the translation.

5 6 7 8 9 10
0.000

0.025

0.050

0.075

0.100

Z
 d

e
v
ia

ti
o
n
 (

u
n
.)

Object Surface Area vs. Max Z-axis Deviation

5 6 7 8 9 10
0.0

0.2

0.4

R
o
ll
 (

ra
d
.)

Object Surface Area vs. Max Roll

Four-phase

Three-phase

Two-phase

5 6 7 8 9 10

Surface Area

0.0

0.2

0.4

P
it

c
h
 (

ra
d
.)

Object Surface Area vs. Max Pitch

5 6 7 8 9 10

Surface Area

0.0

0.2

0.4

Ya
w

 (
ra

d
.)

Object Surface Area vs. Max Yaw

Fig. 4: A comparison of the performance of each phased gait
on objects of different surface area relative to the area of the
workspace of an individual delta. Performance on all gaits
stabilized when the surface area of the object to be translated
was approximately 8 times the area of the delta’s hexagonal
workspace in simulation.

episode consists of a rollout of this policy across a fixed
number of timesteps. The return of each rollout R(ω) =
c1v − c2h − c3a considers the average speed of the object
in the desired direction v, its maximum vertical deviation
h, and its maximum acceleration a, where c1−3 are reward
factors.

The higher level policy is updated every epoch, and
the new distribution pi(ω) is approximated by perform-
ing a maximum-likelihood estimate on the parameters ω[i],
weighted by weights di = exp(R(ω[i]/η). The parameter η
is found by minimizing the dual function

g(η) = ηε+ η log(
∑
i

N−1
(
R(ω[i])/η

)
)

where ε is the manually defined upper bound on the KL-
divergence between the previous distributions and the new
distribution.

After 30-50 epochs of 5 episodes each, We found the
learned policy for all gait patterns converges to a trajectory
with a widened, flattened upper half compared to the prior
elliptical trajectory, as seen in Figure 5. This flat period is
shorter for higher-phase gaits, where the delta spends less
time in contact with the object. The period of contact for each
learned gait is indicated by the highlighted area. This pattern
achieves an object translation approximately 1.5 times faster
than the elliptical trajectory.

VI. COOPERATIVE ARRAY CONTROL

We further examined the general principles of control for
the delta array by evaluating their ability and effectiveness in

performing coordinated manipulation skills. We examined a
planar translation task in the XY plane. The goal was to move
a flat cuboid object to a specified global position, as seen
in Figure 1. The object has a surface area approximately 9
times that of the delta’s planar workspace area. The standard
velocity field approach for such translation is the construction
of a radial attractor field. Given a desired equilibrium point,
(xe, ye), the velocity value of the field for each delta is
defined by

Vxi = −kx(xi − xe)

Vyi = −ky(yi − ye)

where kx and ky are positive constants. Each delta can
be set in its gaited pattern to move at the direction and
magnitude consistent with its position in the field. This
approach has been shown to be effective at moving objects
to a specified location regardless of starting position on the
array [7]. However, there are limitations to this approach on
the delta array, given the lack of constant contact between the
individual deltas and the object to be manipulated, as well
as the the complex and varying dynamics that arise when
different numbers of deltas contact the object. To evaluate
the delta array’s translation performance, we generated a
set of translation tasks by randomly sampling a starting
location (xs, ys) for the object on the surface of the array
and a goal location (xg, yg) to serve as the center of the
attractor. A radial attractor policy was generated with these
parameters. For each test, the same task is executed on the
array using a two phase gait pattern, as this approach was
indicated to be more appropriate for a range of object sizes,
and minimized trajectory instability in the manipulation. The
delta array does not fully embody the assumptions underlying
the velocity field model informing the attractor policy used
to complete translation tasks. Thus, we saw a consistent,
non-negligible error in the object’s final location across
testing. The complex dynamics of the interactions between
the sets of deltas and the manipulated object, as well as the
high dimensionality of the policy itself, make it difficult to
explicitly define what changes to this policy could correct
for this error.

Additional sources of error may arise in the construction
of the array itself - manufacturing error, wear-and-tear, and
fatigue across individual manipulators may cause defects



− 0.10 − 0.05 0.00 0.05 0.10

X

− 0.03

− 0.02

− 0.01

0.00

0.01

0.02

Z
2-Phase Gait

Initial Trajectory

Learned Trajectory

− 0.10 − 0.05 0.00 0.05 0.10

X

− 0.03

− 0.02

− 0.01

0.00

0.01

0.02

Z

3-Phase Gait

Initial Trajectory

Learned Trajectory

− 0.10 − 0.05 0.00 0.05 0.10

X

− 0.03

− 0.02

− 0.01

0.00

0.01

0.02

Z

4-Phase Gait

Initial Trajectory

Learned Trajectory

Fig. 5: The learned gait trajectory for each of the possible gait patterns. While the bottom half of the trajectory, where the
delta is no longer in contact with the object, is highly variable, the period of contact (highlighted) is consistently smooth
and slightly sloped across all the trajectories.

that further violate the assumption of level contact, resulting
in further error. To model such hardware variations, we
evaluated the idealized attractor policy performance on 15
tasks with and without the presence of a randomized error
in the z-position of the base of each delta, representing a
manufacturing error impacting the z-dimension of the delta’s
workspace by some constant offset. The individual errors
were uniformly sampled between (−d2/4, d2/4), where d2
is the minor diameter of the baseline elliptical trajectory of
the delta. Incorporating these errors resulted in a significant
drop in the trajectory smoothness, as shown in Figure 6.

− 0.6 − 0.4 − 0.2 0.0 0.2 0.4 0.6

X

− 0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Y

Without Simulated Z Error

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

0.375

0.400

0.425

0.450

U
n
it

s

Z Position

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
− 0.1

0.0

0.1

R
a
d
.

Roll

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
− 0.1

0.0

0.1

R
a
d
.

Pitch

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

Timestep Over One Oscillation

− 0.1

0.0

0.1

R
a
d
.

Yaw

− 0.6 − 0.4 − 0.2 0.0 0.2 0.4 0.6

X

− 0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Y

With Simulated Z Error

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

0.375

0.400

0.425

0.450

U
n
it

s

Z Position

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
− 0.1

0.0

0.1

R
a
d
.

Roll

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
− 0.1

0.0

0.1

R
a
d
.

Pitch

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

Timestep Over One Oscillation

− 0.1

0.0

0.1

R
a
d
.

Yaw

Fig. 6: The trajectories achieved by the radial attractor
policy on the delta array, with (right) and without (left)
the presence of simulated manufacturing error, represented
by a randomized constant offset in the z-position of each
delta, are depicted here. The introduction of manufacturing
error results in a substantial increase in the instability of the
trajectory.

A. Improving Accuracy through Learning

To correct for these hardware variations, we proceeded
to determine whether an adjusted attractor policy could be
learned to achieve more accurate manipulations. We learned
an inverse model, predicting the necessary policy to translate

Mean Error Mean Error with Z-defect
Ideal Attractor 0.143± 0.093 0.197± 0.076

Learned MLP Policy 0.129± 0.011 0.124± .012
Learned TC Policy 0.114± 0.011 0.128± 0.012

the object towards a proposed goal, in a self-supervised
manner. We considered both a densely connected MLP neural
net, and a transpose convolutional neural net, in order to
determine whether the latter would be able to take advantage
of the grid structure of the array for more accurate or
efficient learning. Both networks take the goal location,
(xi, yi), normalized to zero mean and unit variance, as input,
and outputs the policy parameters for each delta as two
8x8 arrays representing the X- and Y- velocity components,
(Vx, Vy). The transpose convolutional network consists of
an input layer, a densely-connected layer, two transpose
convolutional layers with a (2×2) kernel and stride 2, while
the densely connected network contains two fully connected
hidden layers with 10 units each. Both networks have an
output layer with linear activation, and were trained with a
standard mean squared error loss. To generate our training
set, we executed 1000 additional attractor tasks, randomly
sampling an object starting location (xs, ys), and a location
for the center of the attractor (xc, yc). Note that we only
sample the attractor center here, not the goal itself. This is
to account for error in the hand-designed policy - for an
executed policy, we assign the ’true’ goal location to instead
be the location of the object after 400 timesteps, regardless of
the position of the attractor’s center for that execution. This
data is assembled into a set of training inputs xg, yg and
outputs, Vx, Vy represented as 8x8 matrices of the x- and y-
magnitudes of each delta’s component of the attractor field.

We evaluated the learned model by sampling a goal
location (xgi, ygi) and predicting the appropriate policy to
translate an object to that location as the model’s output. We
perform two tests comparing the performance of the hand-
designed and learned policy on the task with and without the
presence of simulated manufacturing error. We calculate the
error for each rollout as the Cartesian distance between the
goal and the object’s location after 400 timesteps.

We find that both of the learned policies were successful
at reducing the error resulting from the simulated z-defect,
indicating that with some adjustments, the radial attractor
model is an appropriate choice for a translational policy on



Fig. 7: A comparison between the learned and hand-designed
attractor policies is depicted on the left. As shown by the
close-up image, only very minor differences exist between
the learned and hand-designed policies. The comparison
between the final error in object position between the two
policies is shown on the right, as an arrow pointing from
the intended final object position to the actual final position
achieved. The learned policy generated by both the simple
and transpose convolutional networks is able to correct for
some of the error present in the idealized policy in both
cases.

the delta array. The transpose convolutional approach fails to
correct as well as the policy learned on the densely connected
network. We attribute this to the nature of the error, which
differs independently across individual deltas. The transpose
convolutional structure imposes some additional structure
that nearby deltas behave similarly in the final policy, due
to the influence of shared parameters in the previous layer.
This structure seems to fail to correct sufficiently for this
independent variation.

B. Hybrid Control Approaches

Due to each deltas’ three degrees of freedom, it is possible
to combine both static contact and non-prehensile manip-
ulations, like finger-gaiting, in the same approach. For a
translational task, this can be achieved by raising (in the Z-
axis) a subset of the deltas to serve as a "wall" against which
an object can be pushed to constrain its final position and
orientation. We constructed a general approach for designing
such policies, and compare its performance to that of the
radial attractor on the delta array.

We used the same task definition as in the attractor,
providing a randomized start position (xs, ys) and goal
position (xg, yg) for the object. For this control approach,
the position of the attractor is on the opposite side of the
wall, such that it draws the object into contact with the wall.

To generate suitable attractors and walls we used a rejection
sampling approach: We randomly sampled contiguous lines
in the delta arrays, separating the start position and the
attractor center, to serve as a wall. Any line that was too
close to the start position was rejected to avoid the object
starting on the wall.

Fig. 8: These images provide an example of a manipulation
policy incorporating hybrid control. The object is drawn
towards the wall, which serves as a constraint on the object’s
position and orientation.

We use the above approach to generate 2000 training sam-
ples for an MLP policy. The network outputs an additional
8x8 array with binary values indicating the wall deltas. The
approach was evaluated on 20 additional tasks and found to
have an error of 0.418 ± 0.053 units. This performance is
significantly worse than that of the attractors without walls,
even when incorporating knowledge of the object’s size
to position walls continuously rather than discretely in the
space, allowing walls to shift within the comprising deltas’
workspaces to accomodate the object (resulting in only a
0.120 units reduction of error). The decrease in performance
is potentially the result of the more complex interactions
between the object and the wall and the presence of multiple
solutions to each task resulting in an ill-posed problem. In
the future, we plan to explore distal teacher approaches to
improve the learning approaches in order to achieve more
accurate object control.

VII. CONCLUSION

In our experiments, we identified several principles and
tradeoffs to guide development of the delta array manipula-
tor, including optimal gaiting approach, planar manipulation
policies, and learned control. We determined that with con-
sideration of the gaiting pattern and the learned adjustments
to the individual delta trajectories and the overall policy,
the velocity field model is effective for achieving planar
translation tasks. We proposed a hybrid control approach
unique to the delta array, demonstrated the construction
of such a policy, and identified sources of possible error
in its use. We present these results to inform further use
and study of such systems. The preliminary approaches to
learning examined here suggest that it may be possible to
learn hierarchical policies for achieving better performance
with the manipulator. Future work should also consider the
dynamics of the delta robot in the array and the effects of
their compliance on control.

ACKNOWLEDGMENT
Special thanks to the RISS program, the Robotics Institute

at CMU, and the Intelligent Autonomous Machines Lab for
their support.



REFERENCES

[1] K. . Bohringer, V. Bhatt, and K. Y. Goldberg, “Sensorless manipulation
using transverse vibrations of a plate,” in Proceedings of 1995 IEEE
International Conference on Robotics and Automation, vol. 2, 1995,
pp. 1989–1996 vol.2.

[2] T. Yaemglin and S. Charoenseang, “Distributive behavior-based con-
trol for a flexible conveying system,” 2002 IEEE International Confer-
ence on Industrial Technology, 2002. IEEE ICIT ’02, pp. 24–29 vol.1,
2002.

[3] M. Lopez, E. Castillo, G. Garcia, and A. Bashir, “Delta robot: inverse,
direct, and intermediate jacobians,” Journal of Mech. Eng. Science, pp.
220:103–109, 2006.

[4] H. McClintock, F. Z. Temel, N. Doshi, J. S. Koh, and R. J. Wood,
“The milliDelta: A high-bandwidth, high-precision, millimeter-scale
Delta robot,” Science Robotics, vol. 3, no. 14, 2018.

[5] J. E. Correa, J. Toombs, N. Toombs, and P. M. Ferreira, “Laminated
micro-machine: Design and fabrication of a flexure-based Delta robot,”
Journal of Manufacturing Processes, vol. 24, pp. 370–375, 2016.

[6] M. Bedillion, R. Hoover, and J. McGough, “A distributed manipulation
concept using selective braking,” 2014 American Control Conference,
pp. 3322–3328, 2014.

[7] J. E. Luntz, W. C. Messner, and H. Choset, “Distributed manipulation
using discrete actuator arrays.” The International Journal of Robotics
Research, pp. 20:553–583, 2001.

[8] K. Bohringer, B. Donald, R. Mihailovich, and N. C. MacDonald,
“A theory of manipulation and control for microfabricated actuator
arrays,” Proceedings IEEE Micro Electro Mechanical Systems An
Investigation of Micro Structures, Sensors, Actuators, Machines and
Robotic Systems, pp. 102–107, 1994.

[9] D. R. W. Barr, D. Walsh, and P. Dudek, “A smart surface simulation
environment,” 2013 IEEE International Conference on Systems, Man,
and Cybernetics, pp. 4456–4461, 2013.

[10] J. E. Luntz, W. Messner, and H. Choset, “Velocity Field
Design on the Modular Distributed Manipulator System,”
Robotics: The Algorithmic Perspective, 1998. [Online]. Available:
http://www.ri.cmu.edu/pubs/pub_2868.html%5Cnpapers://dc655b36-
91f1-4c2b-88b1-0972dfc51324/Paper/p271

[11] K. Varsos and J. Luntz, “Superposition methods for distributed ma-
nipulation using quadratic potential force fields,” IEEE Transactions
on Robotics, vol. 22, no. 6, pp. 1202–1215, 2006.

[12] M. P. Deisenroth, G. Neumann, and J. Peters, “A survey on policy
search for robotics,” Foundations and Trends in Robotics, pp. 57–
58:130–136, 2013.

[13] M. Bedillion and W. Messner, “Trajectory tracking control for actu-
ator arrays,” IEEE Transactions on Control Systems Technology, pp.
21(6):2341–2349, 2013.

[14] K. F. Bohringer, H. Choset, and H. Choset, Distributed Manipulation.
Springer Science Business Media, 2000.

[15] M. Sinclair and I. A. Raptis, “Distributed manipulation using cyber-
physical systems,” 2014 IEEE International Conference on Systems,
Man, and Cybernetics (SMC), pp. 3097–3102, 2014.


