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Abstract— Multimodal information such as tactile, proximity
and force sensing is essential for performing stable contact-rich
manipulations. However, coupling multimodal information and
motion control still remains a challenging topic. Rather than
learning a monolithic skill policy that takes in all feedback
signals at all times, skills should be divided into phases and
learn to only use the sensor signals applicable to that phase.
This makes learning the primitive policies for each phase easier,
and allows the primitive policies to be more easily reused among
different skills. However, stopping and abruptly switching
between each primitive policy results in longer execution times
and less robust behaviours. We therefore propose a blending
approach to seamlessly combining the primitive policies into a
reliable combined control policy. We evaluate both time-based
and state-based blending approaches. The resulting approach
was successfully evaluated in simulation and on a real robot,
with an augmented finger vision sensor, on: opening a cap,
turning a dial and flipping a breaker tasks. The evaluations
show that the blended policies with multimodal feedback can
be easily learned and reliably executed.

I. INTRODUCTION

Manipulation skills that enable robots to handle varied
objects and perform a wide range of tasks are in high
demand. This is especially true for contact-rich tasks that
require precise motions and gentle contacts for stable inter-
actions with the environment. Such manipulation skills can
often be divided into multiple phases [1]. For example, a
grasping skill can be decomposed into phases corresponding
to reaching towards an object, closing the gripper, and lifting
up the object. Sensor feedback provides crucial information
for monitoring the task execution and achieving accurate
control in each manipulation phase. Since the purpose of
each manipulation phase is different, the required sensor
feedback also varies across phases. In particular, vision,
proximity, haptic, and tactile information are all useful for
contact-rich tasks, with the former being more useful for
establishing contacts and the latter for exploiting contacts.

A key challenge to realizing multimodal contact-rich tasks
is coupling the sensor modalities with the controller. Conven-
tional rule-based approaches often require manually designed
control algorithms for combining sensor modalities [10],
[18]. Such approaches require fine-tuning of control parame-
ters with consideration of the influence from other modalities
and suffer from environment changes. Recent works have de-
veloped data driven approaches [19], [32]. These approaches
have mainly focused on representing control policies with
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Fig. 1. Overview of the real environment. Finger vision tactile sensor
is attached at the end-effector. Red LED is used to detect only near
object surface. Three different tasks opening cap, turning dial,
and turning breaker is setup for evaluation.

neural networks or graph structures which are trained from
large amounts of data. Reinforcement Learning (RL) is an
effective approach to training such policies from experience.

However, these data-driven approaches often represent
skills in a monolithic manner, e.g. as one large neural
network, rather than adopting a phase-like structure. As a
result, the skills need to learn to utilize the full set of sensor
signals at each time, including when outside of the sensor’s
operating range. Decomposing a skill into a sequence of
phases allows the robot to learn separate feedback controllers
for each phase and it provides modularity for reusing phases
between skills. The disadvantage of this modular phase-based
approach is that naive sequential executions can often result
in worse performance. Stopping between each phase and
abruptly switching between sensor modalities can lead to
longer execution times and less robust behaviours. Therefore,
each phase’s primitive policy should be blended into the next
one to create a seamless control policy.

This paper proposes a policy blending approach to address
the above problems. We first train the robot to learn a set
of primitive policies coupled with specific sensor modalities.
The robot subsequently learns a blending policy for overlap-
ping and combining the primitive policies into a seamless
control policy for performing the task. We evaluate both
time-dependent and state-dependent blending policies. This
policy blending approach has the following key benefits:
1) Each primitive policy is easy to train. 2) The blending
strategy produces continuous trajectories between different
policies. 3) The blending policy and initial primitives can be
reused to create similar firm contacts for different manipu-
lation tasks by replacing the final primitive.

The proposed approach was evaluated in both simulation
and on a real robot (Fig.1). Three target tasks were evaluated:
opening cap, turning dial and turning breaker.
The experiments evaluated the effectiveness of the multi-
modal sensory feedback and the blending approach. The
results shows that the target tasks could be performed faster
and more reliably by using the blending approach.



II. RELATED WORK

A. Rule-based multimodal manipulation

Early rule-based approaches to handling multimodal in-
formation [10], [11] focused on combining vision and tactile
sensory information for grasping tasks. [12] designs con-
trollers for three modalities (position, vision, tactile), and
combined them into an impedance force controller. [14]
proposes a hierarchical structure for tactile and visual servo.
[17] demonstrates exploratory behaviors of objects using
tactile and vision sensor. Although these approaches are
promising to perform particular tasks, significant effort for
designing and tuning controllers for each modality is needed.
Also, these approaches often need to be applied to diverse en-
vironments and objects, which makes designing a controller
difficult. Multimodal information is also used for estimating
the state of objects for manipulation. For example, tactile
sensors are often used as compensation for missing vision
information such as occlusion. Researchers have combined
tactile and vision based approaches to estimate precise object
models [15], [16], [18]. [13] estimates dynamic motion of
rigid body when the robot’s fingers touch an object.

B. Data-driven multimodal manipulation

Data driven approaches, such as supervised or reinforce-
ment learning, have recently been proposed to handle various
objects. Multimodal information is frequently used for object
recognition or contact perception network. [26] uses force,
thermal and motion data to train neural networks for rich
contact perception. [25] and [30] combine RGB and depth
information for better object recognition. However, coupling
recognition and control still remains an open research area.
End-to-end learning is one approach to coupling recognition
of the environment and robot control. [23], [24] propose a
multimodal network which maps from sensor values to robot
actions. [31] uses feed-forward neural networks, and [32]
uses self-supervise learning for grasping. Trained networks
can also be used for anomaly detection for manipulation
tasks [28]. Demonstration data is another approach to train
multimodal networks. [27] uses sensor gloves to train grasp
policies and [29] uses a game controller for demonstration.
Although end-to-end approaches have confirmed the effec-
tiveness of leveraging multimodal sensing for control, they
usually lead to large state spaces, which makes it difficult to
get convergence within practical time limits.

Latent representations is one possible solution to avoid
the expansion of state space dimension. This approach is
also effective to acquiring generalization between different
object configurations, environments, and tasks. [21] proposes
neural networks of multimodal representations to realize peg
insertion that is transferable to different peg shapes. Latent
representations can also handle verbal information. [19] maps
natural language, point-cloud and trajectory information with
deep multimodal embedding space. [20] uses representations
of audio and video inputs for speech classification. [22] pre-
dicts temporal sequence of different manipulation tasks with
auto-encoder network. However, generalizing representations
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Fig. 2. Overview of the proposed policy blending method. This method
consists of primitive policies, a blending strategy and a control policy. Each
primitive policy uses a different modality and is learned individually.

to different tasks is limited to similar tasks, and additional
learning is needed to add new tasks into the representations.

C. Policy decomposition and planning

Policy decomposition or blending is another approach to
realize complex manipulation tasks without expansion of
state space. [34] observes tactile array data for different grasp
manipulation phases. Graph representations can describe
complex manipulation tasks. [35] segments multiple different
skills from human demonstration, and trains manipulation
graphs which describe sequences of skill executions. [36]
uses a graph representation to switch to recovery skills. A
hierarchical approach is also proposed to solve skill planning
problems [37]. [38] proposes different abstraction levels
for primitive skills. Although training graphs or hierarchi-
cal representations can realize complex manipulation tasks,
switching between different skills leads to discontinuities of
motion, which can degrade task performance. Furthermore,
adding new skills or generalizing to different tasks needs
human design and additional training. [33] focuses on the
composability of soft Q-learning algorithm and tries to
learn new policy from decomposed policy for simple block
stacking motion. [39] decomposes a neural network into task-
specific and robot-specific modules. Although they propose a
task agnostic control policy with policy decomposition, they
fail to handle multimodal sensor signals.

III. POLICY BLENDING METHOD

RL is a promising approach for training multimodal ma-
nipulation tasks. However, the training process is not trivial
and remains challenging. Our policy blending approach
addresses existing problems of multimodal policy learning
by manually dividing skills into separate parts and realizes
a learning structure with low training cost and transfer of
similar sequences of primitives to different tasks.

A. Method overview

The proposed policy blending method is based on the basic
idea of manipulation phases. An entire manipulation motion
has different phases, and each phase is seamlessly connected
or mixed according to the task. Each phase has a different
purpose and needs different sensor feedbacks. Therefore,
each phase is linked to a modality, and various tasks are
realized by sequencing together the primitive motion phases.
Sequential primitives can then be blended together to create
seamless transitions between phases, increasing robustness
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Fig. 3. Example of transfer to different tasks. The blending strategy and
initial primitives can be reused for tasks that they were not trained on.

to sensor uncertainty during phase transitions and reducing
the overall execution time. The overview of the proposed
policy blending method is described in Fig.2. There are three
components: the primitive policies, the blending strategy and
the resulting control policy.

Each primitive policy corresponds to a manipulation
phase, which is defined so that each policy utilizes a subset
of modalities and is trained individually. Although we focus
on using individual modalities, more than one modality can
be used per primitive. It should be noted that segmenting
the skill into phases is not the focus of this work and
predefined primitive policies are used. The blending strategy
calculates the blending ratio of each policy at each control
time or state. It seamlessly connects primitive policies and
creates continuous motions to perform target tasks. Since the
blending strategy is not dependent on the primitive policies,
their training can be separated. This blending approach
seamlessly switches between primitives, allowing the robot
to work towards multiple purposes in parallel and performs
tasks in a fast and smooth fashion. The control policy is then
the primitive policies combined according to the blending
strategy and outputs the robot control command.

Decomposing skills into phases provides multiple advan-
tages for training. Each phase only needs to learn feedback
gains for a small set of sensor values, allowing the robot to
combine modalities using the blending policy. The primitive
policies can be performed sequentially, with one starting
after the previous one ends. These primitive policies can
thus be learned individually, with the blending providing
performance and robustness increases. There are also other
advantages for transfer to different tasks. Since primitive
policies are modular and can be replaced, different tasks that
require similar firm contacts can be performed by reusing
the initial primitives and replacing the final primitive policy.
Fig.3 shows example of task transfer. In this paper, three
different tasks are explored: opening cap, turning dial

and turning breaker. In order to perform the opening

cap task, the reach, adjust, contact and open cap skill
are trained. For the turning dial and turning breaker

tasks, the reach, adjust and contact skills are reused,
and only the turn dial and turn breaker skills are
learned to replace the open cap skill respectively. The
object detection networks are trained to detect the target
object for each task. By reusing the primitive policies, the
robot can learn to perform new tasks more quickly and focus
on the novel aspects of the tasks.

Manipulation tasks in this paper are modeled as a finite-
horizon Markov decision process (MDP), defined by a tuple

(S,A, T , r), where S is the state space, A is the action
space, T : S × A → S is the state transition dynamics
and r : S × A → R is the reward function. The purpose
of each RL problem is to find the optimal policy π which
maximizes the expected sum of rewards Eπ[

∑
t r(st, at)],

where the current state is st ∈ S and action is at ∈ A. For
each primitive policy and blending strategy a different reward
functions r is defined according to the policy’s purpose.

B. Policy representations

Dynamic motor primitives (DMPs) are used to represent
each primitive policy. DMPs are differential equations which
represent control policies with small number of parameters.
The policy can be trained with various modality information
to adopt the motion with different external environments.
The advantage of using DMPs is that smooth and contin-
uous movement is guaranteed even if modality information
changes discontinuously. This paper uses the representation
of DMPs based on [6]. This representation reformulates
original DMP formulation [5] for generalization of skills
with feature values. The primitive policy πpw(st, t) using
formulation of DMPs is described as follows,

πpw(st, t) = ÿ = αz
(
βzτ

2 (y0 − y)− τ ẏ
)
+τ2

∑
j

φjf(x;wj),

(1)
where y is the position of end-effector, y0 is the initial
position of end-effector, αz and βz are constants that define
the spring and damper coefficients, x is the state of the
canonical system, and f is a forcing function. τ is a temporal
scaling factor which can be described as τ = 0.5/T , where
T is the standard duration time of the skill. The canonical
state x monotonically decays from 1 towards 0 by the
equation ẋ = −τx. The vector φj represents jth feature
values to amplify forcing function to adapt different external
environments. The forcing function f(x;wj) is defined as

f(x;wj) = αzβz

(∑K
k=1 ψk(x)wj,kx∑K

k=1 ψk(x)
+ wi0ψ0(x)

)
(2)

where the kth element of the vector wj ∈ RK is given by
the weights [wj ]k = wj,k, ψk∀k ∈ {1, ...,K} are Gaussian
basis functions, and ψ0 is a basis function that follows a
minimum jerk trajectory from 0 to 1. The weights wj in (1)
are the parameters of primitive policy to be trained. In this
paper, wj is trained using RL.

C. Sensor modalities

As described in III-B, the feature vectors φ play the role
of adaptating to the external environment. This paper utilizes
the feature vectors φj as feedback terms using multiple
sensor modalities’ information. In this section, the details of
each modality are described. We use 3 types of modalities:
RGB images, contact force and proximity images.

Our proposed method assumes that RGB images are
captured from two RGB cameras, one mounted on the end-
effector and one at a fixed position in the environment. For
the end effector camera we use a finger vision sensor, which



includes a camera mounted under a transparent skin. RGB
images are processed using a convolutional neural network
(CNN) to detect target object position. To capture the target
object, bounding box information (2D position, width and
height) is calculated using Faster R-CNN [7]. The network
uses a pre-trained ResNet [8] model with 152 layers, and
fine-tunes it for the target objects. Since a camera is attached
to the end-effector, the object size and features in the cap-
tured images change drastically depending on the camera’s
distance to the target object. Therefore, to acquire robust
object detection results, two separate networks are trained to
detect the objects when far away and nearby, which we refer
to as far plane and near plane respectively. Bounding box
information for far plane is denoted as bf =[bfw, b

f
c ], where

bfw is width and bfc is center position of bounding box in a
image. For near plane, bn = [bnw, b

n
c ]. We use the width of

the object to capture its visual scale as the width tended to
be more reliable than the height. The bounding box provides
an abstract representation of the target object, which makes
it easier for simulation-to-reality (sim-to-real) transfer. The
bounding box information from the two RGB cameras are
combined to estimate the 3D position of the target object
by epipolar triangulation. The continuously estimated 3D
positions for the far and near plane networks are denoted
as gfobj and gnobj respectively.

Contact forces are estimated from torque sensor at each
joint of robot arm using a Jacobian transposed approach.
The three axis force estimate fc is utilized by the primitive
policies for making and maintaining contact.

Proximity images are processed based on the RGB images
from the end-effector camera. A small red flashing LED
near the in-finger camera allows the robot to detect pixels
of objects in close proximity to the finger, whose color
values change with the LED. This image-based modality thus
captures only the surface of the object that’s near the camera.
After processing the proximity images, the contact position
is estimated by calculating center of mass of pixels in gray
scale, which is denoted as pc.

D. Training primitive policies

In the following sections, we explain the feedback pa-
rameters of the different primitive policies and how the
policies are learned. Every primitive policy is represented
using DMPs described in III-B.

reach,adjust skills: The purpose of these two skills
is to move the robot toward the target object. The reach

skill moves the robot towards the object and the adjust

skill finely adjusts the end-effector position before making
contact. These skills consist of nominal and feedback mo-
tions. The nominal motion defines the basic motion, which is
independent of sensor feedback, and feedback motion adjusts
the nominal motion according to sensor feedback.

Although the nominal motion defines sensor independent
motion, it should be robust to variations in the robot’s initial
position and the target object position. The DMP equations
(1) are able to adjust the motion according to the initial robot
and object positions by using the amplitude term φ. Having

a difference between target object position and initial end-
effector (EE) position as an amplitude φ1 = df = gfobj−
y0EE or φ1 =dn=gnobj−y0EE , the DMPs create a motion
that adjusts to different initial positions. The superscript: f
represents ”far plane” for reach skill, and n represents ”near
plane” for adjust skill. gobj is updated over time.

However, the goal positions of reach and adjust skills
are not equivalent to the target object positions. To offset
the goal position of the DMP motions for suitable contact
placement, goal offset values should also be learned. We
model the goal offsets by including fixed amplitude values
φ2 = 1, and allow the robot to learn the corresponding wi
weights as goal offset values.

For additional feedback, bounding box information is
utilized to adjust the robot motion so that robot moves toward
the target object. A goal position of bounding box bfg , bng is
extracted from demonstrations, and the difference between
bfg , bng and the current center position of bounding box bfc ,
bnc is passed as the third amplitude value φ3 = bfg −bfc or
φ3 =bng −bnc .

contact skill: The purpose of this skill is to make
contact with the target object and then keep an appropriate
contact force. Since the nominal motion is independent from
any sensor values, a fixed amplitude vector φ1 = 1 is
used. The feedback motion is trained with the contact force
feedback. The difference between the target contact force
extracted from demonstrations fg ∈ R3 and the current force
fc ∈ R3 give the second amplitude φ2 = fg − fc.

open cap, turn dial, turn breaker skill:
These skills perform manipulation tasks once contact
with the target objects has been established. The nominal
motion is trained by using a fixed amplitude vector
φ1 = 1. The feedback motion is trained with the contact
position feedback calculated from the proximity images. The
difference between the target contact position extracted from
demonstrations pg ∈ R2 and the current contact position
pc ∈ R2 gives the second amplitude vector φ2 = pg − pc.

The primitive policies are trained by optimizing parameters
w in (1) with feature vectors φ. Optimization of parameters
takes two steps. First, all DMP parameters are initialized
by imitation learning. A human demonstrates each primitive
policy with gravity compensation control mode, and 10 tra-
jectories are recorded. By solving linear regression problem
from (1) and (2), the policy parameters w are initialized.
Afterwards, RL is used to optimize the policy parameters
through trial and error. In particular, we utilize the relative
entropy policy search (REPS) algorithm [3]. The advantage
of REPS is that reward maximization process is quite light
and the loss of information is bounded when a policy is
updated, which leads to faster and better convergence.

E. Training blending strategy

Each primitive policy is blended into a control policy
that then defines the desired trajectory acceleration. Since
each primitive policy has a different purpose and generates
different motions, they should be executed at appropriate
timings and blended according to the current state or elapsed



time. The blending strategy is a policy which calculates a
blending ratio of each primitive policy at a certain control
time or environment state. The control policy πc

w′
is defined

by the blending strategy as follows,

πc
w′

=

M∑
m=1

[πbθ(st)]m[π̂pw]m (3)

where πbθ(st) is the blending strategy, π̂pw =
[πp1w (st, t), π

p2
w (st, t), · · · , πpMw (st, t)] is a vector of

primitive policies, and M is the number of primitive
policies. For RL of the blending strategy, action at denotes
the blending ratio of each primitive policy at time t, which
can be denoted as at = πbθ(st). This paper proposes
two types of representation of blending strategies: time
dependent and state dependent.

Time Dependent Blending Strategy: The time dependent
case calculates blending ratios according to the elapsed time.

πbθ(st, t) = softmax(wmθ ), (4)

where wmθ is the time dependent weight for the m-th skill
which can be calculated as wmθ =

∑L
l=1 ψl(t)[θ]ml , where

ψl(t) is the l-th Gaussian basis function and [θ]
m
l is the

policy parameters to be trained for l-th Gaussian basis func-
tion of primitive policy m. Other functions could be used to
capture more complex blending behaviours, but more flexible
and detailed representations will often also require more data.
The learning process is based on episodic RL, where the
trajectory τ can be represented as τ = {s0, a0, s1, a1, ...},
and the robot will receive an accumulated reward R(τ ) for
the entire trajectory. The purpose of RL for time dependent
case is to maximizing the task’s expected accumulated re-
ward Jπbθ = Eπbθ [R(τ )]. Trajectories are recorded by running
control policy in (3). The parameters θ are then again trained
with Relative Entropy Policy Search algorithm (REPS) [3].

State Dependent Blending Strategy: The state dependent
case calculates blending ratios according to the current sensor
information. The policy is represented as a neural network
which has two hidden layers of size 256 and a soft-max layer
as the output,

πbθ(st) = f(st,θ). (5)

where θ is a set of parameters for the state dependent
blending strategy and state st is the sensor information at
time step t. The robot will receive the reward r(st,at)
when executing blending ratio at with state st. The state is
represented as a concatenated vector of sensor information:
st = [bf , bn,fc,pc], The goal of the RL for state depen-
dent blending strategy is to maximize the expected reward
Jπbθ = Eπbθ [

∑
t γr(st,at)], where γ ∈ (0, 1] is the discount

factor. The parameters θ are trained with Soft Actor Critic
Algorithm (SAC) [4].

Each primitive policy is represented by a DMP, which is
a time dependent policy. On the other hand, the blending
strategy can be either time dependent or state dependent.
Therefore, an inconsistency between time and state depen-
dency exists in (3). Furthermore, the DMP equation in (1)

has initial position y0, which are varied between primitive
skills and dependent on blending policy. In order to solve the
dependency problems in (3), the canonical system x, which
is the time dependent term in the DMP equation, and initial
position y0 are updated according to the blending strategy.
Let x(k) = {x1(k),x2(k), ...,xM (k)}T be a vector of
canonical systems of all M primitive policies at time step k,
Y0(k) = {y1

0(k),y2
0(k), ...,yM0 (k)}T , Y0(k) ∈ RM×N be

a vector of N -dimensional initial end-effector positions of
all primitive policies at time step k and y(k) be the current
position, then x and Y0 are updated as follows,

x(t+ 1) = x(t) + πbθ(st)⊗∆x (6)

Y0(t+ 1) =
πbθ(st)⊗ Y0(t)T + ∆πbθ(st)y(t)T

πbθ(st+1)
, (7)

where ∆x = −τx(t)∆t, ∆πbθ(st) = πbθ(st+1) − πbθ(st)
and ⊗ represents element-wise multiplication. The intuitive
explanation of this operation is that when one primitive
policy starts running, the canonical system of this primitive
policy is updated to generate motions of this policy and set
current position as the initial position of this primitive policy.

IV. EXPERIMENTS: SETUP

The primary goal of our experiments is to evaluate the
effectiveness of the proposed policy blending method. In
particular, evaluations are conducted to answer the following
questions: 1) Does multimodal sensing make manipulation
movements more precise and reliable? 2) Can the proposed
blending strategy be trained to blend different skills to per-
form the task successfully and produce a smooth trajectory?
3) Does the proposed method scale to different tasks? 4)
What sensor features are crucial for contact-rich tasks?
Task Setup: Three different tasks were prepared for
evaluation: opening cap, turning dial and turning

breaker as shown in Fig.1. The opening cap task is the
task of opening the ketchup bottle by moving the robot finger
in from the side and then up and subsequently keeping the
cap angle greater than 90 degrees. turning dial is the
task of rotating the dial switch by moving the robot finger
horizontally and turning the switch by an angle greater than
60 degrees. turning breaker involves turning a breaker
switch by moving the robot finger from down to up and keep
the breaker knob topside.
Experiment Setup: A Franka Emika panda, a 7-DoF
torque-controlled arm, is used for both simulation and real
experiments. For simulation, NVIDIA® Isaac gym, which
can run multiple parallel simulations on the GPU [9], is
selected. As described in III-C, two RGB cameras are placed
on the end-effector and a fixed position in the environment.
In the real environment, a finger vision tactile sensor [2] is
used as the in-hand camera and an Azure Kinect camera
is used as the fixed camera. Finger vision consists of an
RGB camera and a transparent silicone rubber which can
observe both the external scene through transparent silicone
rubber and contact area on the rubber surface. Contact force



at the end-effector is estimated from the torque sensor at
each joint of Franka Emika panda arm. Proximity image
is created from RGB image captured by finger vision. For
simulation, the proximity image is created by changing the
rendering distance to show only near objects within 1cm. For
real environment, a red blinking LED is attached to the finger
vision (Fig.1), and only the environment near the object is
detected using reflected red LED light using color threshold.

For simulation environment, RGB images of finger vision
and fixed camera are captured at 33Hz, and contact force is
sampled at 100Hz. In the real environment, RGB images are
captured at 5Hz and contact force is sampled at 30Hz. All
RGB images are down-sampled to 320 x 240 and input to
Faster R-CNN network.

Rewards are calculated according to the angle of the cap,
dial and breaker. For the real environment, different types of
sensors are attached to the target object to calculate rewards.
A flex bend sensor estimates the angle of the ketchup bottle
cap, a potentiometer directly measures the angle of the dial
knob and a voltage indicates the breaker on/off status.

In each evaluation, performance is evaluated from 100
samples in the simulation or 25 samples in real environment.
Action at ∈ R3 is the desired acceleration of the end-effector
in Cartesian space. The orientation of end-effector and the
position of the target objects are fixed. The initial position of
end-effector is uniformly sampled within a 20cm cubic area.

V. EXPERIMENT RESULTS

A. Sensory feedback for individual primitives

In the first experiment, we evaluate the effectiveness of
tactile and proximity sensing for adapting primitives. Each
primitive policy is executed, and the improvement of ac-
curacy between with and without sensor values cases are
compared. For reach and adjust skills, 3D position errors
between the target position and the end-effector position is
observed. For the contact skill, the contact force error
between target and contact force at the termination time
is evaluated. Since accuracy of contact position is crucial
for each task, the accuracy of contact position after running
reach, adjust and contact skill is also evaluated. This
evaluation is conducted for the opening cap task in sim-
ulation environment. Table I describes the results. Table I
indicates that sensor feedback plays an important role to
improve accuracy of each skill. The contact position error
after three skills are executed is also improved with sensor
feedback. Without sensor feedback, the error is larger than
1.5cm, which is crucial when a thin robot finger is used.

B. Blending strategy

The effectiveness of both time dependent and state depen-
dent blending strategies are evaluated and compared with two
baseline methods. One of the baseline method: ”Baseline 1”
sequentially executes each skill in the fixed order. Each skill
has fixed duration and is executed one after another. This
baseline represents the common approach to executing se-
quences of skills. The second baseline method: ”Baseline 2”
terminates the skill at a trigger timing, and executes the next

TABLE I
POSITION ERROR AND CONTACT FORCE ERROR OF EACH SKILL

Skill Without sensor With sensor

reach (mm) 41.6 (±33.1) 24.2 (±9.3)

adjust (mm) 23.1 (±9.7) 8.90 (±4.2)

contact (N) 8.33 (±8.92) 1.44 (±0.34)

reach+adjust+contact(mm) 15.7 (±36.0) 5.70 (±4.2)

TABLE II
COMPARISON BETWEEN BASELINE METHOD AND PROPOSED METHOD

Method Success
rate(%)

Avg. max acceleration (m/s2) Duration(s)
x y z

Baseline 1 97 7.34 (±1.3) 1.40 (±0.3) 2.37 (±0.4) 16.0
Baseline 2 85 14.7 (±2.5) 4.68 (±0.7) 3.79 (±0.9) 14.8
Blending (time) 97 3.01 (±1.0) 0.23 (±0.3) 0.26 (±0.1) 12.0
Blending (state) 95 1.04 (±0.2) 1.18 (±0.2) 0.32 (±0.3) 8.7

skill without waiting for completion of the skill. The order
of skill executions is fixed and the trigger timings for each
skill are learned to maximize the success rate using REPS
algorithm. The proposed blending strategies and baseline
methods are evaluated in terms of success rate, average max
acceleration and manipulation duration as shown in Table II.
The proposed blending strategy methods show higher success
rates and lower accelerations than Baseline 2. Baseline 1
still shows high success rate; however, its trajectory is not
smooth. Comparison between the time and state dependent
blending strategies shows that the y-z direction accelerations
are higher in the state dependent case. The best explanation
to this result is that state dependent case is more sensitive to
bounding box information, which causes higher acceleration
than for the time dependent case. The results also show that
the blending method makes manipulation duration shorter,
especially with the state dependent case.

Fig.4 shows the relationship between the sensors and
trained blending strategy for the cap opening task in time
dependent and state dependent cases. For both cases, prim-
itive policies are blended according to the sensor events.
For example, switching between the reach, adjust and
contact skills occurs when bounding box position centers
to the image and switching between contact and open

cap skill occurs when contact force is detected. The skill
switching time is more accurate in the state dependent case.
Since each modality has different operating ranges, sensor
values are noisy and inaccurate outside of their operating
range. This usually makes it difficult to learn control policies
that use all sensor modalities all the time. Even under
such difficult cases, a blending strategy can be successfully
trained to perform the cap opening task. Fig.5 shows a
comparison of the training curve between no blending case,
baseline methods and blending method. In no blending case,
a whole robot trajectory is trained with all sensor values with
the REPS algorithm. The results shows that the proposed
blending method drastically reduces learning cost and robot
motion for the opening cap task, and it can be trained
within a practical number of episodes.

C. Transfer to different tasks

The goal of the skill modularity is realizing a control policy
which can create different motions for various task purposes
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Fig. 5. Success rates during RL training for opening cap task. The
results are compared with two baseline methods and no blending method.

without significant additional training. In this evaluation, we
investigate the transfer of the skills to different manipulation
tasks that require firm contact with the object. The primitive
skills: reach, adjust, contact, open cap and blending
strategies are trained for the opening cap task, while turn
dial and turn breaker skill are trained for turning

dial and turning breaker task respectively. Each task
thus has a predefined different subset of primitive policies
which includes some policies from other tasks (Fig.3).
Blending strategies are reused for tasks without additional
training. This evaluation is conducted for both simulation
and real environment, and the success rates of three tasks are
compared. For the real environment, every policy is directly
transferred from simulation to the real world without any
additional training.

Fig.6 describes the comparison of success rates between
different tasks. The proposed blending strategy shows high
success rates for different tasks in simulation. The results
also indicate that success rate is still high for real executions.
The good sim-to-real performance is due to the fact that
the blending strategy is not greatly affected by environment
differences and blending skills guarantee continuity of tra-
jectory and switching modality. By contrast, the sim-to-real
performance is worse for the Baseline 2 case which switches
skills discontinuously. The time-dependent blending strategy
shows higher success rate than the state-dependent as it is
less susceptible to sensor measurement noise. However, the
generalization ability of time-dependent case is limited for
only temporally similar sequences. For example, the time-
dependent case will not generalize well if the target object
moves far away or if a human push back the robot. By
contrast, state-dependent case can switch back to a previous
primitive policy. The DMPs help to create temporally similar
sequences, thus making the time-dependent blending viable
for different starting positions. The success rate of the turn
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Fig. 6. Success rates of three different tasks. Success rate is compared
with different blending methods and tasks for both simulation and real
environment. Left half is the results of simulation and right half is the
results of real environment.

TABLE III
RESULTS OF ABLATION STUDY

Modality Success rate
df dn bf bn fc pc Sim Real

1 3 3 3 3 3 3 82% 80%
2 3 3 – – 3 3 78% 76%
3 – – 3 3 3 3 95% 96%
4 – – 3 3 3 – 80% 36%
5 – – 3 3 – 3 82% 44%
6 – – 3 3 – – 74% 24%

breaker task in the real environment is lower than the success
rates of other tasks. This is because the size of the breaker
is much smaller than the ketchup bottle cap and dial knob.
This causes object detection failures and mismatch of sensor
values for blending strategy. A scaling factor may be added
to compensate for the smaller size of the object.

Transfer to different tasks works well for similar firm
contacts where the number of primitive policies is the same
and the structure of the sequence is similar with only the
last skill being altered. On the other hand, complicated tasks
which take various number of primitive policies and reactive
switch of the tasks will usually require additional training.
An additional upper policy or a hierarchical structure may
be needed so that sequences can be executed reactively by
choosing primitive policies or blending strategies depending
on the manipulation task.

D. Ablation study and sim-to-real

In this section, an ablation study for the state dependent
blending strategy is conducted to investigate which particular
modalities are important for high performance. At the same
time, sim-to-real results are also observed to investigate
which modality are important for sim-to-real. Total 6 ablation
patterns were evaluated. The sensor values includes the
same modality information which is used for training the
primitive policies as described in III-D. The results are
shown in Table III. The success rate in simulation and real
environment are shown for each ablation pattern. Patterns 1,
2 and 3 show the importance of distance and bounding box
information. Success rate deteriorates without a bounding
box, and this shows that bounding box information is critical
for performance. On the other hand, distance information
deteriorates the performance. This is an interesting finding
and can be explained by how the policy network overfits
to distance information and thus loses robustness against
position error. Patterns 3,4,5 and 6 show the importance of
each sensor value. Pattern 3 shows highest performance for
both sim and real environment and disabling force fc or
proximity pc or both leads poor performance, especially for



real environment. This can be explained by how the bounding
box information is noisy in real environment and fc or pc
information play more important role to switch the primitive
policies reliably.

VI. CONCLUSIONS

We present policy blending method for multimodal manip-
ulation. In the proposed method, the robot control policy is
divided into separate primitive policies so that each policy
uses a subset of primitive modalities, and the primitive
policies are subsequently blended by a learned blending
strategy. Finger vision and a fore-torque sensor are used
to acquire multimodal information which gives the robot
tactile and proximity feeling. Our experiments show that
tactile and proximity information improve the performance
of manipulations. Also, the proposed method enables training
of control policies within practical times even if each sensor
has a different operating range, dynamic range and precision.
The trained policies for establishing contact can be trans-
ferred to different tasks by replacing only the final primitive,
which is effective for practical use. The evaluation results
show high success rates for three different tasks, and trained
policies could be transferred to real environment without
additional training. For future work, the proposed method
can be extended to other manipulation tasks which require
high DoF motion including orientation. Also, a hierarchical
structure is a possible solution to handle complicated tasks
which require prioritized modality sensing.
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