

Leaders and Facilitator

Vidhi Jain MS student at CMU Co-leader



Simin Liu PhD student at CMU Co-leader

Ganesh Iyer Applied Scientist at Amazon Lab126 Facilitator

2-minute breakout room introductions

- Name
- Position
- What do you want from this session?

Session format

Presentation: ~30 min

Intro + 4 topics

- Post questions to chat!
- 1-2 clarifying questions after each topic

Discussion: ~30 min

2 sets of questions

• Discuss in breakout rooms, reconvene to share

Why Embodied AI?

Enhancing Intelligence

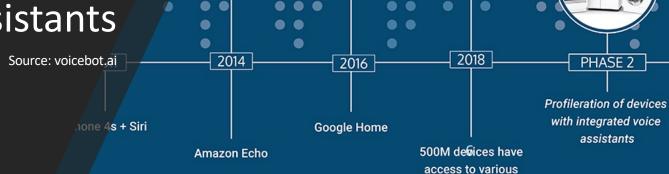
Learning in real environments through explorative physical interaction 5

Self-driving cars

Source: roboticsbusinessreview

Why Embodied AI?

Voice assistants



Self

00000

0

DRL has had great success in simulation!

But it's been much harder applying it to real world platforms...

iRobot Roomba

Waymo AV

Boston Dynamics Atlas

What's hindering us?

One main reason is **data efficiency**: Not a big issue in simulation Big issue for real platforms!

Two perspectives for solutions:

- 1. Improvise algorithmically
- 2. Scale up data collection

Session goals

Share opinions on the comparative merit of each method/perspective Identify the "gaps" in the current research

Outline

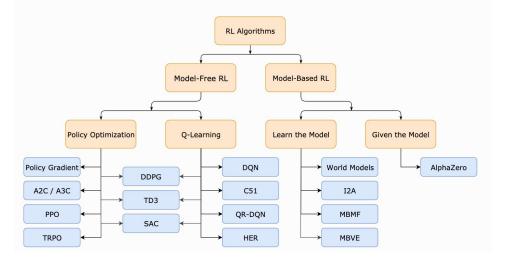
• Careful choice of paradigm

- Using knowledge from other domains
- Human demonstrations and feedback
- Scaling data collection

Model based or model free?

MB: learn an explicit model of the transition function $p(s_{t+1}|s_t, a_t)$

MF: learn value function (i.e. V(s), Q(s, a), A(s, a)) or directly learn a policy



Model based or model free?

MB is more sample efficient...but there's a caveat: poor asymptotic performance.

Examples of MBRL in the real world

Self-driving

Wayve used world models with BPTT (backprop through time) <u>https://wayve.ai/blog/dreaming-about-</u> <u>driving-imagination-rl</u>

Millirobot path following

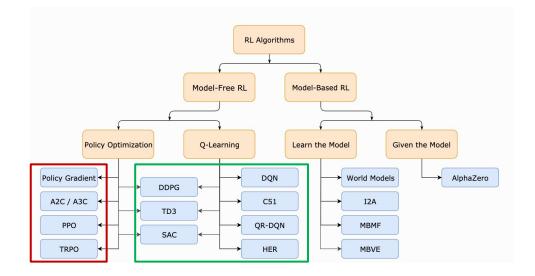
Learning Image-Conditioned Dynamics Models for Control of Under-actuated Legged Millirobots: Anusha Nagabandi, Guangzhao Yang, Thomas Asmar, Ravi Pandya, Gregory Kahn, Sergey Levine, Ronald S. Fearing

Off-policy or on-policy? (MF)

Off-policy: can use samples generated by any policy. I.e. Q-learning

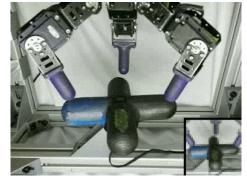
On-policy: can only use samples generated by current policy. I.e. policy gradient

> Off-policy is more sample efficient

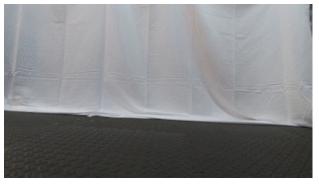


Examples of off-policy in the real world

Soft Actor-Critic



Dexterous manipulation (goal is put blue knob on the right);



Minitaur walking robot

Asynchronous Q-learning

Deep Reinforcement Learning for Robotic Manipulation with Asynchronous Off-Policy Updates ShiXiang Gu and Ethan Holly and Timothy Lillicrap and Sergey Levine

Outline

- Careful choice of paradigm
- Using knowledge from other domains
- Human demonstrations and feedback
- Scaling data collection

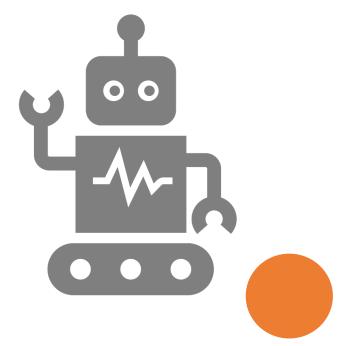
Using knowledge from other domains

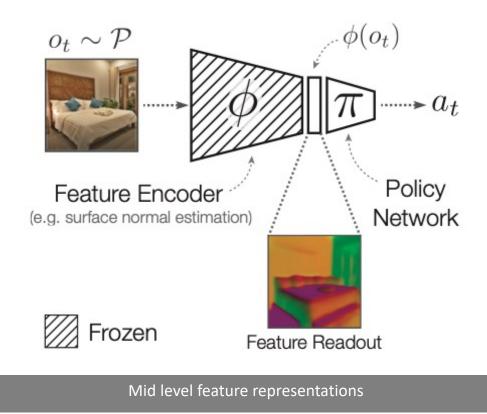
Transfer learning

Multi-task learning

Meta-learning

Modular components

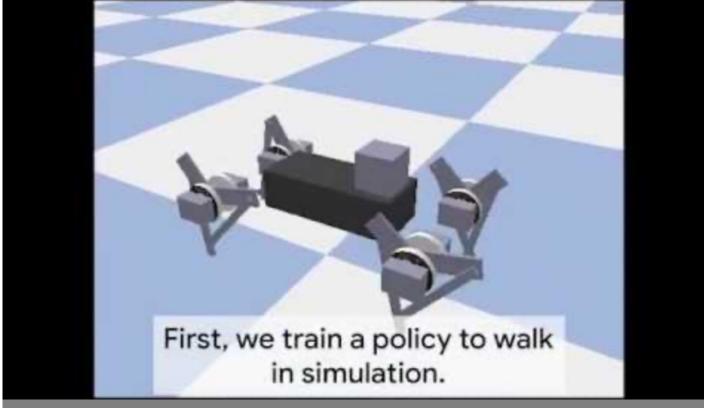




Transfer learning

UNREAL: Unsupervised Auxiliary Task for RL Agent

Multi-task learning



Evolutionary meta learning for adaptability in Legged Robots

Meta Learning

Pick-and-Place Results

Demo

Task 2 real time

Contextual

LSTM

DAML, linear loss

DAML, temporal loss (ours)

One-Shot Imitation from Watching Videos

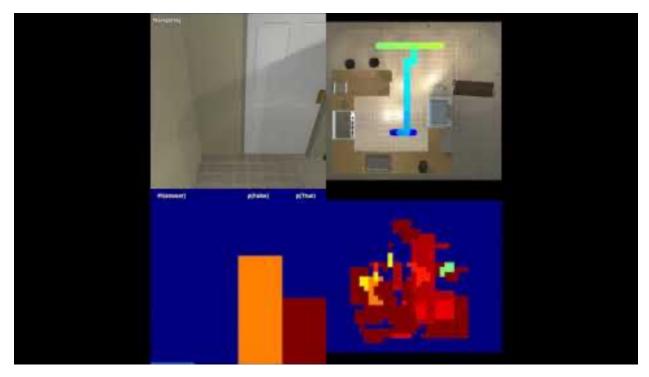
Meta Learning



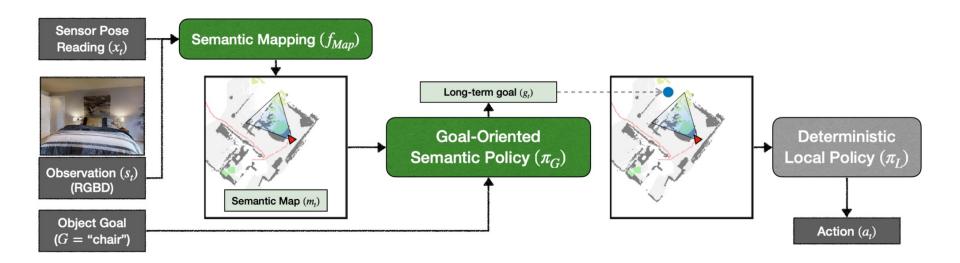
Hierarchical Interactive Memory Network (IQA)

Modular components for Interactive QA

Hierarchical Interactive Memory Network (IQA)



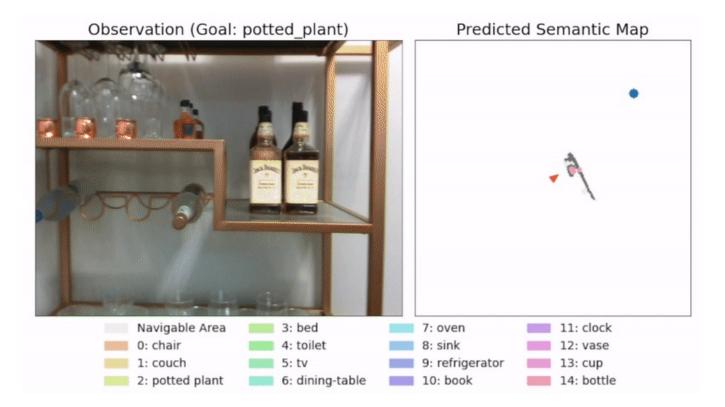
https://www.youtube.com/watch?v=pXd3C-1jr98&t=2s



Object Goal Navigation using Goal-Oriented Semantic Exploration

Modular components for object navigation

Real Transfer: Goal-Oriented Semantic Exploration



Outline

- Careful choice of paradigm
- Using knowledge from other domains
- Human demonstrations and feedback
- Scaling data collection

Expert demonstrations and human feedback

Imitation learning: copying experts

Algorithm:

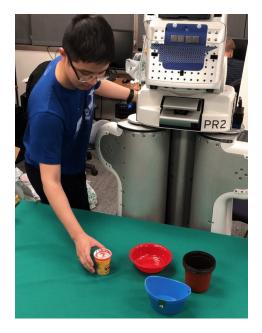
- 1. Collect expert demonstrations (trajectories τ^*)
- 2. Treat demos as i.i.d. state-action pairs and split into dataset: $(s_0^*, a_0^*), (s_1^*, a_1^*), \dots$
- 3. Learn policy via supervised learning: minimize $L(a^*, \pi_{\theta}(s))$

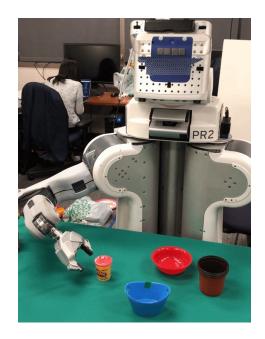
Vanilla imitation learning

NVIDIA AV

Combining IL + meta-learning

One-shot visual imitation learning



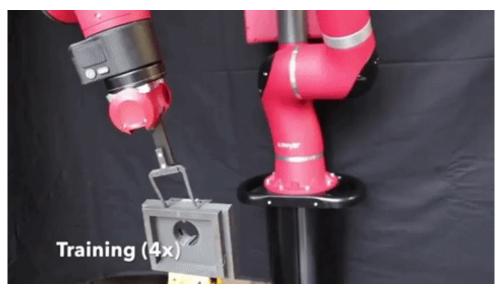


Using demos in an RL fashion

- 1. Split expert trajectories into (s_t, a_t, r_t, s_{t+1}) tuples
- 2. Insert into off-policy algorithm's data buffer

Demos for deep Q-learning

Clip insertion task

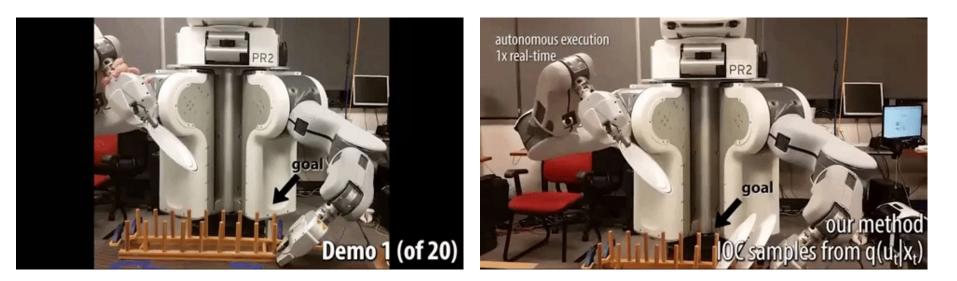


Inverse reinforcement learning

Given (s_t, a_t, s_{t+1}) from expert, assume expert optimality and find $r(s_t, a_t)$

Sample-based maxent IRL

Guided cost learning



Outline

- Careful choice of paradigm
- Using knowledge from other domains
- Human demonstrations and feedback
- Scaling data collection

Gather data at scale

Outline

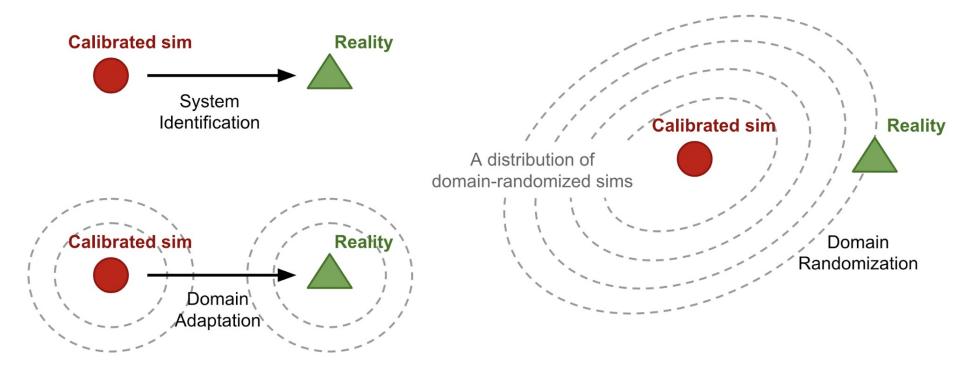
- Careful choice of paradigm
- Using knowledge from other domains
- Human demonstrations and feedback
- Scaling data collection
 - Sim2real
 - Parallelized methods

Train in simulation, transfer policy to real world

- cheap data
- safe to learn and explore
- effortless to scale

visual and physical differences between simulation and reality

Ways of sim-2-real transfer



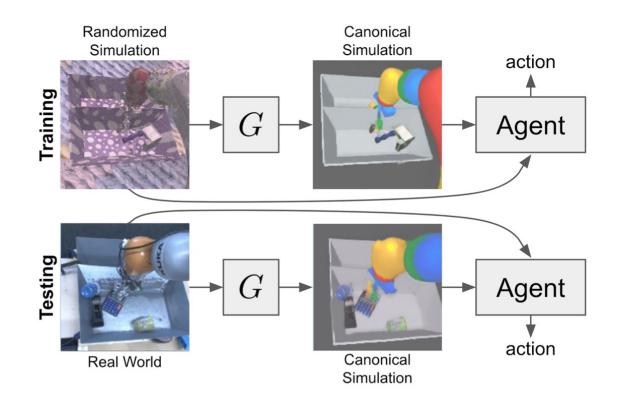
Source: https://lilianweng.github.io/lil-log/2019/05/05/domain-randomization.html

VISUAL REALISM: MESHES

PHYSICAL REALISM: GAME ENGINES, CAD + PHYSICS MODELS

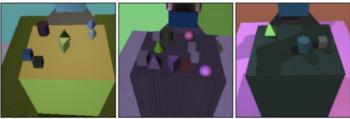
Combining both aspects of realism?

Source: iGibson, http://svl.stanford.edu/igibson/



Sim-to-Real via Sim-to-Sim: Data-efficient Robotic Grasping via Randomized-to-Canonical Adaptation Networks





Domain Randomization for Transferring Deep Neural Networks from Simulation to the Real World

CAD₂RL: Real Single-Image Flight Without a Single Real Image

45

Outline

- Careful choice of paradigm
- Using knowledge from other domains
- Human demonstrations and feedback
- Scaling data collection
 - Sim2real
 - Parallelized methods

Parallelized methods with multiple devices

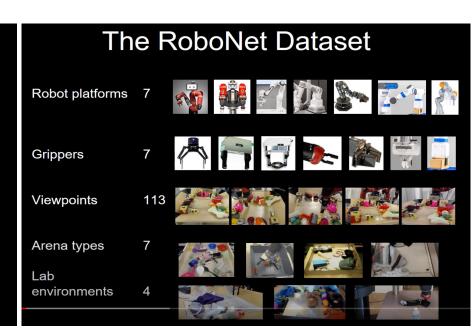
Y

Parallelized, asynchronous data collection: edge workers merely send data to server

Federated learning: edge workers update personal models; asynchronously send model parameters to update the global features on server

Parallelized, asynchronous data collection

QT-Opt: Scalable Deep Reinforcement Learning for Vision-Based Robotic Manipulation



Distributed Q-learning algorithm with Google Arm Farm for grasping from vision

ROBONET: Scaling up data collection with multiple robots

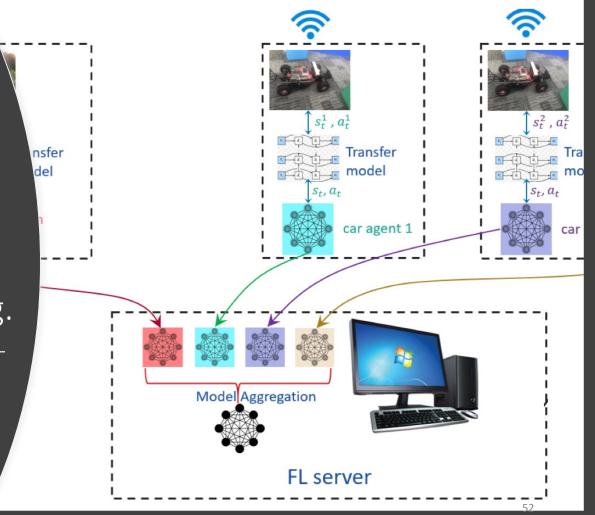
Federated learning

Local adaptation of robot

Global features in communication-efficient way

Privacy preserving way to leverage personal data

Federated Transfer Reinforcement Learning for Autonomous Driving.



Discussion section format

2 sets of questions. For each:

- Break-out room 8 minutes
- Reconvene + share 5 minutes

Questions part 1

- 1. When is DRL useful/necessary for embodied AI applications? (i.e. when do data-driven methods have an advantage over traditional planning & control methods?)
- 2. Is sample inefficiency a bottleneck in the progress of DRL for robotics?
- 3. Should our focus as a community be on circumventing sample efficiency issues (i.e. thru gathering data at scale) or addressing it head-on?
- 4. Does sim2real work? If sim2real works, can't we just use any of our DRL algorithms, even if data inefficient?

Questions part 2

- 5. Are there any approaches that we missed?
- 6. Do you see ways in which these methods can be combined?
- 7. What's wrong with the way we currently measure/quantify sample efficiency?
- 8. Federated learning has shown early promise in areas like query suggestions on mobile phones, smart speakers, etc. What other applications can you think of?

Wrapping up

- Slides will be posted to our WiML Slack
 - Channel name: #breakout_session_4-3
- You can contact us by private message on WiML Slack