
Point Cloud Registration
as a Classification Problem

Tejas Zodage

August 2021

CMU-RI-TR-21-47

Robotics Institute

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee

Howie Choset, Advisor

Matt Travers, Co-Advisor

David Held

Brion Okorn

c© Copyright by

Tejas Zodage

2021

Abstract

Point Cloud Registration(PCR) is an important step in fields such as robotic manipulation,

augmented and virtual reality, SLAM, etc. In the context of computer vision, registration

in general refers to the process of aligning data obtained from different frames and as the

name suggests PCR is the task of aligning point-clouds. The main contribution of this

thesis is drawing parallels between PCR and classification which allows us to apply well

studied concepts from classification in PCR. This thesis further shows two applications of

drawing such parallels in the context of deep learning based PCR. We show the use of cross-

entropy loss, and discrepancy loss from classification for partial to full PCR, and outlier

filtering respectively. We finally show that many of the existing deep learning based PCR

architectures can be easily modified to be trained using the loss functions from classification

literature.

ii

Acknowledgments

I am grateful to my co-advisers Drs. Howie Choset and Matthew Travers for providing

me with the opportunity to work on these really interesting research topics. They have

always inspired me to constantly improve my communication and and research skills. I

really appreciate there help on my non-academic problems like job search and dealing with

health issues. I would like to thank my family, Aai, Anna and Rajas for believing in me

even when I did not. Their sacrifices for me are countless. This thesis wouldn’t have been

possible without my colleague and mentor Arun Srivatsan. He literally taught me how to

do research, what is point cloud registration, and a lot about music, art, movies, and life

in general. Rahul Chakwate can be definitely treated as the second author of this thesis.

I am grateful to him to bear with my constant nagging about the debugging methods

and my OCD about presentations. I would like to thank my lab mates and room mates

Abhimanyu and Vinit for continuous emotional, technical, and logistical support to get me

through my master’s. I can never forget those all night pizza and brainstorming sessions

with Abhimanyu and chai and code sessions with Vinit. Speaking of Chai, I can not thank

Shruti, Sampada, Rohit Jena and Rohit Singh enough to make those chai time sessions

more interesting than anything. Lastly, a big thanks to the administrative staff, Peggy,

Rachel, and BJ for dealing with my complicated visa situations. I am very lucky to have

these many well wishers in my life.

iii

Table of Contents

Page
Abstract . ii
Acknowledgments . iii
List of Figures . vi

Chapters

1 Introduction 1
1.1 Related Work . 2

1.1.1 Conventional registration methods 3
1.1.2 Deep learning-based registration methods 3

1.2 Mathematical Formulation . 5

2 Partial to full point cloud registration with cross-entropy loss 6
2.1 Introduction . 6

2.1.1 Robustness of correspondences Vs robustness of transformations . . 8
2.2 PCR as multi-class classification . 9
2.3 Experimental setup . 11

2.3.1 DCP Vs DCP corr . 12
2.3.2 RPMNet vs RPMNet corr . 13
2.3.3 PCRNet Vs PCRNet Corr . 13

2.4 Results . 14
2.4.1 DCP Vs DCP corr . 15
2.4.2 RPMNet Vs RPMNet corr . 16
2.4.3 PCRNet Vs PCRNet corr . 17

2.5 Extending cross entropy to filter outliers . 18
2.5.1 Registration in the presence of outliers 18

2.6 Experiment - DCP Vs DCP corr in the presence of outliers 19
2.7 Conclusion and future work . 20

3 Outlier filtering with maximum discrepancy loss 26
3.1 Introduction . 26
3.2 What is discrepancy? . 27
3.3 Maximum discrepancy loss . 28
3.4 Network Architecture for outlier filtering in point clouds 29
3.5 Discrepancy loss for PCR . 29

iv

3.6 Training Procedure . 31
3.7 Experiments and Results . 34

3.7.1 Different types of outlier settings: . 34
3.7.2 Ablation on varying the discrepancy threshold 36
3.7.3 Ablation on percentage of outliers 38
3.7.4 Comparison with RPMNet’s Sinkhorn Normalization 41

3.8 Discussion and future work . 42

Bibliography 43

v

List of Figures

Figure Page

1.1 Main contribution of this thesis - finding parallels between Point Cloud Reg-
istration(PCR) and classification. 1

2.1 When learning to predict the pose parameters, deep-learning-based methods
such as DCP [1] learn correspondence (mapping between the points of point
clouds) implicitly. If the same networks are trained to explicitly learn corre-
spondence (DCP corr), the resulting registration is more accurate. Template
point cloud is shown in blue, source point cloud in black. Green arrows show
correct correspondence. Red arrows show incorrect correspondence. 7

2.2 Graph showing percentage of perturbation to ‘point-correspondence’ and ‘ro-
tation vector’ vs alignment error. The plot shows that the alignment error is
low even with as high as 40% wrong correspondences. On the other hand the
alignment error quickly increases with perturbation to the rotation param-
eters. Thus, we hypothesize that training the networks to learn correspon-
dences would have better registration accuracy than learning pose parameters. 8

2.3 a) Deep Global Registration [2], b) Possible extension of our approach where
two stage process of DGR can be merged into a single step thus resulting
in a faster registration. Note that in our current work, networks output
C ∈ RNy×Nx we assume that the data can be partial but there are no outliers 11

2.4 DCP and RPMNet architctures internally calculate the correspondence ma-
trix C . This correspondence matrix is further used along with X,Y to
calculate R, t. In order to make these networks explicitly learn correspon-
dence, we use C along with ground truth C∗ to calculate cross entropy loss.
Since PCRNet does not explicitly calculate C, we modify the network ar-
chitecture and compare the PointNet’s per-point features to generate the
correspondence matrix. 21

2.5 Results of experiments on DCP vs DCP corr. 22
2.6 Results of experiments on RPMNet vs RPMNet corr 22
2.7 Results of experiments on PCRNet Vs PCRNet corr 23

vi

2.8 Left: Initially misaligned point clouds. Black points are source, blue points
are target. Red lines denote correspondence wrongly predicted by DCP corr
while green lines denote correct predictions. Black points circled by red
spheres denote points marked as outliers by the network. Right: Registered
point clouds using predicted correspondence matrix. 24

2.9 Figure 9. Visualization of DCP corr and DCP registration in presence of
outliers . 25

3.1 Discrepancy . 27
3.2 Discrepancy training procedure. Image credits Qing and Kiyoharu [3] . . . 28
3.3 Architecture of our outlier filtering approach. The source and target point

clouds are fed into a feature extractor (e.g. DCP). The extracted source
features are passed into two separate fully connected layers FC1 and FC2

with different initializations. The target features are passed through a single
fully connected layer FCtarget. The matrix multiplication of the source
and target features gives the correspondence matrices Cpred1 and Cpred2.
These are then supervised using the discrepancy and correspondence-based
loss functions. 30

3.4 Motivation for supervising our network with the discrepancy loss function
along with the correspondence loss. Both the graphs are histograms repre-
senting the number of points with a certain discrepancy value between the
two predictions Cpred1 and Cpred2. Left: The histogram when the network
is trained only using the correspondence loss. It can be seen that all the
points (inlier and outliers) have negligible discrepancy between the predic-
tions, making it hard to separate the outliers. Right: The histogram when
the network is supervised with discrepancy loss in addition to the correspon-
dence loss. The inlier points remain to have low discrepancy, but the outlier
predictions are pushed apart to have a high discrepancy. Thus, they can now
be easily separated by thresholding at a certain discrepancy value. 32

3.5 Training procedure. Top: Pre-training step. Supervision only on the inlier
points using the correspondence loss. Bottom: Fine-tuning Step: Supervision
on all points using the discrepancy loss along with the correspondence loss. 33

3.6 Qualitative results of our outlier filtering technique. Blue: Source points
including outliers. Black: Target points. Red Circles: Outliers detected by
our method. 35

3.7 Qualitative results of our outlier filtering technique. Blue: Source points
including outliers. Black: Target points. Red Circles: Outliers detected by
our method. 37

3.8 Ablation on varying percentage of outliers for Scenario: Random outliers
with partial source points . 39

3.9 Ablation on varying percentage of outliers for Scenario: Planar outliers with
partial source points . 39

3.10 Ablation on varying percentage of outliers for Scenario: Partial source and
partial target points . 40

vii

Chapter 1

Introduction

Point cloud registration (PCR), the task of finding the alignment between pairs of point

clouds, is often encountered in several computer vision [4, 5] and robotic applications [6–

9]. The main contribution of this thesis is drawing parallels between PCR and multi-class

classification problem Fig.1.1.

Figure 1.1: Main contribution of this thesis - finding parallels between Point Cloud Regis-
tration(PCR) and classification.

Finding such parallels can assist advancing research in PCR domain using already es-

tablished research in the classification domain and vice-versa. This thesis further explores

applications of finding these parallels in the context of deep-learning based PCR. We mainly

consider two cases of PCR, partial point cloud to full point cloud registration and outlier

filtering.

PCR community have been continuously working towards developing fast and accurate

1

methods [9–16]. Recent developments in deep learning-based PCR approaches have resulted

in faster and, under some circumstances, more accurate results [1, 5, 17, 18] as compared

to the conventional or non-deep-learning based methods. Deep learning based methods

approximate an oracle function using an artificial neural network, given a training data

set consisting of inputs of the oracle function and expected outputs. The weights of a

neural network are adjusted to minimize a metric comparing network’s predicted output

with expected output. This metric is typically known as loss function. The choice of the

loss function is a critical aspect of any deep learning based algorithm and it is not obvious

on what loss function will be most appropriate for a given application. In this thesis we

show, how we can import well-studied and experimented loss functions from classification

domain to PCR opposed to starting from scratch. We bring in the cross-entropy loss [19]

developed by the classification community for partial to full point cloud registration and

discrepancy loss [3] for outlier filtering.

The upcoming sections of this chapter will discuss the related work and mathematical

formulation of PCR. Chapter 2 describes the similarities between multi-class classification

and PCR. It further shows examples of modifying existing registration based methods to

learn correspondence using cross-entropy loss. In Chapter 3 we describe the discrepancy

loss in the context of image classification and its extension to PCR for outlier filtering. We

show how can we modify the existing network DCP [1] in order to filter outliers. Both

the chapters show experiments on the ModelNet40 [20] data set on various metrics such

as chamfer distance between points of registered point clouds, root mean squared error of

error in euler angles after registration, percentage of accurately predicted point clouds etc.

1.1 Related Work

In this section, we qualitatively review some prior and related work - first in conventional

registration and then in its deep learning variant. Second, we assign the mathematical sym-

bols and terminology for registration; this terminology and symbols will be used throughout

this thesis

2

1.1.1 Conventional registration methods

Point cloud registration seeks to computer a rigid body displacement - translation and

rotation - between two point clouds. Before computing the parameters of such a transfor-

mation, most approaches establish a correspondence between the points in their respective

point clouds. Frankly, if the correspondance is know, then registation becomes a triv-

ial optimization problem to solve. Iterative Closest Points (ICP) [14] is one of the most

popular methods for point cloud registration. ICP iteratively computes nearest neighbor

correspondences and updates transformation parameters by minimizing the least-squares

error between the correspondences [21]. Over the years, several variants of ICP have been

developed [22]. An important area of research in this space relates to efficient ways of

finding correspondences, for example point-to-plane correspondences [23], probabilistic cor-

respondences [9, 24–26], and feature-based correspondences [27, 28]. These methods are

locally optimal and hence perform poorly in the case of large misalignment, i.e. when the

transformation parameters between the two sets are large. The large misalignment can be

expected for tasks like pose estimation, when the object in the scene and the model of the

object can be in totally different orientations.

For large misalignment, stochastic optimization techniques have been developed such

as genetic algorithms [29], particle swarm optimization [30], particle filtering [12, 31] etc.

Another category of methods that deal with large misalignment include globally optimal

techniques. A popular approach is the globally optimal ICP (Go-ICP) [15] that uses a

branch and bound algorithm to find the pose. Recently, mixed integer programming has

been used to optimize a cost function over transformation parameters and correspondences

simultaneously [13, 32]. These methods have theoretical guarantees to reach global optimal.

The fact that they explicitly optimize over correspondences, motivates our work.

1.1.2 Deep learning-based registration methods

Deep learning PCR methods take as input two points cloud and out put a transformation.

Some of the recent deep-learning based PCR methods train a network to directly predict the

3

transformation between the input point clouds. PointNetLK [5] aligns the point clouds by

minimizing the difference between the PointNet [33] feature descriptors of two input point

clouds. PCRNet [17], first extracts feature descriptors of points using PointNet [33] and

extracts a global feature descriptor for each input point cloud individually. These global

feature descriptors are then concatenated and are passed through through a set of fully

connected layers to predict the pose parameters. These methods operate on global point

cloud features and fail to capture the local geometrical intrinsics of the points.

In order to capture local geometry, approaches like Deep Closest Point(DCP) [1] learn

to assign embedding (also known as feature descriptor) to the points in each point cloud

based on its nearest neighbors and attention mechanism. Further based on the similarity

between the features, a correspondence matrix is generated which calculates transformation

parameters that are used to define the loss function. The loss function over here is the error

between predicted transformation parameters and ground-truth transformation paramters.

The DCP network architecture is iteratively used by PRNet [34] to align partial point clouds.

This idea of using a correspondence predictor iteratively is also used by RPMnet [35], where

the network structure uses FGR [36] feature descriptor unlike DGCNN [37] used by DCP

and PRNet.

Some other methods such as Deep Global Registration (DGR) [2] and Multi-View Reg-

istraiton (MVR) [38], follow a two step process – (1) they find a set of plausible corre-

spondence pairs between two sets of 3D points using Fully Convolution Geometric Features

(FCGF) [39], and (2) these plausible correspondence pairs are passed through a network

which filters outliers. After filtering outliers, the registration is trivial using weighted SVD.

Note that DGR and MVR only find a subset of all plausible correspondence pairs, and reg-

ister more accurately than methods that directly predict pose parameters. This observation

motivates us to study the effect of explicitly training a network to predict all point-point

correspondences. Treating PCR as a classification problem, provides us with ability to use

the methods from classification literature to train our networks to learn the point-point

correspondence.

4

1.2 Mathematical Formulation

PCR is generally posed as an optimization problem. Consider two point clouds X =

[x1,x2, ...,xNx] ∈ R3×Nx and Y = [y1,y2, ...,yNy
] ∈ R3×Ny containining Nx and Ny points

respectively, where xi ∈ R3 and yj ∈ R3 are the points in the respective point clouds and

generally, Nx 6= Ny. The ground truth transformation, R∗ ∈ SO(3) and t∗ ∈ R3, that

aligns the two point clouds can be represented as

R∗, t∗ = argmin
R,t

(
Nx∑
i=1

||Rxi + t− yπ(xi)||2

)
, (1.1)

where || . . . ||2 is the L2 norm and, π denotes a function π : xi → N, such that π(xi) is the

index of the point corresponding to xi in Y . This function can be represented by a binary

matrix known as correspondence matrix C ∈ RNy×Nx , where Ci,j ∈ {0, 1} for i ∈ [1, . . . , Nx]

and j ∈ [1, . . . , Ny]. Cj,i = 1 implies that yj corresponds to xi. Or, yj = yπ(xi) = Y C :,i.

Here C :,i represents the ith column of C. Since the correspondence is unknown, registration

is restated as,

R∗, t∗,C∗ = argmin
R,t,C

(
Nx∑
i=1

||Rxi + t− Y C :,i||2

)
(1.2)

Where C∗ is the ground truth correspondence matrix. Note that Ŷ = Y C denotes the

rearranged Y such that ith point of X corresponds to ith point of Ŷ .

In the case when the point-cloud X is expected to have outliers, an extra variable

O ∈ RNx , and a constant λ ∈ R, where Oi ∈ {0, 1} for i ∈ [1, . . . , Nx]. Here Oi is a binary

variable which takes value of 1 if ith point is an outlier and λ is a threshold distance between

transformed xi and yπ(xi) beyond which xi will be considered an outlier. In this case, the

problem can be defined as

R∗, t∗,C∗,O∗ = argmin
R,t,C,O

(
Nx∑
i=1

||Rxi + t− Y C :,i||2(1−Oi) + λOi

)
(1.3)

5

Chapter 2

Partial to full point cloud
registration with cross-entropy

loss

2.1 Introduction

A critical aspect of registration is determining a correspondance i.e. mapping between

points of first cloud to the points of the second. Most approaches to registration (e.g.,

[14]) use simple rules-of-thumb or implement a separate procedure to establish correspon-

dances. While these approaches have been widely used, they do suffer from computational

complexity impacting their performance to determine pose parameters in real-time. Recent

developments in deep learning-based registration approaches have resulted in faster and,

under some circumstances, more accurate results [1, 5, 17, 18].

Unlike conventional approaches, most deep learning approaches directly estimate the

pose and often do not explicitly estimate point correspondences. Instead, they implicitly

learn the correspondences while being trained. While exploring the relation between corre-

spondence and registration, we observed that perturbing the correspondence produced only

small changes in the final pose estimation when compared to perturbations in the axis-angle

representation of the rotation (see section 2.1.1 for more details).

Based on this observation, we hypothesize that higher registration accuracy can be

achieved by training the networks to explicitly predict point correspondences instead of

implicitly learning them. In order to test this hypothesis, we modify the loss function

6

Figure 2.1: When learning to predict the pose parameters, deep-learning-based methods
such as DCP [1] learn correspondence (mapping between the points of point clouds) im-
plicitly. If the same networks are trained to explicitly learn correspondence (DCP corr),
the resulting registration is more accurate. Template point cloud is shown in blue, source
point cloud in black. Green arrows show correct correspondence. Red arrows show incorrect
correspondence.

of existing registration approaches and compare the results. To develop a suitable loss

function, we come up with a novel way of posing registration as a multi-class classification

problem. Wherein, each point in one point cloud is classified as corresponding to a point in

the other point cloud. These modified networks predict correspondences, from which pose

parameters are then calculated using Horn’s method [21]. We show that the performance

of each network that we modified is substantially improved (see Fig. 2.8). Notably, these

networks give more accurate registration results when faced with large initial misalignment

and are more robust to partial point cloud data as compared to the original networks.

Even though recent learning-based methods such as DCP [1] and RPMNet [35] also

7

Figure 2.2: Graph showing percentage of perturbation to ‘point-correspondence’ and ‘rota-
tion vector’ vs alignment error. The plot shows that the alignment error is low even with
as high as 40% wrong correspondences. On the other hand the alignment error quickly
increases with perturbation to the rotation parameters. Thus, we hypothesize that training
the networks to learn correspondences would have better registration accuracy than learning
pose parameters.

calculate correspondence as an intermediate step in order to calculate pose parameters, the

networks are not explicitly trained to learn them. We show that their networks can register

more accurately when explicitly trained to learn the correspondence.

The key contributions of our work are listed as follows–

• We provide a fundamental reasoning of why explicitly predicting correspondence pro-

vides better accuracy and results in faster convergence and verify it through extensive

experimentation.

• We introduce a new way of formulating point cloud registration as a multi-class clas-

sification problem and develop a suitable loss using point correspondence.

2.1.1 Robustness of correspondences Vs robustness of transformations

To understand the effect of wrong correspondences on alignment, we perform the following

experiment. We initially sample n points randomly from a unit 3D cube and denote it as

point cloud X. We then transform X with a random but known rotation R∗ to create point

8

cloud X′ = R∗X. For convenience, we convert R∗ to a rotation vector form v∗ ∈ R3 and

add p% corruption to generate vpert = v∗ + vcorrupt. We then calculate the error between

Rpert and R∗. This is noted as alignment error between corrupted rotation and ground truth

rotation. We gradually increase the percentage corruption and calculate the corresponding

alignment error (Figure 2.2). To observe the robustness of the correspondences, in another

independent experiment, we randomly corrupt p% of the ground truth correspondence and

calculate the resulting rotation matrix based on perturbed correspondences using Horn’s

method 1 [21]. The error between the ground truth rotation and perturbed rotation is then

calculated. We gradually increase the percentage corruption and observe it’s effect on the

rotation error. We observe that even if 40% of the correspondences are wrong, the alignment

error is ≈ 5◦.

Based on this observation we hypothesize that if a network is trained explicitly to predict

correspondence, the network will align point clouds more accurately than a network with

similar architecture but trained to predict pose.

2.2 PCR as multi-class classification

To test our hypothesis, we first develop a suitable loss function that can explicitly learn

the correspondences. An obvious choice could be a mean square error or absolute error

between predicted and ground truth correspondence but these loss functions do not provide

any strong physical intuition about the correspondence.

We introduce a novel way of treating the task of correspondence assignment as a multi-

class classification problem. We treat each point in Y to be a different class and each point

in X belongs to one of the classes i.e. Nx examples and Ny classes. Note that each example

needs to belong to at least one class but there can be classes with no corresponding example.

This framework is particularly suitable to register partial point clouds where, ∀xi,∃yj but

converse need not be true. Note that this is fundamentally different from MVR [38], where

each correspondence pair is classified as a binary: inlier or outlier and the correspondence

1Note that Horn’s method is just one of many closed form approaches to obtain transformation given
corresponding pairs of point clouds. The results will be identical if Horn’s method is replaced by weighted
SVD, or Arun’s method [10].

9

matrix constraints are not respected.

We consider a general framework that first generates per point features FX =

[fx1 ,fx2 , ...,fxNx
] ∈ RNe×Nx and F Y = [fy1 ,fy2 , ...,fyNy

] ∈ RNe×Ny for input point

clouds X and Y where f j ∈ RNe×1 and Ne is the embedding space dimension. We gener-

ate a soft correspondence matrix based on a differentiable distance metric in the feature

space 2. The metric can be distance-based as introduced by MVR [38] or projection-based

as suggested in DCP [1]. Without any loss of generality, we choose DCP’s approach to

generate a soft correspondence matrix i.e. a matrix where each element denotes probability

of a correspondence between point pairs as C = softmax(F T
Y FX). We compare C with

a ground truth correspondence matrix C∗. We define the ground-truth correspondence as

nearest neighbor of a point xi in Y when X and Y are aligned. It is worth noting that

this is not a reversible mapping i.e. if y1 ∈ Y is the nearest neighbor of x1, it is possible

that the nearest neighbor of y1 in X is xj , where j 6= 1. This adds a constraint on the

correspondence matrix that each the sum of the elements of each column should add up to

one.

The multi-class classification framework allows us to use a cross-entropy loss, LCE . This

loss function implicitly applies the constraint that sum of the elements of a column should

be one unlike binary cross entropy (BCE). For the sake of convenience of notation, we define

C′ = F T
Y FX

LCE(C′,C∗) = −
Nx∑
i=1

log

exp

(
Ny∑
j=1

C′j,iC
∗
j,i

)
Ny∑
j=1

exp(C′j,i)

While beyond the scope of this paper, it is worth noting that our framework can be

further modified to add an additional class to classify an xi as an outlier. If we incorporate

an extra class for outliers in the correspondence matrix C ∈ RNy+1×Nx , this becomes a

single-step generalised version of the two step process used by DGR (see Fig. 2.3).

2The soft correspondence is similar to the matrix used in conventional registration approaches [13, 24,
26, 32], where every element of the correspondence matrix denotes the probability of matching.

10

Figure 2.3: a) Deep Global Registration [2], b) Possible extension of our approach where two
stage process of DGR can be merged into a single step thus resulting in a faster registration.
Note that in our current work, networks output C ∈ RNy×Nx we assume that the data can
be partial but there are no outliers

2.3 Experimental setup

We consider RPMNet [35], DCP [1], and PCRNet [17] to study the effects of training the

network to learn correspondence vs training the network to learn pose parameters. Note that

these methods were originally developed to register point clouds with small (±45 ◦) initial

misalignment. From here on we follow the notation that method is the network trained

with loss function suggested in the original paper while method corr is trained using our

loss function (cross-entropy on correspondence matrix). We train and test all these methods

and method corrs on ModelNet40 [40] dataset.

DCP [1] and RPMNet [35] generate an implicit correspondence based on the similarity

between per-point features of the input point clouds (Fig. 2.4). This intermediate corre-

spondence is used to find the transformation parameters between input point clouds using

Horn’s method [21] and weighted SVD method [35] respectively. For a network to implic-

itly learn correspondence, we define the loss as a function of the output transformation as

suggested by the respective method. While to explicitly learn the correspondence, we define

11

the loss as a function of intermediate correspondence as defined in Sec. 2.2.

We sample n number of points from a point cloud chosen from training data and de-

note this as point cloud X. We generate a copy of X and shuffle the order of points to

generate Y ′. To sample a rotation, we randomly choose a unit vector in R3 and an angle

θ ∈ U(−θ0, θ0), this axis and angle is used to generate a rotation vector which is further

transformed into a ground-truth rotation matrix R∗. Here, θ0 depends upon the specific ex-

periment and U(a, b) denotes a uniform distribution in the range [a, b]. Further we generate

a ground-truth translation vector t∗ ∈ [U(−0.5, 0.5),U(−0.5, 0.5),U(−0.5, 0.5)]. Now Y ′ is

transformed with R∗ and t∗ to generate Y . To generate the ground-truth correspondence

matrix C∗, we find the nearest neighbour of each xi ∈ X in Y ′. If y′j ∈ Y is the nearest

neighbour of xi then C∗(j, i) is set to 1 and other elements of ith column are set to 0.

To generate the partial point clouds, we randomly choose a plane passing through the

centroid of the original point cloud of source (X). We then randomly choose either up or

down directtion of the plane and remove a predetermined number of points from the source

farthest from the plane.

2.3.1 DCP Vs DCP corr

DCP uses DGCNN [37] features along with transformer network-based attention and co-

attention mechanism to generate interrelated per point features of a point cloud. These

features are used to generate probability distribution of source points on the target points

matrix C. They further calculate an intermediate representation of target point cloud Y

as Ŷ = CY . DCP uses Horn’s method to estimate the rotation matrix R and translation

t which minimizes the distance between corresponding points of Ŷ and X. The loss for

DCP is defined as

LDCP = ||RTR∗ − I||22 + ||t− t∗||22 (2.1)

For all the comparisons between DCP and DCP corr, we use learning rate = 0.001 as rec-

ommended by DCP.

DCP corr uses the correspondence matrix obtained in the intermediate step and com-

12

pares it with ground truth correspondence using cross entropy

LDCP corr = cross entropy(C,C∗) (2.2)

2.3.2 RPMNet vs RPMNet corr

RPMNet follows an iterative procedure. In each iteration, the point clouds X and Y

and transformation from previous iterations are passed into the feature extraction network

which computes point-wise features. The extracted features are then used to estimate the

correspondence matrix which is further refined using Sinkhorn [41] normalization layer in

an unsupervised manner. In order to estimate the transformation parameters, the target

points Y are weighted with the correspondence matrix weights C to obtain putative source

correspondences Ŷ = Y C. RPMNet corr uses this correspondence matrix to define the

cross entropy loss (see Fig. 2.4). RPMNet evaluates transformation parameters R, t based

on X, Ŷ and C. These transformation parameters are then used to define the primary loss

function Lreg,

Lreg =
1

Nx

Nx∑
i=1

|(R∗xi + t∗)− (Rxi + t)|1 (2.3)

RPMNet uses an additional unsupervised loss function Linlier which forces the network

to predict majority of the correspondences as inliers. These two loss functions together

form LRPMNet = Lreg + Linlier.

Both RPMNet and RPMNet corr are trained with the same hyper-parameters (as rec-

ommended in [35]), except for the learning rate. RPMNet corr is trained with an initial

learning rate of 0.01 which decays upto 0.0001 during training. We tried a higher learning

for both the methods but training of RPMNet is unstable for higher learning rates.

2.3.3 PCRNet Vs PCRNet Corr

PCRNet is a correspondence-free network that estimates registration parameters given a

pair of input point clouds (X and Y). As shown in Fig. 2.4, PCRNet uses PointNet [33]

as a backbone to compute the point-wise features of each input point cloud arranged in a

13

siamese architecture. In order to avoid input permutations, a symmetry function (max-pool)

is operated on point-wise features to obtain a global feature vector (∈ R1x1024). PCRNet

concatenates the global feature vectors of both the inputs and uses a set of fully connected

layers to regress the registration parameters. Rather than defining the loss function on the

ground truth transformation, PCRNet uses chamfer distance (CD) as the loss function,

CD(X,Y) =
1

Nx

∑
xi∈X

min
yj∈Y

‖xi − yj‖2+

1

Ny

∑
yj∈Y

min
xi∈X

‖yj − xi‖2 (2.4)

CD calculates the average closest distance between the template X and the point cloud

obtained by applying predicted transformation on Y .

Even though PCRNet uses an unsupervised loss function, CD is a function of X, Y , R

and t. In other words, the training of PCRNet again depends on the accuracy of R, t when

compared to the ground truth.

2.4 Results

In this section, we present results of different existing approaches, referred to as method,

and provide comparisons to versions of those approaches modified by training using our

correspondence based loss – referred to as method corr. We specifically highlight the im-

provement shown by method corr compared to method to large initial misalignment errors

as well as ability to register partial point-clouds.

Table 2.1: Effect of initial misalignment on registration accuracy

Rotation Rotation MAE (deg) Correspondence (%)
range (deg) DCP DCP corr DCP DCP corr

0-30 0.99 0.005 8.90 99.99
30-60 1.55 0.008 6.12 99.97
60-90 1.69 0.010 5.78 99.96
90-120 1.56 0.010 5.69 99.96
120-150 1.62 0.010 5.66 99.95
150-180 1.64 0.010 5.60 99.96

14

2.4.1 DCP Vs DCP corr

The authors of DCP, consider 1024 points in all of their experiments. Due to limited GPU

space, we re-ran all the DCP experiments using 512 points with the same hyper-parameters

including learning rate for both. We sample rotations from SO(3) with rotation vectors

instead of Euler angles. This helped us to train DCP even for large misalignment. For

different experimental settings Fig. 2.5 shows the comparison between DCP and DCP corr.

The first column shows that every training procedure converged. Second show the accuracy

of correspondence estimation of both the methods. Third column shows rotation error as

an RMSE over Euler angle error and fourth column denotes translation error.

Experiment 1.1 We have Nx = 512 points in the source and Ny = 512 points in the

target. The initial misalignment between them is uniformly sampled from SO(3) while the

translation is bound in cube of unit size centered on origin. As observed in Fig. 2.5 we can

see that DCP corr converges faster than DCP and is more accurate.

Experiment 1.2 The results of this section are visualized in Fig. 2.8. We have Nx = 358

points in the source and Ny = 512 points in the target. The source point cloud is made

partial as described in Sec. 2.3 . We observe that even though DCP’s loss function converges,

the RMSE rotation error is 14.7◦ while the rotation error of DCP corr is 0.51◦. This can be

considered as an empirical evidence that multi-class classification approach can deal with

partial data without any major modification to the network architecture.

Experiment 1.3 In this experiment, we compare DCP to DCP corr for the specific task

DCP was developed for, i.e. full-to-full point cloud registration for initial misalignment in

the range of [−45◦,+45◦]. We observe that both the networks converge, and the rotation

accuracy of DCP and DCP corr are 1.036◦ and 0.034◦ respectively.

Experiment 1.4 In this experiment we observe the effect of initial misalignment on

registration accuracy of DCP and DCP corr trained for arbitrary initial misalignment (Ta-

ble 2.1). For this experiment, we set the translation to zero and only allow a rotational

misalignment between the input point clouds. We observe that DCP corr always registers

more accurately than DCP, which is attributed to the remarkably high percentage of correct

15

correspondence.

2.4.2 RPMNet Vs RPMNet corr

We present the comparisons between RPMNet and RPMNet corr in Fig. 2.6. Unlike the

previous experiment with DCP, the rotation error metric used to evaluate these experiments

is the mean absolute anisotropic rotation error also known as axis angle error. We chose this

metric to be compliant with the choice of the authors of RPMNet [35]. Likewise, we present

the Chamfer distance (CD) between registered point clouds, in the fourth column of Fig.

2.6, as suggested by the authors of RPMNet [35]. The initial misalignment in translation

is sampled uniformly between [−0.5, 0.5].

Experiment 2.1 In this experiment, both the point clouds have Nx = Ny = 1024

points. The misalignment between these clouds is uniformly sampled from SO(3). It can

be observed that the rotation error converges faster and to a lower value of 0.059◦ with

RPMNet corr as compared to an error of 0.56◦ for RPMNet.

Experiment 2.2 To test the ability of multi-class classification approach to handle par-

tial point clouds, in this experiment we generate the partial source point cloud by retaining

70% of the points above a random plane such that Nx = 717 and Ny = 1024. We carry

out this experiment with uniform sampling from SO(3). Note that, even though one of the

key features of RPMNet is the ability to deal with partial point clouds, RPMNet corr has

higher registration accuracy of 0.34◦ compared to 3.79◦ of RPMNet.

Experiment 2.3 RPMNet is specifically designed for [−45◦,+45◦] initial misalignment.

Even in this range, we observe that RPMNet corr converges faster and registers more ac-

curately. We also observe that eventually RPMNet reaches 96% correspondence accuracy.

We believe that the RPMNet’s Sinkhorn algorithm along with the unsupervised loss on cor-

respondence (Linlier), pushes the intermediate correspondence matrix towards the ground

truth correspondence matrix in an unsupervised manner.

Experiment 2.4 In this experiment we study the effect of initial misalignment on

the registration accuracy of RPMNet and RPMNet corr. Both the networks are trained

with arbitrary initial misalignment in the range of [−180◦,+180◦] between the input point

16

clouds. In this experiment, we set the translation to zero and only allow a rotational

misalignment between the input point clouds. We calculate Mean Absolute Error (MAE)

between predicted and ground truth rotation in Euler angles. We observe from Table 2.2

that the MAE for rotation is always lower for RPMNet corr when compared to RPMNet.

Table 2.2: Effect of initial misalignment on registration accuracy

Rotation Correspondence Chamfer distance

Rotation MAE (deg) (%) MSE× 1E-5

range (deg) RPMNet RPMNet corr RPMNet RPMNet corr RPMNet RPMNet corr

0-30 0.52 0.011 26.96 98.28 8.51 0.56

30-60 0.58 0.013 26.97 98.28 8.48 0.56

60-90 0.69 0.015 26.96 98.28 8.51 0.55

90-120 0.89 0.26 26.96 98.18 8.49 0.68

120-150 1.01 0.47 26.97 98.15 9.36 0.12

150-180 0.96 0.66 26.97 98.07 8.68 0.79

2.4.3 PCRNet Vs PCRNet corr

The results showing the comparison between PCRNet and PCRNet corr are shown in 2.7.

We only provide a rotational misalignment between the input point clouds.

Experiment 3.1 We consider Nx = Ny = 1024 points for both the input point clouds.

We train PCRNet with the hyper-parameters recommended in [17] and compare it with

PCRNet corr. Note that PCRNet corr has fewer tunable parameters than PCRNet due

to the removal of MLPs. We observe that both the approaches converge to ≈ 5◦ rotation

accuracy. Based on the results of this experiment, we believe that PCRNet lacks depth

or number of parameters to achieve higher accuracy. Another reason to believe this is,

even after doing a thorough hyper-parameter search, we could not achieve correspondence

accuracy of ≥ 70%.

Experiment 3.2 In this experiment, we have two point clouds with 100 points each.

The initial misalignment between them is in the range of [−45◦, 45◦]. We observe that

PCRNet converges to a rotation accuracy of 9.97◦ compared to 1.8◦ of PCRNet corr.

17

Experiment 3.3 We repeat the previous experiment but use an initial misalignment

that is uniformly sampled from SO(3). We observe that PCRNet corr outperforms PCRNet

and is able to learn correspondences and the rotation accuracy reaches 21◦ at the end of

250 epochs.

2.5 Extending cross entropy to filter outliers

2.5.1 Registration in the presence of outliers

To extend multi-class classification approach to filter outliers, we consider a general frame-

work that first generates per point features FX = [fx1 ,fx2 , ...,fxNx
] ∈ RNe×Nx and

F Y = [fy1 ,fy2 , ...,fyNy
] ∈ RNe×Ny for input point clouds X and Y . Here f j ∈ RNe×1 and

Ne is the embedding space dimension. In the absence of outliers, we predicted the corre-

spondence matrix (probability of each source point to belong to one of the target points)

as

C = softmax(F T
Y FX) ∈ RNy×Nx

In presence of outliers, we want to classify a source point to belong to one of the target

points or as an outlier. i.e. we need Ny + 1 number of classes. To get an extra outlier

class for classification we use a feature vector embedding fYO ∈ RNe×1 that can suitably

represent an outlier. With such embedding for outliers, we can predict an outlier variant of

correspondence matrix CO ∈ RNy+1×Nx as

CO = softmax([fy1 ,fy2 , ...,fyNy
,fYO]TFX)

Note that for ith source point, CO
1,i,C

O
2,i, ...,C

O
Ny ,i denotes the probability of the point

belonging to y1,y2, ...,yNy
respectively and CO

Ny+1,i denotes the probability of it being an

outlier.

In case that a point is predicted as an outlier, we want the probability of it being

classified as one of the source points, as less as possible. In order to do so, we want the

outlier embedding to have large-negative projections on all the target point embeddings

18

so that after the softmax operation probabilities of outlier to be classified as an inlier will

be close to zero. There can be various ways to obtain such embedding. For preliminary

experiments, we generate such embedding fYO as,

fYO = argmin
f

(
||FY

Tf − b1Ny ||2
)

Here 1Ny denotes a column vector of ones of length Ny and b is a scalar. We empirically

choose b to be −1.

2.6 Experiment - DCP Vs DCP corr in the presence of out-

liers

We take Nx = 512 and Ny = 512 with initial misalignment in the range of [−45◦,+45◦] for

both DCP and DCP corr. Then position of 10% points from X is randomly corrupted to

be a random point in a unit cube centered at the origin. To generate the outlier variant of

ground-truth correspondence matrix CO∗, we find the nearest neighbour of each xi ∈X in

Y ′ and it’s distance to the nearest neighbor. If di is less than a predefined threshold then

y′j ∈ Y is denoted as nearest neighbour of xi by setting CO∗(j, i) to 1 and other elements

of ith column to be 0. If di is greater than the predefined threshold, then ith source point

is marked as an outlier by setting CO∗(Ny + 1, i) to 1 and other elements of ith column to

be 0.

Further DCP corr is trained to minimize the loss function cross entropy(CO,CO∗)

as mentioned in Sec. 4. The last row of CO is used as outlier weights and a weighted

SVD operation is performed to obtain transformation parameters (refer [6] for details). For

DCP corr, we observe an rotation error (RMSE) of 1.485◦ and an translation error (RMSE)

of 0.000138 after 15 epochs. The outlier filtering by DCP corr can be visualized in (Fig.

8). On the other hand, DCP is trained with the mean squared error loss on transformation

parameters. We observe a rotation error of 6.704◦ and translation error of 0.519 units. The

effect of outliers on DCP vs DCP corr can be observed in the Fig. 9.

19

2.7 Conclusion and future work

In this chapter we demonstrate that higher registration accuracy can be achieved if a net-

work is trained to explicitly learn correspondences instead of learning them implicitly by

training on registration parameters. This chapter adds to the ever-increasing body of work

demonstrating how carefully selecting the desired output of a data-driven approach can lead

to drastic improvements in performance. We observe faster convergence, higher registration

accuracy and ability to register partial point clouds when networks are explicitly trained to

learn correspondence instead of pose parameters. We also developed a new way to approach

registration as a multi-class classification task.

While in this work we have limited ourselves to results on ModelNet40, we plan to

extend it to real world datasets such as 3DMatch [42] and Sun3d [43]. In addition, future

work will involve extended the multi-class classification approach to deal with outliers in

the point clouds.

20

Figure 2.4: DCP and RPMNet architctures internally calculate the correspondence matrix
C . This correspondence matrix is further used along with X,Y to calculate R, t. In
order to make these networks explicitly learn correspondence, we use C along with ground
truth C∗ to calculate cross entropy loss. Since PCRNet does not explicitly calculate C, we
modify the network architecture and compare the PointNet’s per-point features to generate
the correspondence matrix.

21

Figure 2.5: Results of experiments on DCP vs DCP corr.

Figure 2.6: Results of experiments on RPMNet vs RPMNet corr

22

Figure 2.7: Results of experiments on PCRNet Vs PCRNet corr

23

Figure 2.8: Left: Initially misaligned point clouds. Black points are source, blue points
are target. Red lines denote correspondence wrongly predicted by DCP corr while green
lines denote correct predictions. Black points circled by red spheres denote points marked
as outliers by the network. Right: Registered point clouds using predicted correspondence
matrix.

24

Figure 2.9: Figure 9. Visualization of DCP corr and DCP registration in presence of outliers

25

Chapter 3

Outlier filtering with maximum
discrepancy loss

3.1 Introduction

When registering a pair of point clouds we often encounter points in once point cloud

that do not have a corresponding point in the other. For example when we are trying to

register a real world point cloud of a chair with CAD model of the chair the real world

point clouds will have points belonging to the floor and other objects in the scene. These

points that do not correspond to points on the CAD model are known as outliers. Incorrect

matching of outliers leads to erroneous registration, thus outliers need to be filtered out

before registration. To deal with this outlier filtering problem, we start with an observation

that the classification community deals with a similar problem.

Typically, a classification neural network is trained to classify the input data into a fixed

preset categories. The prediction of the network (or classifier) is unpredictable if the test

data does not belong to the any of the preset categories. We thus want to predict if the test

data does not belong to the training data distribution. This problem is typically known as

out of distribution detection. For example, consider classifier trained to classify dogs vs cat

images. If such classifier is tested on a bird image, by itself it will predict it as a cat or

dog. One approach developed to filter out these out of distribution images is discrepancy

loss. This chapter shows how the idea of discrepancy loss from image classification can be

applied in the context of point cloud registration.

26

Figure 3.1: Discrepancy

3.2 What is discrepancy?

The idea of discrepancy can be explained with a toy problem of polynomial fitting. Polyno-

mial fitting is generally treated as a local optimization problem minimizing a cost function

based on a series of data points. Consider a data points or training points as shown in Fig.

3.1. If we try to regress two functions f1(x) and f2(x) to this data, starting from different

initial seeds, there shapes will be similar near the inilier region. Since the rest of the regions

do not contribute to the cost function, the shape of the fitted functions can be totally differ-

ent from each other. Thus we can use discrepancy or the difference ∆f(x) = f1(x)−f2(x) to

differentiate between inlier and outlier region. We need to choose initial conditions or local

optimization approaches such that |∆f(xinlier)| << |∆f(xoutlier)| for easy outlier filtering.

27

Figure 3.2: Discrepancy training procedure. Image credits Qing and Kiyoharu [3]

3.3 Maximum discrepancy loss

Qing and Kiyoharu [3] describe maximum discrepancy loss and a training procedure for this

loss in the context of out of distribution image detection. As shown in Fig. 3.2, they have

a feature extractor E. The extracted features are modified by the network blocks F1 and

F2. The blocks F1 and F2 are trained so that class prediction has high discrepancy for out

of distribution data. Here the total loss is defined as

L = Lsup + Lunsup (3.1)

28

Lsup = − 1

|Xin|
∑

xin∈Xin

2∑
i=1

log(pi(yin|xin)) (3.2)

Lunsup = max(0,m−
∑

xul∈Xin
d(p1(y|xul), p2(y|xul))

|Xul|
) (3.3)

The supervised loss Lsup is just cross-entropy that brings functions F1 and F2 closer for

in distribution data. While Lunsup pushes functions apart if they are close to each other

than a threshold m. Here the discrepancy loss is defined as,

d(p1(y|xul), p2(y|xul)) = H(p1(y|xul)− p2(y|xul)) (3.4)

Where H(.) defines entropy over the softmax distribution. Reader is suggested to refer to

[3] for more details on using maximum discrepancy loss for out of distribution detection for

image classification.

3.4 Network Architecture for outlier filtering in point clouds

Our approach is outlined in Figure 3.3. We first pass the source and target point clouds

through a feature extractor such as DCP, DGCNN or RPMNet. We then pass the extracted

source features through two separate classifiers FC1 and FC2. However, the target features

are passed only through a single classifier FCtarget. This gives us two different source

representations and one target representation. We matrix multiply the source and target

representations (as in DCP) to generate two separate correspondence matrices Cpred1 and

Cpred2. The discrepancy between them gives us the information whether the corresponding

source point is an inlier or not. Finally, weighing the target point clouds according to any

one of the correspondence matrix gives us the source-target pairs of inlier point clouds,

which can then be used for registration using Horn’s method.

3.5 Discrepancy loss for PCR

During training, we supervise the network using two kinds of loss functions: correspondence

loss and discrepancy loss. The correspondence loss is the same as that defined in Chapter

29

FC1

FC2

FCtarget

Cpred1

Cpred2

Discrepancy Loss
+

Correspondence
LossFeature Extractor

Target

Source

Feature Extractor

Figure 3.3: Architecture of our outlier filtering approach. The source and target point
clouds are fed into a feature extractor (e.g. DCP). The extracted source features are passed
into two separate fully connected layers FC1 and FC2 with different initializations. The
target features are passed through a single fully connected layer FCtarget. The matrix
multiplication of the source and target features gives the correspondence matrices Cpred1

and Cpred2. These are then supervised using the discrepancy and correspondence-based
loss functions.

2 Section 2.2. It trains the network to predict the correspondence matrix accurately by

comparing it with the ground-truth correspondence matrix. Only inlier source points are

passed into this loss function as only they form a valid pair with the target. We use the cross

entropy loss for this purpose, whose mathematical formulation is given in Equation (3.5).

LCE(Cpred,Cgt) = − 1

Nx

Nx∑
i=1

log

exp

(
Ny∑
j=1

Cpredj,iCgtj,i

)
Ny∑
j=1

exp(Cpredj,i)

 (3.5)

where Cpred,Cgt ∈ RNy×Nx with Nx being the number of inlier source points and Ny

that of target points. Here, Cpred is the mean of Cpred1 and Cpred2.

On the other hand, the discrepancy loss is used to maximize the discrepancy between

the two predicted correspondence matrices Cpred1 and Cpred2 so that the outliers can be

filtered easily. Only outlier source points are passed into this loss function as our aim is to

increase discrepancy only for outliers. Its mathematical formulation is given by

30

Ldisc(Cpred1,Cpred2) = max

mrg − 1

N ′x

N ′
x∑

i=1

disc(Cpred1:,i,Cpred2:,i), 0

 (3.6)

where N ′x is the number of outlier points in the source and disc(·) is given by

disc(Cpred1:,i,Cpred2:,i) = H(Cpred1:,i)−H(Cpred2:,i) (3.7)

where H(·) is the entropy function over column-wise softmax.

H(Cpred:,i) = −
Ny∑
j=1

 exp(Cpredj,i)

Ny∑
j=1

exp(Cpredj,i)

∗ log

 exp(Cpredj,i)

Ny∑
j=1

exp(Cpredj,i)

 (3.8)

Here, the margin mrg helps to prevent overfitting because if the average discrepancy of

the outlier points is greater than this margin, then we can set loss to zero as the discrepancy

is sufficiently large to filter the outliers.

Thus, the total loss function is given by

Ltotal = LCE(Cpred,Cgt) + Ldisc(Cpred1,Cpred2) (3.9)

To sum up, the correspondence loss forces the two classifiers to learn the same features

for inlier points (thus reducing their discrepancy), while discrepancy loss forces the two

classifiers to learn different features for outlier points (which increases their discrepancy).

Hence, the two losses put together helps us classify the points into inliers vs outliers by

looking at the difference between Cpred1 and Cpred2. This working mechanism is illustrated

in Figure 3.4

3.6 Training Procedure

The training procedure is divided into two steps:

31

Only Correspondence
loss

Correspondence loss
+ Discrepancy loss

Not much
difference

Inlier points

Outlier points

#points #points

discrepancy discrepancy

Figure 3.4: Motivation for supervising our network with the discrepancy loss function along
with the correspondence loss. Both the graphs are histograms representing the number of
points with a certain discrepancy value between the two predictions Cpred1 and Cpred2.
Left: The histogram when the network is trained only using the correspondence loss. It
can be seen that all the points (inlier and outliers) have negligible discrepancy between
the predictions, making it hard to separate the outliers. Right: The histogram when the
network is supervised with discrepancy loss in addition to the correspondence loss. The
inlier points remain to have low discrepancy, but the outlier predictions are pushed apart
to have a high discrepancy. Thus, they can now be easily separated by thresholding at a
certain discrepancy value.

Step 1: Pre-training: The full network architecture (feature extractor and the fully

connected layers) is trained for registration using the correspondence loss. This training is

similar to the one we discussed in Chapter 2. In this step, we train our network to learn

point correspondences from intrinsic geometrical properties of the point clouds (extracted by

DGCNN) and the cross co-relation between the source and the target points (extracted by

transformer). In this training, we only pass inlier point clouds to the network as it learns

the similarity between the source and the target points. Here, both the fully connected

classifiers FC1 and FC2 will learn similar features without any discrepancy. This is because

the point correspondences extracted by the network will be in the inlier distribution space.

(Ref. Fig. 3.5a)

32

Step 2: Fine-tuning: Here, the network (especially the fully connected classifier) is

trained to increase the discrepancy between FC1 and FC2 with the supervision of the

discrepancy loss. In this step, the outlier points are fed to the network along with the inlier

points. Discrepancy loss trains the network to increase the distance between the predictions

of FC1 and FC2. This difference is then reflected in the correspondence matrices Cpred1

and Cpred2. The higher this difference, the more is the probability of the point being

outlier. By thresholding this difference, we can filter out the outlier points accurately. (Ref.

Fig. 3.5b)

FC1

FC2

FCtarget

Cpred1

Cpred2

Correspondence
Loss

Feature Extractor

Target

Source

Feature Extractor

(a) Step 1: Pre-training

FC1

FC2

FCtarget

Cpred1

Cpred2

Discrepancy Loss
+

Correspondence
LossFeature Extractor

Target

Source

Feature Extractor

(b) Step 2: Fine-tuning

Figure 3.5: Training procedure. Top: Pre-training step. Supervision only on the inlier
points using the correspondence loss. Bottom: Fine-tuning Step: Supervision on all points
using the discrepancy loss along with the correspondence loss.

33

3.7 Experiments and Results

We evaluated our outlier filtering method against various types of outlier settings and

different backbone architectures. All our experiments are conducted on the ModelNet40 [20]

dataset.

3.7.1 Different types of outlier settings:

In this experiment, we evaluate our approach against three types of outlier scenarios men-

tioned in Figure 3.7), which we believe are most commonly found in real-world examples.

The first scenario (Fig. 3.7a) is the presence of random outliers with partial source

points. It occurs when the scanner has a random noise associated with it and some part of

the scanned 3D object is occluded. Thus, it results in random outliers present in the scene

and the source points are only partially available.

The second scenario (Fig. 3.7b) is a hypothetical case in which a plane is also a part of

the scanned source object. (e.g. nearby wall, tabletop, etc). Evaluation on this case will

verify that our approach can not only filter out random noise, but also structured outliers

such as a plane. In ModelNet40 classes which inherits a planar shape in its structure,

such as tables, chairs, laptops, etc. this experiment shows that our model does not confuse

between the outlier plane and object’s inherent plane, and thus filters the outliers correctly.

The third scenario (Fig. 3.7c) is the most common scenario in real-world, and perhaps

the most challenging one. In this case, both the source and the target point clouds are only

partially visible. This occurs in real-world autonomous driving scenarios as well as in 3D

scanning and stitching. For instance, when a room is scanned from two different angles,

only partial parts of the room at overlapping each other. In other words, only partials scans

of the room are available in both the source and the target point clouds.

We tested our model on each of the three cases. In these experiments, we fixed the

percentage of outlier points out of total number of points to 20%. In the ablation studies,

we further vary this percentage to test the robustness of our model.

The Quantitative results on each of these experiments can be found in Table 3.1, while

34

(a) Random outliers with partial source points

(b) Planar outliers with partial source points

(c) Partial source and partial target points

Figure 3.6: Qualitative results of our outlier filtering technique. Blue: Source points in-
cluding outliers. Black: Target points. Red Circles: Outliers detected by our method.

the qualitative outlier filtering results are shown in Figure 3.7. The results table shows

the registration performance of DCP with and without our outlier filtering approach on all

the three scenarios mentioned in Figure 3.7. One can observe that the registration errors

drop significantly after adopting our outlier filtering method. From the last column, it is

evident that our approach can indeed filter out around 99% of the outliers correctly, thus

eliminating all the incorrect correspondence pairs which results in an increased registration

35

Scenario

Results

Without Outlier Filtering With Outlier Filtering

Rotation
Error
(deg)

Translation
Error
(cm)

Rotation
Error
(deg)

Translation
Error (cm)

% Outliers
correctly
filtered out

Fig. 3.7a 3.54 0.024 0.78 0.003 99.2%

Fig. 3.7b 8.31 0.071 0.15 0.0007 99.5%

Fig. 3.7c 2.52 0.033 0.11 0.0007 98.6%

Table 3.1: Registration performance of our approach on the three outlier scenarios. First
column is the scenario mentioned in Fig. 3.7. Columns 2-3 gives the registration RMSE
(rotation and translation error) without applying any outlier filtering technique. Columns
4-5 gives the same after applying our technique. Column 6 gives the % of the outliers that
were correctly filtered out by our technique.

performance. From Figure 3.7, it is evident that our approach can filter outliers effectively

in all the different scenarios.

3.7.2 Ablation on varying the discrepancy threshold

We also analysed the effect of the discrepancy threshold on registration accuracy. It is the

threshold value of the distance between two classifier’s predictions Cpred1 and Cpred2 at

which we can separate the outliers from inliers. The results are given in the Table 3.2.

Scenario Threshold = 0.05 Threshold = 0.15 Threshold = 0.25

Fig. 3.7a 0.79 0.90 1.16

Fig. 3.7b 0.51 0.53 0.72

Fig. 3.7c 0.11 0.25 0.53

Table 3.2: Ablation study for varying the discrepancy threshold value. First column is the
scenario as mentioned in Fig. 3.7. Columns 2-4 gives the rotation error (RMSE) values in
degrees for the registration in which the outliers are filtered by the discrepancy threshold
values given in the column head.

36

(a) Random outliers with partial source points

(b) Planar outliers with partial source points

(c) Partial source and partial target points

Figure 3.7: Qualitative results of our outlier filtering technique. Blue: Source points in-
cluding outliers. Black: Target points. Red Circles: Outliers detected by our method.

37

As one can observe, threshold = 0.05 gave the best registration results. Decreasing

threshold further resulted in an error due to insufficient inlier points available for registration

in some test cases. Hence, we decided to go with threshold = 0.05 in all our experiments.

3.7.3 Ablation on percentage of outliers

In addition to the above experiments, we also conducted ablation study to test our method’s

sensitivity to the percentage of outlier points. The qualitative and quantitative results for

each of the scenarios can be found in Figures 3.8, 3.9, 3.10. As it is observed, for varying

percentage of outliers, registration performance after outlier filtering is always better than

without filtering. One can also observe that as we increase the number of outliers, the drop in

performance is very low in the random outliers scenario and negligible in the planar outliers

case, as against the one without outlier filtering which suffers from high drop in performance.

In the case of partial-to-partial registration Figure 3.10, drop in performance quite high as

the percentage of outliers is increases, but this is mainly because the overlapping source

and target portion decreases significantly as we increase outlier percentage (especially in the

case of outliers = 40% or 50% where there are hardly any points in the overlapped region.)

38

Outliers = 0% Outliers =
10%

Outliers =
20%

Outliers =
30%

Outliers =
40%

Outliers =
50%

Figure 3.8: Ablation on varying percentage of outliers for Scenario: Random outliers with
partial source points

Outliers = 0% Outliers =
10%

Outliers =
20%

Outliers =
30%

Outliers =
40%

Outliers =
50%

Figure 3.9: Ablation on varying percentage of outliers for Scenario: Planar outliers with
partial source points

39

Outliers = 0% Outliers = 10% Outliers = 20%

Outliers = 30% Outliers = 40% Outliers = 50%

Figure 3.10: Ablation on varying percentage of outliers for Scenario: Partial source and
partial target points

40

3.7.4 Comparison with RPMNet’s Sinkhorn Normalization

In this experiment, we conduct an apples-to-apples comparison of our outlier filtering ap-

proach with RPMNet’s Sinkhorn Normalization approach (discussed in Section ??). For

a fair comparison, since the RPMNet authors implement Sinkhorn normalization on their

RPMNet backbone, we also implemented our approach using the same backbone for this

experiment.

Method
Registration
Iterations

Anisotropic Error Isotropic Error

Rotation
MAE (deg)

Translation
MAE (cm)

Rotation
MAE (deg)

Translation
MAE (cm)

RPMNet
+
Sinkhorn

(5 iter) 0.381 0.0040 0.739 0.0087

RPMNet
+ Ours

(1 iter) 0.248 0.0021 0.481 0.0043

RPMNet
+ Ours

(5 iter) 0.198 0.0018 0.396 0.0038

Table 3.3: Comparison with RPMNet’s Sinkhorn Normalization-based outlier filtering ap-
proach. First column states the method used. Column 2 states the number of times registra-
tion is applied iteratively by the method (RPMNet’s default value is 5 iterations). Columns
3-4 gives the anisotropic registration error as mentioned in the RPMNet paper. Columns
5-6 gives the isotropic registration error.

Table 3.3 shows the comparison of our approach with RPMNet. By default, RPM-

Net uses 5 registration iterations to register the point clouds accurately. As one can ob-

serve, compared to using Sinkhorn normalization for outlier filtering, instead if we use our

discrepancy-based approach, we get improved registration performance in just 1 iteration.

Needless to say, our 5 iteration version performs even better. Thus, our approach is a 1

shot approach which does not require iterative registration.

41

3.8 Discussion and future work

Currently, we have limited ourselves to results on ModelNet40, we plan to extend it to real

world datasets such as 3DMatch [42] and Sun3d [43].

Other approaches like SuperGlue [44] in the domain of 2D to 2D registration problem,

and OPRNet [45] for 3D to 3D PCR, treat the correspondence assignemnt as an optimal

transport problem. We would like to study the pros and cons of treating PCR as an optimal

transport problem vs a classification problem. Inherently, treating PCR as a classification

problem allows us to assign multiple target points to the same source point cloud, while

optimal assignment enforces that, one source point is matched to only one target point. We

believe that this restriction can hamper the performance of optimal transport approach in

case of sparse to dense PCR.

In this thesis, we have demonstrated the application of cross-entropy loss and discrep-

ancy loss. We want to further explore other, more recently developed loss functions such as

ring loss [46], LGM loss [47] for classification and KL divergence [48], and MCDD loss [49]

for outlier filtering.

So far, we have shown that PCR research can be benefited from the classification re-

search, it would be interesting to see if we can apply some registration literature in the

context of classification.

42

Bibliography

[1] Yue Wang and Justin M. Solomon. Deep closest point: Learning representations for

point cloud registration. CoRR, abs/1905.03304, 2019.

[2] Christopher Choy, Wei Dong, and Vladlen Koltun. Deep global registration. In Pro-

ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), June 2020.

[3] Qing Yu and Kiyoharu Aizawa. Unsupervised out-of-distribution detection by maxi-

mum classifier discrepancy. In 2019 IEEE/CVF International Conference on Computer

Vision (ICCV), pages 9517–9525, 2019.

[4] Richard A Newcombe, Shahram Izadi, Otmar Hilliges, David Molyneaux, David Kim,

Andrew J Davison, Pushmeet Kohi, Jamie Shotton, Steve Hodges, and Andrew Fitzgib-

bon. Kinectfusion: Real-time dense surface mapping and tracking. In Mixed and aug-

mented reality (ISMAR), 2011 10th IEEE international symposium on, pages 127–136.

IEEE, 2011.

[5] Yasuhiro Aoki, Hunter Goforth, Rangaprasad Arun Srivatsan, and Simon Lucey.

Pointnetlk: Robust & efficient point cloud registration using pointnet. CoRR,

abs/1903.05711, 2019.

[6] Aitor Aldoma, Federico Tombari, Radu Bogdan Rusu, and Markus Vincze. Our-cvfh–

oriented, unique and repeatable clustered viewpoint feature histogram for object recog-

nition and 6dof pose estimation. In Joint DAGM (German Association for Pattern

Recognition) and OAGM Symposium, pages 113–122. Springer, 2012.

43

[7] Yu Xiang, Tanner Schmidt, Venkatraman Narayanan, and Dieter Fox. Posecnn: A

convolutional neural network for 6d object pose estimation in cluttered scenes. In

Proceedings of Robotics: Science and Systems, Pittsburgh, Pennsylvania, June 2018.

[8] Radu Bogdan Rusu, Andreas Holzbach, Michael Beetz, and Gary Bradski. Detecting

and segmenting objects for mobile manipulation. In 2009 IEEE 12th International

Conference on Computer Vision Workshops, ICCV Workshops, pages 47–54. IEEE.

[9] Aleksandr Segal, Dirk Haehnel, and Sebastian Thrun. Generalized-ICP. In Robotics:

Science and Systems, volume 2, 2009.

[10] K.S. Arun, T.S Huang, and S.D. Bolstein. Least-Squares Fitting of Two 3-D Point

Sets. IEEE Transactions on Pattern Analysis and Machine Intelligence, 9(5):698–700,

1987.

[11] Rangaprasad Arun Srivatsan, Prasad Vagdargi, and Howie Choset. Sparse point reg-

istration. In 18th International Symposium on Robotics Research, 2017.

[12] Rangaprasad Arun Srivatsan and Howie Choset. Multiple start branch and prune

filtering algorithm for nonconvex optimization. In The 12th International Workshop

on The Algorithmic Foundations of Robotics. Springer, 2016.

[13] Rangaprasad Arun Srivatsan, Tejas Zodage, and Howie Choset. Globally optimal

registration of noisy point clouds. arXiv preprint arXiv:1908.08162, 2019.

[14] P.J. Besl and Neil D. McKay. A method for registration of 3-D shapes. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 14(2):239–256, Feb 1992.

[15] Jiaolong Yang, Hongdong Li, and Yunde Jia. Go-ICP: Solving 3D Registration Effi-

ciently and Globally Optimally. In 2013 IEEE International Conference on Computer

Vision (ICCV), pages 1457–1464, Dec 2013.

[16] Chanki Yu and Da Young Ju. A maximum feasible subsystem for globally optimal 3d

point cloud registration. Sensors, 18(2):544, 2018.

44

[17] Vinit Sarode, Xueqian Li, Hunter Goforth, Yasuhiro Aoki, Rangaprasad Arun Srivat-

san, Simon Lucey, and Howie Choset. PCRNet: Point Cloud Registration Network

using PointNet Encoding. arXiv e-prints, page arXiv:1908.07906, August 2019.

[18] Zan Gojcic, Caifa Zhou, Jan Dirk Wegner, and Wieser Andreas. The perfect match: 3d

point cloud matching with smoothed densities. In International conference on computer

vision and pattern recognition (CVPR), 2019.

[19] G. Hinton, P. Dayan, B. Frey, and R. Neal. The ”wake-sleep” algorithm for unsuper-

vised neural networks. Science, 268 5214:1158–61, 1995.

[20] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang,

and Jianxiong Xiao. 3D ShapeNets: A deep representation for volumetric shapes. In

CVPR, pages 1912–1920, 2015.

[21] B. Horn. Closed-form solution of absolute orientation using unit quaternions. Journal

of the Optical Society of America A, 4:629–642, 1987.

[22] Szymon Rusinkiewicz and Marc Levoy. Efficient variants of the icp algorithm. In

Proceedings third international conference on 3-D digital imaging and modeling, pages

145–152. IEEE, 2001.

[23] Yang Chen and Gérard Medioni. Object modelling by registration of multiple range

images. Image and vision computing, 10(3):145–155, 1992.

[24] Seth D. Billings, Emad M. Boctor, and Russell H. Taylor. Iterative Most-Likely Point

Registration (IMLP): A Robust Algorithm for Computing Optimal Shape Alignment.

PLoS ONE, 10, 2015.

[25] Lena Maier-Hein, Thiago R dos Santos, Alfred M Franz, and Hans-Peter Meinzer.

Iterative closest point algorithm in the presence of anisotropic noise. Bildverarbeitung

für die Medizin, 2010:231–235, 2010.

[26] A. Myronenko and Xubo Song. Point Set Registration: Coherent Point Drift. IEEE

45

Transactions on Pattern Analysis and Machine Intelligence, 32(12):2262–2275, Dec

2010.

[27] Anand Rangarajan, Haili Chui, and James S Duncan. Rigid point feature registration

using mutual information. Medical Image Analysis, 3(4):425–440, 1999.

[28] Ioannis Stamos and Marius Leordeanu. Automated feature-based range registration of

urban scenes of large scale. In 2003 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, 2003. Proceedings., volume 2, pages II–Ii. IEEE, 2003.

[29] Luciano Silva, Olga Regina Pereira Bellon, and Kim L Boyer. Precision range image

registration using a robust surface interpenetration measure and enhanced genetic algo-

rithms. IEEE transactions on pattern analysis and machine intelligence, 27(5):762–776,

2005.

[30] Mark P Wachowiak, Renata Smoĺıková, Yufeng Zheng, Jacek M Zurada, and Adel Said

Elmaghraby. An approach to multimodal biomedical image registration utilizing par-

ticle swarm optimization. IEEE Transactions on evolutionary computation, 8(3):289–

301, 2004.

[31] Romeil Sandhu, Samuel Dambreville, and Allen Tannenbaum. Point set registration

via particle filtering and stochastic dynamics. IEEE transactions on pattern analysis

and machine intelligence, 32(8):1459–1473, 2009.

[32] Gregory Izatt, Hongkai Dai, and Russ Tedrake. Globally optimal object pose estimation

in point clouds with mixed-integer programming. In Robotics Research, pages 695–710.

Springer, 2020.

[33] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on

point sets for 3d classification and segmentation. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 652–660, 2017.

[34] Yue Wang and Justin M Solomon. Prnet: Self-supervised learning for partial-to-partial

46

registration. In Advances in Neural Information Processing Systems, pages 8814–8826,

2019.

[35] Zi Jian Yew and Gim Hee Lee. Rpm-net: Robust point matching using learned features.

In Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

[36] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Fast global registration. In European

Conference on Computer Vision, pages 766–782. Springer, 2016.

[37] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and

Justin M Solomon. Dynamic graph cnn for learning on point clouds. Acm Trans-

actions On Graphics (tog), 38(5):1–12, 2019.

[38] Zan Gojcic, Caifa Zhou, Jan D. Wegner, Leonidas J. Guibas, and Tolga Birdal. Learn-

ing multiview 3d point cloud registration, 2020.

[39] Christopher Choy, Jaesik Park, and Vladlen Koltun. Fully convolutional geometric

features. In Proceedings of the IEEE International Conference on Computer Vision,

pages 8958–8966, 2019.

[40] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang,

and Jianxiong Xiao. 3d shapenets: A deep representation for volumetric shapes. In

Proceedings of the IEEE conference on computer vision and pattern recognition, pages

1912–1920, 2015.

[41] Richard Sinkhorn. A relationship between arbitrary positive matrices and doubly

stochastic matrices. The annals of mathematical statistics, 35(2):876–879, 1964.

[42] Andy Zeng, Shuran Song, Matthias Nießner, Matthew Fisher, Jianxiong Xiao, and

Thomas Funkhouser. 3dmatch: Learning local geometric descriptors from rgb-d recon-

structions. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 1802–1811, 2017.

[43] Jianxiong Xiao, Andrew Owens, and Antonio Torralba. Sun3d: A database of big

47

spaces reconstructed using sfm and object labels. In Proceedings of the IEEE interna-

tional conference on computer vision, pages 1625–1632, 2013.

[44] Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich.

Superglue: Learning feature matching with graph neural networks. In Proceedings of

the IEEE/CVF conference on computer vision and pattern recognition, pages 4938–

4947, 2020.

[45] Zheng Dang, Fei Wang, and Mathieu Salzmann. Learning 3D-3D Correspondences for

One-shot Partial-to-partial Registration. arXiv e-prints, page arXiv:2006.04523, June

2020.

[46] Yutong Zheng, Dipan K Pal, and Marios Savvides. Ring loss: Convex feature normal-

ization for face recognition. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 5089–5097, 2018.

[47] Weitao Wan, Yuanyi Zhong, Tianpeng Li, and Jiansheng Chen. Rethinking feature

distribution for loss functions in image classification. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages 9117–9126, 2018.

[48] Sachin Vernekar, Ashish Gaurav, Taylor Denouden, Buu Phan, Vahdat Abdelzad, Rick

Salay, and Krzysztof Czarnecki. Analysis of confident-classifiers for out-of-distribution

detection. arXiv preprint arXiv:1904.12220, 2019.

[49] Dongha Lee, Sehun Yu, and Hwanjo Yu. Multi-class data description for out-of-

distribution detection. In Proceedings of the 26th ACM SIGKDD International Con-

ference on Knowledge Discovery & Data Mining, pages 1362–1370, 2020.

48

	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	Chapters
	Introduction
	Related Work
	Conventional registration methods
	Deep learning-based registration methods

	Mathematical Formulation

	Partial to full point cloud registration with cross-entropy loss
	Introduction
	Robustness of correspondences Vs robustness of transformations

	PCR as multi-class classification
	Experimental setup
	DCP Vs DCP_corr
	RPMNet vs RPMNet_corr
	PCRNet Vs PCRNet_Corr

	Results
	 DCP Vs DCP_corr
	 RPMNet Vs RPMNet_corr
	 PCRNet Vs PCRNet_corr

	Extending cross entropy to filter outliers
	Registration in the presence of outliers

	Experiment - DCP Vs DCP_corr in the presence of outliers
	Conclusion and future work

	Outlier filtering with maximum discrepancy loss
	Introduction
	What is discrepancy?
	Maximum discrepancy loss
	Network Architecture for outlier filtering in point clouds
	Discrepancy loss for PCR
	Training Procedure
	Experiments and Results
	Different types of outlier settings:
	Ablation on varying the discrepancy threshold
	Ablation on percentage of outliers
	Comparison with RPMNet's Sinkhorn Normalization

	Discussion and future work

	Bibliography

