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Abstract

Predicting human behavior is critical to facilitate safe and efficient human-
robot collaboration (HRC) due to frequent close interactions between humans
and robots. However, human behavior is difficult to predict since it is diverse
and time-variant in nature. In addition, human motion data is potentially
noisy due to the inevitable sensor noise. Therefore, it is expensive to collect a
motion dataset that comprehensively covers all possible scenarios. The high
cost of data collection leads to the scarcity of human motion data in certain
scenarios, and therefore, causes difficulties in constructing robust and reliable
behavior predictors. This thesis uses online adaptation (an online approach)
and data augmentation (an offline approach) to deal with the data scarcity
challenge in human motion prediction and intention prediction respectively.
This thesis proposes a novel adaptable human motion prediction framework,
RNNIK-MKF, which combines a recurrent neural network (RNN) and inverse
kinematics (IK) to predict human upper limb motion. A modified Kalman filter
(MKF) is applied to robustly adapt the model online to improve the prediction
accuracy, where the model is learned from scarce training data. In addition,
a novel training framework, iterative adversarial data augmentation (IADA),
is proposed to learn safe neural network classifiers for intention prediction.
The IADA uses data augmentation and expert guidance offline to augment
the scarce data during the training phase and learn robust neural network
models from the augmented data. The proposed RNNIK-MKF and IADA are
tested on a collected human motion dataset. The experiments demonstrate that
our methods can achieve more robust and accurate prediction performance
comparing to existing methods.
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Chapter 1

Introduction

The rapid development of human-robot collaboration (HRC) addresses contemporary
needs by enabling more efficient and flexible production lines [37, 49]. Working in such
environments, human workers are required to collaborate with robot arms in confined
workspaces. Due to the frequent physical interactions, any collision could lead to severe
harm to the human workers. Therefore, it is essential to ensure safety while maximizing
efficiency when facilitating HRC. One key technology to enable safe and efficient HRC
is to have accurate, robust, and adaptable human behavior prediction [27]. In this
work, we mainly focus on two aspects of human behavior, human skeleton motion as well
as semantic intention. By understanding human intentions and predicting human motion
trajectories, the robot can plan ahead to better work with the human while avoiding potential
collisions and safety violations.

This thesis considers the typical situation in an assembly line where the human worker
sits in front of a desk and uses the components on the table to assemble a target object as
shown in Fig. 1.1 and Fig. 1.2. Therefore, we focus on studying the human upper limb
motion since the major body parts involved in the collaboration on production lines are
arms. In this thesis, human motion prediction predicts the motion trajectory of the human
arm as shown in Fig. 1.1, which is essentially a regression problem. On the other hand,
human intention prediction predicts the intention label that describes the human behavior
as shown in Fig. 1.2 (i.e., assembling, reaching, retrieving, etc), which is essentially a
classification problem. A detailed discussion of the problems is in chapter 3.
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CHAPTER 1. INTRODUCTION

(a) Projected visualization of predicted arm motion.
Yellow: shoulder joint.

(b) 3D visualization of predicted arm motion. Yellow:
shoulder. Green: wrist.

Figure 1.1: Visualizations of the predicted human arm motion trajectory (10 steps) using RNNIK-
MKF. Red: current arm configuration. Black: 10-step future arm configuration.

1.1 Challenges

Human behavior is difficult to predict. One major challenge is that it is expensive to collect
a motion dataset that comprehensively covers all possible scenarios. One reason that leads
to the high cost is the diversity of the data. For example, in a human motion dataset where
the humans are doing assembly tasks, it is expensive (if not impossible) to collect data from
all human subjects in all possible task situations. However, human subjects with different
habits, body structures, moods, and task proficiencies may exhibit different motion patterns.
Failure to include sufficient data to reflect these differences will lead to poor performance
of the learned prediction model in real situations.

Another reason for the high cost of data collection is the existence of exogenous input
disturbances. For example in Fig. 1.3(b), the images captured by a camera are likely to
have black pixels not be completely black due to the inevitable sensor noise. Although these
pixel-level differences do not confuse humans, they can easily fool the image classification
models [46, 10]. Another example is shown in Fig. 1.3(c) for human motion data. Due
to the inevitable sensor noise and algorithm uncertainty, the captured motion trajectory
(red) may slightly deviate from the ground truth motion (white). These disturbances ideally
should not change the output of the prediction model, but can actually easily fool the
prediction model to make a wrong prediction if the model has not seen sufficiently many

2



CHAPTER 1. INTRODUCTION

(a) Assembling. (b) Reaching. (c) Retrieving.

Figure 1.2: Visualizations of intention prediction. Red: predicted operation type. Green: ground-
truth operation type. White dots: observed human motion (10 steps). Red bounding boxes: usable
components. Numbers on the red bounding boxes: likelihood to be the next piece for use.

disturbed data during training. However, it is expensive (if not impossible) to generate a
full distribution of these disturbances on each data point.

Due to these high costs of data collection, a well-distributed and sufficient human
behavior dataset is usually not available. Early works [2, 22, 18, 25] have shown that an
insufficient amount of training data would make it difficult to train the neural network
(NN) model, as the performance of the learned model will deteriorate in testing. Therefore,
the learned model is not deployable in real applications. To deal with the data deficiency,
we explore methods, both online and offline, that are suitable for constructing robust NN
motion and intention prediction models.

1.2 Motion Prediction

Online adaptation is an online approach to deal with data scarcity. We propose an online
adaptable motion prediction framework (RNNIK-MKF) to predict human arm motion. In
particular, a modified Kalman filter (MKF) is used for adapting the prediction model online.
The MKF incrementally updates the prediction model using the incoming data and makes
the initially poorly trained model perform better during the runtime.

The proposed method has several advantages. First, the method is adaptable, hence
can easily and robustly generalize to unseen situations that the training data does not
cover. Many existing approaches [35, 15, 36] have been proven to work well in trained
environments, but have limited generalizability. However, it is impossible to obtain motion
data from all workers with all possible demonstrations, and comprehensively validate the
model for all situations. The proposed RNNIK-MKF enables online model adaptation

3



CHAPTER 1. INTRODUCTION

using MKF to achieve better generalizability with few training data. Second, the proposed
structure can explicitly encode the kinematic constraints into the prediction model, which
is explainable. Current approaches, such as [21], used complex graph neural network
structures to encode the structural information, which is complicated and implicit. The
proposed method uses the physical model derived from the human arm, which is explainable
and intuitive. Thus, the predicted arm motion, as shown in Fig. 1.1, preserves the physical
human arm structure. Third, the proposed method is robust when occlusion of the arm
happens. Few existing methods [41] considered the situation when a partial human body
is not observable. Yet the situation is common during collaboration as the robot could go
between the sensor and the human arm, and thus, occluding the body part. Our method
using the physical arm model can robustly predict the arm positions even when a portion
of the arm, e.g., the elbow, is blocked from view. The proposed framework is tested on
collected human motion data [33] with up to 2 s prediction horizon. The experiments
demonstrate that the proposed method improves the prediction accuracy by approximately
14% comparing to the existing methods on seen situations. It stably adapts to unseen
situations by keeping the maximum prediction error under 4 cm, which is 70% lower than
other methods. Moreover, it is robust when the arm is partially occluded. The wrist
prediction remains the same, while the elbow prediction has 20% less variation.

1.3 Intention Prediction

We propose an iterative adversarial data augmentation (IADA) framework to train robust
NN classifiers offline with limited data to tackle the data scarcity challenge in intention
prediction. This framework leverages formal verification and expert guidance for iterative
data augmentation during training. The key idea of IADA is that we need to find the most
“confusing” samples to the NN, e.g., the samples on the decision boundary of the current
NN, and add them back to the dataset. We use formal verification to find these samples
by computing the closest adversaries to the existing data (called roots) in L∞ norm. These
samples are called “adversaries” since the current NN predicts that they have different
labels from the labels of roots (hence they are on the decision boundary of the current NN).
The IADA framework will seek expert guidance to label these samples in order to ensure
the correctness of adversaries. The sample is a true adversary if its ground truth label is
the same as the label of its root; otherwise, this sample is a false adversary. The proposed

4



CHAPTER 1. INTRODUCTION

...

NN Decision Boundary

Augmented Data

2D Ground Truth

(a)

Original 
Image

… …
Digit: 1

Digit: 2

Digit: 8

Digit: 7

(b) (c)

Figure 1.3: Adversarial data augmented by IADA. (a) Artificial 2D dataset. Left: Ground truth
decision boundary. Right first row: NN decision boundary. Right second row: adversarial data
augmented by formal verification and expert guidance given the current NN model. (b) MNIST
dataset. Left: original training image. Second column: the first level adversaries found around the
original image. Third column: the second level adversaries found around the first level adversarial
images. Right: further expansions. (c) Human motion dataset. White: original wrist trajectory. Red:
adversarial wrist trajectories being augmented to the training data.

IADA framework incorporates human-in-the-loop verification as the expert guidance. The
labeled samples will be added back to the training dataset no matter what labels they
are. The true adversarial samples can improve the robustness of the network, while the
false adversarial samples can help recover the ground truth decision boundary. The IADA
framework iteratively expands the dataset and trains the NN model.

The IADA framework has several advantages. First, it is composable since it allows
easy switch of individual modules (i.e., the training algorithm, the formal verification
method, and the method for expert guidance). Second, it is safe and explainable due to
the inclusion of expert guidance, unlike other adversarial training methods. Lastly, it is
generic and appliable to general NNs, unlike existing data augmentation methods that
require strong domain knowledge. To verify the effectiveness of the IADA training, we
applied it to the human intention prediction task on a collected human motion dataset
[33]. To validate the generalizability of IADA, we applied it to two additional applications,
including a 2D artificial binary classification task as shown in Fig. 1.3(a), and the MNIST
digits classification task [28]. We compared our training framework against several existing
training methods. The results demonstrate that our training method can improve the
robustness and accuracy of the learned model from scarce training data. The IADA training
framework is suitable for constructing reliable and robust intention prediction models given
the scarce human motion dataset.

The contributions of this thesis work can be summarized as follows:

5



CHAPTER 1. INTRODUCTION

1. Constructs a human motion dataset that studies the human upper limb motion when
doing LEGO assembly tasks.

2. Proposes a novel RNNIK-MKF adaptable human arm motion prediction framework to
predict high-fidelity arm motion. We demonstrate that the RNNIK-MKF outperforms
the existing methods by showing that it can predict high-fidelity arm motion; it is
generic to unseen humans or tasks; it is more robust when partial arm motion is
occluded.

3. Proposes a novel IADA training framework that addresses the data scarcity challenge
offline during the model training phase. We demonstrate that the IADA training can
learn robust prediction models from scarce data for intention prediction.

6



Chapter 2

Related Work

2.1 Human Motion Prediction

Human motion prediction has been widely studied [43]. Early approaches [14] addressed
the problem in a probabilistic way using Hidden Markov Models to estimate the possible
areas that human arms are likely to occupy. Assuming human motions are optimal, [35]
intended to learn a cost function of human behaviors by inverse optimal control and made
predictions according to the learned cost function. Recent works [26, 4] addressed the
prediction as a reaching problem by specifically learning the motion of human hands
using neural networks. The recent development of recurrent neural network (RNN) had an
outstanding performance in motion prediction [44]. The Encoder-Recurrent-Decoder (ERD)
structure [15], which transformed the joint angles to higher-dimensional features, was shown
to be effective in motion prediction. [36] added the sequence-to-sequence architecture
to address the prediction as a machine translation problem. Recently, [21, 8] devoted to
embedding the structural information of the human body into the neural networks. However,
existing methods suffer from several problems. First, neural networks are pre-trained and
fixed, which may have limited generalizability or adaptability to unseen situations. [12]
incorporates online adaptation to improve the model performance online, but it only focuses
on the single-joint motion. Second, the physical constraints of the human body are encoded
using complex neural network structures, which is unintuitive and difficult to verify.

7



CHAPTER 2. RELATED WORK

2.2 Human Intention Prediction

Human intention prediction has been widely studied recently. Many works, such as [53],
focus on predicting the operation types. However, to the best of our knowledge, no existing
works have addressed the data scarcity challenge specifically in the human intention
prediction context. Nonetheless, there are approaches in other applications that address the
data scarcity challenge.

2.2.1 Data Augmentation

Learning from insufficient training data has been widely studied [2, 22, 18, 25]. Data
augmentation (DA) is a widely used approach. People use different approaches to gener-
ate additional data given the existing dataset [45] to improve the generalizability of the
classifiers. [55, 13] propose either to manually design a policy or search for an optimal
policy among the pre-defined policies to generate new data. On the other hand, instead
of explicitly designing the policy, [40, 29, 3, 7] propose to learn generative NN models to
create new data. However, manually designing the augmentation policy requires strong
domain knowledge. In addition, the designed policy might only be suitable for a small
range of related tasks. On the other hand, using NNs (GANs) for DA is knowledge-free.
However, it has poor explainability, which might be a potential concern for safety-critical
tasks.

2.2.2 Adversarial Training

Adversarial training [5] is a widely used approach for improving the NN model robustness.
It has been widely studied since [46] first introduced the adversarial instability of NNs.
Given the existing training data D0, the adversarial training objective is formulated as a
minimax problem,

min
θ

E(xi,yi)∈D0 max
||δi||∞≤ε

L( fθ (xi +δi),yi), (2.1)

where δi is the adversarial perturbation and ε is the maximum allowable perturbation.
Early works [46, 16] efficiently estimate the adversarial perturbations based on the gradient
direction. However, [38] showed that the estimation in the gradient direction might be

8



CHAPTER 2. RELATED WORK

inaccurate, and thus, makes the trained model sub-optimal. Recent work [11] proposes to
adaptively adjust the adversarial step size during the learning process. Based on the idea
of curriculum learning, [54] propose to replace the traditional inner maximization with a
minimization, which finds the adversarial data that minimizes the loss but has different
labels. The adversarial data generated via minimization is also known as the friendly

adversarial data. On the other hand, neural network verification provides a provably safe
way to find the adversarial samples with minimum perturbations, which are the most friendly
adversaries. In fact, many works on neural network verification [38, 6, 47] have shown
that using the adversarial samples from verification is effective for adversarial training.
However, these methods might incorrectly take false adversaries as true adversaries, which
might adversely harm the model training. Moreover, they only improve the local robustness
of the trained model around the training data, and thus, have limited capacity to improve
the generalizability of the network in real situations.

9
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Chapter 3

Problem Formulation

3.1 Motion Prediction Formulation

The motion prediction in this thesis tackles the skeleton motion prediction problem on
production lines, where humans collaborate with robot arms in confined workspaces. In
these environments, the trunk of the human body tends to stay still and the major body
parts interacting with the robot are the human arms. Therefore, we focus on predicting
human arm motion, including the elbow and the wrist, as shown in Fig. 3.1. Note that the
motion prediction is a regression problem, in which the prediction model maps the N-step
historical arm motion observation to the future M-step arm motion.

In the motion prediction context, this thesis uses regular symbols and ∧ to denote the
observation and prediction respectively. The wrist and elbow positions at time k are denoted
as wk, ek ∈ R3. The position vector p ∈ R6 is constructed by stacking the positions of the
wrist and elbow. We define the observation and prediction at time k as

xk =


pk−N+1

. . .

pk−1

pk

 ∈ R6N , ŷk =


p̂k

1

p̂k
2

. . .

p̂k
M

 ∈ R6M. (3.1)

The constants M, N ∈ N are the prediction and observation horizons. p̂k
j is the jth step

prediction at time k. We need to build a prediction model, ŷk = f (xk), that predicts the
future skeleton motion.

11



CHAPTER 3. PROBLEM FORMULATION

…

…

Arm Motion 
Prediction

wk-N+1

ek-N+1 ek-N+2

wk-N+2 wk

ek

ŵ1
k

ê1
k

N-step 
Historical Trajectory

M-step 
Future Trajectory

Time

Arm Model

ŵ2
k

ŵM
k

ê2
k êM

k

Figure 3.1: Illustration of the arm motion prediction problem. The problem takes in the N-step
historical arm trajectory and outputs the M-step future arm trajectory. The human arm is modeled as
a 5-DOF manipulator.

However, due to the data scarcity in the human motion dataset, the learned model
f , which is validated in the training environment, would be less accurate and has poor
generalizability in real situations. Therefore, we use online adaptation to address the data
scarcity challenge in motion prediction. The goal is to construct an adaptable model,
ŷk = f (xk, ŷk−1), which is a time-varying function. The model f takes in the observed
N-step historical trajectory and the previous M-step prediction and outputs the M-step
future trajectory. The adaptation algorithm adjusts the model online and improves the
generalizability.

12



CHAPTER 3. PROBLEM FORMULATION

3.2 Intention Prediction Formulation

Human intention prediction predicts the intention labels that describe the human behavior
as shown in Fig. 3.2. Note that the intention prediction is a classification problem, in which
the model maps the input, including the N-step historical arm motion observation and the
environment information, to the corresponding pre-defined intention labels as shown in
Fig. 3.2.

At timestep k, the prediction model is given with the N-step observation of the human
motion and the environment information as

xw
k =


wk−N+1

. . .

wk−1

wk

 ∈ R6N , env =


pc

1

. . .

pc
K−1

pc
K

 ∈ R3K, (3.2)

where K denotes the number of possible components and pc
i ∈R3 denotes the position of the

workpiece i. The prediction model outputs the intention label y, including 1) the operation
type and 2) the next assembly step. In our intention prediction case, the operation type
has four different labels as shown in Fig. 3.2, including assembling, retrieving, reaching,
and abnormal. The next assembly step has K different labels, corresponding to all possible
components. Therefore, the intention prediction model can be written as yk = f (xw

k ,envi).
However, due to data scarcity, it is difficult to learn a robust and accurate f by merely
designing sophisticated NN structures. Therefore, we use a standard fully-connected neural
network (FCNN) to construct the prediction model f since it is decently powerful to model
arbitrary nonlinear functions. Then, the major problem becomes how to learn a robust and
accurate f given the insufficient human motion dataset.

Given a training dataset D0 = {(xi,yi)}n
i=1 where x is the input and y is the output label,

the regular supervised training learns the NN model by solving the following optimization

min
θ

1
n

Σ
n
i=1L( fθ (xi),yi)

(
=: E(xi,yi)∈D0L( fθ (xi),yi)

)
, (3.3)

where L is the loss function, θ is the NN model parameter, and fθ is the NN transfer
function. Our goal is to learn a model that minimizes the expected loss when deployed in

13



CHAPTER 3. PROBLEM FORMULATION

…

Intention 
Prediction

wk-N+1

ek-N+1 ek-N+2

wk-N+2 wk

ek

N-step 
Historical Trajectory

Time

Intention Label:

Environment

Assembling

Retrieving

Reaching

Abnormal

Next wanted piece: X

Figure 3.2: Illustration of the intention prediction problem. The problem takes in the N-step motion
observation and outputs the corresponding pre-defined intention labels.

real applications:
min

θ
E(x,y)∈D(L( fθ (x),y)), (3.4)

where D represents the real input-output data distribution, which is unavailable during
training. When D0 is similar to D, we can obtain a fθ that behaves similarly as the ground
truth f . However, in our case (i.e., behavior/intention prediction), D0 is insufficient, and
thus, leading to a poorly trained fθ that behaves differently as f . The goal is to learn a
robust and accurate f offline given the insufficient human motion dataset.

14



Chapter 4

Approach

4.1 RNNIK-MKF Motion Prediction

In general assembly tasks, humans move their hands with clear intention while the elbows
are mainly to support the hand motion. Hence, we separate the motion prediction problem
into wrist motion prediction and arm motion prediction. We use a recurrent neural network
(RNN) for modeling the complex wrist motion and inverse kinematics (IK) to encode
the physical body constraints and extend the wrist prediction to full-arm prediction. The
modified Kalman filter (MKF) is used for online adapting the model to different humans
and tasks and addressing the data scarcity challenge in human motion prediction. The
proposed RNNIK-MKF framework is shown in Fig. 4.1.

4.1.1 RNN for Wrist Motion Prediction

Human wrist motion is complex and highly nonlinear. In addition, human motion has strong
temporal connections. Therefore, we choose RNN since it is powerful to model arbitrary
nonlinear functions and has hidden states to memorize past information. In particular, the
Long Short-term Memory (LSTM) cell [19] is used since it has adequate gates to control
the memory either to remember or to forget. We use an N-to-1 structure [15], where the
RNN takes in the N-step wrist history and outputs the next single step wrist prediction
as shown in Fig. 4.1. For an M-step prediction, the network iteratively appends the new
prediction to the input and then predicts for the next step, until the M-step prediction is
obtained as shown in Eq. (4.3). The structure has the advantage to enable more flexibility

15



CHAPTER 4. APPROACH

xk

ŷk

IKMKF

ŷk-1

...
-

xk-1

ŷk+1Prediction:

Observation:

IK IK

LSTM LSTM

MKF Linear Linear

xk+1

ê1
k ê2

k êM
k

ŵ1
k ŵ2

k ŵM
k

Linear

LSTM
RNN

Figure 4.1: RNNIK-MKF motion prediction framework.

on the online adaptation since we can adapt the model as soon as a new observation is
available.

We use LST M and RNN to denote the transition of a single LSTM cell and the N-to-1
prediction respectively. Given the N-step historical wrist trajectory at time k, the hidden
states of the LSTM cells are propagated as

[h1, c1] = LST M(wk−N+1, 0, 0),

[h2, c2] = LST M(wk−N+2, h1, c1),

. . .

[hN , cN ] = LST M(wk, hN−1, cN−1).

(4.1)

The first step wrist prediction is obtained using a linear layer

ŵk
1 = φkhN +bl, (4.2)

where φk is the adaptable weight matrix (discussed in section 4.1.3) of the linear layer at
time k and bl is a constant bias. The LSTM cells Eq. (4.1) and the linear layer Eq. (4.2)
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construct the N-to-1 RNN. We solve the prediction problem as

ŵk
1 = RNN(φk, [wk−N+1, ..., wk]

T ),

ŵk
2 = RNN(φk, [wk−N+2, ..., wk, ŵk

1]
T ),

. . .

(4.3)

until M-step wrist prediction is obtained.

4.1.2 IK for Arm Motion Prediction

The arm motion is mainly supporting the wrist motion, and thus, has a relatively simple
motion pattern. Therefore, we use the model-based IK to model the arm motion. A general
human arm can be decomposed into a 5-DOF manipulator as shown in Fig. 3.1. The
shoulder is decomposed into 3 revolute joints and the elbow is decomposed into 2 revolute
joints. The wrist is considered as the end-effector. The state of the arm in the joint space is
θ ∈ R5. The end-effector state is w ∈ R3. The IK problem solves for θ̂ under the predicted
wrist position ŵ where θ̂ = IK(ŵ | θ ,w), given the current states θ and w. A popular
approach to solve the IK problem is using the Jacobian [50]. The Jacobian J(θ) ∈R3×n for
an n-DOF robot manipulator is

J(θ) =
∂FK(θ)

∂θ
≈
[

∂ IK(w)
∂w

]−1

, (4.4)

where FK(θ) : Rn → R3 is the forward kinematics. Using matrix transpose to replace
matrix inverse, we can solve the IK problem as

θ̂ = θ +AJ(θ)T(ŵ−w), (4.5)

where A ∈ Rn×n is an adaptable parameter matrix (discussed in section 4.1.3) that encodes
the individual differences on the joint velocities, e.g., some workers tend to place the elbow
on the table, while others prefer to move with the wrist. We can solve the arm prediction by
solving the IK for each predicted wrist position.
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Algorithm 1 Modified Kalman Filter

1: Input: MKF parameters: λ > 0, σw ≥ 0, σv ≥ 0.
2: Input: EMA parameters: 0≤ µv < 1, 0≤ µp < 1.
3: Input: Φk−1, Ek = (yk−1− ŷk−1), Xk−1.
4: Output: Φk.
5: Internal State: Z, V .
6: K = Zk−1XT

k−1(Xk−1Zk−1XT
k−1 +σwI)−1

7: Vk = µvVk−1 +(1−µv)KEk
8: Φk = Φk−1 +Vk
9: Z∗ = 1

λ
(Zk−1−KXk−1Zk−1 +σuI)

10: Zk = µpZk−1 +(1−µp)Z∗

4.1.3 Online Adaptation with MKF

Human motion is diverse and time-varying. For instance, a worker might initially move the
entire arm. But after a while, the worker would probably rest the elbow on the table and only
move the wrist. Moreover, different individuals can perform the same task very differently
due to different body structures or task proficiency. It is expensive (if not impossible) to
collect a dataset that comprehensively includes all possible situations. Therefore, the data
we use for training is highly likely to be scarce and insufficient. Due to the data scarcity, the
learned prediction model might deviate from the true prediction model, and thus, perform
poorly during testing or deployment. Therefore, online adaptation is important to make
the method robust and generic to unseen situations. In the proposed framework, the wrist
predictor has a linear output layer Eq. (4.2) in φ , and the arm predictor Eq. (4.5) is linear in
A. Therefore, we apply linear adaptation to the system.

Many existing online adaptation algorithms are based on stochastic gradients [23].
However, these methods have no guarantee of optimality. Thus, we use a second-order
method in order to achieve better convergence and optimality. Recursive least-squares
parameter adaptation algorithm (RLS-PAA) [17] is an optimal method. However, since
the regular RLS-PAA does not consider a noise model of the system, it is inefficient
to tune. In addition, we need to apply smoothing techniques to the internal adaptation
parameters to ensure stable adaptation and prediction under noisy measurements. Moreover,
we want the more recent information to have more impact on the current estimation. Hence,
we propose to use MKF for online adaptation. We add a forgetting factor, λ , to the
conventional Kalman filter to prevent the estimation from saturation. In addition, we apply
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the Exponential Moving Average (EMA) filtering method discussed in [1] to smooth the
adaptation process.

The linear prediction system can be written as

Φk = Φk−1 +ωk,

ŷk = ΦkXk + vk.
(4.6)

For wrist prediction, ŷ is the wrist prediction. Φ and X are the parameter matrix φ and
hidden feature hN in Eq. (4.2). For arm prediction, ŷ is the arm prediction, Φ and X are
equivalent to A and J(θ)T(ŵ−w) in Eq. (4.5). ωk ∼ N(0,σw) and vk ∼ N(0,σv) are virtual
Gaussian white noises. The MKF adaptation algorithm is summarized in algorithm 1. There
are two internal variables: the covariance matrix Z and the parameter update step V . The
learning gain, K, is calculated on line 6 using the Kalman filter’s formula. V is calculated
using the EMA filtering on line 7. The parameter matrix Φ is updated on line 8. Then Z is
updated using the forgetting factor on line 9 and then smoothed using EMA on line 10.

Following the approach in [12] that applies RLS-PAA to the linear output layer of a
fully connected neural network (FCNN), we apply the MKF to Eq. (4.2) with respect to
φ as well as to Eq. (4.5) with respect to A. The virtual noises ω and v are tunable in the
adaptation.

The proposed RNNIK-MKF framework is then summarized in algorithm 2. MKF

denotes the adaptation in algorithm 1. The superscripts w and a distinguish the variables
for wrist and arm predictions. FKew = [FK;FKe] where FK and FKe are the forward
kinematics to wrist and elbow. IKew solves for the arm state θpre when both wrist and elbow
positions are known. For each time step, the algorithm obtains the current configuration in
line 6. The parameters are updated using MKF on lines 11, 13. If occlusion happens, the
adaptation is turned off on line 16. Then the algorithm iteratively predicts the future wrist
and elbow trajectories for M steps on lines 20 and 22.

4.1.4 Online Adaptation Estimation Error Propagation

As the MKF consistently adjusts the model parameters online, the performance of the
prediction model varies as time changes. It is important to quantify the error of the
motion prediction as the adaptation proceeds. Given the prediction system in Eq. (4.6),
the uncertainty of the prediction by RNNIK-MKF can be quantified by 1) the statistical
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Algorithm 2 RNNIK-MKF Motion Prediction
1: Input: Pre-trained RNN, Arm Model, φ0 = φtrained , A = I.
2: Input: MKF parameters: 0 < λ w ≤ 1, σw

w ≥ 0, σw
v ≥ 0, 0 < λ a ≤ 1, σa

w > 0, σa
v ≥ 0.

3: Input: EMA parameters: µw
v , µw

p , µa
v , µa

p ∈ [0,1).
4: Output: Full arm trajectory prediction ŷ
5: for i = 1,2, . . . ,k do
6: Obtain current configuration wi, ei.
7: xw

i = [wi−N+1; . . . ;wi−1;wi], wpre = wi.
8: for j = 1,2, . . . ,M do
9: if j = 1 then

10: if Observation Available then
11: φi = MKF(φi−1, wi− ŵi−1

1 ,hi−1)
12: Xa

i−1 = JT(θi−1)(wi−wi−1)

13: Ai = MKF(Ai−1, θi− θ̂
i−1
1 , Xa

i−1)
14: θpre = IKew([wi; ei])
15: else
16: φi = φi−1, Ai = Ai−1
17: θpre = IKew([wi; êi−1

1 ])
18: end if
19: end if
20: ŵi

j = RNN(φi,xw
i )

21: xw
i = [wi−N+ j; . . . ;wi; . . . ; ŵi

j]

22: θ̂ i
j = θpre +AiJ(θpre)

T(ŵi
j−wpre)

23: [wpre; êi
j] = FKew(θ̂

i
j), θpre = θ̂ i

j
24: end for
25: ŷi = [ŵi

1; êi
1; . . . ; ŵi

M; êi
M]

26: end for

standard deviation of the prediction error and 2) the propagation of the mean squared
estimation error (MSEE) [30].

Statistical standard deviation At timestep k, the prediction error is calculated as ek =

yk− ŷk. The statistical standard deviation of the prediction error is calculated as

σy =

√
∑

T
1 e2

k
T

=

√
∑

T
1 (yk− ŷk)2

T
, (4.7)

where T is the total prediction timesteps.
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Propagation of a priori MSEE As illustrated in algorithm 1, the covariance matrix, Zk,
propagates and is the MSEE of the model parameters during online adaptation. Given the
covariance matrix Zk at time step k, the covariance matrix of the motion prediction ŷk can
by calculated as

Z ŷ
k = ΦkZkΦ

T
k + vk, (4.8)

where vk is the Gaussian noise and Φk is the parameter matrix being adapted as illustrated
in Eq. (4.6). And Z ŷ

k is the a priori MSEE of the prediction ŷk and quantifies the prediction
uncertainty error.
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4.2 IADA Intention Prediction

Due to the data scarcity, a standard fully-connected neural network (FCNN) classifier can
achieve outstanding performance on the training data but fails to perform well on the testing
data or real deployment. To address the challenge, we aim to augment the insufficient
dataset D0 with adversarial data Dadv to robustly learn the true decision boundaries of the
real but unknown data D as discussed in section 3.2. The goal is to ensure the learned
model on D0∪Dadv is as close as possible to Eq. (3.4). To achieve the goal, we formulate
the training problem as a two-layer optimization

min
θ

E(x,y)∈D0∪Dadv
(L( fθ (x),y)),

Dadv =
{(

x′, label(x′)
)
| ∃(x0,y0) ∈ D0,x′ = argminx′ s.t. ||x0−x′||∞≤ε∧ fθ (x′)6=y0

L′( fθ (x′),y0)
}
.

(4.9)

The outer objective optimizes the NN model parameters θ to minimize the loss on the data
from D0∪Dadv. The inner objective constructs Dadv given θ , which essentially finds the
most friendly adversarial data for all training data. The most friendly adversarial data for
(x0,y0) ∈ D0 is an input sample x′ that is at most ε distance away from x0 in the L∞ norm
but changes the network output from y0 with the smallest loss L′. The loss L′ for the inner
objective may or may not be the same as the original loss L. Ideally, we should choose
a loss that guides us to the most “confusing” part of the input space. The label of these
friendly adversarial data is decided by an additional labeling function, which ideally should
match the ground truth. If label(x′) = y0, we call x′ a true adversary; otherwise a false
adversary.

We propose an iterative adversarial data augmentation (IADA) training framework to
solve Eq. (4.9). Figure 4.2 illustrates the proposed training framework that aims to solve
the problem defined in Eq. (4.9). In particular, the inner objective will be solved using
formal verification to be discussed in section 4.2.1, while the labeling will be performed
under expert guidance to be discussed in section 4.2.2. The iterative approach to solve the
two-layer optimization will be discussed in section 4.2.3.

22



CHAPTER 4. APPROACH

Formal Verification

Network Training
Scheduler
(Whether to 

ask for human 
verification of 

the label)

Training 
Data

Adversarial 
Data

Human 
Verification
(labeling the 

data)

Augment data with verified labels

Augment data with unverified labelsDataset Expert Guidance

Trained Network

Figure 4.2: Iterative Adversarial Data Augmentation (IADA) training framework. For (x,y) ∈
D0∪Dadv, the framework updates the model. If (x0,y0) ∈ D0, the formal verification finds the most
friendly adversarial sample x′ around x0 if exists. The scheduler determines if human verification is
required for x′. If not, (x′,y0) is augmented to Dadv. Otherwise, if human is able to assign y′, then
(x′,y′) is added to D0. If not, then (x′,y0) is appended to Dadv.

4.2.1 Formal Verification to Find Adversaries

The two-layer optimization in Eq. (4.9) is similar to the formulation of adversarial training
Eq. (2.1). The major distinction lies in the inner objective. The minimax formulation
in Eq. (2.1) might reduce the model accuracy and generalizability when maximizing the
robustness [48] since the inner maximization could be too aggressive when generating
adversaries. Similar to the approach in [54], instead of finding the adversaries via the inner
maximization, we take the adversarial label fθ (x0 +δ0) into consideration when generating
the adversarial sample x′ = x0 +δ0. In particular, we design the inner loss to penalize the
magnitude of δ0. Then the inner optimization in Eq. (4.9) can be written as

min
x′
‖x0− x′‖∞, s.t. ‖x0− x′‖∞ ≤ ε, fθ (x0) 6= fθ (x′). (4.10)

The reason why we use the distance metric in the input space as the loss L′ instead of
using the original loss or any other loss that penalizes the output is that this metric reflects
the “confusing” level of samples. We generally expect that the learned model is regular
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at the training data for generalizability. The easier it is to change the label by perturbing
the input data, the less regular the model is, and hence more “confusing”. In addition,
this formulation provides a quantitative metric δ0 for evaluating the robustness online.
Therefore, we can prioritize enhancing the weaker boundaries and obtain full control of
the training process. Nevertheless, the optimization in Eq. (4.10) is nontrivial to solve
due to the nonlinear and nonconvex constraints introduced by fθ . To obtain a feasible
and optimal solution, we use formal verification [32] to find the appropriate x′. The
optimization in Eq. (4.10) essentially finds the minimum input adversarial bound, which
can be solved by various neural verification algorithms. In particular, primal optimization-
based methods such as MIPVerify [47] and NSVerify [34] solve the problem exactly by
encoding the neural network into a mixed-integer linear program; dual optimization-based
methods [52] can compute an upper bound of the problem by relaxing the nonlinear ReLU
activation functions; reachability-based methods [51] can also compute an upper bound by
over-approximating the reachable set and binary search for the optimal loss.

4.2.2 Expert Guidance for Labeling

With the adversaries obtained from formal verification, we need to label them before
augmentation. The proposed IADA framework uses expert guidance to guarantee the safety
and accuracy of the training. The framework requires the human expert to verify the newly
added adversaries. It uses a scheduler to balance the required human effort and the training
accuracy. We use an ensemble NN and the L∞ distance check to construct the scheduler.
The ensemble NN indicates whether the adversary is meaningful. We say data is meaningful
if humans can properly interpret the data label. For example, the disturbance to a human
trajectory that violates human kinematic constraints or to MNIST images that have two
digits shown in one image is not meaningful. However, note that it is difficult to obtain an
accurate ensemble model that can filter out all unmeaningful adversaries. However, it is
tolerable since the framework keeps two datasets, D0 and Dadv discussed in section 4.2.3,
although the human expert might have extra work to do, which is more than needed. The
scheduler requires human verification if δ0 > d or the ensemble model agrees that the
adversary is meaningful, where d is a pre-defined threshold. Based on the application, a
smaller d can be chosen to require more frequent human verification to improve the training
accuracy, while a larger d alleviates the amount of human effort.
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4.2.3 Iterative Adversarial Data Augmentation

We use an iterative approach to solve the two-layer optimization in Eq. (4.9) by incremen-
tally augmenting the data with the outer NN training loop. In one iteration, we find the
adversaries generated in section 4.2.1, which are the most “confusing” points for the current
NN. The adversaries will be labeled by experts and augmented to the dataset, either D0 or
Dadv, as shown in Fig. 4.2. In the next iteration, the framework will further verify, label, and
expand the dataset based on the augmented dataset. The framework maintains two datasets
D0 and Dadv, where Dadv is initially empty and D0 starts with the original training data. The
adversaries are only augmented to D0 if they are verified by the human expert, otherwise,
they are pushed into Dadv. Note that the adversaries generated in section 4.2.1 can either be
true or false adversaries, but both are informative and useful for improving the NN learning.
However, incorrectly mixing these two types of adversaries can greatly harm NN learning.
Therefore, we maintain D0 and Dadv to distinguish the safe data and potentially incorrect
data. The framework iteratively expands only from the data (x0,y0) ∈ D0. Therefore, the
framework can further expand the available training data safely. Dadv will be refreshed
before verification as shown in algorithm 3, since the framework only wants temporary
effect from Dadv but permanent effect from D0 for safety and correctness. Also note that
the IADA framework is reduced to standard adversarial training, except that we have a
different inner minimization loss objective if the scheduler requires no human verification.
On the other hand, it is equivalent to standard online data augmentation when the scheduler
always requires human verification (similar to data aggregation in imitation learning [42]).
Based on the applications, the scheduler can be tuned to either require more or less expert
knowledge to balance the training accuracy and the human effort.

The IADA framework is summarized in algorithm 3. The verification rate rv indicates
the frequency of online formal verification and data augmentation. The verification number
C indicates a maximum number of points to verify at each iteration. Qv is a priority queue
based on the level of expansion and the perturbation bound δ . The level is defined as 0
for the original training data. The adversaries generated from the original data have level
1. Qv determines the weakest points and prioritizes those points during verification and
expansion. On line 12, the system gets the weakest point and verifies it on line 14. If the
robustness is not satisfied, the system either asks for expert knowledge to assign a label
or assumes it to have the same label as the root. If the label is assigned by humans, the

25



CHAPTER 4. APPROACH

Algorithm 3 Iterative Adversarial Data Augmentation (IADA)
1: Input: Original dataset (x0,y0) ∈ D0.
2: Input: Robustness bound ε , verify rate rv, verification number C, learning rate α .
3: Output: NN parameter θ .
4: Initialize: θ = θ0, Qv = {D0}.
5: repeat
6: if VerificationRound(rv) then
7: // Refresh Dadv since it might contains data with incorrect labels.
8: Clear Dadv.
9: for i = 1, . . . ,C do

10: Breaks if Qv is empty.
11: // Qv prioritizes the point with 1) the lowest level of expansion and 2) the smallest

perturbation bound.
12: (x, y) = Qv.pop.
13: // Find an adversary by solving Eq. (4.10).
14: x′ =Veri f y(θ ,x,y,ε).
15: Skip if no adversary x′ is found.
16: if Scheduler && Human Verified then
17: Obtain the verified label y′.
18: Push (x,y) and (x′,y′) to Qv and append (x′,y′) to D0.
19: else
20: Append (x′,y) to Dadv.
21: end if
22: end for
23: end if
24: for minibatch {X ,Y} in D0∪Dadv do
25: θ ←− θ −αL( fθ (X),Y ).
26: end for
27: until max_epoch reached.
28: return θ .

adversarial sample is added to D0 for further expansion. The NN model is updated using
the training data and the adversarial data at lines 24-26.

4.2.4 Prediction Confidence Estimation

The prediction model outputs the corresponding classification labels. However, it is possible
that the output label is incorrect. Mistakenly trusting the incorrect prediction would harm
the downstream modules and potentially lead to safety hazards. Therefore, it is important
to estimate the reliability of the prediction. We use a confidence value to quantitatively
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estimate the reliability of the prediction. Ideally, it is desired that the correct predictions
have higher confidence and incorrect predictions have lower confidence. And we can use
the confidence value to distinguish the correct and incorrect predictions.

Assuming uncertainty exists in the input x (e.g., the noise when capturing the human
motion trajectories), the uncertainty of x can be modeled as a Gaussian white noise as X ∼
N(0,σX). We use the perturbation bound for estimating the prediction confidence. Given a
learned NN classifier, it is expected that the prediction closer to the decision boundary is
more likely to be uncertain. Therefore, we can estimate the prediction confidence C as

C = P(|t| ≤ δ ) = P(t ≤ δ )−P(t ≤−δ )

=
1√
2π

∫
δ

−∞

e−
t2
2 dt− 1√

2π

∫ −δ

−∞

e−
t2
2 dt

=
1√
2π

∫
δ

−δ

e−
t2
2 dt,

(4.11)

where P is the cumulative distribution function of X ∼ N(0,σX) and δ = ||x− x′||∞ is the
perturbation bound by solving Eq. (4.10).

Note that the confidence estimation in Eq. (4.11) is generic and can be applied in
different applications and NN models. However, the quality of the learned NN determines
if the metric is valid. This metric would be more informative and reliable for NN models
with decision boundaries closer to the ground-truth decision boundaries. This metric is
valid and informative here since the prediction model learned by IADA is close to the true
prediction model.

4.2.5 IADA Analysis

The IADA framework is unique in several ways. First, it is well-known that there exists
a trade-off between accuracy and robustness in general adversarial training [48]. This is
mainly due to incorrectly mixing the true and false adversaries. However, by introducing
expert guidance, the true adversaries can improve the NN robustness and enlarges the
decision area, while the false adversaries can enhance the ground truth decision boundary
for better accuracy. Second, although the augmented data may not recover the ground
truth data distribution, the augmented data will converge to and fully cover the ground
truth decision boundary in the limit (proof left for future work). As a result, the learned
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NN will converge to the ground truth with the correct decision boundary. Hence, this data
augmentation is most effective.

Based on these features, we argue that IADA is most suitable for tasks that have non-
trivial distribution of the data around the decision boundary, such as human intention
prediction in section 5.3.4. Such tasks generally have false adversaries close to the training
data and can easily have “confused” decision boundaries. On the other hand, image-related
tasks, such as MNIST, are suitable for using IADA, but not necessarily required. It is mainly
due to that image data is generally easier to collect, thus, unlikely to have insufficient data.
In addition, it is rare to have false adversaries close to the original images.
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Experiments

5.1 Data Collection

This work considers the situation on production lines, where the human worker sits in front
of a desk; and we mainly predict the human behavior based on the upper body motion. To
the best of our knowledge, such a human motion dataset that focuses on human arm motion
does not exist publicly. Therefore, we collected our human motion dataset in order to test
and validate the proposed human motion prediction and intention prediction methods.

Figure 5.1 demonstrates the experiment setup for collecting the motion data. In order to
simulate the situation in typical HRC production lines, we have humans sitting in front of a
desk doing assembly tasks using LEGO pieces. A motion capture sensor, an Intel RealSense
D415 camera, faces downward to record the human upper limb motion at approximately
30Hz. A visualizer displayed on the screen in front of the human guides the human subjects
to walk through the data collection experiment. The experiments have 3 humans doing 5
assembly tasks for 3 trials each. There are 8 available LEGO pieces provided on the desk.
Each assembly task requires 4 LEGO pieces. For each trial, the human is given the pictures
of the desired assembled object by the visualizer and then uses the provided LECO pieces
to assemble the target object based on their interpretation. The recorded data durations of
the tasks vary from 30 s to 90 s based on the task proficiency of the human subjects. The
OpenPose [9] is used to extract the human pose as shown in Fig. 3.1. Figure 5.2 shows the
example image frames of the collected motion data. The collected human motion dataset
includes the following typical operations, including
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Camera Visualizer

Figure 5.1: Data collection experiment setup.

1. Assembling: the human assembles two LEGO pieces together in place Fig. 5.2(a).

2. Reaching: the human moves the wrist toward the intended LEGO piece on the desk
Fig. 5.2(b).

3. Retrieving: the human grabs the LEGO piece and moves the wrist back to the
assembling area Fig. 5.2(c).

However, due to individual differences (i.e., task proficiency, arm length, etc), the behaviors
are very different in terms of displacement and duration. Note that even though the
collected dataset includes different humans doing different assembly tasks for several trials,
the demonstrations by human subjects are far from sufficient. It is highly possible that
the test set includes motion patterns that never exist in the training set. Therefore, the
adaptability of RNNIK-MKF and the robust learning by IADA are critical to building robust
motion and intention prediction models.

5.2 RNNIK-MKF Motion Prediction

We use the motion data in section 5.1 to evaluate the proposed RNNIK-MKF motion
prediction framework. We compare our method to several existing methods, including
FCNN, FCNN with RLS-PAA (NN-RLS) [12], ERD [15], and LSTM-3LR [15]. The
proposed RNNIK-MKF has one recurrent layer with 128 hidden size. To establish a fair
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(a) Assembling. (b) Reaching. (c) Retrieving.

Figure 5.2: Examples of human motions in the collected dataset.

comparison, we design the FCNN with two ReLU layers and a linear output layer [1].
We decrease the hidden size of the ERD and LSTM-3LR to match the size of ours. All
models have the loss function set to be the Huber loss [20] and the post-training losses for
all models are around 5× 10−3. All models are trained using the trajectories randomly
selected from humans 1 and 3 doing tasks 1, 2, 3. Since the regular human reaction time to
visual stimulus is around 0.25 s, we set the input horizon to be 10, which is equivalent to
approximately 0.3 s. The experiments test the prediction horizon from 1 to 60, which is
equivalent to 0.033 s to 2 s. We define the average prediction error for each prediction step
as,

E j =
1
T

T

∑
i=0

(||pi+ j− p̂i
j||2), (5.1)

to quantitatively evaluate the prediction accuracy. T denotes the total time steps. In the
following discussion, RNNIK represents the proposed method with wrist MKF turned off.

5.2.1 Prediction Experiments

We use trajectories from humans 1 and 3 doing tasks 1, 2, 3 but different trials to evaluate the
prediction quality. Figure 5.3 shows an example of the predicted trajectories from different
methods. The prediction errors from different methods are labeled on the images. We can
see RNNIK-MKF outperforms others in terms of prediction accuracy since it achieves the
lowest prediction error. The predicted trajectories of the wrist and elbow are plotted in red
and purple on the images. From the plotted predictions, RNNIK-MKF also outperforms
others in terms of prediction quality. Figure 1.1(b) shows an example of the predicted arm
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(a) ERD (b) LSTM-3LR (c) FCNN

(d) NN-RLS (e) RNNIK (f) RNNIK-MKF

Figure 5.3: Visualizations of the predicted trajectories (10 steps) using different methods. Green:
wrist ground-truth trajectories. White: elbow ground-truth trajectories. Red: wrist predictions.
Purple: elbow predictions. Due to projection, the errors might appear to be larger than the true
errors. True errors are labeled as (Wrist Error, Elbow Error) m.

trajectory in 3D and Fig. 1.1(a) demonstrates the projected visualization of the arm motion
on the 2D image. The visualizations demonstrate that the RNNIK-MKF generates accurate
prediction, but more importantly, the prediction preserves the arm’s physical structure. As
shown in Fig. 5.3, the predictions by others might reach certain configurations that are
infeasible by the human arm. However, as shown in Fig. 1.1, the predicted motion of the
human arm by our method follows the kinematics constraint and makes the prediction more
authentic and reliable.

Figure 5.4 demonstrates the overall prediction accuracy quantitatively. The proposed
RNNIK-MKF and RNNIK have very close performance, which is shown in Fig. 5.3 as
well. In general, the RNNIK-MKF has the lowest prediction error. It has 14% lower
prediction errors on average comparing to LSTM-3LR, which has the lowest errors among
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Figure 5.4: Prediction error for 1-60 prediction steps. Training and test data are from the same
person doing the same tasks but different trials.
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Figure 5.5: Prediction error relative to motion range.

the comparing methods. Fig. 5.5 shows the ratio of prediction error over the motion range.
When predicting within 1s, RNNIK-MKF can maintain the error at around 10% relative to
the motion range. For longer prediction step, the percentage can be maintained at around
15%. From the experiments, we can see that the proposed RNNIK-MKF can generate
high-fidelity human arm motion predictions that are competitive to state-of-art methods.

5.2.2 Unseen Humans Experiments

We test the methods with trajectories from human 2 doing tasks 1, 2, 3, to verify the effect
of MKF online adaptation. Figure 5.6 indicates that NN-RLS and RNNIK-MKF have
significantly smaller prediction errors. Methods without adaptation have large errors and
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Figure 5.6: Prediction error for 1-60 prediction step. Training and test data are from different people
doing the same tasks.

do not achieve similar performance as in the trained environment. In terms of adaptation,
the RLS-PAA effectively reduces the error generated in FCNN when the prediction step is
less than 20. But it explodes for longer prediction steps. On the other hand, RNNIK-MKF
stably reduces the error comparing to RNNIK. It keeps the maximum prediction error under
4 cm, which is at least 70% lower than other methods without adaptation. Since the data
contains humans with different heights and arm lengths, the results demonstrate that the
method is robust across different scales of motion.

To directly compare the performance of MKF and RLS-PAA, we apply the MKF to
FCNN. Figure 5.6 demonstrates that NN-RLS and NN-MKF perform similarly for a short
prediction horizon. NN-MKF is able to maintain the error stable for a longer prediction.
However, it still explodes for predicting more than 35 steps. Thus, we can conclude that
the proposed MKF is more robust than RLS-PAA for online adaptation in this context
since it has a virtual noise model and internal smoothing techniques. In addition, RNNIK
outperforms FCNN since NN-MKF is still unstable for longer prediction compared to
RNNIK-MKF.

In addition, we investigate the adaptation error of MKF. Figure 5.7 shows the root mean
square error (RMSE) for wrist and arm predictor with and without MKF. There exists a peak
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Figure 5.7: RMSE of the error for online adaptation.

at time 200 for both, which is caused by sudden direction change by the human. But the
peak is much smaller when MKF is turned on. There exist multiple smaller spikes for the
wrist. This is because we do not encode the context (e.g., task state), while the wrist motion
heavily depends on the context. On the other hand, there are fewer spikes for the elbow,
since the behavior remains relatively stable throughout the task. The plot demonstrates
that MKF effectively reduces the error caused by the model mismatch. Figure 5.7 also
indicates a fast convergence by MKF. The RMSE for arm settles within 100 steps, which is
equal to 3.3 s. The RMSE for wrist settles faster within 20 steps, which is around 0.67 s.
The settling times are different because the wrist adaptation starts with a parameter matrix
φ = φtrained , which has prior knowledge encoded, while the arm adaptation starts with
A = I.

5.2.3 Unseen Tasks Experiments

We also test the online adaptation using trajectories from humans 1 and 3 doing tasks 4
and 5. Figure 5.8 shows that the proposed RNNIK-MKF achieves the lowest prediction
errors among all. The tasks in training and testing have different high-level features but
are likely to share similar low-level features since they are done by the same humans. From
the results in Fig. 5.8, the adaptation successfully adapts the network to the new tasks,
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Figure 5.8: Prediction error for 1-60 prediction step. Training and test data are from the same person
doing different tasks.

hence, makes the model generalize to new tasks.

5.2.4 Motion Occlusion Experiments

We use the same data from section 5.2.1 to test the situation with occlusion. Several random
segments are blocked to the pipeline. We mainly consider the occlusion on the elbow
joint. When occlusion happens, the framework assumes that the observation aligns with
the prediction and turns off the adaptation as shown in algorithm 2. Hence, the occlusion
problem is essentially equivalent to a longer-term prediction problem under the N-to-1
structure. For instance, when at time k, the second step predictions, ŵk

2 and êk
2, are predicted

with input being [wk−N+2;ek−N+2; ...;wk;ek; ŵk
1; êk

1]. This is equivalent to when occlusion
happens at time k+1. The first step predictions at time k+1, ŵk+1

1 and êk+1
1 , are predicted

with input being [wk−N+2;ek−N+2; ...;wk;ek; ŵk
1; êk

1].
Therefore, we only consider the error for the first step prediction and we use the error

metric E = 1
T ∑

T
i (||ôi

1− p̂i
1||2) to describe the variation between the predictions. T denotes

the total steps of occlusion and ôi
1 denotes the prediction with occlusion. The algorithm

is considered robust if the variation is small between the predictions with and without
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Algorithm Wrist Variation (m) Elbow Variation (m)
ERD 0.05537 0.02591

LSTM-3LR 0.03059 0.01468
FCNN 0.01795 0.01619
RNNIK 0.0 0.03042

RNNIK-MKF 0.0 0.01164

Table 5.1: Motion prediction variation with occlusion.

occlusion.
Table 5.1 shows the variation for the wrist and elbow predictions of each algorithm.

ERD and LSTM-3LR have significantly larger variations for wrist predictions than elbow
predictions although the occluded joint is elbow. This is because the models couple the
wrist and elbow in prediction. The elbow is determined by the upper three joints while
the wrist is affected by all five joints. Thus, the wrist predictions have larger accumulated
variation. On the other hand, since RNNIK and RNNIK-MKF decouple the predictions
with arm model, the occlusion of the intermediate arm does not influence the prediction
of the wrist. However, RNNIK has the largest elbow variation while RNNIK-MKF has
the lowest elbow variation, which is 20% lower than others. This demonstrates that MKF
successfully reduces the error by mismatched models. From table 5.1, we can infer that the
proposed RNNIK-MKF is more robust compared to the existing methods when the arm
motion is partially blocked from view.

5.2.5 Online Adaptation Uncertainty

As MKF adjusts the model parameters online, it is important to quantify the uncertainty
of the prediction output. As discussed in section 4.1.4, the prediction uncertainty can
be quantified by 1) the statistical standard deviation of the prediction error and 2) the
propagation of the MSEE. Figure 5.9 shows an example of the prediction uncertainty of
RNNIK-MKF. The purple line indicates the absolute prediction error, which is calculated
as ek = ||ŷk− yk||. The blue dashed line indicates the statistical standard deviation of the
prediction error ek. The green line illustrates the MSEE propagation, which is calculated as

σ =
√

Z ŷ
k .

As shown in Fig. 5.9, the σ value offers an upper bound of the prediction uncertainties
as the MKF adjusts the model parameters online. The prediction error (purple) lies beneath
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Figure 5.9: Prediction uncertainty during MKF online adaptation. Green: MSEE Propagation. Blue:
Standard deviation of prediction error. Purple: Prediction error.

the σ bound (green). In addition, the MSEE increases as the prediction error changes
(model parameters change). This behavior indicates that MSEE is able to capture the
time-varying property of the prediction system. Moreover, we observe that the prediction
error and the σ bound are more stable for the arm than the wrist. This corresponds to our
assumption that the wrist motion is more complex and prone to change, while the arm
motion is more stable since it mainly supports the wrist. However, unlike the MSEE, the
statistical standard deviation does not properly bound the prediction error in real-time as
the error (purple) easily goes beyond the standard deviation bound (blue).

5.3 Intention Prediction with IADA

We use a single-layer fully-connected neural network (FCNN) with the hidden neuron
size being 32 and the ReLU activation function to construct the classifier for intention
prediction. We compare three training methods, including the regular supervised training
(REG), the robust training via the convex outer adversarial polytope (COAP) [52], and our
IADA training. We evaluate the effectiveness of the proposed IADA training framework by
comparing the classification performance of the trained FCNNs. In addition to the intention
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Table 5.2: Comparison of the FCNN classification accuracy on 2D binary classification. REG+DA
and COAP+DA are the training methods with uniform random data augmentation with the same
amount of data augmented by IADA. D: data size. E: epochs.

REG REG + DA COAP[52] COAP + DA IADA
D: 1k, E: 1k 97.16% 95.62% 97.22% 98.01% 97.62%

D: 500, E: 1k 94.97% 94.97% 95.89% 95.69% 95.53%
D: 500, E: 10k 97.93% 98.46% 97.61% 98.55% 99.01%
D: 500, E: 50k 97.78% 98.99% 97.31% 99.39% 99.51%

prediction problem, we test the IADA training in two additional applications, including
a 2D artificial binary classification problem shown in Fig. 1.3(a), and the MNIST digits
classification problem [28]. The formal verification is implemented using the MIPVerify in
NeuralVerification.jl toolbox [31]. The regular and IADA training use the Cross-Entropy
loss with the Adam optimizer [24] implemented in PyTorch [39]. The learning rate is set to
0.01 for all learning methods. The ε values are set to 0.1, 0.1, and 0.05 for the 2D, MNIST,
and intention problems respectively. For IADA, the verify rate is set to be rv = 500, the
verification number C is set to be 5000, 2000, and 5000 for the 2D, MNIST, and intention
problems respectively. All experiments are run in Windows 10 with AMD Ryzen 3700X
8-Core processor, 16GB RAM, and an RTX 2070 Super GPU.

5.3.1 2D Binary Classification

The 2D toy example mainly provides better visualization and an intuitive understanding of
the IADA training process. Figure 1.3(a) shows the ground truth of the problem, where we
have two classes shown in blue and purple. Given an available training dataset, we want
the FCNN classifier to recover the true decision boundary. The scheduler is implemented
only using the distance check since the 2D data point does not have a semantic meaning.
During the human verification, ideally, the human assigns the ground truth label. But
in this experiment, we assume the human has the ground truth knowledge and directly
use the ground truth to automatically assign the labels. We evaluate the training quality
by visualizing the decision boundaries of the classifier (shown in Fig. 5.10) and testing
the classification accuracy (shown in table 5.2). Note that the result in this example for
COAP has ε = 0.01. Since the adversarial bound computed in COAP is over-approximated,
enlarging the robustness to ε = 0.1 will result in too many false adversaries incorrectly
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(a) REG: D:1k, E:1k. (b) REG: D:500, E:1k. (c) REG: D:500, E:10k. (d) REG: D:500, E:50k.

(e) COAP: D:1k, E:1k. (f) COAP: D:500, E:1k. (g) COAP: D:500, E:10k. (h) COAP: D:500, E:50k.

(i) IADA: D:1k, E:1k. (j) IADA: D:500, E:1k. (k) IADA: D:500, E:10k. (l) IADA: D:500, E:50k.

Figure 5.10: Visualizations of the decision boundaries of the trained FCNN. D denotes the training
data size. E indicates the number of training epochs.

taken as true adversaries, which will fail the training.
We start with 1000 training samples. From table 5.2, we can see that all trained

classifiers have decent classification accuracy, which is above 95%, since we have sufficient
training data available. We then decrease the training data size to 500 to simulate the
situation with insufficient training data. As shown in table 5.2, with limited training epochs,
all trained models have worse accuracy. When we increase the training epochs, we observe
that the trained models have higher accuracy, where IADA has the highest among all.
However, as shown in Fig. 5.10(c) and Fig. 5.10(g), the recovered regions skew and overfit
the training data, whereas IADA recovers similar regions as the ground truth as shown in
Fig. 5.10(k). As we further increase the number of training epochs to 50000, we can see
that there is more overfitting by regular training and COAP as the accuracy starts to drop.
On the other hand, IADA further refines the decision boundary and improves classification
accuracy. Figure 1.3(a) shows the data augmentation process by IADA. The augmented
data converges to the true decision boundary as mentioned in section 4.2.5.

To demonstrate the effectiveness of using adversaries for data augmentation, we add
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Figure 5.11: Biased 2D training data. Data size:
500. The blue class is uniformly sampled, while
the purple class is only available in half of the
rectangle and the two circles. No blue points
are sampled between the circles. The number of
blue vs purple is 9:1.

Table 5.3: Comparison of the FCNN classification
accuracy on 2D binary classification with biased
training data.

REG COAP IADA
Epochs: 1k 90.65% 90.70% 92.75%
Epochs: 5k 93.07% 92.71% 99.07%

Epochs: 10k 93.13% 93.29% 99.35%
Epochs: 20k 93.62% 93.32% 99.41%
Epochs: 30k 93.81% 93.08% 99.21%
Epochs: 40k 93.67% 93.20% 99.54%
Epochs: 50k 92.59% 93.48% 99.33%

the same amount of data by random sampling to the original training dataset, which is
uniformly sampled, for REG and COAP. The model accuracy is shown in the second and
fourth columns of table 5.2. We can see that although the performance improves for both
methods, IADA still achieves the highest accuracy. This demonstrates that the adversaries
are more informative than uniformly sampled data. IADA is more effective and requires
fewer additional data for training.

5.3.2 2D Binary Classification with Biased Data

We further study the IADA training performance with biased training data on the 2D
classification problem. The biased training data is shown in Fig. 5.11. The data size is
500, which is the same as the experiments presented in section 5.3.1. However, 450 points
belong to the blue class, whereas only 50 points belong to the purple class. In addition, the
blue points are uniformly distributed, whereas the purple points are only available in half
of the clusters (i.e., the right half of the rectangle, the right half of the left circle, and the
left half of the right circle). Therefore, the purple class is locally biased. Also, there are
no blue data points sampled between the two purple circles, making the local distribution
between the circles different from the ground truth. The training parameters are identical to
the setting in section 5.3.1.
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(a) REG: E:1k. (b) REG: E:5k. (c) REG: E:10k. (d) REG: E:50k.

(e) COAP: E:1k. (f) COAP: E:5k. (g) COAP: E:10k. (h) COAP: E:50k.

(i) IADA: E:1k. (j) IADA: E:5k. (k) IADA: E:10k. (l) IADA: E:50k.

Figure 5.12: Visualizations of the decision boundaries of the trained FCNN learned from the biased
training data. E indicates the number of training epochs.

Table 5.3 shows the classification accuracy of the models learned by different training
algorithms. Using biased training data, it is obvious that the NNs learned by REG and COAP
have significantly lower accuracy. REG initially improves the accuracy but soon starts to
decrease the model accuracy due to overfitting. Similarly, COAP struggles to further recover
the NN decision boundary. On the other hand, IADA continuously improves the model
and achieves better classification performance. Figure 5.12 shows the visualizations of the
learned decision boundaries. After the first 1000 epochs, all methods perform similarly. As
shown in Fig. 5.12(a), 5.12(e) and 5.12(i), all models are not able to correctly distinguish
the three purple clusters. However, as the training runs for more epochs, REG and COAP
continue to fail to recover the three clusters, while IADA is able to correctly distinguish the
three clusters as shown in Fig. 5.12(j) to 5.12(l). The shapes recovered by IADA are similar
to the ground truth. Figure 5.13 demonstrates the development of the learned NN model
and the augmented adversarial data given the learned model. By iterative data augmentation
and expert guidance, IADA can correctly fill the missing halves of the rectangle and circles.
It is also able to expand the blue points to fill the empty space between the circles to recover
the ground truth.
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...
NN Decision Boundary

Augmented DataTraining Data

...

Figure 5.13: Example of the learning process by IADA on the 2D biased task. Training Data:
original biased training data. First row: adversarial data augmented by formal verification and expert
guidance given the current NN model. Second row: NN decision boundary learned by augmenting
the data.

5.3.3 MNIST

MNIST is a more realistic classification problem in a higher dimension. It is rare to have
adversarial images that humans cannot interpret the ground truth label. Thus, the scheduler
is implemented only using the distance check. During the human verification, the human is
given the adversarial image and asked to assign the ground truth label. Table 5.4 shows the
performance of different training methods on the MNIST dataset. Each entry includes the
classification accuracy using the MNIST testing dataset and the average perturbation bound
of the trained model. Given the testing data Dt = {xt ,yt}n

t=1, the average perturbation
bound is calculated as

pb =
1
n

Σ
n
t=1δt , (5.2)

where δt = 0 if fθ (xt) 6= yt . If fθ (xt) = yt , δt is the solution to (4.10) on the point xt .
Figure 1.3(b) shows a visualization of the adversarial images found by IADA and the
iterative expansion. As we expand for more iterations, the adversarial images have more
perturbations added relative to the original image. From table 5.4, we can see that IADA,
in general, achieves the highest accuracy, which indicates that the model learned a better
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Table 5.4: Comparison of the FCNN classification accuracy on MNIST digits classification. Each
entry is in the format of accuracy (average perturbation bound). D: data size. E: epochs

REG COAP [52] IADA
D: 3k, E: 1k 87.60% (0.00719) 88.30% (0.01393) 89.60% (0.01491)
D: 2k, E: 1k 84.85% (0.00689) 85.30% (0.01346) 87.05% (0.01309)
D: 1k, E: 1k 82.45% (0.00821) 83.95% (0.01495) 85.55% (0.01361)

D: 500, E: 1k 80.80% (0.00975) 80.90% (0.01599) 82.55% (0.01301)
D: 500, E: 2k 80.80% (0.01006) 80.75% (0.01521) 82.85% (0.01094)
D: 500, E: 3k 80.70% (0.00972) 80.65% (0.01492) 83.10% (0.01641)

decision boundary. However, COAP achieves a larger average perturbation bound in general.
This is mainly due to the different objectives for the two training methods. The objective
for COAP is to enlarge the perturbation bound, whereas IADA focuses on recovering the
true decision boundary. IADA expands the input space by querying new data, which might
lead to a slower expansion comparing to COAP. However, the expansion is safe due to the
expert guidance, and thus, leads to better classification accuracy than COAP.

5.3.4 Intention Prediction

We apply IADA to learn the intention prediction model discussed in section 3.2. The FCNN
is trained using the first two trials of human subject 1 doing task 1 and tested using the
third trial. The input to the FCNN is the previous 10-step (0.3s) historical trajectories for
both right and left wrists and the output is the intention label. Figures 1.3(c) and 5.15
show the adversarial wrist trajectories being added to the dataset by IADA. The model
validation accuracy is shown in table 5.5. We can see that the accuracy for REG and
COAP increase initially. But soon the accuracy starts to drop in regular training due to
the overfitting while COAP stays constant. On the other hand, by using expert knowledge
and iterative expansion, IADA is able to continuously improve the model accuracy. As
we further increase the training epochs, we expect the prediction accuracy by the learned
FCNN will further increase.

5.3.5 Intention Prediction Confidence

In the intention prediction context, we model the input noise as X ∼N(0, 0.05
3 )=N(0,0.0167),

which is a normal distribution with the 3σ value corresponding to the IADA epsilon value
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Table 5.5: Comparison of the FCNN classification accuracy on human intention prediction.

REG COAP[52] IADA
Epochs: 500 81.99% 77.94% 82.53%
Epochs: 1k 85.92% 77.95% 85.48%
Epochs: 2k 85.26% 81.66% 88.75%
Epochs: 3k 82.97% 83.95% 89.52%
Epochs: 4k 82.86% 83.95% 90.83%
Epochs: 5k 81.55% 83.95% 92.03%

ε = 0.05. The prediction confidence is calculated as shown in Eq. (4.11) using the perturba-
tion bound. Figure 5.14 shows a comparison of the prediction confidence using the FCNN
prediction model trained by REG, COAP, and IADA. We can see that, first, the prediction
model trained by IADA has significantly fewer incorrect predictions, which is also shown
in table 5.5. Secondly, IADA can effectively enlarge the true perturbation bound, making
the incorrect predictions have lower confidence while correct predictions have higher con-
fidence. On the other hand, the model trained using REG has many incorrect predictions
with high confidence. The predictions by the model trained using COAP have significantly
higher overall confidence, which indicates larger perturbation bounds. This is due to the
COAP objective, which is to enlarge the perturbation bound. However, both correct and
incorrect predictions have high confidence values since COAP mixes the true and false
adversaries during training. Therefore, the confidence value becomes uninformative. The
confidence value is more informative on the prediction model learned by IADA. Therefore,
it indicates that IADA recovers a better prediction model closer to the ground-truth model.

5.3.6 Visualization of IADA for Intention Prediction

In this section, we show more visualizations of the adversaries generated during the training
of the intention prediction classifier. Human motion has non-trivial distribution around the
decision boundary. It is likely to have false adversaries close to the training data and can
easily have “confused” decision boundaries. This confusion also applies to human experts.
In order to minimize the confusion, instead of solely visualizing the 3D trajectory points,
we project the trajectory on the image along with the background for the human expert to
better understand the context.

Figure 5.15 shows the visualizations of the adversaries generated by IADA. The first
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Figure 5.14: Intention prediction confidence comparison of the prediction model learned by different
training methods. Green: correct prediction. Red: incorrect prediction.

row shows the true adversaries, where the generated adversaries share the same intention
label as the root. We can see from the images that the red trajectories are close to the white
trajectories, and share the same motion pattern. The second row shows the false adversaries.
These adversaries got different labels assigned by the expert guidance. For instance, the
left adversarial trajectory in Fig. 5.15(e) has significantly increased vertical translation
comparing to the original motion, which makes it assigned as Reach. In Fig. 5.15(f), the
original intention is Assemble. However, the adversarial attack makes the right trajectory
have a large translation. The translation motion makes the expert assigned it to be Reach.
The third row shows the ambiguous adversaries. Due to the naive design of the scheduler,
there exist adversaries assigned to the human expert that do not have a clear meaning.

Also, note that the labeling process is subjective to the human expert. Since trajectories
can be ambiguous to humans, it is important to design an intuitive user interface to enable
better labeling. For the current visualization, we project the adversaries onto images with
the background. However, this will eliminate the information in the normal direction of
the image. In the future, we will investigate methods to better visualizing and labeling
the adversarial trajectories (i.e., simultaneously visualize both 2D and 3D trajectories or
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(a) GT: Retrieve. EG: Retrieve. (b) GT: Retrieve. EG: Retrieve. (c) GT: Assemble. EG: Assemble.

(d) GT: Assemble. EG: Retrieve. (e) GT: Assemble. EG: Reach. (f) GT: Assemble. EG: Retrieve.

(g) GT: Reach. EG: N/A. (h) GT: Retrieve. EG: N/A. (i) GT: Retrieve. EG: N/A.

Figure 5.15: Visualizations of the adversarial trajectories generated online by IADA. White: original
trajectory. Red: adversarial trajectory. GT: the intention label of the original trajectory. EG: the
intention label assigned by expert guidance to the adversary.
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Figure 5.16: Training time comparison of different training methods on different tasks. Left: 2D
binary. Middle: MNIST. Right: Intention Prediction.

Figure 5.17: Time cost decomposition for IADA training on 2D classification. Model update refers
to training using D0∪Dadv. Other refers to data operation (i.e., priority queue operation).

directly synthesize a video corresponding to each adversarial trajectory).

5.3.7 Discussion

Time Efficiency Figure 5.16 shows the training time for each method in each problem.
We can see that COAP and REG have very comparable time costs. IADA is significantly
more expansive in terms of computation time. On the 2D problem, it is around 5 to 7× the
time of REG and COAP, but around 20× and 100× on larger problems, i.e., MNIST and
intention prediction. We can expect the time cost to be higher when scaling to more complex
and larger NN structures. Figure 5.17 shows the time decomposition of the IADA training
on the 2D example. We can see the most expensive part is the human verification since the
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Figure 5.18: Percentage of true adversarial data found by formal verification online.

problem requires more expert guidance. Due to the low dimensionality of the problem, the
formal verification takes a smaller ratio in the total computation time. Similarly for MNIST
and intention prediction, human verification and formal verification takes more than 85% of
the total training time, but formal verification has a significantly larger ratio. This is mainly
due to the problem requires less human verification for MNIST, and the formal verification
is much more computationally expensive on higher-dimensional problems. However, note
that the comparison established here is slightly unfair since both REG and COAP are
implemented solely in Python, whereas IADA has the formal verification implemented in
Julia. The formal verification time accounts for the time exchanging between platforms.

Human Effort It is interesting to observe that COAP fails on the 2D problem when
ε = 0.1. But it works properly when ε = 0.01. For the 2D task and the intention prediction
task, the data is more likely to be on the decision boundary, thus, more likely to find false
adversaries online. Therefore, expert guidance is critical to make the training safe and
robust. Figure 5.18 shows the percentage of the true adversaries generated online during
training. It is obvious that MNIST has significantly more true adversaries generated online.
Therefore, the required human effort is significantly lower for image-related tasks, i.e.,
MNIST, compared to other tasks, i.e., intention prediction. By introducing expert guidance,
IADA is most suitable for tasks with “confusing” decision boundaries, in which case it is
easy to mix true and false adversaries, as discussed in section 4.2.5.
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Chapter 6

Conclusion and Future Work

This work studies human behavior prediction (motion prediction and intention prediction)
with data scarcity for safe HRC. To overcome data scarcity, this thesis proposes a novel
RNNIK-MKF adaptable motion prediction framework and IADA training framework to
address the challenge respectively.

The RNNIK-MKF uses the RNN to predict the wrist motion and IK to extend the wrist
prediction to full-arm prediction based on the physical arm model. The proposed MKF
adapts the model in real-time to the current user or task. By comparing to existing methods,
our method outperforms by showing that it can predict the arm motion with 14% lower
prediction errors; it is generic to unseen humans or tasks since it has 70% lower prediction
errors; it is more robust when partial arm motion is blocked as the occlusion has no impact
on wrist prediction and has 20% less influence on elbow prediction.

The IADA framework learns robust NN classifiers from scarce data by acquiring more
data offline during the model training. It uses formal verification online to find the most
vulnerable part of the network, such as samples on the decision boundary of the network
(adversaries). By acquiring human expert knowledge, the framework augments the training
data using the adversaries verified by humans and iteratively expands the available data.
The experiments demonstrate that our training method can improve the robustness and
accuracy of the learned model from initially scarce data. The IADA training is suitable for
training robust intention prediction models.

There are many future directions that we would like to pursue.

1. Exploring the potential usage of the end-to-center (wrist to arm) method in other
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applications (i.e., full human body motion, robot team exploration).

2. Analyzing the optimality of MKF; developing a strategy for finding optimal hyperpa-
rameters (i.e., noise model, system initialization).

3. Formally proving that the IADA framework will ensure convergence of the learned
NN model to the ground truth.

4. Exploring efficient online verification algorithms (both implementation-wise and
algorithm-wise) to improve the scalability of the IADA framework.

5. Designing a better scheduler in order to balance the required human effort and the
learning accuracy.

6. Extending the IADA framework to general regression NN where we will augment
new data at places with larger gradients.

7. Exploring the possibility of offering human experts the freedom to create new labels
during human verification.

8. Exploring the interaction between motion prediction and intention prediction. Cur-
rently, the motion prediction and the intention prediction only consider the past
motion observation. However, the motion prediction could be extended to embed
contextual information (i.e., intention), whereas the intention prediction could also
be extended to consider the motion prediction.
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