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Abstract

Advances in the estimation and more recently the controls communi-
ties have leveraged the use of factor graphs to overcome problems of scala-
bility and runtime in dynamical systems. In continuation of that work, we
look to use factor graphs to perform LQR control on a wireless mesh net-
work (WMN). Inspired by the communication challenges presented in the
DARPA Subterranean Challenge, we look to model a WMN as a dynamical
system capable of control. Furthermore, we present WMNLQR, a network
flow control algorithm using LQR and factor graphs that is capable of
achieving linear runtime growth with respect to both trajectory length and
state dimension. To illustrate the real time capabilities of our algorithm, we
conduct a thorough analysis of WMNLQR versus four other LQR solvers.
We find that even more advanced algorithms utilizing dynamic program-
ming can become intractable for real time centralized control as the state
space increasingly grows.

Furthermore, we present a novel decentralized control algorithm, DWMN-
LQR. This algorithm leverages the physical RF links between communica-
tion nodes to assist the message passing process used to solve a factor
graph. By exploiting the sparsity of factor graphs, we find that a globally
optimum solution can still be achieved despite framing the communica-
tion network as a series of connected local subproblems. Specifically, we
iteratively compute the LQR solution to each communication node individ-
ually, with each node only aware of its local mesh. By eliminating the need
to communicate to a centralized control node, DWMNLQR has improved
both system robustness and runtime for real world scenarios.
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Chapter 1

Background

1.1 The DARPA Subterranean Challenge

1.1.1 What is the SubT Challenge?

The Defense Advanced Research Projects Agency (DARPA) Subter-
ranean (SubT) Challenge is a multi-year competition set forth by DARPA
to augment the capabilities of war fighters and search and rescue operators
in underground environments. The competition consists of teams spanning
the globe, all creating autonomous robotic platforms designed to traverse
and map complex and unknown underground environments. Fundamen-
tally, the objective of the robot teams is to identify objects of interest
known as artifacts. There are 10 different artifact types, including human
survivors, backpacks, gas leaks, etc. After identifying and localizing these
artifacts, the robotic platforms will attempt to relay the location of said
artifacts back to human operators located at the basestation. From there,
the operator can submit artifacts that have been deemed accurate and try
to score 1 point for each successful submission.

Figure 1.1 further explains the details of the competition. Specifically,
the teams deploy their systems in three different subterranean environ-
ments: tunnels, urban buildings, and caves. All three environments possess
unique characteristics which impede the performance of the robot teams.
Among the many challenges, the one which serves as chief inspiration to
this report is the problem of communication networking. [3]

1.1.2 The Communication Network Problem

In an attempt to help the robots explore the unmapped terrain and re-
port identified artifacts to the human operators, a communication network
is deployed. The chief purpose of the communication network is two-fold.
First and most important, the network provides the infrastructure needed
to relay artifact detections from the robots to the basestation so that they
can be analyzed and submitted. Second, the communication network pro-
vides human-in-the-loop manipulation and helps robots share odometry,
maps, and other information with one another to optimize and coordinate
their exploration strategy. Optimized traversal of the terrain subsequently
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Figure 1.1: Visualization of the three different underground environments
used in DARPA SubT Challenge [3]

improves the performance of the artifact detection and the team’s overall
score.

The three different underground environments presented by DARPA
all possess unique characteristics, each of which creates a unique problem.
Some of the many communication problems faced by the robots in the
competition include non-line-of-sight conditions, multipath, dynamic levels
of signal strength, porous walls and the like. In order to overcome these
challenges, teams attempt to create ad-hoc communications networks that
are both robust and capable of handling fluctuating rates in traffic. Overall,
there are three main strategies used to create the communications network:
wireless mesh networks (WMN), ethernet connections, and data mules.

1.1.3 CMU’s Communication Network Strategy

In an attempt to solve the communication network problem, Team
Explorer from Carnegie Mellon University, selected the wireless mesh net-
work (WMN) strategy. As the foundation of the network, Team Explorer
uses 5.0GHz Rajant DX2-50 radios as seen in Figure 1.2 [18]. For easier
deployment, the radios have been removed from their blue outer casing and
placed inside of a green fiberglass tube. These tubes, as seen in Figure 1.3,
are then loaded into a device called the node dropper. The dropper, seen
fully in 1.3, contains solenoid actuated locks which individually release the
nodes when triggered.

While the robots explore the terrain, a ROS node called the comms-
planner runs in the background. This node monitors each robot’s current
distance from other dropped communication nodes as well as the robot’s
line-of-sight conditions to other dropped communication nodes. Specific
distance and line-of-sight conditions then trigger the robot to actuate one
of the locks and release one of the communication nodes when appropriate.
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Figure 1.2: Rajant DX2-50 radio [18]

Figure 1.3: Node dropper loaded with 9 node casings each holding a Rajant
DX2-50 radio

Ultimately, the ad-hoc wireless mesh network continually grows in size as
the robots continue to explore away from the basestation.

A more clear representation of this phenomenon can be seen in Figure
1.4. The figure is a screenshot from an Rviz GUI showing the odometry
(inside the blue ellipse) and pointcloud map from two ground vehicles -
UGV2 and UGV3. The black dot inside each red circle is the location of
a communication node dropped by one of the ground robots as it explored
the terrain. This specific illustration is small in scale. During normal
competition, up to 24 nodes are deployed from the three ground robots on
the course. This number is then augmented by the total number of robots
deployed on the course (up to 9) plus the basestation, each of which is
fitted with a Rajant DX2-50 radio.

In addition to the ad-hoc deployment of the communication network,
the traffic within the network is also very volatile. This volatility indicates
the need to use flow control algorithms. Traditionally, there are many
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Figure 1.4: Screenshot of Rviz display showing Rajant nodes deployed
during ground robot test run

heuristic flow control designs used in wireless networking. These include
but are not limited to no flow control, token bucket, and fixed rate. Specif-
ically the token bucket implementation is used by CMU’s Team Explorer
for the SubT Challenge. Given the dynamics of the environment, however,
there is the opportunity to frame the network flow control as an opti-
mal control problem (OCP). Prior to discussing the approach and results
achieved in this paper, however, a background on modern control theory
and specifically the LQR controller is presented.
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1.2 Modern Control Theory

1.2.1 Linear Quadratic Regulator

The Linear Quadratic Regulator (LQR) is a full-state feedback con-
troller. As per its name, it uses linear control laws to control linear dy-
namical systems while optimizing a quadratic cost function. Equation 1.1
shows the equation for a linear dynamics problem.

xt+1 = Axt +But (1.1)

In this equation, the state space of the problem is represented by
xt ∈ Rn where t is the discrete time-step and n is the dimension of the
state space. The control space is represented by ut ∈ Rm where m is the
dimension of the control space.

Connecting each timestep together are the state transition matrix
(Jacobian), A, and the control matrix, B. The state transition matrix,
A ∈ Rn×n, is a constant matrix that represents the temporal and spatial
dependencies between elements of the state space. Meanwhile, the control
matrix, B ∈ Rn×m, represents the relationship between control actions and
their effects on the state space. [16, 14]

Equation 1.2 is the quadratic cost function used for the LQR controller.
This function produces a singular cost value which reflects the performance
of the controller based on the state trajectory, desired state value, and
magnitude of controller input. An optimal control implementation of the
pole-placement theory, the LQR controller abstracts the locations of the
poles through the use of state and control cost matrices. The state cost
matrices (Q, QF ∈ Rn×n) and control cost matrix (R ∈ Rm×m) assign
weights to each state or control element respectively. These values can be
tuned to change the relative weights of the quadratic cost function, likely
producing a new optimal control sequence to minimize the total system
cost. [16, 14]

J(x,u) = xTTQFxT +
T−1∑
t=1

xTt Qxt + uTt Rut (1.2)

1.2.2 LQR And Least-Squares Optimization

As seen in Equation 1.2, the LQR controller minimizes a quadratic
cost function. As the quadratic cost function represents a convex opti-
mization, the LQR controller can be solved using a weighted least-squares
optimization. Prior to solving the least-squares optimization, however, the
entire state and control trajectories must be embedded into a single matrix.
Equations 1.3 to 1.6 specifically detail this reformatting by representing the
entire state trajectory as a function of the initial state vector. [16, 14]

x2 = Ax1 +Bu1 (1.3)
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x3 = Ax2 +Bu2 (1.4)

x3 = A(Ax1 +Bu1) +Bu2 (1.5)

x3 = A2x1 + ABu1 +Bu2 (1.6)

Equation 1.3 is a restatement of Equation 1.1 from t=1 to t=2. Equa-
tion 1.4 additionally reflects the dynamics of the problem from t=2 to t=3.
As can be seen in Equations 1.5 and 1.6, Equation 1.4 can be rewritten
in terms of the initial state vector value x1. Using the constant A and
B matrices which represent the dynamics between discrete time intervals,
the state vector at any discrete time step can be written in terms of the
initial state vector and the history of control actions. A concise, vectorized
approach of this relationship between all discrete time steps and the initial
state can be seen in Equation 1.7 and simplified in Equation 1.8. [16, 14]

x =



0 0 0 0 . . . 0
B 0 0 0 . . . 0
AB B 0 0 . . . 0
A2B AB B 0 . . . 0
A3B A2B AB B . . . 0

...
...

...
...

. . .
...

AT−1B AT−2B AT−3B AT−4B . . . B


u +



I
A
A2

A3

...
AT


x1 (1.7)

x = Gu +Hx1 (1.8)

Similar to the vectorization of the state space dynamics, the cost func-
tion from Equation 1.2 is also vectorized as seen in Equations 1.9 and 1.10.
Furthermore, by using Equation 1.8, the cost function can be rewritten as
seen in Equation 1.11. By rewriting the full state space vector, x, the total
cost becomes a function of only one unknown, u, which is the value solved
for in the least-squares optimization. [16, 14]

J = xT


Q 0 . . . 0
0 Q . . . 0
...

...
. . .

...
0 0 . . . QF

x + uT


R 0 . . . 0
0 R . . . 0
...

...
. . .

...
0 0 . . . R

u (1.9)

J = xTQx + uTRu (1.10)

J = (Gu +Hx1)
TQ(Gu +Hx1) + uTRu (1.11)

Having expressed the total cost as a function of the full history of con-
trol actions, Equation 1.11 can be expressed as a least-squares optimization
like Equation 1.12. By completing the square in Equation 1.11, the A ma-
trix and b vector used in Equation 1.12 are found to equal Equations 1.13
and 1.14 respectively. [16, 14]

6



arg min
u
‖Au− b‖2 (1.12)

A = −(R +GTQG) (1.13)

b = GTQHx1 (1.14)

Now framed as a least-squares problem, many different convex opti-
mization solvers can be used. Some of the potential solvers include QR
factorization, singular value decomposition (SVD) and pseudo-inverse. [2]

1.2.3 LQR And Markov Decision Processes

The Markov Decision Process (MDP) is a probabilistic model used for
stochastic control which contains a set of possible world states, S, a set
of possible actions, A, a reward function based on the state and actions,
R(s,a), and a description of each action’s effect on each state, T. Commonly
used in the reinforcement learning and artificial intelligence (AI) commu-
nities, the MDP seeks to find the optimal policy (i.e. sequence of actions)
which minimize the expected value or cost of the probabilistic model. Given
the constrained states and deterministic controls of the dynamic model, the
probabilistic state transition matrices can be replaced with the linear dy-
namics of the system. Furthermore, the MDP can be assigned the same
quadratic cost function (Equation 1.15) mentioned previously for the LQR
controller. [8]

In order to find the optimal control sequence of the MDP over the
finite horizon, a DP approach can be used. As per Bellman’s principle of
optimality, ”if we have found the optimal trajectory on the interval from
0, 1, ..., N by solving the optimal control problem in Equation 1.2, the
resulting trajectory is also optimal on all subintervals of this interval of the
form t, t+1, ..., N with t > 0, provided that the initial condition xt at time
t was obtained by running the system forward along the optimal trajectory
from time 0.” [8, 9, 1]

As seen in Equation 1.16, the LQR cost function can be written as
the optimal value function used in MDPs. As such, Bellman’s principle
of optimality implies that the optimal policy (i.e. control values) can be
found recursively by optimizing the current cost at time interval t added to
the optimal value function at the next state. This relationship is explicitly
detailed in Equation 1.17 where the optimal value function, or ”cost-to-go”
is shown in Equation 1.18. [8, 9, 1]

J(x,u) = xTTQFxT +
T−1∑
t=1

xTt Qxt + uTt Rut (1.15)

V ∗(x0) = min
u0,...,uN−1,x0

J(u0, . . . , uN−1, x0) (1.16)

7



u∗t = arg min
ut

(
xTt Qxt + uTt Rut + V ∗(Axt +But)

)
(1.17)

V ∗(xt) =
(
xTt Qxt + u∗Tt Ru∗t + V ∗(Axt +But)

)
(1.18)

In order to solve the MDP problem, Equations 1.17 and 1.18 must be
solved simultaneously, backwards in time. Ultimately, solving the MDP
problem leads to the following theorem producing Equations 1.19 to 1.22
below. Equation 1.19 reflects the cost-to-go, or optimal value associated
with each state-action pair along the length of the trajectory. Further-
more, Equations 1.21 and 1.22 are the Discrete Algebraic Ricatti Equa-
tions (DARE) which get solved backwards in time in order to produce the
optimal control policy represented by Equation 1.20. [9]

V ∗(xt) = xTt Ptxt (1.19)

u∗t = −Ktxt (1.20)

Pt = Q+KT
t RKt + (A−BKt)

TPt+1(A−BKt), where PN = QF (1.21)

Kt = (R +BTPt+1B)−1BTPt+1A (1.22)

Figure 1.5 details a graphical representation of the Markov Decision
Process. The ”x” represent the states of the system over time adn the ”u”
represent the controls or actions taken over time. Finally, the ”V” repre-
sent the next state cost to go. The graph naturally encodes the Markov
Property, where each state is only affected by the previous state-action pair
and not by any prior history. The graphical representation of the dynamics
problem used by the MDP is further utilized by the factor graph.

1.2.4 LQR And Factor Graphs

While LQR control problems have traditionally been solved using dy-
namic programming (DP) approaches, recent advancements have re-framed
optimal control problems as efficient inference problems [10, 15, 19, 11]. In-
ference problems are probabilistic in nature and seek to find the maximum
a posteriori (MAP) estimate. The MAP estimate specifically maximizes
the posterior density p(X|Z) where X represents the states and Z repre-
sents the measurements (Equation 1.23). By exploiting Bayes’ law and
simplifying unnecessary terms, the MAP estimate can also be calculated
using Equations 1.24 and 1.25. [4]

XMAP = arg max
X

p(X|Z) (1.23)

XMAP = arg max
X

p(Z|X)p(X)

p(Z)
(1.24)

8



Figure 1.5: Graphical representation of a Markov Decision Process

XMAP = arg max
X

l(X;Z)p(X) (1.25)

In order to solve for the MAP estimate, probabilistic graphical models
(PGM) are commonly used. The PGM can represent the probabilistic
nature of each variable while outlining the problem in an intuitive, graphical
interpretation which commonly leverages the structural sparsity between
variables. Among the many types of PGM, Bayes nets and factor graphs
are two very commonly used implementations. [4]

The Bayes net is a directed graphical model that uses nodes which
represent all variables of interest. Specifically the Bayes net finds the joint
probability density of all of the variables by multiplying all conditional
densities together (Equation 1.26). [4, 12]

p(Θ) =
∏
i

p(θi|πi) (1.26)

While the Bayes net can be used to find the MAP estimate of an
inference problem, its combination of both states, X, and measurements,
Z, in its total random variable field, Θ, makes the computation sub-optimal.
Consequently, Bayes nets are commonly used for generative modeling, while
factor graphs are better suited for inference. [4, 12]

Factor graphs are bipartite graphs made up of factors, variables, and
edges (F = (U ,V , E)). Specifically the factor graph separates unknown
variables, X, from known measurements by using two separate types of
nodes. Known as variable nodes and factors respectively, the factor graph
explicitly models the posterior, p(X|Z), rather than the joint probability,
p(X,Z) as does the Bayes net. Furthermore, as each factor is only con-
nected to its corresponding node variable, the factor graph encodes a sparse
factorization as seen in Equation 1.27. [4, 13]
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φ(X) =
∏
i

φi(Xi) (1.27)

As the factor graph represents the posterior density of the inference
problem, maximization of Equation 1.27 is identical to performing the MAP
estimate as outlined in Equation 1.23. Consequently, the MAP estimate
can be rewritten as seen in Equation 1.28. [4, 13]

XMAP = arg max
X

∏
i

φ(Xi) (1.28)

While each factor can represent any function, a Gaussian noise model
is often used to represent the probability density of each variable. As seen
in Equation 1.29, this noise model for the factors can then be entered into
the MAP estimate equation seen in 1.28. [4, 13]

φi(Xi) ∝ exp{−1

2
‖hi(Xi)− zi‖2∑

i
} (1.29)

After taking the negative log of Equation 1.28 and removing the con-
stant 1

2
, the MAP estimate can be rewritten as seen in Equation 1.30.

Instead of a maximization problem, the MAP estimate is now written as
a minimization problem. More specifically, the MAP estimate is the min-
imization of the sum of nonlinear least-squares, where Σi represents the
Mahalanobis norm. For the linear case, Equation 1.30 can be rewritten as
seen in Equations 1.31 where A does not represent a measurement predic-
tion function, but rather the Jacobian or system dynamics. Furthermore,
the summation outside of the L2 norm can be removed and vectorized as
a large matrix operation as seen in Equation 1.32. [4, 13]

XMAP = arg min
X

∑
i

‖hi(Xi)− zi‖2∑
i

(1.30)

XMAP = arg min
X

∑
i

‖Ai(Xi)− zi‖2∑
i

(1.31)

XMAP = arg min
X

‖AX − z‖2∑ (1.32)

While not addressed in this report, nonlinear factor graphs must then
solve the least-squares minimization incrementally by using a nonlinear
solver such as steepest descent, Gauss-Newton, Levenberg-Marquardt, or
Powell’s dogleg minimization. [4]

As each factor of the factor graph corresponds to a block row of the
Jacobian matrix, A, the factor graph naturally encodes the least-squares
objective (or alternatively, unnormalized posterior). By performing a pro-
cess known as variable elimination, the factor graph can be converted into
a Bayes net based on the unknown variables X. Given the parent-node re-
lationship of the Bayes net, the MAP estimate can then be easily found by
performing back-substitution on the Bayes net. [4, 13]

Figure 1.6 shows how a factor graph can be used for LQR control. In
this example, there is a trajectory of three states, x, and two control inputs,
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u. Both the states, x, and controls, u, are unknown and consequently
represented using variable nodes. Connecting the variable nodes are two
different sets of factors. The first connect the states together through time.
These represent the dynamics of the problem, in the form xt+1 = Axt+But,
and are alternatively known as hard constraints. Additionally, there are
unary factors connected to only the state variables and only the control
variables. These are cost minimization factors and represent the control
and state cost errors used with LQR control. In this example, the cost
minimization factors impose priors on the variable nodes of the form xTQx
and uTRu for the state and control nodes respectively. [6]

Figure 1.6: Using a factor graph to represent a constrained least-squares
problem [6]

A more complete example of the factor graph implementation of the
LQR controller can be seen on the left in Figure 1.7. In this example,
the variable elimination algorithm starts at variable node x2. As per the
variable elimination algorithm, the first step in eliminating the node is to
select all factors immediately connected to the node of interest and the
other nodes additionally connected to them. In this case, the red edges
and factors define the separator for variable node x2. [4, 6]

In order to successfully convert x2 factors into a Bayes net format, the
factors are combined. In this example, the two factors combined represent
constraints between three variable nodes: x1, x2, u1. The goal of variable
elimination is to rewrite the combined product factor as a node-parent
Bayes net relationship and a new factor which is a function of all nodes,
except the current elimination node (i.e. x2). As can be seen on the right
side of Figure 1.7, the two red factors on x2 are converted into a new blue
factor between variable nodes x1 and u1 and a Bayes net from variable

11



nodes x1 and u1 to x2. The constraints experienced by variable node x2
have now been encoded into a Bayes net and the other nodes involved in
said constraints have rewritten the factor to reflect the change in topology
of the graph. [4, 6]

Figure 1.7: Eliminating state of factor graph [6]

Ultimately, this process of variable elimination models the chain rule.
As the factor graph naturally encodes sparsity with its relationships, how-
ever, the variable elimination algorithm is computationally much faster.
As seen in Figure 1.8, the process will continue until the whole graph has
been converted from a factor graph to a Bayes net written with respect to
the unknown variables, x and u. As previously mentioned, the Bayes net
format is then optimal for back-substitution in order to compute the MAP
estimate. [4, 6]

Figure 1.8: Eliminating control of factor graph [6]
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Chapter 2

Research Question

This research explores three fundamental questions. First, we deter-
mine if an LQR controller designed using a factor graph provides substan-
tial improvement over existing LQR implementations for real-time flow
control of a wireless mesh network. Second, we examine if physical RF
links between communication nodes can be used in the solving of the fac-
tor graph in order to make the controller more robust and decentralize the
LQR controller design. Last, we wish to investigate the scenarios where
the WMNLQR improves network flow control in comparison to traditional
heuristic methods (i.e. fixed rate, etc) for scenarios comparable to those
faced in the DARPA SubT Challenge.
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Chapter 3

Related Work

[4] showed the applicability of using factor graphs to perform inference
in large problems. The work begins with the discussion of Bayes nets and
their functionality for inference problems. As the Bayes net treats both the
unknown states, X, and measurements, Z, as random variables, the Bayes
net becomes suboptimal in solving large inference problems. Instead, the
Bayes net is great for generative modeling and ancestral sampling.

[4] then show that the weakness of the Bayes net with respect to in-
ference can be solved by factor graphs. Specifically it is shown that the
factor graph is a natural representation of the posterior density of a prob-
lem, p(X|Z), instead of the joint probability, p(X,Z), found with Bayes
nets. This is further clarified as it is illustrated that the bipartite nature
of the factor graph helps isolate factors (i.e. measurements) from unknown
variables (i.e. states).

Next, [4] outline a common factor graph representation - the Gaussian
factor graph. It is shown that the Gaussian factor graph, when treated in-
dependently, is equivalent to a least squares optimization. When combined
with an iterative nonlinear optimizer, nonlinear factor graphs (or nonlinear
least squares) problems can additionally be solved.

In order to perform the inference, the factor graph can be converted
into a Bayes net that only models the unknown variables, X. This process is
described as variable elimination and specifically detailed in summaries of
the algorithms. The algorithms illustrate that the factor graph is incremen-
tally converted into a Bayes net using an efficient version of the chain rule.
Having then converted the factor graph into a Bayes net, a process known
as back substitution takes place in order to output the MAP estimate of
the original inference problem.

In addition to the detailing of the factor graph solver, [4] illustrate
the importance of variable ordering on the solver’s efficiency. Furthermore,
the factor graph inference problem is regularly extended to SLAM or state
estimation problems.

[20] presented an algorithm known as Equality-Constrained LQR (EC-
LQR). As the LQR problem is identical to a least squares optimization, the
algorithm can use factor graphs to calculate the LQR control. The work
is inspired by the increase in use of probabilistic graphical models (PGM)
and factor graphs in the state estimation and SLAM communities.
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Additionally, [20] use the factor graph in order to impose additional
local equality constraints and cross time-step equality constraints. Such
constraints could potentially resemble synchronous motion exhibited by a
robot (i.e. the contact of a foot with the ground for a walking robot).

In order to better illustrate the variable elimination process for the
LQR controller using factor graphs, both the normal factor graph and EC-
LQR version show examples of both the states and controls being solved
with variable elimination.

When testing the performance of the EC-LQR, it is shown to achieve
comparable cost to other quadratic programming benchmark algorithms
for a simple problem with local constraints. The addition of the auxiliary
constraints, however, only imposes a linear growth in runtime while the
dynamic programming approaches which experience cubic growth.

Finally, [20] finish with a cross time-step constraint example between
EC-LQR and two baseline implementations. A perturbed initial state is
presented to a walking robot control problem. The EC-LQR is capable
of producing an optimal control sequence while the other baseline imple-
mentations, including MATLAB’s quadratic programming algorithm, are
unable.

[17] presented an algorithm known as Sparse Graphical Optimizer
(SGOPT) which utilized factor graphs for optimal control. The goal was a
detailed analysis of the factor graph LQR implementation in comparison to
two dynamic programming LQR approaches. The specific dynamics prob-
lem on which the controllers were based was the cart-pole problem where
carts were inter-connected with springs and dampers.

The results illustrate the linear runtime complexity of the factor graph
solver with respect to trajectory length and state space size. Meanwhile the
dynamic programming approaches (including the highly optimized Control
Toolbox implementation) were still susceptible to cubic runtime growth
with respect to state space size.

[17] concludes with introductory results to a nonlinear dynamics imple-
mentation, where the factor graph is coupled with a Levenberg-Marquardt
optimizer.

[5] look at using factor graphs to perform both state estimation and
deterministic control for a UAV obstacle avoidance task where there exist
nonlinear dynamics. This LQG implementation helps express the duality
of estimation and control as optimal problems.

[5] leverage factor graphs to be a unifying framework for both the es-
timation and control problems. They also show a factor graph implemen-
tation of the Sequential Quadratic Programming (SQP) algorithm which
was needed to optimize the factor graph given the presence of nonlinear
constrained factors which Levenberg-Marquardt and Gauss-Newton are un-
able to optimize. [5] conclude their work with the deployment as an MPC
controller for the UAV obstacle avoidance task.
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Chapter 4

Methods

4.1 WMNLQR Versus Other LQR Solvers

Figure 4.1: Example communication node topology with 5 nodes in a linear
chain

In order to test the performance of the different LQR implementations
a linear chain of nodes, like Figure 4.1 was used. While WMN typically have
a 2-dimensional topology, a 1-dimensional topology simplified illustration
and preliminary analysis. As such, the nodes followed the dynamics model
shown in Equations 4.1 to 4.5.

For this experiment, the state space included the current size of the
communication node’s outbound queue and the rate at which it was trans-
mitting traffic. The state dynamics for nodes outputing data is modeled
by Equation 4.2. Each node’s queue is appropriately updated by the rate
at which it outputs its traffic. Furthermore, each node’s queue is also up-
dated by the rate at which traffic flows into the node. This is represented
by Equation 4.3. Finally, the control elements are shown in Equations 4.4
and 4.5. The control element is the change in the output rate of a node as
it transmits traffic.

x =

[
Queue Size

Rate

]
(4.1)

Aout =

[
−1 0
0 1

]
(4.2)

Ain =

[
0 1
0 0

]
(4.3)

B =

[
0
1

]
(4.4)
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u =
[
∆Rate

]
(4.5)

As not all nodes both send and receive traffic, Equations 4.6 and 4.7
illustrate the two different node scenarios for this experiment. For simplic-
ity it is assumed that node 5 both receives data from node 4 and sends data
to the laptop computer. Equation 4.6 represents the dynamics experienced
at node 1. Equation 4.7 represents the dynamics experienced at node 3.

x1t+1 = Aoutx
1
t +Bu1t (4.6)

x3t+1 = Aoutx
3
t + Ainx

2
t +Bu3t (4.7)

Node 1, as seen in Equation 4.6, only outputs traffic and uses the
output dynamics A matrix. All other nodes, however, both send and receive
data. Consequently, their state vector is a function of their internal state
dynamics but also the flow rate of adjacent nodes. Equation 4.7 better
illustrates this concept by showing that the state at node 3 is a function of
its own output rate, but also the output rate from node 2.

In order to test the performance of the LQR implementations as the
total state and control spaces changed in size, the number of nodes in the
linear chain increased from 5 to 50 in intervals of 5.

Five different LQR implementations were tested in C++ on this lin-
ear chain of nodes. The first two were least-squares approaches. Using the
C++ Eigen library, the least squares problem was solved using both QR
factorization and singular value decomposition (SVD). The next two were
dynamic programming approaches. The first was a standard Discrete Al-
gebraic Ricatti Equation (DARE) with partial-QR factorization designed
using Equations 1.19 to 1.22. The second was the Control Toolbox imple-
mentation of the LQR controller from ETH Zurich [7]. This implementa-
tion has a highly efficient C++ backend which makes it a very effective
dynamic programming approach. Last, the factor graph implementation
was designed using the Georgia Tech Smoothing And Mapping (GTSAM)
library [6].

The Gaussian factor graph was used to model the linear dynamics of
the network control problem. A small representation of the factor graph for
the linear chain of wireless nodes can be seen in Figure 4.2. The numbered
light grey nodes each represent a communication node laid out spatially
in the x-axis. The y-axis, or time dimension, represents the trajectory of
each node across discrete time intervals. For illustration, this figure also
includes a dark grey node labeled ’u’. This node represents a control node
used to influence the dynamics experienced at communication node 3. The
simulation results displayed later include more than one controllable node.

As seen in the attached legend, the red squares are factors which rep-
resent dynamics constraints between nodes. For the case of the dynamics
model selected for the WMN, these hard constraints contain both spatial
and temporal dependencies between communication nodes. Furthermore,
the orange squares are prior factors which represent the initial conditions of
each communication node at the beginning of the trajectory. These factors
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are additionally treated as hard constraints. Next, the green and yellow
squares represent soft constraints, or optimization objectives. The green
factors represent the cost of each control action while the yellow factors
represent the cost of each variable state from the desired final value. The
objective in solving the factor graph is to minimize the soft constraints
provided the dynamics imposed by the hard constraints.

In order to solve the factor graph, a COLAMD variable elimination
ordering was used. As the variable elimination algorithm removes factors,
the factor graph converts to a Bayes net. Once the entire factor graph has
been converted to a Bayes net, the initial conditions provided by the prior
state factors can then be used to perform a backward substitution and
output the optimal control policy, u∗, and corresponding state trajectories,
x, over the finite horizon.

Figure 4.2: Example factor graph topology for a linear chain of 3 wireless
nodes across 3 time steps

In order to monitor the performance of each LQR implementation,
the solve time, total cost, state trajectories and control trajectories were
captured for each run. A more detailed comparison between each LQR
implementation will be outlined in the Results section.
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4.2 Decentralizing the WMNLQR

The WMNLQR models a unique dynamical problem where the fac-
tor graph nodes represent wireless communication nodes. As such, there
are physical message passing capabilities between nodes (i.e. RF message
passing) which can supplement the traditional message passing performed
when solving a factor graph

Now traditionally, decentralizing or decoupling controllers will yield
sub-optimal global solutions. By leveraging the RF message passing capa-
bilities, however, the equivalent global factor graph can still be solved by
subdividing it into a series of subproblems.

Figure 4.3 begins to illustrate the decentralization of the controller.
The leftmost section of the figure shows the same factor graph topology
as seen in Figure 4.2. Specifically, three communication nodes are placed
in a linear chain where only node 3 is controllable. Additionally, a finite
horizon of three time steps is used for this simplified scenario.

Focusing first on converting node 3 and its control element, ”u”, into
a Bayes net, the global factor graph can be rewritten as seen in the middle
figure of 4.3. As node 3 is only dependent on node 2 in this scenario, there
is no need to incorporate node 1 states or constraints. To rephrase, node 3
is only dependent on the dynamics and conditions of its connected nodes
(e.g. node 2).

The middle figure can be further simplified. Because node 1 has been
eliminated from the factor graph, the dynamics at node 2 are now corrupted
and ill-formed. As node 2 will be solved later, however, its dynamics do not
have to be perfectly accurate. Instead, the only dynamics involving node
2 which must be accurate are its dynamical relationship with node 3. As a
result, the dynamics (red) factors between all time steps at node 2, as well
as, the prior (orange) and state cost (yellow) factors can be removed from
the factor graph representation. They can then be replaced with a single
arbitrary factor of equal size to the state space. This is illustrated by the
black squares in the rightmost section of Figure 4.3.

As the state values at node 2 will be provided in the back substitution
process, the arbitrary constraint can be treated as a prior factor which
has yet to be given any value. Ultimately, this arbitrary factor encodes all
constraints that would nominally be imposed on node 2. By simplifying the
dynamics and unknowns to a single arbitrary constraint, however, node 3
no longer requires any knowledge of node 2 or its own respective dynamics.
Consequently, the decentralized solver can create and solve a subproblem
only in terms of the nodes and dynamics specifically connected to node 3’s
finite horizon.

Having restructured the global problem into a local problem at com-
munication node 3, the new factor graph can now be converted into a
partial Bayes net. This can be seen in the leftmost section of Figure 4.4.
In this example, the factor graph is converted into a Bayes net only at com-
munication node 3 and its corresponding control elements. Furthermore it
is solved backwards in time from t=N to t=1, where N is the trajectory
length. Technically the variable elimination could be performed using CO-

19



Figure 4.3: The process of reformatting a global factor graph into a se-
quence of sub-topologies

LAMD or any arbitrary ordering. However, the factor graph must only
convert node 3 and its control elements to a Bayes net while leaving all
other nodes (i.e. node 2) in factor graph representation.

Once the full factor graph at node 3 has been converted into a Bayes
net, a new factor (as seen by the purple square in the leftmost section
of Figure 4.4) is attached to the variables nodes for communication node
2. This factor encodes all of the hard and soft constraints present in the
subproblem at communication node 3 which have now been message passed
to the variable nodes at communication node 2. A cleaner representation
of the partial factor graph and Bayes net can be seen in the middle graphic
of Figure 4.4.

The decentralized controller running at communication node 3 has
now converted its modified factor graph topology into a Bayes net at node
3 and a new factor. The controller now saves the Bayes net and passes
the new factor node as a physical RF message to communication node 2.
Communication node 2 can now create its subproblem in a way similar
to node 3 as seen in Figure 4.3. As node 2 is only connected to node
1 (node 3 was already converted), it can use arbitrary constraints to tie
down node 1 and it can produce the factor graph seen in the rightmost
graphic of 4.4. Having leveraged its RF capabilities, however, node 2 also
attaches the purple factor passed from the decentralized controller running
at node 3. Consequently, node 2’s factor graph now encodes all of the
information present within communication node 3’s factor graph, although
neither communication node was fully aware of the dynamics of the other
node. This forward process then iterates with solving subproblems and RF
message passing constraints until all communication nodes have had their
local dynamics converted to Bayes nets.

Once the forward substitution process has been completed for all com-
munication nodes, each node will have saved a Bayes net describing the
dynamics of its local subproblem. As illustrated in Figure 4.5, the Bayes
net at communication node 1 (leftmost graphic) can now be solved using
the prior constraints its factor graph used. Now, the entire state trajectory
at communication node 1 has been solved. By revisiting communication
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Figure 4.4: The forward substitution process for the DWMNLQR controller

nodes in the reverse order of the forward pass, communication node 1 can
now RF message pass its state trajectory to communication node 2. This
state trajectory can be treated as input to the Bayes net stored by the
decentralized controller at communication node 2 (rightmost graphic in
Figure 4.5). Communication node 2 may now perform a local backward
substitution and solve the entire finite horizon trajectory at communication
node 2. This process of forward substitution to solve the Bayes net and
RF message pass the state trajectory to the next node then iterates until
all communication nodes have had their local Bayes nets solved.

Figure 4.5: The backward substitution process for the DWMNLQR con-
troller
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Chapter 5

Results

5.1 WMNLQR Versus Other LQR Solvers

The first experiment outlined in the Methods section was the com-
parison of the WMNLQR controller to other LQR solvers. As previously
mentioned, a linear chain of wireless communication nodes was used to
model the problem dynamics. In an attempt to compare the different LQR
implementations as the state and control spaces changed in size, ten dif-
ferent experiments were run where the linear chain grew in size from 5
communication nodes to 50 in intervals of 5. Furthermore, the same 5
communication nodes were controllable in each of the ten problems and
the trajectory length was 30 time steps.

Prior to comparing the computational performances of each implemen-
tation, first, the accuracy of the WMNLQR as an LQR implementation
was verified. As seen in Figure 5.1, all five LQR implementations achieved
identical cost for each of the ten problems.

Figure 5.1: The optimized cost values of 5 different LQR solvers as the
number of communication nodes in the problem increases from 5 to 50

Having validated the legitimacy of solving an LQR problem using in-
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ference and factor graphs, the next step was to illustrate the performance
improvements when using WMNLQR. Figure 5.2 shows the runtime to
compute the optimal controls for the entire factor graph using each LQR
implementation. Immediately apparent is the dramatic increase in time it
takes to solve the two least-squares implementations of LQR (QR, SVD)
over the three dynamic programming methods (FG, DARE, CT). From
Figure 5.2 the least-squares approach show a cubic rate of growth as the
state space increases in size, while the dynamic programming approaches
appear linear.

Figure 5.2: The runtime of 5 different LQR solvers as the number of com-
munication nodes in the problem increases from 5 to 50

While the three dynamic programming methods look fairly comparable
in runtime performance, there is a noticeable difference in their capabilities.
Figure 5.3 better illustrates the variation in performance by zooming into
the plots of the three dynamic programming methods.

As expected, both the C++ DARE implementation and the Control
Toolbox [7] implementation experienced cubic growth in runtime as the
state space increased in size. Meanwhile, the factor graph implementa-
tion, WMNLQR, experienced linear growth in runtime as the state space
increased in size. Although all three dynamic programming approaches
produced solutions substantially faster than the least-squares implementa-
tions, the discrepancy between the three dynamic programming algorithms
becomes very clear as the number of communication nodes grows. Conse-
quently, the presence of more nodes or larger state space representations
still have the potential to make dynamic programming implementations
intractable for realtime solutions.
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Figure 5.3: The runtime of 3 different LQR solvers as the number of com-
munication nodes in the problem increases from 5 to 50

5.2 Decentralizing the WMNLQR

5.2.1 Validating the DWMNLQR

Having proved that the WMNLQR is capable of achieving identical
cost, state trajectories, and control trajectories as all other LQR imple-
mentations, the next step was decentralizing the controller. As previ-
ously mentioned in the Methods section, the WMNLQR was converted
into DWMNLQR by leveraging the RF capabilities of the communication
nodes to perform physical message passing.

The first task in creating the DWMNLQR was validating whether it
produced solutions identical to the WMNLQR. Specifically this was de-
termined by comparing the state trajectories and control trajectories be-
tween both implementations on the factor graph seen in Figure 5.4 for 20
timesteps.
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Figure 5.4: Factor graph used for comparison of WMNLQR and DWMN-
LQR implementations

Figure 5.5 shows that both the centralized (WMNLQR) and decentral-
ized (DWMNLQR) implementations achieved identical state trajectories
for all three communication nodes for both the queue and the flow rate.
This is further supported by the identical control trajectories for all three
nodes generated by both implementations as seen in Figure 5.6.

The equivalence of the decentralized implementation should not be
surprising as it is really just a partitioned global factor graph with a unique
variable ordering. The equivalence does validate, however, that the global
factor graph can still be optimized when each communication node is only
aware of its immediate local topology.

5.2.2 Benefits of DWMNLQR

The real advantage in distributing the LQR controller design can be
seen in Figures 5.9 and 5.10. When solving a factor graph for a wireless
mesh network, only part of the time required to control the large network
of wireless mesh nodes is used to solve the factor graph. There will also be
a substantial time delay between nodes due to hardware inefficiency and
latency between the radio repeaters.

Given the very fast computation of the WMNLQR implementation, in
many scenarios, the ping time between communication nodes might be a
bigger barrier to real-time control than the solving of the global problem
itself. It is for this reason, that unnecessary point-to-point messages must
be minimized between the communication nodes.

The traditional centralized approach, WMNLQR, is shown in Figure
5.7. For this example, the centralized computation node is the node sur-
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Figure 5.5: State trajectories for WMNLQR and DWMNLQR implemen-
tations on three communication node factor graph

rounded by the red box. Before generating each trajectory update, the
centralized node will receive updates via RF messages from the surround-
ing nodes such as changes in topology, initial states, goal states, or cost
function parameter tuning. Once the centralized node is fully aware of the
global problem, the factor graph will be created and solved. After com-
puting the solution, the node will now have to distribute this information
back to the surrounding communication nodes. This will require more RF
messages so that all nodes are ready to perform the necessary control over
the length of the computed trajectory.

The decentralized approach, DWMNLQR however, will behave as seen
in Figure 5.8. For this example, the first subproblem will be converted to a
factor graph at node N and then the RF message passing will iterate down
the chain of nodes ultimately to node 1. The process will then reverse,
where the Bayes nets will be solved and the RF message passing will move
the array of solutions to the next node.

As the linear chain of nodes increases from 5 to 50, the number of
messages being sent between pairs of communication nodes for DWMNLQR
increases linearly. For example, node 50 will send one message of data to
node 49. Node 49 will then perform its computation and send one message
of data to node 48. This process will continue, where the previous message
is used in solving the new subproblem and ultimately abstracted into the
next singular message pass.

For WMNLQR, however, this number of messages becomes exponen-
tial as the network continues to grow in size. For example, if node 15 is
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Figure 5.6: Control trajectories for WMNLQR and DWMNLQR imple-
mentations on three communication node factor graph

the centralized computation node, it will receive one message from node 14
and one message from node 16. It will also receive one message from node
13 and node 17, however, these messages must travel from two hops away.
That means these messages can be treated as two message-links each. The
total number of message-links continue to grow faster as the surrounding
nodes grow farther from the centralized computation node. The problem is
then further exacerbated on the return trip, where the centralized compu-
tation node must relay the solved control trajectories to each of the nodes.
Overall, a simulation of the two relationships is demonstrated in Figure 5.9

A reiteration of this data can be seen in Figure 5.10. This graphic
the runtime needed to solve the global problem after taking into account
communication delays between nodes. For both simulations, the communi-
cation delay was treated as Gaussian noise with a mean of 5ms and standard
deviation of 2.5ms.

Unsurprisingly, Figure 5.10 shows that WMNLQR increases exponen-
tially in runtime, due to its inefficiency in evading the induced cost of ping
time delays between communication nodes. Meanwhile, the DWMNLQR,
grows at a mostly linear rate with some mild fluctuations.
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Figure 5.7: Message passing strategy to solve WMNLQR

Figure 5.8: Message passing strategy to solve DWMNLQR
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Figure 5.9: Number of messages passed in solving factor graph for WMN-
LQR and DWMNLQR implementations as factor graph increases in size

Figure 5.10: Runtime to solve factor graph for WMNLQR and DWMNLQR
implementations as factor graph increases in size
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Chapter 6

Conclusions

Overall, our work validated the applicability of a factor graph LQR
implementation for realtime flow control of a wireless mesh network. First,
we were able to create a dynamic model which represented the dynamics of
each communication node in the WMN. Furthermore, we then verified that
this dynamical model was controllable by LQR and could be appropriately
modeled using inference and factor graphs.

Second, we outlined the clear performance benefits of using a factor
graph LQR implementation over least-squares and dynamic programming
approaches. Having used both math and simulation results to illustrate
our point, we confirmed that the WMNLQR is capable of achieving com-
pute time results of complexity O(T (M + N)), where T is the trajectory
length, M is the total control space dimension and N is the total state
space dimension. Meanwhile, we showed that the dynamic programming
approaches have compute time complexity of O(T (M +N)3) and the least
squares approaches have compute time complexity of O(T 3(M +N)3). We
also showed that the factor graph LQR implementation achieved the same
cost and state and control sequences as did all other implementations, de-
spite the dramatic runtime improvements.

Third, we exploited the confluence between wireless mesh networks
and factor graphs. By leveraging the RF capabilities of communication
nodes within the WMN, we created a decentralized implementation of
WMNLQR. DWMNLQR is capable of achieving the same global minimum
control sequence, as does WMNLQR, but without the need for a central
operating node fully aware of the dynamics of the entire system. By only
relying on the local topologies of each node, DWMNLQR substantially im-
proves system robustness and runtime for the scenarios presented by real
world hardware, where ping time and latency exist. DWMNLQR achieves
this improvement in performance by minimizing unnecessary point-to-point
messages that hinder the computation speed and reliability of centralized
approaches in non-simulation environments.
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Chapter 7

Future Work

In order to get a better understanding of the performance of WMN-
LQR and DWMNLQR as network flow controllers, future work should pri-
oritize both simulation and hardware testing against heuristic network flow
control approaches. Specifically, the testing should be two-fold. First, the
testing should attempt to find the communication scenarios (topology and
traffic) where an LQR controller of the entire network performs better than
a fixed rate or token bucket heuristic. Second, the testing should validate
that both the WMNLQR and DWMNLQR are capable of realtime opera-
tion given the current dynamics models.

Future work will also likely modify the dynamics of the problem.
Among the many considerations, the state space might consider ping time
between nodes, line-of-sight, or even the location and velocity of robots
(i.e. data producers). Given the high dimensionality of multiple robots
exploring around an ad-hoc wireless mesh network, there are many states
that affect the communications network which could be captured in the dy-
namics model. Furthermore, a more precise nonlinear model of the queue
dynamics of each node could be used to better capture the hardware switch-
ing speed of each transceiver node.

Remodeling the dynamics also introduces the possibility of creating an
LQG controller [5]. Alternatively known as a partially observable Markov
decision process (POMDP), the LQG would include the LQR controller for
the new dynamics plus a Kalman filter which could estimate state values
based on noisy dynamics and measurements. For example, the Kalman
filter could produce an optimal estimate for the ping time between nodes
which is often coupled with white noise.

Another major consideration for future work is the addition of inequal-
ity constraints. While this feature is dependent on the selected dynamics
model, the addition of inequality constraints would be particularly helpful
at setting hardware bounds in the factor graph. For example, a control
policy which regulates the throughput of each node could be bounded by a
minimum throughput (i.e. 0bps) and some maximum throughput specific
to the Rajant DX2-50 nodes. This work could be a natural extension to
the Equality-Constrained LQR work from [20].

Finally, one last major future work consideration is a stability analy-
sis of the controller design. Given the nature of wireless mesh networks,
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latency, packet loss, and failure of communication nodes are phenomena to
be expected within the dynamics model. Consequently, a stability analy-
sis to see the performance of the WMNLQR and DWMNLQR controllers
when exposed to such phenomena would further illustrate the functionality
of this work for a real world application.
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