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Abstract

Pose estimation is a basic module in many robot manipulation pipelines.
Estimating the pose of objects in the environment can be useful for
grasping, motion planning, or manipulation. However, current state-
of-the-art methods for pose estimation either rely on large annotated
training sets or simulated data. Further, the long training times for these
methods prohibit quick interaction with novel objects. To address these
issues, we introduce a novel method for zero-shot object pose estimation in
clutter. Our approach uses a hypothesis generation and scoring framework,
with a focus on learning a scoring function that generalizes to objects
not used for training. We achieve zero-shot generalization by rating
hypotheses as a function of unordered point differences. We evaluate
our method on challenging datasets with both textured and untextured
objects in cluttered scenes and demonstrate that our method significantly
outperforms previous methods on this task. We also demonstrate how
our system can be used by quickly scanning and building a model of a
novel object, which can immediately be used by our method for pose
estimation. Our work allows users to estimate the pose of novel objects
without requiring any retraining.
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Chapter 1

Introduction

6D pose describes the position and orientation of an object, defined in a reference
frame relative to a predefined model of the object. An object’s 6D pose fully describes
the state of a static rigid object and, as such, is commonly used as a representation
for planning [10, 61]. A robot can use an estimate of an object’s pose to perform
complex manipulation interactions with the object [8, 19, 32, 50].

Current state-of-the-art methods for object pose estimation train a new model for
each object they are being evaluated on [3, 55, 57]. This requires a large amount of
annotated training data, either produced by capturing and annotating large datasets
or through rendering the object in synthetically generated scenes. For example,
the YCB-Video dataset [57] contains 133,827 human-annotated images with roughly
25,000 images per object. Although this dataset has enabled the training of powerful
deep learning methods [55, 57|, curating such a human-labeled dataset (including
both capturing a diverse dataset and labeling the data) for each new object that
a robot must interact with is cumbersome. Methods that rely on purely simulated
data [12, 49, 52] avoid this limitation but must instead contend with the sim2real
gap between the synthetic data and real sensor observations. Improved rendering [51]
and domain randomization techniques [15] have been suggested to alleviate this gap,
but ensuring that the simulated data accurately represents the variations observed in
the real world continues to be an open problem.

Regardless of how this data is obtained, training new networks has a time and

space cost. This training can take many hours, which prevents robots using such
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Figure 1.1: Pose hypotheses scored using Zero-shot Pose Hypothesis Rating on novel
drill object, reconstructed at test time. The highest scoring pose is rendered in color.
Poses are outlined in color corresponding to score, with highly-rated poses in red and
to lower ones in blue.

systems from quickly being able to interact with new objects. Additionally, new
network weights are trained for each new object, which presents a difficulty for
memory-constrained robot systems. These constraints do not scale well in cases where
robots need to interact with many different types of objects.

One approach to mitigate these issues is to use a non-learned geometry-based
method [13, 54]. These methods, however, do not typically capture visual texture
well, and they rely on hard-coded, rather than learned, invariances, which limits the
potential accuracy of the system (based on our experiments in Section 4.4). A few
recent learning-based approaches have attempted to perform zero-shot object pose
estimation [43, 48] but these methods require instance segmentation masks to be
provided as input, which limits their use in a “zero-shot” system, as such masks are
typically trained per-object.

We seek to remove these limitations by developing a novel learning-based method
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for zero-shot object pose estimation that can handle both textured and untextured
objects in cluttered scenes and does not require object masks as input. Our method
uses the paradigm of pose hypothesis generation and evaluation: given a scene, a large
number of candidate poses consistent with the observation are generated. The fitness
of each hypothesis is then evaluated and the best-fit candidate is selected. Such an
approach requires the hypothesis rating function to give appropriate weight to the
features that most correlate with the correct pose. The variation between sensor data
and the object model, caused by sensor noise or lighting changes, as well as partial
occlusions, can make designing this scoring function challenging. Past approaches to
hypothesis scoring have used voting over hypotheses or feature matching [4, 13, 16]; in
contrast, this paper proposes a scoring function that learns to compare the observed
images and rendered model points. Our learned scoring function demonstrates a
significant improvement on zero-shot object pose estimation over a wide set of objects

and environmental variations.

The key insight of our method is to use a learned scoring function that compares
the sensor observation to a sparse rendering of each candidate pose hypothesis.
This scoring function receives as input an unordered set of point differences, shown
in Fig. 3.1, which we show is crucial to perform zero-shot generalization to novel
objects not seen in the training set. Our method is trained over a disparate set of

objects and then evaluated on novel objects not included in the training set.

We demonstrate that our Zero-shot Pose Hypothesis Rating method (ZePHyR)
works on objects in clutter without requiring object masks as input, unlike past
zero-shot methods [43, 48]. ZePHyR handles both untextured objects as well as
objects with significant visual texture, not seen at training time. Therefore, ZePHyR

achieves the goal of zero-shot object pose estimation mentioned earlier:

e We require no new human annotations or large-scale synthetic data generation

to interact with novel objects.
¢ We require no retraining for novel objects.

e ZePHyR uses only a single set of network weights, rather than requiring new

weights for each unique object, reducing the memory constraints.

We evaluate our method on YCB-Video and LineMOD-Occlusion, two challenging

pose estimation datasets. Our method achieves state-of-the-art results over previous
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zero-shot pose estimation methods.



Chapter 2

Related Work

The 6D pose estimation task is to obtain the rotation and translation of an object
relative to a known coordinate frame (e.g. a robot sensor frame). Rotation and
translation each has 3 degree of freedom and therefore the status of a rigid object
can be fully represented by six numbers in the 6D pose representation. This gives
robot agents a compact understanding of objects in the environment and 6D pose
estimation is crucial for many robot manipulation tasks, where pose-relative actions

can be executed given the object pose.

With the rapid development of the deep learning methodology in the past few
years, many deep networks have been designed to estimate 6D object pose from
RGB or RGB-D observations. However, unlike object detection and segmentation,
6D pose estimation is an area where classical methods based on surface matching
are still among the state-of-the-art. And most deep approaches suffers from poor

generalization ability to new objects.

In this chapter, we will first review the classical 6D pose estimation method based
on Point Pair Features in Section 2.1 and then review the deep learning approaches
that are object-specific or object-generic in Section 2.2 and 2.3 respectively. Finally,

we will review some methods for pose scoring in Section 2.4
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2.1 Classical 6D Pose Estimation Methods

Classical approaches for 6D pose estimation [1, 20, 23, 24, 36, 39, 40, 53, 60] are
inherently zero-shot, leveraging robust features and the available object model at
test time. Among this methods, Point Pair Features (PPF) [13, 14, 14, 25, 31, 54]
use pairs of oriented points to generate geometrically consistent pose hypotheses and
select the best hypothesis using voting and clustering. These are among the top
performing methods on the BOP leader board [26], when averaged over all datasets,
but struggle to compete with deep learned methods on the highly textured YCB
dataset due to the methods being exclusively based on depth.

PPF variants that take into account color have been proposed [7, 30], as well
as methods that learn a matching function [11]. While these methods have been
shown to be effective on small datasets, they have not been tested on cluttered
environments. In a similar approach to ours, Birdal et al. [2] improves upon PPF
hypotheses using a rendering based scoring function. However, their approach only
uses depth information (not color) and a fixed scoring function (not learned). In
contrast, our method focuses on learning a pose hypothesis scoring function, showing
large improvement gains in cluttered environments with textured and untextured

objects.

2.2 Deep 6D Pose Estimation Methods

Among the recent deep learned methods, some handle the problem of pose estimation
as a direct regression task, outputting a full pose estimate for a given scene, using a
largely end to end trainable system [55, 57]. Others learn intermediate representations,
such as local image coordinates [3, 28, 45], fixed feature locations [52], autoencoder
featurization [12, 49], or dense features [17].

For the majority of these methods, a new network, or portion of a network, has
to be trained for each new object, greatly limiting the scalability of these approaches
in terms of training time and memory. Further, these methods require large training
sets for each new object, which either need to be manually curated or synthetically
generated, with a potential sim2real gap that continues to be a problem for such

approaches today. Therefore, these methods suffer from the issues of curating datasets,
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training time, and memory scalability. In this thesis, we hope to solve these issues

with zero-shot pose estimation.

2.3 Deep Zero-shot 6D Pose Estimation Methods

Several learned methods solve the zero-shot pose estimation problem using class-based
pose estimation [38, 56] as opposed to instance-based pose estimation. These methods
learn a pose estimator capable of generalizing among objects in the given class, but
such methods are not intended to generalize to novel classes. While this is a step in
the direction of zero-shot pose estimation, it still requires training a new network for

each class.

Pose refinement methods like DeepIM [35] learn to estimate the residual pose
between the observed data and a rendered viewpoint and have shown to generalize
well to unseen classes of objects. These methods, however, require the initial rendered
pose to be relatively close to the observation to produce accurate results, and as such
is primarily used to refine a coarse pose prediction. Our method requires no such

close initialization.

A few recent zero-shot methods use a learned representation of the object in
their pose estimation pipeline [43, 48, 58]. While these methods have been shown to
generalize across objects, they require a bounding box for the target object, which is
obtained using an object-specific learned detector (and hence not a zero-shot system)
or the ground-truth bounding box. LatentFusion [43] uses a learned differentiable
renderer using a latent featurization to the object to optimize the object pose.
Like the previous methods, these methods also requires an accurate, object-specific
segmentation. This requirement is avoided in the MOPED dataset [43], as there is
only a single object in the scene, which greatly simplifies the task of estimating the
object mask [59]. For the LineMOD-Occlusion dataset, ground truth object masks
are used [43]. Our method does not require such bounding boxes or masks as input,

making it truly zero-shot.
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2.4 Pose Scoring

There has been some study of learned fitness functions. Differentiable RANSAC
(DSAC) [4] explores learning a fully differentiable RANSAC algorithm. Specifically,
they study the use of a REINFORCE style loss for scoring candidate hypotheses. We
take inspiration from this work; however, their method focuses on a different task of
camera localization rather than object pose estimation; as a result, many important
details of our method, such as the input featurization and network architecture,
are significantly different from their approach. Pose Proposal Critic [5] learns to
regress to the reprojection error between a rendered pose and the observation. They
numerically differentiate this error function as a means of pose refinement. However,
they only evaluate this approach as a pose refinement technique, with a close initial
pose estimate; in contrast, our focus is on evaluating a large set of pose hypotheses

that span the entire observation space.
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Z.ero-shot 6D Pose Estimation

3.1 Overview

The primary objective of this work is zero-shot object pose estimation in clutter.
To achieve this, we train our pose estimation method on one set of objects and
then evaluate on a set of novel objects, without requiring any re-training. This
differentiates our work from previous work that requires real or synthetic training
data of the test objects [55, 57]. Our work additionally differentiates from other
zero-shot pose estimation work [43, 48, 54], in that it operates well in cluttered scenes,
requires no object masks as input, and produces accurate poses for both textured
and untextured objects.

An overview of our method is shown in Figure 3.1. Given a set of 6D pose
hypotheses, we first project each hypothesis into the scene. Our method learns to
score each hypothesis by comparing differences in the projected object model point
cloud to the RGB-D observation. For each projected model point, we extract the color
and geometry information from both the model and the observation and compute the
local differences of the extracted information. This yields a set of point-differences, one
for each projected model point. Each element in this set encodes the local alignment
between the model and the observation with respect to color and geometry. We
adopt a point-based network [46, 47| to analyze this unordered set of point-differences
and regress to an overall score for each pose hypothesis. Focusing on differences as

well as adopting a point-based neighborhood structure helps us avoid overfitting to



CHAPTER 3. ZERO-SHOT 6D POSE ESTIMATION
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Figure 3.1: System Pipeline. Our method first projects the sampled model points M
onto the observation I according to a pose hypothesis h;. Then D; are extracted as
the point-wise differences between the observation and the projected model points,
describing the alignment of the pose hypothesis at each projected point. A network
takes in D; and regresses to a score s; for each pose h; which evaluates how well the
pose matches the observation.

object-specific properties from the training set and allows us to generalize to unseen
objects at test time.

In this work, our primary focus is the learned scoring function and we use existing
methods to generate our initial pose hypothesis set. While many algorithms could be
used to generate these potential object pose hypotheses [4, 9, 42], we use a combination
of Point Pair Features [13] and SIFT features [37].

3.2 Learned Scoring Function

The main goal of our method is to score pose hypotheses by projecting them into the
observed scene and learning to compare their local geometric and color differences.
Suppose that we have a set of 6D pose hypotheses H = {h;}, that we wish to

evaluate. We represent the object as a point clond M = {z;}"_,,

sampled from the
provided object mesh model, or obtained from a 3D reconstruction pipeline. Each
point contains both geometric (depth and normal) and color information drawn from
its local region on the object. Similarly the observation image I contains geometric and

color values from the observation. To evaluate hypothesis h;, we project each object

10
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point z; onto the observation’s image plane, using the known camera parameters.
This projection gives a point at image coordinates y;; with transformed point values
Z;; (the point depth and normal vector are transformed; the color of the projected
point is unchanged). For each pose hypothesis, the difference between the projected
values, Z;;, and their corresponding image values, I(y;;), is computed according to a

simple distance function, d;; = f(Z;;, I(yi;)) (see Section 3.4.2 for details).

The set D; = {d;;}~, represents an unordered set of point differences for pose
hypothesis h;, each of which is associated with a given point z; in the model and a
location y;; in the observation image. We train a deep neural network go(D;) with
parameters # to analyze this difference set and regress to a pose fitness score, s;. While
one might assume that a simple hand-designed function for g would be sufficient, in
practice, however, occlusions, lighting differences and other confounding factors make
such simple methods ineffective. Our learned function can intelligently combine point
differences on multiple parts of the object to robustly estimate the most likely pose

hypothesis.

3.3 Loss Function

To train this hypothesis scoring function, we adopt the probabilistic selection loss
proposed by DSAC [4], as it directly optimizes the expected pose error when hypotheses
are sampled according to the predicted scores. For each pose hypotheses h; with
corresponding true pose error ¢;, we compute the expected pose error of sampling

according to the softmax distribution induced by s;, £ = """, softmax(s;)e;.

In our experiment, ¢; is defined as the log of the average point distance (ADD) for
non-symmetric objects and its symmetric analog (ADD-S) for symmetric ones [57].
Empirically, we find that the log of this error better dampens the effects of outliers.
More discussion can be found in Section 3.4.2. At test time, the highest-scoring pose

hypothesis is selected. The inference pipeline is described in Algorithm 1.

11
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Algorithm 1 Hypothesis Scoring Pose Estimation
1: Compute initial pose hypothesis set H = {h;}",;

2: for h; in H do

3: Project all model points according to h; onto the image plane to get projected
model points Z;; at projected image coordinates y;;;

4: Get observation points (y;;);

5: Compute point differences d; = f(Zi;, 1(yij));

6: Score point-differences s; = go({di; }72,);

7: end for

3.4 Implementation details

3.4.1 Hypothesis Generation

We generate the initial hypotheses set using the commercially available Point Pair
Feature software, HALCON 20.05 Progress software [41], which implements the PPF
algorithm described in Drost et al. [13]. For each observation, we use the top 100 pose
hypotheses generated by PPF. For detecting objects with high visual texture (e.g.
for all objects in YCB-V), we augment these hypotheses using Dense SIFT feature
matching. We obtain pose hypotheses from these features by aligning the surface
normals and SIFT orientations of pairs of matched SIFT features; aligning the SIFT
orientations and normals enables a single pair of matched SIFT features to define a

6D pose hypothesis.

3.4.2 Network Input

As input to the hypothesis scoring function, we use very simple geometric and
color information for both the model and observation data. For each point on the
model, we compute its 3D location, surface normal, and color in HSV space. When
projecting each point into the observation frame, we transform both the normals
and 3D coordinates to compute the depth and normal with respect to the camera.
The color data is unaffected by the projection. Similarly, we compute local surface
normals from the observation, and thus we obtain depth, normal and HSV color
information at each pixel of the observation image.

To create the network inputs d;;, we compute the signed difference between the

12
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projected and observed points for both depth and color. For surface normals, we
use the cosine of the angle difference between the projected and observed normals.
Additionally, we concatenate the projected image coordinates, y;;, of the associated
image point, normalized to zero mean and unit variance, as an additional input, to

provide the structural neighborhood information.

3.4.3 Network Structure

Our network takes in the set of point-differences D; = {d;;}7., and outputs a single
score, s;, that estimates how well the pose hypothesis h; matches the observation.
Because D; is an unordered set of point-differences, we use a network architecture
designed to handle unordered sets of points; specifically, we use PointNet++ [47]. Our
experiments show that the loose neighborhood structure of this architecture enables
zero-shot generalization to unseen objects. To define the spatial neighborhood for
grouping points in PointNet++’s point set abstraction layers, we use the normalized
image coordinates. We explore the effect of networks with different neighborhood

structures in Section 4.6. We detailed the structure of each network as follows.

PointNet++. We adopt the PointNet++ [47] and reduce the sizes of MLP and
adjust parameters of original design, to enable the training of the whole network with
1100 pose hypotheses in 11 GB GPU memory. We uniformly downsample the object
mesh models so that the leaf size for the voxel grid is 7 millimeter and each object
has 1000 points on average, and further randomly subsampled the input points down
to 2000 when the number of points in the downsampled object model still exceeds

this number. The detailed network architecture is described as follows.

We use the single scale grouping (SSG) version of PointNet++. Following architec-
ture protocol in [47], we denote SA(K,r,[ly, ..., 14]) as a set abstraction (SA) level with
K local regions of ball radius r using PointNet of d fully connected layers with width /;
(i =1,...,d). SA([l1,...l4)) represents a global set abstraction level that converts set to
a single vector. FC(l,dp) represents a fully connected layer with width [ and dropout
ratio dp. All fully connected layers are followed by batch normalization [29] and

ReLU activation functions, except for the last score prediction layer. The resulting

13



CHAPTER 3. ZERO-SHOT 6D POSE ESTIMATION

PointNet+-+ architecture is as follows:

SA(128,0.2,[16,32]) — SA(16,0.5, [32.64]) —
SA([64,128]) — FC(64,0.4) — FC(16,0.4) — FC(1)

PointNet. For the ablation experiment on PointNet, we also use a reduced
version of Classification Network described in [46]. We remove the input transform
and feature transform layers. We use a three-layer MLP, with the size of the hidden
layer to be 16, pre-bottleneck, a bottleneck max pooling layer of dimension 16, and a
3-layer MLP with the hidden layer size 64 post-bottleneck. All except the last MLP
layers are followed by a batch normalization layer [29] and a ReLLU activation. The
final output of the last layer estimates a single score for each input point cloud.

Convolutional Network. For the CNN, we use a vanilla ResNet-18 [21] with
randomly initialized weight. The the number of input channels of the first layer is
expanded to match the number of error features, and the last layer is changed to a
2-layer MLP with the hidden layer size 64. The final output is a single score for each
pose hypothesis.

3.4.4 Training Details

For computational efficiency, we subsample the training data points in the YCB-V and
LM-O datasets and pre-process them for fast training. Specifically, from the YCB-V
training split, we evenly sampled 4716 observations, containing 2346 observations of
objects with even IDs and 2370 of objects with odd IDs. From the synthetic training
set of LineMOD dataset [27], we evenly sampled 1749 observations of objects that are
not in LM-O dataset as the training set. The observations of the training objects are
then split, with 90% used for training and 10% used for validation. After training, the
model weights at the epoch with lowest error on validation set of the “seen” objects
are selected for evaluation, and the observations of “unseen” objects are not used
during training or validation.

To train the PointNet and PointNet-++ archetectures, we use an Adam opti-
mizer [33] with an initial learning rate 3 x 107*. For the CNN training, the initial
learning rate is 1 x 107°. We trained each network for 100 epochs and the learning
rate reduces to 1/10 after epoch 30 and 80.

14
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We augment the training data by randomly jittering the brightness, contrast,
saturation and hue of the observation images by factor of 0.2, 0.2, 0.2 and 0.05
respectively. To prevent overfitting to the training objects, we also jointly perturb
the color of the model and the observation color, changing the color of both the real
and rendered data in the same way. The factors for brightness, contrast, saturation

and hue in this process are all 0.5.

15
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Chapter 4

Experiments

4.1 Datasets

We evaluated our method on two of the most popular datasets in the BOP Chal-
lenge [26], the YCB-Video (YCB-V) dataset [57] and the LineMOD-Occlusion (LM-O)
dataset [3]. In these experiments, we follow the evaluation protocol set up by the
BOP Challenge, with the additional constraint that our method is not trained on
the objects it is tested on. This allows us to test our ability to perform zero-shot

generalization to novel objects.

4.1.1 YCB-Video dataset

YCB-Video dataset (YCB-V) [57] contains 92 RGB-D video sequences of 21 YCB
objects [6] of varying shape and texture, annotated with 6D poses. This a particularly
challenging dataset for object pose estimation due to its varying lighting conditions,
occlusions, and sensor noise. We follow the dataset split in [57], and for the evaluation,
we adopt the BOP testing set [26], where 75 images with higher-quality ground-truth
poses from each of 12 test videos are used. To demonstrate the generalization ability
of our method, one half of the objects are used for training, and the other half are
used for testing. To accommodate the full dataset, a second network is trained with
train and test objects exchanged, such that each network only sees half of the objects

during training, and no network is trained on the objects that it will be tested on.
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Note that we train our network on the training (seen) objects in the YCB-V training
split and test on the testing (unseen) objects in the testing split, so not a single
test image or object is seen during training. When evaluating on YCB-V, we use
hypotheses generated by both PPF and SIFT matching to handle the high degree of

visual texture. We also adopt a ICP refinement step [1] for post-processing.

4.1.2 LineMOD-Occlusion dataset

LineMOD-Occlusion dataset (LM-O) [3] adopted a single scene from the test set of the
larger LineMOD (LM) dataset [24] and provides ground-truth 6D pose annotations
for 8 low-textured objects. For training, we used the PBR-BlenderProc4BOP [27]
training images provided by the BOP challenge. This dataset contains photo-realistic
synthetic images of LM objects dropped onto a table, with randomized background
texture and object materials. Our model is only trained on synthetic images of the 7
objects that are in the LM dataset but not in the LM-O dataset; we then evaluate
on the LM-O objects, which were not seen at training time. When evaluating on
LM-O, we only use hypotheses generated by PPF; we find that SIFT hypotheses are

ineffective on this dataset since the objects do not contain much visual texture.

4.2 Metrics

As suggested by the BOP challenge [26], we report the average recall (AR) scores as
the average of the following three average-recall pose error metrics: Visible Surface
Discrepancy (VSD), Maximum Symmetry-Aware Surface Distance (MSSD), and
Maximum Symmetry-Aware Projection Distance (MSPD). Given an object model
M, an estimated pose P and its corresponding ground truth P, we calculate three

metrics as follows.

4.2.1 Visible Surface Discrepancy (VSD)

Given the estimated and ground truth pose P and P, the object model is rendered
to obtain the estimated and ground truth distance maps D and D respectively. The

distance maps are then compared with the observed distance map to obtain the
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visibility masks V and V, which are the sets of pixels where the object is visible in
the test image. Then the VSD measures the discrepancy of the estimated and ground

truth distance maps that are visible as follows.

0 ifpeVNVA|D@p) —Dp)|<T
eéysp = avg (41)
pevuv | 1 otherwise,

where p € V NV iterates over all pixels that is both visible under P and P. Note here
VSD only measures geometry alignment (color agnostic) and treats indistinguishable

poses as equivalent by considering only the visilbe object part.

4.2.2 Maximum Symmetry- Aware Surface Distance

(MSSD)

Consider a object point cloud M = {z;} and a set of symmetric transformations 7
for this object, MSSD is defined as

. (4.2)

eMssp = min max ‘ij —PTx; ,

TeT z;eM

MSSD measures the surface deviation in 3D, and thus is relevant for robotics applica-

tions.

4.2.3 Maximum Symmetry-Aware Projection Distance

(MSPD)

Let proj denote the 2D projection operations. Then MSPD is defined as

proj(f’:z:j) — proj(PT'z;) (4.3)

eMspp = in max
TeT x;eM

.

Therefore MSPD measures the maximum perceivable discrepancy in 2D image space.
Based on the above three metrics, a overall Average Recall (AR) score is computed.
Given an estimated pose, it is considered correct if e < 6, w.r.t pose error metric e,

where e € {eysp, emssp, emspp } and 6, is the threshold of correctness. The ratio of
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correctly-estimated poses over all pose estimation targets, is defined as recall. Then
AR, is the Average Recall w.r.t. metric e, which can be calculated for multiple
thresholds 6, and multiple misalignment tolerance 7 in the case of eysp. The final

AR score is computed as the average of three:

AR = (ARVSD + ARnmssp + ARMSPD)/3- (4.4)

4.3 Baselines

We compare our method to both zero-shot and object-specific methods. As we
are most concerned with our performance as compared to other zero-shot methods,
we compare to two variants of Point Pair Features, Drost [13] and Vidal [54]. An
implementation of Drost’s PPF [41] is used as the hypothesis generation algorithm
in our work. Vidal had until recently been the top-performing method in the BOP
challenge, and demonstrates the peak performance of PPF-only systems (although
their code is not available). Other recent papers have proposed learning-based methods
for zero-shot pose estimation, namely Multipath Augmented Autoencoders [48], which
we compare against. While this method has been shown to generalize to unseen
objects, the reported results that we include are a product of training a single model
on the test objects; further, their method utilizes an object-specific detection network
(also trained on the test objects) [22]. In addition to the zero-shot baselines, we
report the current state of the art in object-specific methods as CosyPose [34] and
Pix2Pose [44]. Both of these methods train a network on annotated instances of the
test objects and have weights specifically associated with each object. While we are
not attempting to match the performance of these systems, we report their results to

illustrate the still remaining gap between zero-shot and object-specific methods.

4.4 Zero-shot Pose Estimation Results

4.4.1 Quantitative Results

In Table 4.1, we find that our method outperforms all zero-shot methods, significantly

improving over our initial pose hypotheses produced by Drost and outperforming the
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Zero-Shot Methods Object Specific Methods
Drost | Vidal | Multipath | ZePHyR + CosyPose Pix2Pose
[13] [54] [48] Drost (Ours) [34] [44]
YCB-V || 0.344 | 0.450 0.289 0.516 0.861 0.675
LM-O | 0.527 | 0.581 0.217 0.598 0.714 0.588

Table 4.1: AR scores for methods of zero-shot and object specific pose estimation on
object pose datasets (higher is better).

best PPF-only solution in Vidal [54]. We see the largest improvement on the YCB
dataset, where PPF is unable to fully resolve the pose of the geometrically symmetric
but textually asymmetric objects, seen in failure to match the cylindrical objects in
Figure 4.1. Our method is able to leverage both color and geometry, selecting the
most accurate pose hypothesis. Additionally, we find our method to be comparable
to the object-specific results produced by Pix2Pose [44]. While DeepIM [35] is a
local refinement method, and not directly comparable to ZePHyR, we do evaluate its

performance based on PPF in the supplementary material.

Input Image Original PPF Results Our Improved Results

Figure 4.1: Qualitative results on image from YCB-V dataset showing the improved
accuracy of our method.

4.4.2 Qualitative Results

Figure 4.2 shows more qualitative results of both our method and the baseline over
the YCB-V and LM-O datasets. The left column shows the full scene; the second
column shows the ground-truth pose for the target object. The third column shows
the highest-scoring pose according to our method, and the last column shows the
highest-scoring pose according to the PPF baseline [13]. In the 3rd and 4th columns,

the selected pose hypothesis for each method is rendered into the frame. Overall, Our
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method demonstrates a better performance than the PPF baseline. As PPF only
considers geometry, it cannot determine the correct orientation on some objects that
are symmetrical in shape but have distinguishing texture, like the “Master Chef” can
and tomato can in row (5), (7) and (8) in Figure 4.2. But our method considers both
shape and color information, and thus can make correct estimations in such cases.
PPF also tends to match the flat side of an object to the flat top of a table, such

shown in row (3), (6), (7) and (9) in Figure 4.2; our method fixes such errors.

4.4.3 Failure Case Analysis

Figure 4.3 further elaborates the failure case of the sugar box in the row (8) of
Figure 4.2. As we can see, due to the reflection, the upper surface of the sugar box in
the observation is overly lightened, which makes the saturation and value errors of
the wrongly-picked hypothesis smaller than those of the correct one. However, our

method correct recover the geometry and still presents a reasonable result.

4.5 Evaluating Generalization

As we stated previously, in order to ensure our network is not trained on the test
objects we split the objects in YCB-V into two halves, training a network on each
set of objects. We select via index parity, as it separates the dataset into splits with
roughly equal numbers of symmetric and asymmetric objects, with “Object Set 1”
and “Object Set 2”7 representing the set of objects with even and odd object IDs
respectively. To evaluate how well our network generalizes, we compare our results
on unseen objects to the objects each network was trained on. The full breakdown of
each network’s scores are shown in Table 4.2. Although there is some performance
drop on unseen objects, the gap is relatively small, showing the generalization abilities
of our method. The “Zero-Shot” column of shows the zero-shot performance of each

model on the objects it does not see during training.
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Observation

Observation GT Ours PPF

Figure 4.2: Qualitative results on LM-O (first 3 rows) and YCB-V (last 6 rows)
dataset. Raw input image and ground truth renders shown in the first and second
column, respectively. The third and fourth column compare the top results using our
scoring pipeline (“Ours”) and the original PPF (“PPF”) hypothesis algorithm [13],
respectively.
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(e) Error features for our result

Figure 4.3: A failure case of our method. “Best” means the pose that has the lowest
ADD error in the pose hypothesis set. “Ours” means the highest scoring hypothesis
returned by our method. In plot (d) and (e), “u” and “v” are the normalized
projection coordinates. “H_dift”, “S_diff”, “V_diff” and “D_dift” represent the signed
difference of the hue, value, saturation and depth between projected model points
and the observation respectively. “norm_cos” is the cosine of the angle between

transformed model normal vectors and observed normal vectors.
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Our method trained on
Tested on Set 1 Set 2 Zero-Shot
Object Set 1 || 0.624 0.543 0.548
Object Set 2 || 0.488 0.496 0.488
All Object 0.557 0.520 0.516

Table 4.2: AR scores on YCB-V object subsets.

4.6 Neighborhood Structure

We explore the effects of different neighborhood structures on the accuracy and
generalization of our method. Our method uses a PointNet++ [47] architecture that
uses a hierarchical neighborhood structure; we compare this to a CNN architecture
that uses a strict neighborhood structure and a PointNet-based architecture [46] that
uses a global structure. For the CNN approach, we generate a sparse difference image
using the projected point differences before passing it to a ResNet18 network [21]. Our
PointNet++ approach uses normalized image coordinates for neighborhood grouping.
The PointNet approach contains the normalized image coordinates but it does not
perform explicit neighborhood grouping. In Table 4.3, we see that the loose local
neighborhood structure found in PointNet++ outperforms the global structure of
PointNet as well as the strict structure used in image convolutions. This implies that
some neighborhood structure is important for evaluating these sparse point differences,

but a too strict neighborhood hampers both performance and generalization.

PointNet++ | PointNet | CNN
On YCB-V dataset (Hierarchical) | (Global) | (Strict)

Seen (Training) Objects 0.624 0.477 0.533
Unseen (Test) Objects 0.488 0.355 0.386
Total 0.557 0.416 0.459

Table 4.3: Comparison of the performance of the different neighborhood structure
through network architectures.
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4.7 Input Ablations

To determine the relative importance of each of our input channels, we retrain our
networks without each dimension. We show results on YCB in Table 4.4, training
on the “Object Set 1”7 and testing on “Object Set 2”. Additionally, this table shows
the effects of concatenating observation and model inputs (“Model without Diff”),
as opposed to computing their difference (as in our method). As can be seen, using
concatenation instead of differencing gives little change in performance for seen
objects, whereas it gives worse performance for unseen objects. Unsurprisingly, the
color information has the greatest effect on the accuracy of our system, as it is the

most orthogonal to the information used by our PPF hypotheses.

Model without
Color | Depth | Normal | Coords | Diff

-18% | -15% -71% -8.9% | -6.3%

Unseen Objects
(Zero-shot)

Seen Objects
(Training)

-24% | -4.2% 0.8% 1.1% 2.1%

Table 4.4: Percent change in AR scores on YCB Video dataset caused by removal of
each input to our method.

4.8 Pose Hypothesis Ablations

We test our scoring method on different subsets of pose hypotheses to explore our
sensitivity to the hypothesis generation method. In Table. 4.5, we report the AR
scores of the Point Pair Features baseline (“PPF”) [13], our scoring method using
pose hypotheses generated only from PPF (“PPF-+Scoring”), our scoring method
using pose hypotheses generated only from SIFT feature matching (“SIFT+Scoring”)
and our scoring method using pose hypotheses generated from both PPF and SIFT
(“Both+Scoring”). The results indicates that on the YCB-V dataset, where most
objects have high-quality mesh models and rich textures, the SIFT feature matching
method provides valuable pose hypotheses. When combining PPF and SIFT hypothe-

ses with our scoring method, the results improve over using our scoring method with
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PPF hypotheses alone. LineMOD (LM-O), however, contains mostly low texture
or textureless objects. For this dataset, SIF'T hypotheses are less useful and adding

them mildly reduces the accuracy of our method but needs more processing time.

Method | PPF | PPF+ZePHyR | SIFT+ZePHyR | Both+ZePHyR
YCB-V | 0.344 0.458 0.390 0.516
LM-O | 0.527 0.598 0.011 0.595

Table 4.5: BOP AR scores for ZePHyR based on different hypothesis generation
methods.

4.9 Timing analysis

We analyze the inference speed of our method in Table 4.6. We separate our method
into 5 stages, including generating pose hypotheses from SIFT feature matching
(“SIFT”), generating pose hypotheses from PPF (“PPF”), computing, transforming
and comparing the observation and model values for all hypotheses (“Projection”)
and inference with our scoring network (“Scoring”). Note that we only use 100 PPF
hypotheses for LM-O, whereas we use additional 1000 SIF'T hypotheses for YCB-V.
We found that the LM-O dataset required more accurate initial pose hypotheses,
requiring significantly more processing time. To compensate for this, we evaluate the
time-performance trade-off of different sets of PPF parameters on the LM-O dataset,
shown in blue on Figure 4.4. Since the LM-O dataset is challenging due to strong
occlusions and limited scales of objects in the scene, PPF methods [13, 54] need a
high sampling rate to produce reasonable pose estimates. Therefore, increased speed
comes at the cost of performance, but our method consistently improves the accuracy

of the initial hypotheses, shown in red, at all stages of the curve.

SIFT | PPF | Projection | Scoring | Total
YCB-V || 0.142 | 0.291 0.051 0.135 | 0.619
LM-O 0 2.900 0.014 0.034 | 2.949

Table 4.6: Test time spent (sec) in each stage of our pipeline.

In Table 4.7, we further report the detailed data for the time-accuracy trade-off
on the LM-O dataset. We here only vary the PPF parameters and thus its inference
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Figure 4.4: Speed accuracy analysis of our method (blue) over various PPF hypothesis
generation hyperparameters on LM-O. Base PPF accuracy shown in orange.

time. The speed of our scoring network (ZePHyR) is unchanged. In the table, “Model
SD” and “Scene SD” are the sampling distance on the model point cloud and the
scene point cloud respectively, relative to the model diameter. Higher numbers lead
to smaller point clouds and faster processing times. “Ref Pt Rate” is the ratio of
the points on the scene point cloud that are used as reference points when sampling
point pairs [13]. “Dense Object PC” means the input object model to PPF is directly
converted from the mesh model without downsampling. “Sparse Object PC” means
PPF uses the downsampled object point cloud that is used in the scoring network, as
described in Section 3.4.3. “Sparse” and “Dense” in “Refinement” column indicates
the spacial density of the point cloud used for ICP step in PPF. We refer readers to
[13] and [18] for more details.

Note that ZePHyR is a scoring network on the provided pose hypotheses, and
in the table, our PPF+ZePHyR demonstrate a constant improvement over the PPF
baseline by a large margin with only little time overhead. This means our method
is able robustly pick better hypothesis from the PPF’s output. Comparing the first
and the third row in the table, we can find that PPF+ZePHyR achieves comparable
results with PPF but is sped up by more than 3 times.
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Model SD Scene SD Ref Pt Rate Object PC Refinement <’£11;n1§) B(?;’Pch)orc (PPF«’{I:IZI(?I(;HyR) (PF}’BF(‘)fZS;;’O}?;R)
0.03 0.03 1 Dense Dense 2.900 0.527 2.948 0.598
0.03 0.05 1 Dense Sparse 1.626 0.502 1.674 0.571
0.05 0.05 1 Dense Sparse 1.388 0.480 1.436 0.550
0.05 0.05 0.5 Dense Sparse 0.794 0.463 0.842 0.524
0.05 0.07 0.5 Dense Sparse 0.530 0.349 0.578 0.456
0.03 0.04 0.5 Sparse Sparse 0.524 0.319 0.572 0.504
0.05 0.07 0.25 Dense Sparse 0.315 0.303 0.363 0.408
0.03 0.04 0.2 Sparse Sparse 0.257 0.297 0.305 0.484
0.03 0.05 0.2 Sparse Sparse 0.219 0.253 0.267 0.441
0.05 0.05 0.2 Sparse Sparse 0.200 0.213 0.248 0.379

Table 4.7: Inference time and performance on the LM-O dataset of PPF and
PPF+ZePHyR using different PPF settings.
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Chapter 5

Conclusions and Future Work

We propose a method for zero-shot object pose estimation, focusing on pose hypothesis
scoring. By extracting point differences between the projected object points and the
observation and imposing a loose neighborhood structure on these points, we learn
a pose scoring function that generalizes well to novel objects. On the challenging
YCB-Video and LineMOD-Occlusion datasets, our method achieves state-of-the-art
performance for zero-shot object pose estimation in clutter, evaluated on both textured
and untextured objects. We hope that our method paves the way for roboticists to
obtain accurate pose estimates for novel objects without needing additional training
or data annotation.

The proposed zero-shot pose estimation pipeline opens up many follow-up direc-
tions, which we leave as future work. First, the pose scoring module in Zephyr can
be used in a particle filtering pipeline for pose tracking, where the pose hypotheses
of the current frame are initialized according to previous frames and then selected
by Zephyr. Second, by adding more heads to the network, Zephyr can output pose
residuals that can be used to refine pose estimation in an iterative fashion. Moreover,
since Zephyr can generalize to any unseen objects and thus enables robot agents to
quickly adapt to new objects and environments, it can be applied in many robot

manipulation and learning tasks.

31



CHAPTER 5. CONCLUSIONS AND FUTURE WORK

32



Bibliography

[1] P. J. Besl and N. D. McKay. A method for registration of 3-d shapes. TPAMI,
14(2):239-256, 1992. doi: 10.1109/34.121791. 6, 18

[2] Tolga Birdal and Slobodan Ilic. Point pair features based object detection and
pose estimation revisited. In 3DV, pages 527-535. IEEE, 2015. 6

[3] Eric Brachmann, Alexander Krull, Frank Michel, Stefan Gumhold, Jamie Shot-
ton, and Carsten Rother. Learning 6d object pose estimation using 3d object
coordinates. In FCCYV, pages 536-551, Cham, 2014. 1, 6, 17, 18

[4] Eric Brachmann, Alexander Krull, Sebastian Nowozin, Jamie Shotton, Frank
Michel, Stefan Gumhold, and Carsten Rother. Dsac-differentiable ransac for
camera localization. In C'VPR, pages 6684-6692, 2017. 3, 8, 10, 11

[5] Lucas Brynte and Fredrik Kahl. Pose proposal critic: Robust pose refinement
by learning reprojection errors. arXwv preprint arXiv:2005.06262, 2020. 8

[6] B. Calli, A. Singh, A. Walsman, S. Srinivasa, P. Abbeel, and A. M. Dollar.

The ycb object and model set: Towards common benchmarks for manipulation
research. In 2015 International Conference on Advanced Robotics (ICAR), pages
510-517, 2015. 17

[7] Changhyun Choi and Henrik I Christensen. 3d pose estimation of daily objects
using an rgb-d camera. In IROS, pages 3342-3349. IEEE, 2012. 6

[8] Matei Ciocarlie, Kaijen Hsiao, Edward Gil Jones, Sachin Chitta, Radu Bog-
dan Rusu, and Ioan A Sucan. Towards reliable grasping and manipulation in
household environments. In Ezperimental Robotics, 2014. 1

9] Alvaro Collet, Manuel Martinez, and Siddhartha S Srinivasa. The moped
framework: Object recognition and pose estimation for manipulation. IJRR, 30
(10):1284-1306, 2011. 10

[10] Neil T Dantam, Zachary K Kingston, Swarat Chaudhuri, and Lydia E Kavraki.
Incremental task and motion planning: A constraint-based approach. In RSS,
2016. 1

[11] Haowen Deng, Tolga Birdal, and Slobodan Ilic. Ppfnet: Global context aware

33



Bibliography

[12]

[13]

[14]

[15]

[16]

34

local features for robust 3d point matching. In CVPR, pages 195-205, 2018. 6

Xinke Deng, Arsalan Mousavian, Yu Xiang, Fei Xia, Timothy Bretl, and Dieter
Fox. Poserbpf: A rao-blackwellized particle filter for 6d object pose estimation.
In RSS, 2019. 1,6

B. Drost, M. Ulrich, N. Navab, and S. Ilic. Model globally, match locally:
Efficient and robust 3d object recognition. In CVPR, pages 998-1005, 2010. ix,
2,3, 6,10, 12, 20, 21, 23, 26, 27, 28

Bertram Drost and Slobodan Ilic. 3d object detection and localization using
multimodal point pair features. In 2012 Second International Conference on 3D

Imaging, Modeling, Processing, Visualization € Transmission, pages 9-16. IEEE,
2012. 6

Debidatta Dwibedi, Ishan Misra, and Martial Hebert. Cut, paste and learn:
Surprisingly easy synthesis for instance detection. In ICCV, pages 1301-1310,
2017. 1

Martin A Fischler and Robert C Bolles. Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated cartography.
Communications of the ACM, 24(6):381-395, 1981. 3

Peter R Florence, Lucas Manuelli, and Russ Tedrake. Dense object nets: Learning
dense visual object descriptors by and for robotic manipulation. In CoRL, pages
373-385, 2018. 6

MVTec Software GmbH. find_surface_model [HALCON Operator Reference /
Version 13.0.4], 2019 (accessed Nov 2nd, 2020). https://www.mvtec.com/doc/
halcon/13/en/find_surface_model.html. 28

Corey Goldfeder, Matei Ciocarlie, Hao Dang, and Peter K Allen. The columbia
grasp database. In ICRA, 2009. 1

Z. Guo, Z. Chai, C. Liu, and Z. Xiong. A fast global method combined with
local features for 6d object pose estimation. In 2019 IEEE/ASME International
Conference on Advanced Intelligent Mechatronics (AIM), pages 1-6, 2019. doi:
10.1109/AIM.2019.8868409. 6

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In C'VPR, pages 770-778, 2016. 14, 25

Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. Mask r-cnn. In
ICCV, pages 2961-2969, 2017. 20

S. Hinterstoisser, C. Cagniart, S. Ilic, P. Sturm, N. Navab, P. Fua, and V. Lepetit.
Gradient response maps for real-time detection of textureless objects. IFEE
Transactions on Pattern Analysis and Machine Intelligence, 34(5):876-888, 2012.
doi: 10.1109/TPAMI.2011.206. 6


https://www.mvtec.com/doc/halcon/13/en/find_surface_model.html
https://www.mvtec.com/doc/halcon/13/en/find_surface_model.html

Bibliography

[24] Stefan Hinterstoisser, Vincent Lepetit, Slobodan Ilic, Stefan Holzer, Gary Bradski,
Kurt Konolige, and Nassir Navab. Model based training, detection and pose

estimation of texture-less 3d objects in heavily cluttered scenes. In ACCYV, pages
548-562, Berlin, Heidelberg, 2013. 6, 18

[25] Stefan Hinterstoisser, Vincent Lepetit, Naresh Rajkumar, and Kurt Konolige.
Going further with point pair features. In ECCYV, pages 834-848, 2016. 6

[26] Tomds Hodari, Frank Michel, Eric Brachmann, Wadim Kehl, Anders Glent Buch,
Dirk Kraft, Bertram Drost, Joel Vidal, Stephan Ihrke, Xenophon Zabulis, Caner
Sahin, Fabian Manhardt, Federico Tombari, Tae-Kyun Kim, Jiti Matas, and
Carsten Rother. BOP: Benchmark for 6D object pose estimation. FCCV, 2018.
6, 17, 18

[27] Toméas Hodan, Vibhav Vineet, Ran Gal, Emanuel Shalev, Jon Hanzelka, Treb

Connell, Pedro Urbina, Sudipta Sinha, and Brian Guenter. Photorealistic image
synthesis for object instance detection. ICIP, 2019. 14, 18

[28] Tomas Hodan, Daniel Barath, and Jiri Matas. Epos: Estimating 6d pose of
objects with symmetries. In C'VPR, pages 11703-11712, 2020. 6

[29] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In International Conference
on Machine Learning, pages 448-456, 2015. 13, 14

[30] Lilita Kiforenko, Bertram Drost, Federico Tombari, Norbert Kriiger, and An-
ders Glent Buch. A performance evaluation of point pair features. C'VIU, 166:
66-80, 2018. 6

[31] E. Kim and G. Medioni. 3d object recognition in range images using visibility
context. In TROS, pages 3800-3807, 2011. 6

[32] Sung-Kyun Kim and Maxim Likhachev. Planning for grasp selection of partially
occluded objects. In ICRA, 2016. 1

[33] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiwv preprint arXiw:1412.6980, 2014. 14

[34] Y. Labbe, J. Carpentier, M. Aubry, and J. Sivic. Cosypose: Consistent multi-
view multi-object 6d pose estimation. In Proceedings of the European Conference
on Computer Vision (ECCYV), 2020. 20, 21

[35] Yi Li, Gu Wang, Xiangyang Ji, Yu Xiang, and Dieter Fox. Deepim: Deep
iterative matching for 6d pose estimation. In ECCYV, 2018. 7, 21

[36] Joseph J. Lim, Aditya Khosla, and Antonio Torralba. Fpm: Fine pose parts-
based model with 3d cad models. In David Fleet, Tomas Pajdla, Bernt Schiele,
and Tinne Tuytelaars, editors, Computer Vision — ECCV 2014, pages 478493,
Cham, 2014. Springer International Publishing. ISBN 978-3-319-10599-4. 6

35



Bibliography

[37]

[38]

[39]

[40]

[41]

[42]

[45]

[46]

[47]

[49]

36

David G Lowe. Object recognition from local scale-invariant features. In ICCV,
volume 2, pages 1150-1157. Teee, 1999. 10

Lucas Manuelli, Wei Gao, Peter Florence, and Russ Tedrake. kpam: Key-
point affordances for category-level robotic manipulation. arXw preprint
arXiv:1905.06684, 2019. 7

E. Munoz, Y. Konishi, C. Beltran, V. Murino, and A. Del Bue. Fast 6d pose
from a single rgb image using cascaded forests templates. In 2016 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), pages 4062—
4069, 2016. doi: 10.1109/TROS.2016.7759598. 6

E. Munoz, Y. Konishi, V. Murino, and A. Del Bue. Fast 6d pose estimation
for texture-less objects from a single rgb image. In 2016 IEEE International
Conference on Robotics and Automation (ICRA ), pages 5623-5630, 2016. doi:
10.1109/ICRA.2016.7487781. 6

MVTec Software GmbH. Halcon. URL https://www.mvtec.com/products/
halcon/documentation/release-notes-1911-0/. 12, 20

Venkatraman Narayanan and Maxim Likhachev. Perch: Perception via search
for multi-object recognition and localization. In ICRA, pages 5052-5059, 2016.
10

Keunhong Park, Arsalan Mousavian, Yu Xiang, and Dieter Fox. Latentfusion:
End-to-end differentiable reconstruction and rendering for unseen object pose
estimation. In CVPR, 2020. 2, 3,7, 9

Kiru Park, Timothy Patten, and Markus Vincze. Pix2pose: Pix2pose: Pixel-
wise coordinate regression of objects for 6d pose estimation. In The IEEE
International Conference on Computer Vision (ICCV), Oct 2019. 20, 21

Kiru Park, Timothy Patten, and Markus Vincze. Pix2pose: Pixel-wise coordinate
regression of objects for 6d pose estimation. In ICCV, pages 7668-7677, 2019. 6

Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. Pointnet: Deep
learning on point sets for 3d classification and segmentation. In CVPR, July
2017. 9, 14, 25

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++-:

Deep hierarchical feature learning on point sets in a metric space. In NeurIPS,
pages 5099-5108, 2017. 9, 13, 25

Martin Sundermeyer, Maximilian Durner, En Yen Puang, Zoltan-Csaba Marton,
Narunas Vaskevicius, Kai O. Arras, and Rudolph Triebel. Multi-path learning
for object pose estimation across domains. In C'VPR, June 2020. 2, 3, 7, 9, 20,
21

Martin Sundermeyer, Zoltan-Csaba Marton, Maximilian Durner, and Rudolph


https://www.mvtec.com/products/halcon/documentation/release-notes-1911-0/
https://www.mvtec.com/products/halcon/documentation/release-notes-1911-0/

[50]

[51]

[54]

[55]

[56]

[57]

[58]

Bibliography

Triebel. Augmented autoencoders: Implicit 3d orientation learning for 6d object
detection. IJCV, 128(3):714-729, 2020. 1, 6

Garrett Thomas, Melissa Chien, Aviv Tamar, Juan Aparicio Ojea, and Pieter
Abbeel. Learning robotic assembly from cad. In ICRA, 2018. 1

Jonathan Tremblay, Thang To, and Stan Birchfield. Falling things: A synthetic
dataset for 3d object detection and pose estimation. In CVPRW, pages 20382041,
2018. 1

Jonathan Tremblay, Thang To, Balakumar Sundaralingam, Yu Xiang, Dieter
Fox, and Stan Birchfield. Deep object pose estimation for semantic robotic
grasping of household objects. arXiv preprint arXiv:1809.10790, 2018. 1, 6

M. Ulrich, C. Wiedemann, and C. Steger. Combining scale-space and similarity-
based aspect graphs for fast 3d object recognition. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 34(10):1902-1914, 2012. doi: 10.1109/TPAMI.
2011.266. 6

Joel Vidal, Chyi-Yeu Lin, Xavier Llado, and Robert Marti. A method for 6d
pose estimation of free-form rigid objects using point pair features on range data.
Sensors, 18(8):2678, 2018. 2, 6, 9, 20, 21, 27

Chen Wang, Danfei Xu, Yuke Zhu, Roberto Martin-Martin, Cewu Lu, Li Fei-Fei,
and Silvio Savarese. Densefusion: 6d object pose estimation by iterative dense
fusion. In CVPR, pages 3343-3352, 2019. 1, 6, 9

He Wang, Srinath Sridhar, Jingwei Huang, Julien Valentin, Shuran Song, and
Leonidas J Guibas. Normalized object coordinate space for category-level 6d
object pose and size estimation. In CVPR, pages 2642-2651, 2019. 7

Yu Xiang, Tanner Schmidt, Venkatraman Narayanan, and Dieter Fox. Posecnn:
A convolutional neural network for 6d object pose estimation in cluttered scenes.
RSS, 2018. 1,6, 9, 11, 17

Yang Xiao, Xuchong Qiu, Pierre-Alain Langlois, Mathieu Aubry, and Renaud
Marlet. Pose from shape: Deep pose estimation for arbitrary 3d objects. arXiv
preprint arXiv:1906.05105, 2019. 7

Christopher Xie, Yu Xiang, Arsalan Mousavian, and Dieter Fox. The best of
both modes: Separately leveraging rgb and depth for unseen object instance
segmentation. In CoRL, pages 1369-1378, 2020. 7

H. Yu, Q. Fu, Z. Yang, L. Tan, W. Sun, and M. Sun. Robust robot pose
estimation for challenging scenes with an rgbh-d camera. IEEE Sensors Journal,
19(6):2217-2229, 2019. doi: 10.1109/JSEN.2018.2884321. 6

Matt Zucker, Nathan Ratliff, Anca D Dragan, Mihail Pivtoraiko, Matthew
Klingensmith, Christopher M Dellin, J Andrew Bagnell, and Siddhartha S

37



Bibliography

Srinivasa. Chomp: Covariant hamiltonian optimization for motion planning.

IJRR, 2013. 1

38



	1 Introduction
	2 Related Work
	2.1 Classical 6D Pose Estimation Methods
	2.2 Deep 6D Pose Estimation Methods
	2.3 Deep Zero-shot 6D Pose Estimation Methods
	2.4 Pose Scoring

	3 Zero-shot 6D Pose Estimation
	3.1 Overview
	3.2 Learned Scoring Function
	3.3 Loss Function
	3.4 Implementation details
	3.4.1 Hypothesis Generation
	3.4.2 Network Input
	3.4.3 Network Structure
	3.4.4 Training Details


	4 Experiments
	4.1 Datasets
	4.1.1 YCB-Video dataset
	4.1.2 LineMOD-Occlusion dataset

	4.2 Metrics
	4.2.1 Visible Surface Discrepancy (VSD)
	4.2.2 Maximum Symmetry- Aware Surface Distance (MSSD)
	4.2.3 Maximum Symmetry-Aware Projection Distance (MSPD)

	4.3 Baselines
	4.4 Zero-shot Pose Estimation Results
	4.4.1 Quantitative Results
	4.4.2 Qualitative Results
	4.4.3 Failure Case Analysis

	4.5 Evaluating Generalization
	4.6 Neighborhood Structure
	4.7 Input Ablations
	4.8 Pose Hypothesis Ablations
	4.9 Timing analysis

	5 Conclusions and Future Work
	Bibliography

