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Abstract

Object discovery and multiple object tracking (MOT) are two highly
interrelated tasks that are known to be fundamental problems in computer
vision, and are crucial for video understanding. Most existing methods
rely on supervised training with human annotations, which is laborious
and expensive. In this thesis, we propose a self-supervised method for
detecting and tracking moving objects in unlabelled RGB-D videos. The
method begins with classic handcrafted techniques for segmenting objects
using motion cues: we estimate optical flow and camera motion, and
conservatively segment regions that appear to be moving independently
of the background. Treating these initial segments as pseudo-labels, we
learn an ensemble of appearance-based 2D and 3D detectors, under heavy
data augmentation. We use this ensemble to detect new instances of
the “moving” type, even if they are not moving, and add these as new
pseudo-labels. Our method is an expectation-maximization algorithm,
where in the expectation step we fire all modules and look for agreement
among them, and in the maximization step we re-train the modules to
improve this agreement. The constraint of ensemble agreement helps
combat contamination of the generated pseudo-labels (during the E step),
and data augmentation helps the modules generalize to yet-unlabelled data
(during the M step). We compare against existing unsupervised object
discovery and tracking methods, using challenging videos from CATER
and KITTI, and show strong improvements over the state-of-the-art.
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Chapter 1

Introduction

Object discovery and object tracking are known to be crucial problems in computer

vision, and are particularly useful for video understanding. Most existing methods

rely on supervised training with human annotations, and gaining dense labels on

videos could be laborious and expensive. On the contrary, humans can detect moving

objects and delineate their approximate extent [12, 53], without ever having been

supplied boxes or segmentation masks as supervision. In the recent computer vision

literature, a variety of self-supervised methods [8, 36] are recently proposed to solve

the object discovery and tracking problem, which hinge on reconstruction objectives

and part-centric, object-centric, or scene-centric bottlenecks in the architecture. These

methods are rapidly advancing, but so far only on toy worlds, made up of simple 2D

or 3D shapes against simple backgrounds – a far cry from the complexity tackled in

older works, based on perceptual grouping (e.g., [17]).

In this thesis, we propose to solve self-supervised object discovery and tracking

problem using a variety of perceptual grouping cues, which make some regions look

more object-like than others [22]. Work on integrating perceptual grouping cues

into computer vision models stretches back decades [50], and still likely serves as

inspiration for many of the design decisions in modern computer vision architectures

related to attention, segmentation, and tracking.

Classic methods of object discovery, such as center-surround saliency in color

or flow [1], are known to be brittle, but they need not be discarded entirely. We

propose to mine and exploit the admittedly rare success scenarios of these models,
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CHAPTER 1. INTRODUCTION

to bootstrap the learning of something more general. We hypothesize that if the

successful vs. unsuccessful runs of the classic algorithms can be readily identified with

automatic techniques, then we can self-supervise a learning-based module to mimic

and outperform the traditional methods. This is a kind of knowledge distillation [27],

from traditional models to deep ones.

We propose an optimization algorithm for learning detectors of moving objects,

based on expectation maximization [44]. We begin with a motion-based handcrafted

detector, tuned to be very conservative (low recall, high precision). We then convert

each object proposal into thousands of training examples for learning-based 2D and

3D detectors, by randomizing properties like color, scale, and orientation. This

forces the learned models to generalize, and allows recall to expand. We then use

the ensemble of modules to obtain new high-confidence estimates (E step), repeat

the optimization (M step), and iterate. Our method outperforms not only the

traditional methods, which only work under specific conditions, but also the current

learning-based methods, which only work in toy environments. We demonstrate

success in a popular synthetic environment where recent deep models have already

been deployed (CLEVR/CATER [21, 31]), and also on the real-world urban scenes

benchmark (KITTI [20]), where the existing learned models fall flat.

Our main contribution is not in any particular component, but rather in their

combination. We demonstrate that by exploiting the successful outcomes of traditional

methods for moving object segmentation, we can train a learning-based method to

detect and track objects in a target domain, without requiring any annotations.
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Chapter 2

Background

2.1 Object discovery

Many recent works have proposed deep neural networks for object discovery from

RGB videos. These models typically have an object-centric bottleneck, and are

tasked with a reconstruction objective. MONet [8], Slot attention [40], IODINE [23] ,

SCALOR [30], AIR [16], and AlignNet [13] fall under this category. These methods

have been successful in a variety of simple domains, but have not yet been tested

on real-world videos. In this thesis we evaluate whether these models are able to

perform well under the complexities of real-world imagery.

2.2 Ensemble methods

Using ensembles is a well-known way to improve overall performance of an algorithm.

Assuming that each member of the ensemble is prone to different types of errors, the

combination of them is likely to make fewer errors than any individual component

[14]. Ensembling is also the key idea behind knowledge distillation, where knowledge

gets transferred from cumbersome models to simpler ones [27, 48]. A typical modern

setup is to make up the ensemble out of multiple copies of a neural network, which are

trained from different random initializations or using different partitions of the data

[2]. In our case, the ensemble is more diverse: it is made up of components which aim
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CHAPTER 2. BACKGROUND

to solve different tasks, but can still be checked against one another for consistency.

For example, we learn a 2D pixel labeller which operates on RGB images, and a 3D

object detector which operates on voxelized pointclouds; when the 3D detections are

projected into the image, we expect them to land on “object” pixels.

2.3 Structure-from-Motion/SLAM

Early works on structure from motion (SfM) [11, 56] set the ambitious goal of extract-

ing unscaled 3D scene pointclouds and camera trajectories from 2D pixel trajectories,

exploiting the reduced rank of the trajectory matrix under rigid motions. Unfortu-

nately, these methods are often confined to very simple videos, due to their difficulty

handling camera motion degeneracies, non rigid object motion, or frequent occlusions,

which cause 2D trajectories to be short in length. Simultaneous Localization And

Mapping (SLAM) methods optimize the camera poses in every frame as well as

the 3D coordinates of points in the scene online and often in real time, assuming a

calibrated setup (i.e., knowing camera intrinsics) [33, 51]. These methods are sensitive

to measurement noise and the difficulties of multi-view correspondence, but produce

accurate reconstructions when assumptions on the sensor and scene setup are met.

Dynamic objects are typically treated as outliers [32, 60], or are actively detected

with the help of optical flow [10] or pre-trained appearance cues [3]. Our method

exploits the occasional successes of a flow-based egomotion estimation method as a

starting point to learn about the static vs. moving parts of scenes.

2.4 Moving object segmentation

Early approaches attempted to solve motion segmentation completely in an unsu-

pervised manner by integrating motion information over time through 2D pixel

trajectories [7, 45]. Recent works instead focus on learning to segment 2D objects

in videos, supervised by annotated video benchmarks [5, 19, 28, 37, 47]. Here, we

segment a sparse set of objects using motion cues, then learn to segment in 2D and

3D using appearance, without annotations.
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CHAPTER 2. BACKGROUND

2.5 Learning from augmentations

The state of the art approach in self-supervised learning of 1D visual representations

(i.e., vectors describing images) relies on training the features to be invariant to random

augmentations, such as color jittering and random cropping [9, 26]. Some tracking

approaches use data augmentation at test time, to fine-tune the tracker with diverse

variations of a specified target [34]. Interestingly, the most important factor seems to

be high diversity, rather than realism, even for practical robotics applications [55].

Our work takes inspiration from these methods, to upgrade self-generated annotations

into data with high diversity through data augmentation.
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Chapter 3

Approach

3.1 Setup and overview

Our method takes as input a video with RGB and depth (either a depthmap or a

pointcloud) and camera intrinsics, and produces as output a 3D detector and 3D

tracker for objects in the video.

Given an unlabeled input video, the optimization of the model operates in “rounds”.

The first round leverages optical flow and cycle-consistency constraints to discover

a small number of high-confidence, clearly-moving objects in the videos. The most

confident object proposals are upgraded into pseudolabels for training appearance-

based object detectors, in 2D and 3D. The second round leverages optical flow and

the new objectness detectors to find more high-confidence proposals, which again

lead to additional training. In the final round we use the detectors as trackers, and

use these to generate a library of trajectories, capturing a motion prior for objects in

the domain.

A critical piece in each stage is the “check”, which decides whether or not to

promote an estimate into a pseudolabel for the next round. We now describe each

piece of the method, along with its corresponding check.

7



CHAPTER 3. APPROACH

Input: Pseudo-labelled dataset


Method: Apply augmentations; train CNNs


Output: Trained object detectors


(b) M step

Input: Trained object detectors, unlabelled data


Method: Run CNNs; seek ensemble agreement


Output: Pseudo-labelled dataset


(c) E step

…

Loss2D CNN 3D CNN

Input: Unlabelled RGB-D dataset


Method: Find independently-moving segments


Output: Pseudo-labelled dataset


(a) Start (initial E step)

2D CNN 3D CNN

2D pseudo-labels 3D pseudo-
labels

Pointcloud

dataset with 
pseudo-labels

…

RGB dataset
with pseudo-labels

AugmentationsFlowNet + RANSAC

Moving object masks

Egomotion flowOptical flow

RGBD dataset
RGBD dataset 

Figure 3.1: An EM approach to unsupervised tracking. We present an
expectation-maximization (EM) method, which takes RGBD videos as input, and
produces object detectors and trackers as output. (a) We begin with a handcrafted
E step, which uses optical flow and egomotion to segment a small number of objects
moving independently from the background. (b) Next, as an M step, we treat these
segmented objects as pseudo-labels, and train 2D and 3D convolutional nets to detect
these objects under heavy data augmentation. (c) We then use the learned detectors
as an ensemble to re-label the data (E step), and loop.

3.2 Optical flow estimation

Optical flow indicates a 2D motion field that corresponds the pixels of a pair of

images. We use flow (in combination with other cues) as a signal for objectness, and

also as a submodule of egomotion estimation.

We use an off-the-shelf pre-trained convolutional optical flow network [54] to

estimate flow. The pre-training involves dense supervision with synthetic frame pairs,

but we note that optical flow can be learned unsupervised on real data [39, 61]. In our

experiments, we found that the pre-trained model generalized well, and self-supervised

finetuning did not improve accuracy further.

For our purposes, it is important to avoid relying on flow vectors which are likely

to be incorrect. To do this, we check for forward-backward consistency [46, 52, 59].

We first generate the forward flow f0→1 and the backward flow f1→0 with the flow

network, and then warp the backward flow into the coordinates of the first image,

f̂1→0 = warp(f1→0; f0→1). (3.1)
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CHAPTER 3. APPROACH

This uses a bilinear warping function, which takes as arguments an image to warp (in

this case f1→0), and a flow field to warp with (in this case f0→1). We then threshold

on the size of the discrepancy between flow fields, using a threshold that is sensitive

to the flow magnitude:

||f0→1 + f̂1→0||2 < α1

(
||f0→1||2 + ||f̂1→0||2

)
+ α2. (3.2)

Note that the discrepancy term uses the addition of the flow fields rather than the

difference, since the flows point in opposite directions. We use α1 = 0.01 and α2 = 0.1

in our experiments.

3.3 Egomotion estimation

Egomotion is the rigid motion of the camera (i.e., transformation of poses) across

a pair of frames. Estimating egomotion allows us to better estimate which pixels

are moving due to the camera’s motion, and which are moving independently of the

background. Pixels moving independently are a strong cue for objectness.

We begin by “upgrading” the cycle-consistent 2D flows into a sparse 3D pointcloud

flow. To do this, we first obtain sparse 2D depth maps, by projecting the pointclouds

into pixel coordinates. We then check each flow vector to see if it starts and ends at

pixels with depth measurements. Finally, we use the flows and corresponding depths

to un-project the flow into a 3D motion field.

With the sparse 3D motion field, we use RANSAC to estimate the 6-degrees-of-

freedom rigid motion that explains the maximal number of point flows. RANSAC is

intended to be robust to outliers, but the answer returned is often catastrophically

wrong, due either to correspondence errors or moving objects.

The critical third step is to “check” the RANSAC output with a freely-available

signal. The inlier count itself is such a signal, but this demands carefully tuning

the threshold for inlier counting. Instead, we enforce cycle-consistency, similar to

flow. We estimate two rigid motions with RANSAC: once using the forward flow, and

once using the backward flow (which delivers an estimate of the inverse transform,

or backward egomotion). We then measure the inconsistency of these results, by

applying the forward and backward motion to the same pointcloud, and measuring

9



CHAPTER 3. APPROACH

the maximum alignment error:

x′0 = T bw1→0T
fw
0→1(x0) (3.3)

error = max
n

(||x′0 − x0||), (3.4)

where T fw0→1 denotes the rotation and translation computed from forward flow, which

carries the pointcloud from timestep 0 to timestep 1, T bw1→0 is the backward counterpart,

and x0 denotes the pointcloud from timestep 0.

If the maximum displacement across the entire pointcloud is below a threshold

(set to 0.25 meters), then we treat the estimate as “correct”. In practice we find that

this occurs about 80% of the time in the KITTI dataset.

On these successful runs, we apply the egomotion to the pointcloud to create

another ”background” 3D flow field (in addition to the ”full” flow field produced

by upgrading the optical flow to 3D), and we subtract these to obtain the camera-

independent motion field. Independently moving objects produce high-magnitude

regions in the egomotion-stabilized motion field, which is an excellent cue for object-

ness. Examples of this are shown in Figure 3.1-a and Figure 3.2-c: note that although

real objects are highlighted by this field, some spurious background elements are

highlighted also.

In the first “round” of optimization, we proceed directly from this stage to pseudo-

label generation. Using the pseudo-labels, we train the parameters of two object

detectors, described next.

3.4 2D objectness segmentation

This module takes an RGB image as input, and produces a binary map as output.

The intent of the binary map is to estimate the likelihood that a pixel belongs to

the “moving object” class. This module transfers knowledge from the motion-based

estimators into the domain of appearance, since it learns to mimic pseudolabels

that were generated from motion alone. This is an important aspect of the overall

model, since it allows us to identify objects of the “moving” type even when they are

stationary (e.g., a vehicle parked on the side of the road).

We use a 50-layer ResNet [25] with a feature pyramid [38] as the architecture,
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CHAPTER 3. APPROACH

and train the last layer with a logistic loss against sparse pseudo-ground-truth:

Lseg =
∑

m̂ log(1 + exp(−ŝ · s)), (3.5)

where m is a mask indicating where the supervision is valid. How the mask is

generated is detailed in section 3.9. We experimented with and without ImageNet

pretraining for the ResNet, and found that the pretrained version converges more

quickly but does not perform very differently.

In training this module with sparse labels, it is critical to add heavy augmentations

to the input, so that it does not simply memorize a mapping from the happenstance

appearance to the sparse objectness labels. We use random color jittering, random

translation and scaling, and random synthetic occlusions.

3.5 3D object detection

This module takes as input a voxelized pointcloud (computed from the depth map

and intrinsics), and estimates object proposals in 3D. We have experimented with

producing oriented 3D bounding boxes, or 3D voxel segmentations, with similar

results.

We use a 3D U-Net-style convolutional encoder [49], and a CenterNet-style

detection head [15]. The head produces a set of heatmaps, which encode objectness

(in 1 channel), 3D size (in 3 channels), 3D subvoxel offset (in 3 channels), and

orientation along the vertical axis (encoded as a categorical distribution over 16

channels).

In training this module, we find that randomized translation and orientation

(when creating the voxelized input) are critical for learning an even distribution over

possible object orientations. Additionally, we apply dropout in the voxel inputs, and

we create partial occlusion augmentations by randomly erasing a randomly-sized area

near the object pseudo-label in image space, along with the 3D points that project

into that area.
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(h) Box fitting,

center-surround

(a) Input RGBD 
frames

(b) Optical flow, 
egomotion flow


(c) Independent 
motion magnitude

(d) Visibility map

(e) Unprojected 2D 
object segmentation

(f) 3D object 
segmentation 

(heatmap)

(g) Combined 
signal

Figure 3.2: Intermediate outputs of the Expectation step in our algorithm.
Given an input video (a), we have multiple sources of evidence: using optical flow
and egomotion flow (b), we compute independent motion magnitude (c); using
the pointcloud we compute visible area (d), using the RGB image we estimate
2D segmentation (e), and using the pointcloud we estimate 3D segmentation (f).
Each signal can be error-prone, but combining them (g) gives us high confidence
pseudo-labels (h).

3.6 Short-range tracking

To relocate a detected object over short time periods, we use two simple techniques:

hungarian matching with IoU scores, and cross correlation with a rigid template [41].

We find that the IoU method is sufficient in CATER, where the motions are relatively

slow. In KITTI, due to the fast motions of the objects and the additional camera

motion, we find that cross-correlation is more effective. We do this using the features
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provided by the backbone of the object detector. We simply create a template by

encoding a crop around the object, and then use this template for 3D cross correlation

against features produced in nearby frames, extracted using a Siamese network. We

find that this is a surprisingly effective tracker despite not handling rotations, likely

because the objects do not undergo large rotations under short timescales. To track

for longer periods and across occlusions, we make use of motion priors represented in

a library of previously-observed motions, described next.

3.7 Long-range tracking, with trajectory libraries

To track objects over longer time periods, we build and use a library of motion

trajectories, to act as a motion prior. We build the library out of the successful

outcomes of short-range tracker, which typically correspond to “easy” tracking cases,

such as close-range objects will full visibility. The key insight here is that a motion

prior built from “good visibility” tracklets is just as applicable to “poor visibility

tracklets”, since visibility is not a factor in objects’ motion.

To verify tracklets and upgrade them into library entries, we check if they agree

with the per-timestep cues, provided by flow, 2D segmentation, 3D object detection,

and a visibility map computed by raycasting on the pointcloud (Fig 3.2). Specifically,

we ask that a tracklet (1) obey the flow field, and (2) travel through area that is either

object-like or invisible. For flow agreement, we simply project the 3D object motion to

2D and measure the inconsistency with the 2D flow in the projected region. To ensure

that the trajectory travels through object-like territory, we create a spatiotemporal

volume of objectness/visiblity cues, and trilinearly sample in that volume at each

timestep along the trajectory. Each temporal slice of the volume is given by:

p = max(unproj(s) · o+ (1.0− v), 1), (3.6)

where unproj(s) is the 2D segmentation map unprojected to 3D (Figure 3.2-d), o is

the 3D heatmap delivered by the object detector (Figure 3.2-f), and v is the visibility

map computed through raycasting (Figure 3.2-d). In other words, we require that

both the 2D and 3D objectness signals agree on the object’s presence, or that the

visibility indicates the object is in an occluded area. To evaluate a trajectory’s
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likelihood, we simply take the mean of its values over the temporal dimension, and

we set a stringent threshold (0.99) to prevent erroneous tracklets from entering the

library.

Once the library is built, we use it to link detections across partial and full

occlusions (where flow-based and correlation-based tracking fails). Specifically, we

orient the library to the initial motion of an object, and then evaluate the likelihood

of all paths in the library, via the cost volume. This is similar to a recent approach for

motion planning for self-driving vehicles [62], but here the set of possible trajectories

is generated from data rather than handcrafted.

3.8 Pseudo-label generation

Pseudo-label generation is what takes the model from one round of optimization to

the next. The intent is to select the object proposals that are likely to be correct,

and treat them as ground truth for training future modules.

We take inspiration from never-ending learning architectures [43], which promote

an estimate into a label only if (i) at least one module produces exceedingly-high

confidence in the estimate, or (ii) multiple modules have reasonably-high confidence

in the estimate.

The 2D and 3D modules directly produce objectness confidences, but the motion

cues need to be converted into an objectness cue. Our strategy is inspired by classic

literature on motion saliency [29]: (1) compute the magnitude of the egomotion-

stabilized 3D motion field, (2) threshold it at a value (to mark regions with motion

larger than some speed), (3) find connected components in that binary map (to

obtain discrete regions), and (4) evaluate the center-surround saliency of each region.

Specifically, we compute histograms of the motion inside the region and in the

surrounding shell, compute the chi-square distance between the distributions, and

threshold on this value [1]:

cs(θ) = χ2(h(cenθ(∆x)), h(surrθ(∆x))), (3.7)

where θ denotes the region being evaluated, cenθ and surrθ select points within and

surrounding the region, h computes a histogram, and ∆x denotes the egomotion-
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stabilized 3D motion field.

When the trained objectness detectors are available (i.e., on rounds after the first),

we convert the egomotion-stabilized motion field into a heatmap with exp(−λ||∆x||),
and add this heatmap to the ones produced by the 2D and 3D objectness estimators.

We then proceed with thresholding, connected components, and box fitting as normal.

The only difference is that we use a threshold of 2 to demand multiple modules to

agree.

3.9 Self-supervision details

After converting estimates into pseudolabels, it is important to design the supervision

strategy so that the appearance-based objectness modules have the potential to

generalize from this data to the yet-unannotated data. This involves (1) heavy

augmentations, and (2) converting the pseudolabels into supervision regions:

• Positive: regions where we have detected a moving object;

• Negative: regions where a moving object is unlikely;

• Ignore: regions where the pseudolabels are ambiguous about moving/non-

moving.

The “ignore” region is critical: If we simply used the pseudolabels as positives and

treated the remainder of the scene as negatives, the modules would effectively be

trained to not detect objects beyond the annotated ones. The design of the regions is

slightly different for the 2D segmentor vs. the 3D object detector.

For 2D objectness segmentation, we need to annotate pixels. To create positive

pixels, we shrink the estimated bounding boxes (by 0.1m on each side), then collect

pointcloud points that are within those boxes, and project those points into the image.

To create negative pixels, we enlarge the boxes (by 2.0m on each side), and collect

points that are between the original-sized box and the enlarged box, and project

those into the image. Additionally, we project the box itself into the image, and use

its outer contour as negative pixels. We leave all other pixels as “ignore”, and do not

apply loss there. These supervision labels are illustrated in Figure 3.3.

For 3D detection, we annotate voxels on a 3D grid. Since we use a CenterNet-style

detector [15], we do not need to annotate anchor boxes as positives or negatives,
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but instead create a “target” objectness heatmap (indicating positives and negatives

densely), with a small Gaussian at the centroid of each annotated object. At the

peak of the Gaussian, we supply the subvoxel offset and orientation information, in

the additional channels. As in the original CenterNet, we only supervise offset and

orientation at the centroid itself. To avoid penalizing detections in the unannotated

part of the scene, we treat all voxels that lie beyond a radius of an annotation as part

of the “ignore” region, and do not apply loss there. We set the radius according to

the annotation, using a value of r = 3 ·max(l, h, w), where l, h, w denote the length,

height, and width of the annotated object.

Within each batch, we evenly balance the loss induced by positive labels and

negative labels, to ensure that the model does not learn a frequency bias for either

class.

3.10 Connection to EM

The mathematical connection to Expectation-Maximization (EM) is not perfect,

because our model is not generative, but the mapping is quite close. Following the

terminology of Nigam et al. [44], we have:

E step: Use the current classifier to estimate the class membership for

each datapoint. In our case, use the ensemble of handcrafted and learned modules

to estimate the objectness probability for each pixel/point.

M step: Re-estimate the classifier, using the estimated class labels. In

our case, re-optimize the parameters of the learned components of the ensemble, using

estimates produced by the ensemble as a whole (i.e., where agreement was reached).

Note that if our classifier were a single discriminative model, it would theoretically

converge after the first M step; using an ensemble of independent modules allows

our method to improve over rounds, since it will not converge until all submodules

produce the same labelling.
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Legend 
• Positive 
• Negative 
• Ignore 

Figure 3.3: Sparse supervision for 2D objectness segmentation. Left: RGB
images with color and occlusion augmentations. Right: supervision generated from
pseudolabels. Supervision is only generated in the region immediately surrounding
the discovered objects.
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Chapter 4

Experiment Results

4.1 Datasets

We evaluate in the following datasets:

1. Synthetic RGB-D videos of tabletop scenes from CATER [21]. CATER is a built

upon CLEVR [31], and it focuses on testing a model’s ability to do long-term

temporal reasoning. We modified the simulator so that it can generate depth

maps in addition to RGB images, but leave all other rendering parameters

untouched. The max number of objects is set to 10 to make the scenes as

complex as possible. Videos are captured by 6 virtual cameras placed around

the scene.

2. Real RGB-D videos of urban scenes, from the KITTI dataset [20]. This data

was collected with a sensor platform mounted on a moving vehicle, with a

human driver navigating through a variety of road types in Germany. The data

provides multiple images per timestep; we use the “left” color camera. The

dataset provides depth in the form of LiDAR sweeps synced to the images.

We use the “tracking” subset of KITTI, which includes 3D object labels, and

approximate (but relatively inaccurate) egomotion.

We evaluate the models on their ability to discover objects in 3D, and track objects

over time.
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4.2 Baselines

For unsupervised object discovery, we use the following baselines:

• Object-Centric Learning with Slot Attention [40]. This model trains an

autoencoder with image reconstruction loss, with soft clustering assignments as

a representational bottleneck. An iterative attention-based update mechanism

is applied when constructing the clusters.
• MONet [8]. MONet applies a recurrent attention mechanism that tries to

explain the scene part by part, with a VAE. Since there is no official code

released, we re-implemented it.
• Spectral Clustering [6]. This method first extracts dense point trajectories

using optical flow, then performs object segmentation by computing affinities

between trajectories and then clustering.
• Discontinuity-Aware Clustering [18]. This method also begins with dense

point trajectories, but uses density discontinuities in the spectral embeddings

to improve the segmentation.

For tracking, we use the following baselines:

• Supervised Siamese Network [4]. This is a 3D convolutional net trained as

a siamese object tracker. This model produces a feature volume for the object

at t = 0, and produces feature volume for the scene at each timestep, and then

locates the object in the wider scene by doing cross correlation at each step.

The model is supervised so that the peak of the correlation heatmap is in the

correct place.
• Tracking by Colorizing [57]. This model learns features through an image

reconstruction task. The goal is to colorize a grayscale image, by indexing into

a source color image with feature dot products. We upgrade this model into

a 3D tracker by associating the learned features to the 3D pointcloud instead

of RGB values, and by doing RANSAC on the point-wise correspondences to

estimate rigid object motions [24].

4.3 Training details

We optimize the parameters of all CNNs with the Adam optimizer [35], with an

effective batch size of 4. To achieve this on smaller GPUs with memory constraints,
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we use a batch size of 1 but accumulate gradients from 4 steps before taking a step

with the optimizer.

For the 2D segmentor and the 3D object detector, in the first training round, we

use random initialization of the networks, and set the learning rate to 1e− 4. In the

second training round, we use the first round’s parameters as initialization, and train

with a learning rate of 1e − 5. The segmentor converges in approximately 40,000

iterations, while the 3D detector requires approximately 80,000 iterations. For the

optical flow module, we initialize with the RAFT model trained on FlyingThings [42].

We have also fine-tuned the RAFT model with standard self-supervision objectives

(brightness constancy, smoothness, forward-backward consistency), without significant

improvement beyond this strong initialization.

In CATER we use an image resolution of 128×384, and a 3D voxel grid resolution

of 128× 64× 128, spanning a range of 8× 4× 8 in the dataset’s units. In KITTI we

use an image resolution of 128× 416, and a 3D voxel grid resolution of 256× 32× 256,

spanning a metric range of 32m× 8m× 32m.

4.4 Quantitative results

4.4.1 Object discovery

Our main evaluation is in Table 4.1, where we evaluate the object proposal accuracy

in mean Average Precision (mAP) at different IoU thresholds, on both CATER and

KITTI. The metrics are collected in a bird’s-eye view (BEV) and in 2D projections

(2D). Adding additional rounds of EM improves the precision at the higher IoU

thresholds. We find that our model outperforms the baselines in nearly all metrics.

Please see detailed analysis of the baselines’ performance in section 4.7.

4.4.2 Object tracking

Object tracking accuracy (in IoU over time) is shown in Figure 4.1. To evaluate

tracking, we initialize the cross-correlation based tracker with the bounding box of

the object to track.

As shown in Figure 4.1, the supervised model outperforms the unsupervised
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Method Dataset
mAP@X

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Slot Attention [40]
CATER (2D) 0.63 0.51 0.43 0.34 0.22 0.1 0.05
KITTI (2D) 0.07 0.03 0.01 0 0 0 0

MONet [8]
CATER (2D) 0.23 0.14 0.12 0.10 0.07 0.03 0.01
KITTI (2D) 0.03 0.01 0 0 0 0 0

Spectral Clustering [6]
CATER (2D) 0.18 0.08 0.04 0.03 0.01 0 0
KITTI (2D) 0.08 0.03 0.02 0.02 0.01 0 0

Discontinuity
Aware Clustering [18]

CATER (2D) 0.17 0.08 0.04 0.02 0.01 0.01 0
KITTI (2D) 0.08 0.04 0.03 0.01 0 0 0

Ours
(Round1)

CATER (2D) 0.98 0.97 0.97 0.94 0.86 0.7 0.36
KITTI (2D) 0.53 0.39 0.18 0.06 0.03 0.01 0.01
CATER (BEV) 0.97 0.92 0.75 0.57 0.34 0.06 0
KITTI (BEV) 0.46 0.42 0.06 0 0 0 0

Ours
(Round2)

CATER (2D) 0.98 0.97 0.96 0.94 0.88 0.69 0.33
KITTI (2D) 0.43 0.40 0.39 0.33 0.30 0.22 0.10
CATER (BEV) 0.97 0.95 0.84 0.66 0.46 0.08 0
KITTI (BEV) 0.41 0.39 0.35 0.31 0.28 0.11 0.02

Ours
(Round3)

CATER (2D) 0.98 0.98 0.97 0.95 0.88 0.71 0.34
KITTI (2D) 0.43 0.4 0.37 0.35 0.33 0.3 0.21
CATER (BEV) 0.98 0.97 0.9 0.76 0.46 0.1 0.02
KITTI (BEV) 0.4 0.38 0.35 0.33 0.31 0.23 0.06

Table 4.1: Object discovery performance, in CATER and KITTI. Results
are reported as mean average precision (mAP) at several IoU threshols. Our method
works best in all the metrics reported. 2D means perspective view and BEV means
bird’s-eye view.

ones, especially in CATER (where the data and supervision are perfect), and by a

narrower margin in KITTI. Our method can maintain relatively high IoU over long

time horizons. The IoU at frame 19 is 0.34 in KITTI and 0.7 in CATER. Our model

compares favorably to the 3D-upgraded colorization baseline.

We also input our Round3 KITTI detections to a recent tracking-by-detection

method [58], and evaluated with standard multi-object tracking metrics. We obtained

sAMOTA: 0.2990; AMOTA: 0.0863; AMOTP: 0.1581. This is encouraging but still

far behind the supervised state-of-the-art, which obtains sAMOTA: 0.9328; AMOTA:

0.4543; AMOTP: 0.7741. Our main failure case appears to be missed detections. We

also used this tracker to compute alternate results for the IoU-over-time evaluation

(cf. Fig. 4.1): this yields a relatively stable line around 0.44 IoU across 20 frames.
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Figure 4.1: 3D object tracking IoU over time, in CATER and KITTI. Track-
ing precision necessarily begins near 1.0 because tracking is initialized with a real
object box in frame0, and declines over time, more drastically in KITTI than in
CATER.

Table 4.2: Ablations of the trajectory library, in CATER.

Method Recall Precision
Ours, with short-range tracker 0.53 0.94
. . . and trajectory library 0.64 0.91

Performance appears upper-bounded by the detector’s mean IoU.

4.5 Qualitative results

For object discovery, We show object proposals of our model in CATER and KITTI

in Figure 4.2. Ground-truth boxes are shown in beige and proposed boxes are shown

in blue. Their IoU are marked near the boxes. Results are shown on RGB image as

well as bird’s-eye view. The boxes have high recall and high precision overall; it can

detect small objects as well as separate the object that are spatially close to each

other. In KITTI, there are some false positive results on bushes and trees because of

the lack of pseudo-label supervision there. We visualize KITTI object tracking in

Figure 4.3.
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Figure 4.2: 3D object detections in CATER (top) and KITTI (bottom).
Ground-truth boxes are shown in beige and detection results are shown in blue. IoU
scores are marked alongside each box. Results are shown in perspective RGB and
bird’s-eye view.
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Figure 4.3: 3D object tracking in KITTI. IoU scores are marked alongside each
estimated box (in blue) across subsampled frames.

4.6 Ablation studies

4.6.1 Ablation on ensemble agreement

Figure 4.4 shows what happens when the ensemble agreement check is dropped: the

model gradually begins classifying everything as an object (BEV mAP@.5=0.17 on

Round2 instead of 0.28).

4.6.2 Ablation on the trajectory library

Table 4.2 shows an ablation study on the trajectory library. We report “Recall”,

which we define as the proportion of objects that are successfully tracked by our

model from the beginning of the video to the end, where tracking success is defined

by an IoU threshold of 0.5. We also report “Precision”, which we define as the

proportion of tracklets that begin and end on the same object. With the trajectory

library, we improve the recall from 53% to 64%, while precision drops slightly from

94% to 91%. Qualitatively we find that the majority of improvement is on partially

and fully-occluded objects, where strict appearance-based matching is ambiguous

and prone to failure, but where the library is a useful prior.
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Numerical values indicate confidences, not IOUs.

Figure 4.4: Ablation of ensemble agreement causes divergence. The model
eventually detects objects everywhere.

4.7 Baseline object discovery analysis

Interestingly, the learning-based baselines, which achieve state-of-the-art results in

synthetic datasets, have near zero accuracy in KITTI. This is probably because certain

assumptions in their design are violated in this data (e.g., a static-camera assumption

is violated, and there is relatively little self-similarity within object/background

regions compared to CATER). We illustrate this in Figure 4.5 for MONet [8], and in

Figure 4.6 for Slot Attention [40]. We find that optimizing these models is considerably

more difficult in a real-world dataset such as KITTI, than it is in simple synthetic

datasets.

4.8 Limitations

The proposed method has two main limitations. Firstly, our work assumes access

to RGB-D data with accurate depth, which excludes the method from application

to general videos (e.g., from YouTube). Second, it is unclear how best to mine for

negatives (i.e., “not a moving object”). Right now we use a small region around each

pseudo label as negative, but it leaves the method prone to false positives in far-away

non-objects like bushes and trees.
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Figure 4.5: Object discovery results by MONet [8] in CATER (top) and
KITTI (bottom). In CATER the proposed boxes are typically on objects, but in
KITTI we find that the model produces boxes for non-object scene elements, such as
segments of the road, lane markings, and the sky.

27



CHAPTER 4. EXPERIMENT RESULTS

Figure 4.6: Object discovery results by Slot Attention [40] in CATER (a)
and KITTI (b). For each dataset, the rows are arranged as follows: 1st row (left
to right): RGB ground truth, RGB reconstruction by the model, ground truth
bounding boxes, predicted bounding boxes. 2nd row: The predicted masks for each
slot. 3rd row: RGB reconstruction for each slot.
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Conclusions

This thesis proposes a self-supervised method for discovering and tracking objects

in unlabelled RGB-D videos. We begin with a simple handcrafted technique for

segmenting independently-moving objects from the background, relying on cycle-

consistent flows and RANSAC. We then train an ensemble of 2D and 3D detectors with

these segmentations, under heavy data augmentation. We then use these detectors

to re-label the dataset more densely, and return to the training step. The ensemble

agreement keeps precision of the pseudo-labels high, and the data augmentations

allow recall to gradually expand. Our approach opens new avenues for learning object

detectors from videos in arbitrary environments, without requiring explicit object

supervision.
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