
Towards Explainable Embodied AI

Masters Thesis

Submitted in partial fulfillment of the requirements of

for the degree of Master of Science in Robotics

By

Vidhi Jain

CMU-RI-TR-21-31

Thesis committee

Prof. Katia Sycara, CMU RI

Prof. Yonatan Bisk, CMU LTI & RI

Prof. David Held, CMU RI

Wenhao Luo, CMU RI

The Robotics Institute

CARNEGIE MELLON UNIVERSITY

Pittsburgh, Pennsylvania, 15213

August 2021

Copyright © 2021 Vidhi Jain. All rights reserved.

https://www.ri.cmu.edu
https://www.ri.cmu.edu

CARNEGIE MELLON UNIVERSITY

Masters of Science in Robotics

Abstract

Towards Explainable Embodied AI

by Vidhi Jain

The performance of autonomous agents has improved with the advancements in learning

and planning algorithms, but the applicability of such agents in the human-inhabited

world is limited. One of the factors is that humans find it difficult to interpret the

model’s decision-making and thus, do not trust it as a teammate. The goal of explainable

embodied AI is to provide predictions with explanations that clarify the internal logic and

are human understandable. In this work, we approach explainability in AI agent’s policies

by taking inspiration from how humans explain. First, humans are known to associate a

few dominant factors while explaining their decision. We visualize such important features

of the trained policies for control and navigation tasks by gradient-based attribution

methods. Second, having shared knowledge for representing concepts often helps to

understand and explain the decision-making. We utilize language priors in navigation

algorithms for robots assisting in simulated urban households and search-and-rescue

settings. Third, explainability comes with structured reasoning. To bring explainability

in architecture design, we learn modular and hierarchical navigation policies for the task

of maximizing area coverage in unseen environments. We conclude that embodied AI

policies can be understood with feature attributions to explain how input state features

influence the predicted actions. But feature attributions are not human intelligible in all

cases, and attributions for the same policy is sensitive to the design choice of ‘reference’

or ‘baseline’. A complementary direction is to develop inherently explainable policies

by incorporating common knowledge priors and modular hierarchical components, that

allow humans to understand high-level information flow and influence AI’s decisions. We

hope that the proposed explainability methods for embodied AI facilitate the analysis of

policy failure cases in different out-of-distribution scenarios.

https://www.ri.cmu.edu

Acknowledgements

This material is based upon work supported by the Defense Advanced Research Projects

Agency (DARPA) under Contract No. HR001120C0036. Any opinions, findings, conclu-

sions, or recommendations expressed in this material are those of the author(s). They

do not necessarily reflect the views of the Defense Advanced Research Projects Agency

(DARPA).

I want to thank my research advisor, Professor Katia Sycara, for her guidance, insightful

suggestions, and patience. Her vision in human-robot teaming has deeply influenced me -

to develop the ability of robots to understand and act like humans. She has been kind

and supportive in my difficult times. Our discussions in lab alongside Dr Dana Hughes

and Professor Michael Lewis, have driven me to think deeply at the intersection of robot

learning and human social psychology.

I would also express my gratitude to Professor Yonatan Bisk, who has helped me extend

the study of explainability in visual language navigation models. His enthusiasm for

research to enable natural language understanding in robots for planning and control

has inspired me.

Professor David Held’s seminar course on DRL with Robotics covered various skill-centric

robot learning, which inspired me to investigate deep reinforcement learning algorithms.

I am thankful for the opportunity to dive into modular policy learning as part of the

course project.

I would give special thanks to my collaborators – Huao, Rohit, Tejus for predicting

navigation strategy for the human rescuer in simulated search and rescue scenario; Aviral,

Akshay, Siddharth for visual dialogue in search and rescue scenario; Prakhar and Shishir,

for object embeddings in urban household settings; and Ganesh, for goal-conditioned RL

for exploration. I would also thank Swami, Sophie, Ini, and Wenhao, for brainstorming

discussions and valuable feedback. I am thankful to Barbara Jean (BJ) and Prof. George

Kantor for always promptly supporting and managing the MS in Robotics program.

I could not have become the researcher I aspire to be without my family, who have stood

firm and encouraging amidst all the uncertainty. I thank them for providing care and

mental strength for this work.

ii

Contents

Abstract i

Acknowledgements ii

Contents iii

List of Figures v

List of Tables ix

1 Introduction 1

1.1 Explaining “Explainability” . 2

1.2 Why Explainability? . 2

1.3 Research Questions . 3

1.4 Contributions . 3

2 Background 6

2.1 Feature Attributions . 6

2.2 Reinforcement Learning . 7

2.3 Language based navigation . 8

2.4 Modular Hierarchical Learning . 9

3 Attributions for Actor-Critic Neural Networks 10

3.1 Key Contributions . 10

3.2 Method . 11

3.3 Experiments . 12

3.3.1 Cartpole . 13

3.3.2 Lunar Lander . 18

3.3.3 Visual Language Navigation . 19

4 Attributions for Sequential Prediction with Decision Trees 23

4.1 Key Contributions . 24

4.2 Task Design . 24

4.3 Method . 25

iii

Contents iv

4.4 Experiments and Results . 27

4.4.1 Victim Saving Strategy . 29

4.4.2 Knowledge Condition . 33

5 Embeddings for Spatial Semantics 37

5.1 Key Contributions . 38

5.2 Task Design . 39

5.3 Method . 40

5.4 Experiments and Results . 40

6 Language to Goal Location 42

6.1 Key Contributions . 43

6.2 Task Design . 43

6.3 Method . 44

6.4 Experiments and Results . 45

7 Explainable Exploration 47

7.1 Key Contributions . 48

7.2 Task Design . 48

7.3 Method . 48

7.4 Experiments and Results . 49

8 Conclusions 51

A Appendix Environments 54

A.1 Minecraft for Search and Rescue setting 54

A.1.1 Human Trajectory Data . 54

A.1.2 VLN by Goal Identification and Path Planning 61

A.2 AI2Thor for Urban Household setting . 62

A.2.1 VLN by Imitation Learning . 62

A.2.2 Embeddings for Object Search . 62

B Appendix Attribution Methods 64

B.1 Shapley value . 64

B.2 TreeSHAP . 65

B.3 Integrated Gradients . 66

B.4 XRAI . 66

B.5 DeepSHAP . 67

Bibliography 68

List of Figures

3.1 Cartpole system design . 13

3.2 Summary plot of feature importance for a cartpole agent showing that Pole
angular velocity is given the most importance in deciding the direction to
push the cart. 13

3.3 CartPole at time 0. Cart’s Position: +0.0427, Cart’s Velocity: +0.0169,
Pole’s angle: +0.0116, Pole’s angular velocity: +0.0079. Action taken:
Push the cart to left. 14

3.4 CartPole at time 49. Cart’s position: +0.2352, Cart’s velocity: +0.5805,
Pole’s angle: -0.001, Pole’a angular velocity: -0.3915. Action taken: Push
the cart to right. 14

3.5 Force plot for CartPole at time 0 for action Push the cart to left
Cart’s position is to the right and is a dominant feature is deciding this;
Pole’s angular velocity is opposing this decision. The pole is already tilting
towards right. Pushing it towards left will make the pole fall faster. 14

3.6 Force plot for CartPole at time 49 for action Push the cart to right.
Pole’s angular velocity plays a dominant role in deciding the action. Cart’s
velocity is opposing this action. Cart is moving towards right and pushing
to the right would drive the cart further to the right, which can terminate
the episode if cart goes beyond the frame. 15

3.7 Aggregated Force Plot for a rollout over 100 timesteps. y-axis represents
the output value for action to push the cart to right. x-axis represents
the timesteps. The force plot shows what features positively or negatively
attribute to the predicted action over time 15

3.8 Trajectory Force Plot for Pole Angle. Pole angle’s effects correlates
with the value of the pole angle. For higher positive values of angle, the
attribution to push the cart to right increases, and vice versa. 16

3.9 Trajectory Force Plot for Cart Position. Cart position in this trajectory
remains always positive, implying that the cart is always to the right of
the origin. The effect of cart’s position on the predicted action is always
to push the cart to the left. 16

3.10 Trajectory Force Plot for Cart Velocity. The effect of Cart’s velocity
almost correlates with but may not be proportional to the value of the
velocity. For higher positive values of cart’s velocity, the attribution to
push the cart to right increases, and vice versa. 16

v

List of Figures vi

3.11 Trajectory Force Plot for Pole Angular Velocity. The effect of Pole’s
angular velocity almost correlates (except at transitions) with the value
of the velocity. At higher positive values of pole angular’s velocity, the
attribution to push the cart to right is high, and lower values it may switch
its effects. 17

3.12 Lunar Lander environment . 18

3.13 Summary plot visualized for DQN actor policy in Lunar Lander showing
that vertical coordinate is the most dominant feature for the policy’s
predicted action. 19

3.14 Force plot for the DQN actor policy in Lunar Lander; Action taken:
Fire Main Engine; Observations: horizontal coordinate: 0.10422049,
(+), vertical coordinate: 1.2217543, (-), horizontal speed: 0.20320427, (-),
vertical speed: -0.06951332, (-), angle: 0.020212715, (+), angular speed:
0.17456493, (+), 1 if first leg has contact, else 0: 0.0, (+), 1 if second leg
has contact, else 0: 0.0, (-); Reward: 0.7576; Total reward at the end
of episode: 33.81; Angular speed is contributing positively whereas the
downward vertical speed is opposing the decision to Fire the Main Engine. 19

3.15 Language Attribution for the task to place the tomato slice in fridge. The
words ‘turn to face the fridge’ have positive importance to the action of
OpenObject; whereas other words have neutral or negative attribution
to the action taken. 20

3.16 XRAI attributions on current image frame for predicted action: MoveAhead 25.
The leftmost figure shows the original frame pixels input to the trained
policy. The middle figure shows the attribution heatmap. The righmost
figure shows the areas with top 30% attributions. 21

3.17 XRAI attributions on current image frame for expert’s action: RotateRight 90 21

3.18 XRAI attributions on current image frame for predicted action: OpenObject 22

3.19 XRAI attributions on current image frame for expert’s action: RotateRight 90 22

4.1 Victim signalling device messages near critical victim is Beep Beep and
near less-critical victim is Beep . 24

4.2 Types of victims are Critical (in yellow), Less-Critical (in green), Expired
(in red) and Saved/Triaged (in white with ‘SAFE’) and corresponding
triage tradeoffs . 25

4.3 Overview of the process to visualize attributions and improve features for
sequential prediction . 26

4.4 Mean feature importances by SHAP values for prediction next victim
triaged type; where class 0 indicates the prediction for critical (yellow)
triaged next, and class 1 indicates the prediction for less critical (green)
victim triaged next . 30

List of Figures vii

4.5 SHAP force plot showing that probability of next victim triage is green
only 0.3 which makes it likely that the next victim triaged is not green
i.e. yellow. Features such as mission timer approaching yellow victim’s
death, having the latest signal as ‘Beep Beep’ and not ‘Beep’, having doors
in field of view decrease the likelihood that a green victim will be triaged
next (implying that the rescuer will triage a yellow victim). But since the
rescuer has triaged a green victim before and there is no yellow victim in
field of view, these features slightly increase the likelihood that a green
victim might be triaged next. 30

4.6 SHAP force plot showing that next victim triage is green is with proba-
bility 0.98; Features such as the mission timer close to the yellow victims
death, and that the map coverage is high greatly influence the model’s
output for green victim next; But as the rescuer has not triaged any green
victim uptil this point, this feature decreases the probability of that the
next victim to be triaged is green . 30

4.7 Explaining when hypothesis: next green victim triage is not supported . . 31

4.8 Explaining when hypothesis: next green victim triage is supported 32

4.9 SHAP beeswarm summary plot for next triage with mission timer as most
attributed feature for prediction . 32

4.10 Mean SHAP values for Knowledge condition prediction; where class 0
refers to TriageSignal, class 1 refers to TriageNoSignal, and class 2 refers
to NoTriageNoSignal . 33

4.11 Force plot for output: TriageSignal, true: NoTriageNoSignal ; The
model’s output logit is 0.01, which is lower than baseline at 0.33. The
higher direction indicates having full knowledge and the lower direction
indicates the other two knowledge conditions. The features supporting the
likelihood of full knowledge condition are non-intuitive such as no signal
message Beep. The factors such as the area segment that the rescuer is
present in (as compared to those in training instances) are considered
important on both sides to determine model’s output for full knowledge
hypothesis. 34

4.12 Force plot for output: TriageNoSignal, true: NoTriageNoSignal ; The
model’s output logit is 0.06, which is lower than baseline at 0.54. The
higher direction indicates having partial knowledge of triage tradeoffs but
not of the signaling device, and the lower direction indicates the other two
knowledge conditions. The features increasing the likelihood of partial
knowledge condition arenon-intuitive such as no signal message Beep. The
factors such as the area segment that the rescuer is present in (as compared
to those in training instances) are considered important on both sides to
determine model’s output. Mission timer has slight attribution to decrease
the likelihood of partial knowledge hypothesis. 34

List of Figures viii

4.13 Force plot showing model’s probability and feature importance for output:
NoTriageNoSignal ; true: NoTriageNoSignal ; The model’s output logit
is 0.82, which way above the baseline at 0.61. The higher direction
indicates having no knowledge and the lower direction indicates the other
two knowledge conditions. The features increasing the likelihood of no
knowledge condition are mission timer being close to the yellow victims
death and that latest signal received was a Beep. The factors such as
the area segment that the rescuer is present in (as compared to those in
training instances) and the ratio of less critical (green) victims saved per
number of doors opened contribute to slightly decrease the likelihood of
being in no knowledge condition. 34

4.14 Explaining the Full Knowledge condition hypothesis 35

4.15 Mean SHAP values for Knowledge condition prediction with gradient
boosted decision trees with temporal count vectors as inputs; 36

5.1 Top: Training the embeddings, Bottom: Using embeddings for navigation 38

6.1 Left: First person view of the agent in Minecraft, Right: Semantic 2D
map for bird’s eye view to provide context to the human commander . . . 43

6.2 Proposed architecture for visual dialogue system 44

6.3 Navigation Goal Identification Module . 44

7.1 FourRooms environment with clutter and 2D human-like field of view (in
translucent grey) . 47

7.2 Clutter density γ in FourRooms environment (a) γ = 0.01, (b) γ = 0.03,
(c) γ = 0.1, (d) γ = 0.3 . 48

7.3 Proposed Architecture for modular hierarchical model-free learning 49

7.4 Coverage % based on clutter density. In less clutter, the heuristic path
planning outperforms the learning based approach. With increasing clutter,
the coverage of both kind of policies reduces and the gap in performance
also reduces. 50

A.1 Area segments corresponding to the Falcon map 54

A.2 Force plot showing model’s probability and feature importance for Tria-
geSignal prediction at timestep of 18 seconds; True Knowledge Condi-
tion:NoTriageNoSignal ; . 60

List of Tables

3.1 Input and output space for agent’s policy in different environments 12

4.1 Table showing results for next victim triage prediction with gradient
boosted decision trees, where t denotes the mission timer. 28

4.2 Table showing results for knowledge condition prediction with gradient
boosted decision trees, where t denotes the mission timer 28

4.3 Results of knowledge condition prediction with new concise set of features 35

5.1 Results for navigation using Algorithm 2. Success Rate (SR) and
Success weighted normalized inverse path length (SPL) for different floor
plans in AI2thor environment; l denotes the shortest path length to query
object. 41

6.1 Instruction templates for navigation . 44

6.2 Comparing accuracy for predicting goal attributes 45

6.3 Evaluating SR and SPL of navigation module on 4 maps 45

A.1 Feature extracted from general mission statistics per timestep 56

A.2 Feature extracted from player’s field of view events 56

A.3 Feature extracted from victim triaging/saving events 56

A.4 Feature extracted from victim detection signal events 57

A.5 Feature extracted from player’s door related events 57

A.6 Feature extracted from player’s door opening and detection signal events . 57

A.7 Count-based features from Human Trajectory Data 58

A.8 Example of Dialogue between the Human and the Agent 61

ix

Chapter 1

Introduction

We, as human beings, have always striven to create intelligent systems that increase our

efficiency and reduce monotonous work. Developing intelligence in robots to act as our

teammates and enable success on complex tasks is a long-standing challenge for AI.

From the early days of AI, algorithms consisted of explicit instructions written in

human-readable symbols and logical statements, colloquially referred to as Software 1.0.

The high-level language provided step-by-step interpretable behavior for prediction and

inference. Early AI explanation methods focused on rule-based insight [53] into the AI

system’s internal working. These systems were expensive to build, maintain and extend

to the complexity of the real world. Customized the AI architecture for military mission

simulation such as [31, 23, 29] provided domain-specific explanation and .

Recently, machine learning algorithms provided an indirect way to specify how to learn

from the data, often termed as Software 2.0. Such code optimizes a high-level desired goal

like balancing the inverted pendulum or following natural language instructions during

navigation. The resulting behavior after data-driven learning is usually incomprehensible

to humans, such as the weights of a neural network.

With increasing success in machine learning today, we have autonomous systems that can

perceive visual, language, and sensory signals to act in our environment. The success of

machine learning algorithms is evaluated based on higher prediction accuracy than other

methods. But the underlying reasons for prediction are hard to assess [30, 41]. Often

machine learning models are considered “black-box” in terms of how the implicit rules

and patterns predict the output. The rapid adoption of such data-driven AI methods

has necessitated better explainable AI.

1

Chapter 1. Introduction 2

1.1 Explaining “Explainability”

Explainability in AI aims to enable humans to understand the workings and trust the

results of machine learning and data-driven algorithms. An explanation should clarify

the internal logic and be human intelligible.

While programming explicit instructions (assuming not a halting problem code), the

reasoning for the outcome can be tractably deduced and thus, explained. For example,

it is possible to explain the result of a nested if-else algorithm or optimal planning like

Dijkstra’s or A* search in terms of the logical path of statements executed.

For data-driven models that are rule-based, like Decision Tree, the logical path taken

for a particular prediction or outcome has been used to explain it. Recent approaches

like [34] discuss game-theoretic feature attribution approaches to explain ensembles of

decision tree algorithms.

Deep neural network (DNN) models are considered universal approximators. Unlike the

family of decision tree algorithms, DNNs can predict images, text, and other complex

formats of input-output data. The prediction rules are implicitly encoded in the form of

weights and biases. For a linear model, the coefficients of each input feature indicate

their relative importance for prediction. The equivalent of coefficients is taking gradient

with respect to the input features. This work will discuss some of the explainability

techniques on DRL models, where the actor neural network (also known as the policy)

predicts actions.

1.2 Why Explainability?

Explainable AI is essential for human-robot collaboration so that the human counterparts

can understand the working and trust the prediction models. While working with a

machine learning model making predictions or deciding navigation action, it is imperative

to know when the model will likely succeed or fail and why the model makes a particular

decision.

Explainability by attribution is also helpful in detecting bias in training dataset or

optimization and thereby mitigate the situation. For embodied AI, ensuring safety before

deployment is crucial. Due to distribution shift, it may not be possible to validate in

simulation alone. Further, even if simulation and real-world accuracy metrics are at par,

failure cases in the tail distribution of the training data can go undetected.

Chapter 1. Introduction 3

1.3 Research Questions

In this thesis, we attempt to answer the following questions:

1. Can feature attribution methods help to explain deep reinforcement learning and

sequential prediction methods? (Chapter 3, 4)

When we, humans, are asked to explain decision-making, we often attempt to describe

what aspects we found salient. Similarly, we can use feature attribution methods (2.1) to

identify what input features did the model gave positive or negative importance to in

the decision-making process. We find that such methods can be applied to explain input

features of deep reinforcement learning (2.2) models and decision trees to explain the

predicted outcome.

2. Can language priors be incorporated in policies for object search tasks? (Chapter 5, 6)

While we actively gain and have accumulated knowledge of the world, this is not true

for machine learning algorithms. Language (2.3) provides a way for humans to interpret

the world and explain abstract concepts. Incorporating language into the algorithm

design creates a common shared knowledge set and brings built-in interpretability for

the embodied AI policy. We incorporate knowledge priors in policy design and apply in

the tasks to search objects in urban households and to mitigate disaster rescue missions.

3. Can hierarchical learning outperform heuristic path planning for efficiently exploring

the environment? (Chapter 7)

The structure of navigation policies becomes inherently interpretable with modular,

hierarchical learning (2.4), where each module has a specific input-output scheme. The

modular structure also improves sample complexity and mimics the human way of

thinking. We consider the task of exploring the environment in minimum steps for

model-free learning algorithm and compare the performance to heuristic path planning.

1.4 Contributions

We present explainability techniques for designing embodied AI policies for navigation.

Our work is one of the first steps towards developing social-cognitive skills in AI agents

that involves the ability to think about mental states, both your own and those of others,

to eventually aid in human-robot trust and collaboration.

In the first half, we explore the applicability of input feature attribution methods for

explainability. These models include decision making from a first-person perspective

(ego-agent: how to control or navigate to the goal by learning from experience) and from

Chapter 1. Introduction 4

a third-person perspective (observer-agent: how will the other ‘agent’ behave or what is

their strategy given the behavior of other agents on this task).

In Chapter 3, we show that gradient-based feature attribution methods can explain

the actor neural network’s predictions in terms of the relative importance given to the

input state features for action prediction. We analyzed classic control tasks for cart pole

and a lunar lander with SHAP Deep Explainer. We also investigate these methods on

higher-dimensional inputs like pixels in ALFRED with XRAI attributions.

In Chapter 4, we design interpretable state features from human trajectories to train

gradient boosted decision trees that predict the victim triage strategy and prior knowledge

condition in simulated search and rescue task. To understand what features are considered

salient by the model for predictions, we visualize the feature attributions on unseen

trajectories. The top attributed features are then processed to select the most likely

natural language explanation for the prediction.

While input feature attribution is a powerful tool for ML and DRL models, such

explanations are only expressed in terms of the input features to the model. It does

not cover other aspects, like the common knowledge and language priors. In the second

half, we design embodied AI policies that integrate domain knowledge and planning for

built-in explainable architecture.

In Chapter 5, we learn and contrast representations to capture spatial semantics. We

demonstrate that a momentum inspired, similarity-based greedy navigation technique

results in success rate > 90%. We show that using spatial semantic prior knowledge pro-

vides an intuitive way to search for objects in common households without compromising

the navigation performance.

In Chapter 6, we propose a system for collaboration between an autonomous agent in

a disaster site for search and rescue mission, and a human located in a safe remote

environment. Just like the human first-person responders would communicate with their

teammates situated remotely, we build a system that enables an autonomous agent to

parse a human’s natural language message and either (1) generate a natural language

response for the query, or (2) interact in the environment to execute the instruction/-

command. We focus on the qualitative analysis to demonstrate the capability of the

latter module across four simulated disaster scenarios for natural language interaction

commands.

In Chapter 7, we develop a customized version of the classic FourRooms environment,

with a realistic human-like field of view, and variation in clutter density γ for evaluating

the navigation policies for the task of maximizing area coverage in unseen environments.

We observe that as the clutter density increases, the performance of modular learning

based agent improves as compared to the heuristic of nearest frontier based exploration.

Chapter 1. Introduction 5

In Chapter 8, we discuss the takeaways from these research questions as well as a variety

of other ways to explain. We conclude that embodied AI policies can be understood

with feature attributions to explain how input state features influence the predicted

actions. But feature attributions are not human intelligible in all cases, and attributions

for the same policy is sensitive to the design choice of ‘reference’ or ‘baseline’. A

complementary direction is to develop inherently explainable policies by incorporating

common knowledge priors and modular hierarchical components, that allow humans to

understand high-level information flow and influence AI’s decisions. We hope that the

proposed explainability methods for embodied AI facilitate the analysis of policy failure

cases in different out-of-distribution scenarios.

Chapter 2

Background

2.1 Feature Attributions

Consider a linear model f(x) = w1x1 +w2x2. To explain which feature is more important

for predicting the value of f(x), we can compare their coefficients. If w1 = 1000 and

w2 = 0.01, we can say that x1 would be weighed more than x2. This type of explanation

assumes that the values of x1 and x2 are of the same order. This is true in the case of

most inputs to the neural network models, for example image pixels. Gradients are the

general way of discussing the coefficient with respect to a particular feature to discuss its

importance. Feature importance or attribution is an approximation of how important

features are in the data.

One of the ways to visualize the feature attributions at every instance is by force plots.

Force plot [33] show which features and by how much contribute positively (denoted

by arrows in red to right) or negatively (denoted by arrows in blue to left) to the output.

The sum of the attributions is equal to the difference between the output value f(x) and

the base value. The longer the arrow, the more dominant the feature is for the predicted

outcome.

Shapley values The original concept was proposed by Lloyd Shapley in 1950s [44]

to describe the payoffs to the players in a coalitional game, where players collaborate

to generate some value. The objective is to determine what each participating player

should receive from the total reward obtained by the team based on their ‘contribution’

to the team. Shapley values consider the average payoff based on the sequence of

arrival of the features, but this is prohibitively expensive to compute when the number

of features is large. SHAP provides a fast implementation for tree-based models for

Shapley values. TreeSHAP [34] can fairly distribute the importance to each feature

contrastive explanations that compare the prediction with the average prediction. In

6

Chapter 2. Background 7

machine learning, the objective is the same, except the ‘players’ are the features of the

ML model, and the total reward corresponds to the predicted output.

Integrated Gradients While gradient with respect to input is a starting point for

attribution, these are sensitive to noise. [48] proposed ways to visually sharpen these

vanilla gradient-based attributions [46] applying Gaussian noise perturbations over

averaged over a sufficient number of samples. IG [52] and path methods have been

studied as a cost-sharing method called Aumann-Shapley. Attribution based on IG

preserves axiomatic properties like sensitivity and implementation invariance.

While IG aggregate the gradients on sampling inputs on a straight line between the

baseline and the input, there are several paths possible in higher dimensional spaces and

corresponding different attribution. Recent works build on IG to obtain more visually

intuitive attributions, like in SHAP Deep Explainer [51], Blur IG [57], Guided IG [25]

and XRAI [24]. More details on various attribution methods are in Appendix A.

Some explanations use the activations in layer l produced by input examples in the

concept set versus random samples. [26] define a ‘concept activation vector’ (or CAV) as

the normal to a hyperplane separating examples without a concept and examples with a

concept in the model’s activations.

2.2 Reinforcement Learning

Notation Deep reinforcement learning algorithms have been successful in discrete and

low-dimensional action spaces. The standard RL setting has an agent which interacts

with the environment over periods of time according to the policy π. At each time step t,

the agent receives the state observation st ∈ R|S| from the environment. The agent then

samples an action at ∼ π(st) where at ∈ A, and acts in the environment to transition

into the next state observation st+1 and receive reward rt ∼ R(st, at). The objective for

the agent is to predict actions given state observation such that the discounted reward is

maximized in expectation.

Actor-Critic paradigm [38] ‘Actor’ is responsible for taking action given the current

state, and a ‘Critic’ estimates the “value”, a scalar estimate of importance, of the given

state. Actor and critic can be any function approximators like neural networks. Often,

both the models have a common trunk for both to process the current state and separate

heads for their respective predictions. Different algorithms leverage the information

learned by the critic based on the reward and use it to inform the actor for learning

optimal policy. We use Deep Q-learning [39] and policy gradient algorithms like PPO

[43] for the experiments in lunar lander and cartpole respectively in chapter 3.

Chapter 2. Background 8

2.3 Language based navigation

Language-driven navigation often involves a speaker describing navigation instructions

to a listener to reach from one point to another [27, 55]. Interactive question answering

by Gordon et al. [19] considers cases that require navigation and answer questions

only about counting, spatial relationships and existence questions. Instead, we consider

disambiguating the natural language message into parts that need question answering

about the environment, or that require navigation to a location.

More complex long-horizon task descriptions are also recently introduced [45], ALFRED

Dataset, provides the similar task of human-agent collaboration in simulated indoor

house environments requiring challenging long-horizon planning. We visualize the feature

attribution on the visual and language inputs for models trained on ALFRED dataset in

chapter 3 section 3.3.3.

Synthetic Language Learning BabyAI, a 2D grid setup with synthetic language

learning [14, 12] proposed efficient testing of sample complexity of reinforcement learn-

ing algorithms at language-driven navigation. Synthetic generated language has been

preferred in prior works [1, 35], not only for its cost-effectiveness but also to mitigate the

bias introduced with data collection. In chapter 6 section ??), we use template-based

language generation to create dataset for search and rescue task and demonstrate natural

language based navigation.

Object Embeddings Classical navigation techniques in robotics generalize to unseen

environments by mapping, localization, and path planning. However, most of these

approaches fail to leverage the environment’s semantic structure, like certain objects are

mutually close to each other. Multi-relational knowledge-base based embeddings such as

RoboCSE [16] have demonstrated an agent’s ability to predict object affordances and

materials in the real world. The RoboCSE embeddings were trained using the object

metadata from AI2Thor simulator. While these embeddings were used for the prediction

of object affordances by an immovable agent, we differ in our approach of utilizing these

embeddings by evaluating how well they capture the spatial semantics for query search

and navigation task for a mobile agent.

Recent work in object navigation [9] shows a modular approach to map the environment

and predict sub-goal based on the semantic object map. In chapter 5, we do not address

the vision-based mapping as addressed. Instead, our approach is a modular component

that can be integrated with classic robotics paradigm of mapping and planning. We

focus on high-level navigation decisions aligned to the spatial semantics of objects.

Chapter 2. Background 9

2.4 Modular Hierarchical Learning

Hierarchical Reinforcement Learning (HRL) We consider decomposing the actual

reinforcement learning problem down into sub-problems such that solving them leads

to a more efficient or powerful solution to the original problem. With the advent of

Deep Learning, hierarchical representations are considered as an interaction between

multiple policy networks. Such representations have been useful in solving all kinds of

tasks. [28] was the first to introduce a hierarchical DQN (H-DQN) structures operating

at different time scales to solve the sparse reward problem of Montezuma’s revenge. [2]

also propose a hierarchical PPO formulation for the gym-minigrid [13] environments.

More recently, hierarchical policies have also been used for embodied question answering.

[17] decomposes the problem of navigation for question-answering into a planner and

controller framework, with the controller pre-trained by imitation learning based method.

Robot Navigation The concept of frontiers for exploration of unknown spaces was

first introduced in [58] by Yamauchi, in which regions on the boundary between known

and unknown regions are considered valuable targets to explore to increase information

about the environment. Traditionally, frontier based exploration is focused on geometric

methods for navigation using SLAM, as demonstrated in works like [49], [15], and more

recently deep learning based methods like [5].

More recently, active learning methods for navigation have been proposed as a solution

to downstream robot control tasks, that propose to navigate end-to-end with implicit

mapping. In many of these works, the selection of frontiers is implicit, and is attributed

to semantic priors [60], or geometric priors [11]. Some of the work that comes close to

our work regarding the explicit use of frontiers is [50], where the expected cost value for

each state action pair is calculated by observing trajectories of an optimistic planner.

In the context of Visual Language Navigation on ALFRED benchmark [45], recent

state-of-the-art agents often have modular approach to train the policy to imitate the

expert’s trajectory. MOCA [47] decouples the visual perception and decision to act. For

selecting the object to interact with, it first predicts target class, followed by the instance

associated pixel-level mask. This explicit modeling improves model explanability as

well as the performance. HiTUT [61] leverages pretrained object detector for the visual

input and converts them to token for the word embeddings to process later with BERT

architecture.

Chapter 3

Attributions for Actor-Critic

Neural Networks

Explanability in machine learning is obscured by the implicit rules and patterns learned

from the training data. Gradient-based feature attribution method address this the

feature importance of any input instance, given access to the training data and model.

While several of these methods have been proposed and studied for image and text

classification tasks, it is not yet explored in reinforcement learning and general sequence

modeling.

3.1 Key Contributions

We show that gradient-based feature attribution methods can explain the actor neural

network’s predictions regarding the relative importance given to the input state features.

We analyzed classic control tasks for cart pole and a lunar lander with SHAP Deep

Explainer. Given the low-dimensional state input to the controller, we found that the

attributions on the randomly initialized network have small magnitudes and relative

difference, which increases with the training of the policy. We also investigate these

methods on higher-dimensional inputs like pixels in ALFRED with XRAI attributions.

We demonstrate visualizations of the feature attribution methods on policies trained

with PPO, DQN, and imitation learning. Our analysis of feature attribution of a policy

provides insights on where the model is likely to make mistakes and to which features

variations the model will be robust.

10

Chapter 3. Attributions for Actor-Critic Neural Networks 11

Algorithm 1: Attributions for DRL policy over a trajectory given the initial state s0

Result: list of attributions V
1 time instance i;
2 environment env;
3 state si ∈ RS ;
4 action ai ∈ RA;
5 policy πθ : si → ai;
6 buffer B;
7 max steps T ;
8 number of roll-outs for background data N ;
// collect rollout state observations for baseline

9 for j ∈ {1, 2, · · ·N} do
10 while not done or t < T do
11 at = πθ(st);

12 B
append←−−−− st;

13 st+1, rt, done = env.step(at);

14 end

15 end
// compute attributions over the trajectory

16 while not done or i < T do
17 ai+1 = πθ(si);
18 vi = Attributions(si, πθ,B);
19 si+1, ri, done, info = env.step(ai);

20 V
append←−−−− vi;

21 end
22 return V, a list of vi, each of size S (same as dimensions of si).

3.2 Method

We visualize the actor neural network’s attribution in terms of certain action as the actor

network is only used during deployment and the critic network is discarded. We chose

action based on the models’ prediction or expert’s action at that timestep.

SHAP Deep Explainer or DeepSHAP [10] is a In DRL, we propose to sample states from

the rollout of the trained policy to use as baseline.

The attributions for the actor policy is computed as shown in Algorithm 1. We train

the agent with model-free DRL algorithms like DQN, PPO1. We extract the pipeline of

the Actor neural network for gradient based saliency methods, and leave out the critic

network. While visualizing the critic network would give us insight on the salient features

for determining the value of the state, it is harder to comprehend as compared to a

tangible action taken.

1We utilize exisiting RL frameworks like rl-starter-files and stable-baselines3 to train our
agents.

Chapter 3. Attributions for Actor-Critic Neural Networks 12

We often need background data for methods such as [52]. Often, in image and text

classification, this is the training data. However, the training data in deep reinforcement

learning depends on how trained the policy is. In the start of the training, the training

data can be biased with large amounts of initial state configurations. To collect suitable

background data, we rollout the trained policy for N episodes to create a buffer B of

state observations.

For a required trajectory to be explained, we then compute attribution for the state’s

input features to the actor neural network for either the most likely action taken or

the expert’s action at that state, if available. The attribution function takes input:

the actor or policy, background data buffer and the current state observation, and

outputs the importance for each feature in the input current state. This importance

or attribution is in regards to the predicted action probability. This answers which

features contributed positively to prediction of the most likely action and which features

contributed negatively.

3.3 Experiments

In the following set of experiments, we assume that the equations of motion of the system

are not known apriori. The control policy needs to learn how to apply force to prevent

failure conditions. Table 3.1 shows the input and the output of the policy for the actor

in each environment.

Table 3.1: Input and output space for agent’s policy in different environments

Environment Input Output

Cartpole

Cart’s position x Push the cart to the left
Cart’s velocity x˙ Push the cart to the right
Pole’s angle
Pole’s angular velocity

Lunar Lander

Horizontal coordinate No-op
Vertical coordinate Fire Left engine
Horizontal speed Fire Main engine
Vertical speed Fire Right engine
Angle
Angular speed
1 if first leg has contact, else 0
1 if second leg has contact, else 0

Chapter 3. Attributions for Actor-Critic Neural Networks 13

3.3.1 Cartpole

Cartpole is a classic benchmark problem in control theory and reinforcement learning,

described by Barto, Sutton, and Anderson [3]. It is also known as the inverted pendulum.

θ

𝑥

ℓ

𝑦

𝑥

𝑚𝑔

𝑓
T

R

C

P

Q

O

Figure 3.1: Cartpole system design

Figure 3.1 shows that the system consists of a cart

free to move horizontally with a pole hinged to its top.

The pole is allowed to rotate about this joint in 2D,

under the influence of gravity. The input and output

of the control policy is shown in Table 3.1. Failure

conditions are (a) pole falls beyond 12 degrees, (b)

car hits the boundary at 2.4 units from the center.

For every time instance, the controller gets a reward

of +1 until 500 steps.

We train the cart-pole controller with Proximal Policy

Optimization (PPO) [43] on a two-layer feed-forward

neural network 2. For a trained policy for cart-pole

controller, we analyzed the feature attribution. These

attributions were calculated for the actor neural net-

work over 1000 observations sampled from buffer of size 50000.

Figure 3.2: Summary plot of feature importance for a cartpole agent showing that
Pole angular velocity is given the most importance in deciding the direction to push the

cart.

Fig 3.2 shows the summary plot of feature importance of a trained policy over a rollout

of 10000 timesteps. Pole’s angular velocity is an important feature in influencing most of

the actions, while Pole’s Angle and Cart’s position have relatively lower impact on the

action predicted.

To visualize feature attributions for prediction at each timestep, we use force plots. Force

plot [33] show which features and by how much contribute positively (denoted by arrows

2Default MlpPolicy in stable-baselines3; Code: cartpole ipynb, SHAP cartpole ipynb)

Chapter 3. Attributions for Actor-Critic Neural Networks 14

in red to right) or negatively (denoted by arrows in blue to left) to the output. The sum

of the attributions is equal to the difference between the output value f(x) and the base

value. The longer the arrow, the more dominant the feature is for the predicted outcome.

The force plot shown in Fig 3.5 for time 0 when the trained policy predicts to take action

“Push the cart to left”. Note that the function value f(x) is lower than the base value

for the chosen action. This is because at time 0, the cartpole is initialized with random

values uniformly between -0.05 to 0.05 and this configuration happens rarely only at the

start of the task. As the base value is the average function value in the training data,

this indicates that model is not confident on the action to take at this timestep. Cart’s

position, which is overall a less impactful feature, appears to be more dominant than

pole’s angular velocity at this instance.

Figure 3.3: CartPole at time 0.
Cart’s Position: +0.0427, Cart’s
Velocity: +0.0169, Pole’s angle:
+0.0116, Pole’s angular velocity:
+0.0079. Action taken: Push the

cart to left.

Figure 3.4: CartPole at time 49.
Cart’s position: +0.2352, Cart’s ve-
locity: +0.5805, Pole’s angle: -0.001,
Pole’a angular velocity: -0.3915. Ac-
tion taken: Push the cart to right.

Figure 3.5: Force plot for CartPole at time 0 for action Push the cart to left
Cart’s position is to the right and is a dominant feature is deciding this; Pole’s angular
velocity is opposing this decision. The pole is already tilting towards right. Pushing it

towards left will make the pole fall faster.

Let us visualize and analyze attribution for an instance later in the trajectory. For

example, at timestep 49, we observe for predicted action “Push cart to left”, the most

positively attributed feature is pole’s angular velocity as shown in Fig 3.6.

The feature attribution along the trajectory can be visualized in Fig 3.7 where the

positive f(x) value corresponds to the action “Push the cart to the right”.

Chapter 3. Attributions for Actor-Critic Neural Networks 15

Figure 3.6: Force plot for CartPole at time 49 for action Push the cart to right.
Pole’s angular velocity plays a dominant role in deciding the action. Cart’s velocity is
opposing this action. Cart is moving towards right and pushing to the right would drive
the cart further to the right, which can terminate the episode if cart goes beyond the

frame.

Figure 3.7: Aggregated Force Plot for a rollout over 100 timesteps. y-axis represents
the output value for action to push the cart to right. x-axis represents the timesteps.
The force plot shows what features positively or negatively attribute to the predicted

action over time

Pole angle’s effects correlate with the value of the pole angle. For higher positive values

of angle, the attribution to push the cart to right increases, and vice versa for higher

negative values of angle, the attribution to push to left increases, as shown in figure 3.8.

Cart position in this trajectory remains always positive, implying that the cart is always

to the right of the origin. In figure 3.9, we can see that the effect of cart’s position on

the predicted action is always to push the cart to the left.

Cart’s velocity and pole’s angular velocity can take any value in (−∞,∞). These values

change faster than corresponding positions, and we see frequent fluctuations in the

attributions. While usually their signs correlate with their attributed action, there are

opposite effects near the transitions.

Chapter 3. Attributions for Actor-Critic Neural Networks 16

Figure 3.8: Trajectory Force Plot for Pole Angle. Pole angle’s effects correlates with
the value of the pole angle. For higher positive values of angle, the attribution to push

the cart to right increases, and vice versa.

Figure 3.9: Trajectory Force Plot for Cart Position. Cart position in this trajectory
remains always positive, implying that the cart is always to the right of the origin. The
effect of cart’s position on the predicted action is always to push the cart to the left.

Figure 3.10: Trajectory Force Plot for Cart Velocity. The effect of Cart’s velocity
almost correlates with but may not be proportional to the value of the velocity. For
higher positive values of cart’s velocity, the attribution to push the cart to right increases,

and vice versa.

Chapter 3. Attributions for Actor-Critic Neural Networks 17

Figure 3.11: Trajectory Force Plot for Pole Angular Velocity. The effect of Pole’s
angular velocity almost correlates (except at transitions) with the value of the velocity.
At higher positive values of pole angular’s velocity, the attribution to push the cart to

right is high, and lower values it may switch its effects.

Chapter 3. Attributions for Actor-Critic Neural Networks 18

3.3.2 Lunar Lander

Another classic control problem is optimizing rocket’s trajectory for landing. The input

observation and the expected output of the controller is described in Table 3.1.

Figure 3.12: Lunar Lander en-
vironment

The objective of the controller is to land the spacecraft

safely at coordinates (0,0). Let dt is the distance from

the landing coordinate (0,0), vt is the lander’s velocity,

θt is the angle from the vertical direction, hasLanded,

mainEngineFired, sideEngineFired are boolean values

of the system at time t. To shape the reward, points

are rewarded or deducted based on the system state as

follows.

Reward(st) =− 100 ∗ (dt − dt−1)− 100 ∗ (vt − vt−1)− 100 ∗ (θt − θt−1)

+ 10× (hasLanded(st)− hasLanded(st−1))

− 0.3×mainEngineFired− 0.03× sideEngineFired

The episode finishes if the lander crashes or comes to rest, receiving an additional -100

or +100 points. We train the controller policy by Deep Q-learning with three layer

feed-forward network, with 128, 64, 32 units per layer. We use learning rate = 0.001,

batch size = 64, relu activation, and final epsilon for exploration = 0.01.

Our trained policy obtains mean reward of 111.23±66.58 over 13 episodes with minimum

23.32 and maximum 250.03. We visualize the attributions for 200 sampled states. We

first sample 1000 states from a policy rollout of 10000 steps and use remaining 800 of

them as baseline.

Fig 3.13 shows the mean attributions of the policy. The vertical coordinate is identified

as a dominant feature. It likely so because the decreasing vertical coordinate to 0 at each

timestep is positive reward. Focusing on the contact to the land is second most important

feature as it determines another +100 or -100 penalty for the controller. Vertical speed

of descent is equally important if the lander is not in contact yet.

The horizontal coordinate, horizontal speed, angle and angular speed become important

if the spacecraft deviates from the normal.

Fig 3.14 shows the feature attributions at an instance where the action to fire the main

engine has been taken. The non-zero value of angular speed and angle, as well as positive

value of the vertical coordinate of the spacecraft contribute to this action. On the other

Chapter 3. Attributions for Actor-Critic Neural Networks 19

Figure 3.13: Summary plot visualized for DQN actor policy in Lunar Lander
showing that vertical coordinate is the most dominant feature for the policy’s

predicted action.

Figure 3.14: Force plot for the DQN actor policy in Lunar Lander; Action taken:
Fire Main Engine; Observations: horizontal coordinate: 0.10422049, (+), vertical
coordinate: 1.2217543, (-), horizontal speed: 0.20320427, (-), vertical speed: -0.06951332,
(-), angle: 0.020212715, (+), angular speed: 0.17456493, (+), 1 if first leg has contact,
else 0: 0.0, (+), 1 if second leg has contact, else 0: 0.0, (-); Reward: 0.7576; Total
reward at the end of episode: 33.81; Angular speed is contributing positively whereas

the downward vertical speed is opposing the decision to Fire the Main Engine.

hand, the negative vertical speed suggests that the spacecraft is already descending and

therefore, it negatively attributing to the decision to fire the main engine.

3.3.3 Visual Language Navigation

Consider an agent who understands natural language instructions and can navigate and

interact with objects in a typical house environment. The objective is to predict the

actions that would complete the task, given natural language goal, instructions and

egocentric vision. Recent works evaluate these agents on the overall task goal completion

success rate (SR) and that weighted by expert’s path length (PLWSR) over seen and

unseen tasks, and have reported a huge gap in the performance of learning algorithms

and humans at these tasks.

To understand why ALFRED benchmark is hard, we compute and visualize the attri-

butions of the policy network for the most likely predicted action, given the expert’s

Chapter 3. Attributions for Actor-Critic Neural Networks 20

Figure 3.15: Language Attribution for the task to place the tomato slice in fridge. The
words ‘turn to face the fridge’ have positive importance to the action of OpenObject;

whereas other words have neutral or negative attribution to the action taken.

trajectory inputs at current timestep. Expert’s action is provided at each instance based

on PDDL planning in the simulated environment.

The input to the policy is word embedding of goal and instructions, the current frame,

the previous action and the latent state representation. The output of the agent’s policy

is one of 13 possible actions3 with 5 navigation and 7 interaction based actions as shown

in Appendix A.2.1.

Language Attributions To visualize the language related feature attribution, we

computed the gradient of the predicted output with respect to embeddings of goal and

instruction word tokens. As an embedding is n-dimensional vector, the gradient is also

computed with respect to each dimension. One of the ways to reduce the attribution

aw of embedding size d, where w is a word token, to a scalar is by choosing the value

which has the maximum absolute value as the attribution. This value can be positive or

negative attribution. max abs(aw)

Figure 3.15 shows the gradient based language attribution. The goal and instruction

tokens at an instance in the trajectory. The agent’s predicted action (and the expert’s

action) is to OpenObject, which in this case is to open the fridge. The policy shows positive

attribution to “turn to face the fridge” tokens, while negative or neutral attribution to

tokens from previous sub-goals.

Visual Attributions

We visualize where the policy is attributing importance in the current frame with

XRAI [24]. Figure 3.16 shows the attributions for the predicted most likely action

to MoveAhead, instead of expert’s action RotateRight. The leftmost figure shows the

3Note that two of –pad– and –seg– in action vocabulary are dummy values.

Chapter 3. Attributions for Actor-Critic Neural Networks 21

Figure 3.16: XRAI attributions on current image frame for predicted action:
MoveAhead 25. The leftmost figure shows the original frame pixels input to the trained
policy. The middle figure shows the attribution heatmap. The righmost figure shows

the areas with top 30% attributions.

Figure 3.17: XRAI attributions on current image frame for expert’s action:
RotateRight 90

original frame pixels input to the trained policy. The middle figure shows the heatmap

of attributions, where the light yellow corresponds to high positive attributions and dark

purple corresponds to neutral or negative attributions. The rightmost figure shows the

top 30% of the attributions. At this instance, it seems that the policy is focusing on the

empty wooden flooring in front of it to predict the action of moving forward.

In Figure 3.17, the attributions at this instance is visualized with respect to that of the

expert’s action. Often, the correct action cannot be judged straight-away. For example,

rotating left or right could be equally good options if this is first frame that the agent

sees and does not know the structure of the environment in advance.

Another example of where the policy’s prediction and expert’s action differ are shown in

Figure 3.18. Here we see that the policy’s attributions to action ‘OpenObject’ are quite

driven by the presence of object ‘Fridge’ in the current frame. The policy clearly fails to

focus on the subgoal which requires it to go right side of the fridge, and does not take

into account its interaction with the fridge in the previous timesteps.

Chapter 3. Attributions for Actor-Critic Neural Networks 22

Figure 3.18: XRAI attributions on current image frame for predicted action:
OpenObject

Figure 3.19: XRAI attributions on current image frame for expert’s action:
RotateRight 90

Figure 3.19 shows the low visual attribution scores for the action to rotate right. Interest-

ingly, we see the lowest attribution near the handle/water dispenser of the fridge, which

is an area that received high attribution for the predicted action to open the fridge.

If we had some data of where an expert’s attribution should be, we could compare and

supervise the model to match the groundtruth attributions. This will enable policy

training to not just mimic the correct actions, but also attribute the decision to the

correct reasons.

Chapter 4

Attributions for Sequential

Prediction with Decision Trees

Consider a scenario where an office building gets damaged during an earthquake and

has victims who need to be rescued. Victims would have varying degrees of injury, and

therefore human rescuers have to develop appropriate search, navigation and victim

triaging strategies so as to save the largest number of victims in limited time. The

earthquake may have caused serious structural perturbations, such as blockages that

limit the ability of the rescuers to reach certain areas.

In this work, we provide initial results for feature attributions of computational agent,

ASIST [4] (Artificial Social Intelligence for Supporting Teams) to observe and predict

strategies of a single person and three people rescue teams in a simulation environment.

ASIST observes the environment and the behavior of each rescuer and predicts future

actions of the rescuer.

Our specific scenario considers a 3D simulation of a realistic office building with several

rooms and corridors where the disaster has taken place. For simplicity, victims are

denoted as blocks in our environment. Some critically injured victims (denoted as yellow

blocks) take more time to triage and may expire sooner than other victims (denoted as

green blocks). Before starting the mission, we provide the rescuer with the building’s

original floorplan so that they can plan their route. During the mission, they may

encounter several changes due to the damage, such as wall collapse or opening/holes

in the wall. We incentivize the rescuers to prioritize the critically injured victims by

rewarding them more points for saving them.

23

Chapter 4. Attributions for Sequential Prediction with Decision Trees 24

Figure 4.1: Victim signalling device messages near critical victim is Beep Beep and
near less-critical victim is Beep

4.1 Key Contributions

We design interpretable state features from human trajectory data per timestep to predict

the victim triage strategy and prior knowledge condition. We utilize TreeSHAP [34], a

feature attribution method based on Shapley values optimized for family of decision tree

algorithms to infer the salient features that positively or negatively contributed to the

predicted outcome. The top attributed features are then processed to select the most

likely natural language explanation for the prediction.

4.2 Task Design

The scenario in the Minecraft environment represents a structurally damaged office

building after a disaster, with areas of building layout perturbed with collapsed rubble,

wall openings, and fires. Initially, it contains 26 area segments consisting of corridors,

rooms, and elevators. The current building layout and segment connectivity were changed

by perturbations such as collapses, wall openings, and sporadic fires.

Both victims depend on the first responders’ help to stabilize and evacuate out of the

building. The rescuer’s also carry a signalling device for victim proximity. It signals beep

to indicate presence of non-critical victim and beep beep for the critical ones as shown

in Fig 4.1. The signal messages appear on the Minecraft chat window of the human

participant.

The goal of the human rescuer is to earn as many points as possible within 10 minutes.

It is known that there are 34 victims trapped in the building. The victims are of the

following two types:

Chapter 4. Attributions for Sequential Prediction with Decision Trees 25

Figure 4.2: Types of victims are Critical (in yellow), Less-Critical (in green), Expired
(in red) and Saved/Triaged (in white with ‘SAFE’) and corresponding triage tradeoffs

1. Critical victims: (also referred as yellow victims) 10 of them, will expire by five

minutes; Each takes 15 seconds to triage and are worth 25 points.

2. Less critical or Regular victims: (also referred as green victims) 24 of them,

will expire by ten minutes. Each takes 7.5 seconds to triage and are worth 10

points.

The victims and their possible transformed types are shown in Fig 4.2

75 trajectories were collected from human participants [22] in simulated search and rescue

task setup with Minecraft game engine. Prior to each mission, human rescuers were given

information on the task and original building layout to plan their exploration strategy.

However, two-thirds of them were not told about meaning of the beep signal. About a

third were not told about the cost-benefit tradeoffs between the critical vs non-critical

victims in terms of time to triage and points rewarded to save. It was observed that the

human participants learned and inferred these while solving their mission trials.

The human rescuers can have one of the three prior knowledge conditions:

1. Triage, Signal : full knowledge of the cost-benefit trade-offs, and understand the

messages of victim proximity signal.

2. Triage, No Signal : knowledge of the cost-benefit trade-offs, but does not know

meaning of the victim proximity signal messages

3. No Triage, No Signal : no knowledge of either the cost-benefit trade-offs, does

not know meaning of the victim proximity signal messages

4.3 Method

We formulate the sequential prediction problems into supervised learning task as shown

in Figure 4.3. Sequential data about human trajectories is hard to model and learn over

Chapter 4. Attributions for Sequential Prediction with Decision Trees 26

Figure 4.3: Overview of the process to visualize attributions and improve features for
sequential prediction

with limited data. We engineer features to form a state representation at any given

timestep such that Markov property is ensured. This means that the information required

for any required prediction is contained within the current representation of the state.

Another aspect of these features is human interpretability. Feature attribution methods

explain importance of each input feature with respect to the selected output. So if a

feature is given high importance by the model, it should humanly possible to explain

why it is so.

We created high-level features of the trajectory data in terms of which we would like

to have in our explanations. Most of these features are count-based features which is

inspired from the count and hashing vectorization in the natural language processing

where the count value is increased every time the word is encountered in the text corpus.

Here we increase the count of the domain-specific features concerning the triage strategy

and events indicating the knowledge of the rescuer. Our approach differs as we take

mission time as part of the feature vector to be trained on, whereas there is no explicit

notion of time required in the vector representation for language modeling.

Gradient boosted tree models have been shown to be more accurate than neural networks

and more interpretable than linear models [34]. We formulate the task into classification

problem and use xgboost library to train the models. XGBoost is an optimized gradient

boosting algorithm through parallel processing, handling missing values, automated

tree-pruning and other regularization to avoid overfitting.

We use TreeSHAP [34] in our study. Unlike the prior work, we construct features

for the sequential prediction task such that the Markov property of the input vector

at each timestep is approximately ensured for prediction. The visualization used to

explain instance level predictions are called force plots [33]. Force plot show the features

contributing for the prediction in red and against the prediction in blue. The sum of

attributions of each feature add up to the difference in the model’s output for the given

input and the baseline.

Chapter 4. Attributions for Sequential Prediction with Decision Trees 27

We construct a list of possible sentences that describe potential reasons of a dominant

positive or negative attribution for an outcome per feature. This is used to select

the sentence based explanation for the dominant SHAP values for a prediction at any

timestep. It provides a concise natural language way to convey the logic that the model

most heavily relied upon.

4.4 Experiments and Results

Feature extraction

We construct features from human trajectory metadata to represent state at the current

timestep. to sequentially predict their strategy and knowledge condition. The general

mission statistic are extracted in Table A.1 which denotes the spatial-temporal features

associated with the mission. Table A.3 describes some features related to triage events.

Human strategy and behavior is significantly influenced by the visual cues. Given the low

bandwidth requirements to transfer human trajectory data, we do not assume access to

streaming video from the first person view of the rescuer. Instead, we assume access to

semantic information processed by object detectors locally. Table A.2 describes features

that denote the count of salient objects in current field of view of the human rescuer.

Victim detection signals appear on the human rescuer’s screen throughout the mission.

Given the human rescuer’s behavior, one of the objective is to predict their prior

knowledge condition, including whether they understand the meaning of signal or not.

Table A.4 lists the features corresponding to the signal message events. In addition, door

opening events provide features in Table A.5 to learn the behavior of humans who have

full knowledge of the signal’s message or do not. Constructing complex feature from

victim detection signal message with door opening event’s in terms of their location and

time provides useful features (as shown in Table A.6, especially to reason on the prior

knowledge condition.

Training

We utilize all these features discussed above for training gradient boosted decision trees.

The predictions are made at around 10 Hz.

For next victim triage prediction, we report the model’s performance in Table 4.1. The

prediction in start of the mission, that is, before 150 seconds, is biased towards critical

victim triaged, due to data skew. In the next interval before critical victims expire, the

accuracy improves and the confidence is more balanced. For the remaining time when

Chapter 4. Attributions for Sequential Prediction with Decision Trees 28

Table 4.1: Table showing results for next victim triage prediction with gradient boosted
decision trees, where t denotes the mission timer.

Next Victim Triage 0<t<150 150<t<300 300<t<600

Acc Conf Acc Conf Acc Conf

Critical Victim 93.4% 0.72 94.4% 0.68 - -
Less-Critical Victim 32.8% 0.58 70.8% 0.61 99.2% 0.85

Table 4.2: Table showing results for knowledge condition prediction with gradient
boosted decision trees, where t denotes the mission timer

Knowledge condition 0 <t <150 150 <t <300 300 <t <600

Acc Conf Acc Conf Acc Conf

1 (TriageSignal) 41.54 % 0.17 57.23 % 0.23 67.21 % 0.34
2 (TriageNoSignal) 49.12 % 0.13 53.92 % 0.21 64.39 % 0.32
3 (NoTriageNoSignal) 53.23 % 0.14 60.47 % 0.43 69.83 % 0.44

the critical victims expire, we get almost perfect accuracy for next green victims. The

model does not know the fact that critical victims expire at half time apriori and has

learnt this fact from training set of trajectories.

To compare with the human observers, we evaluate our model’s prediction at the same

decision points as those annotated by the human observers. Our model achieves prediction

accuracy of 94.8% over triage decision points over 14 trials, while the human observers

are only accurate up to N%.

We report the performance on predicting prior knowledge condition in Table 4.2. The

evaluation is done at three intervals: before 2.5 minutes, between 2.5 to 5 minutes and

after 5 minutes. The average accuracy and confidence of predictions improve for later

intervals as the model gains more information to distinguish the knowledge condition.

Human players’ behavior are not always reflective of the prior knowledge that they

possessed. As they navigate in the mission, they acquire knowledge about the victim

triage trade-offs and the beep signal. From the observed behavior, it is hard to tell

whether the player knows the triage tradeoffs or are just prioritizing the critical victims

first because they expire soon. On the other hand, players with full knowledge condition

have shown to not demonstrate the knowledge of triage tradeoffs. Some reasons reported

in the surveys indicated intent to ‘maximize the number of victims saved and not the

points’, and showed limited perceived control ‘to find and save all the critical victims in

the given time’.

To compare with the human observers, Mturkers were asked to observe the human

rescuer’s video and predict the next triage and knowledge condition at certain selected

decision points in test set of trajectories, about 10 per mission. The model achieves

Chapter 4. Attributions for Sequential Prediction with Decision Trees 29

accuracy of 96% for knowledge prediction and 98% for next victim triage at the sampled

decision points. Human observers’ achieve much perform close to random baseline on

average at 56%, with top 10 observers accuracy upto 79% only.

Explanations

The purpose of explanations is to make the model more predictable to humans. This

notion is defined as simulatablity and has been evaluated with human subjects in [21].

To visualize the model’s feature importances, we can evaluate it on input features by

black box methods like SHAP values.

4.4.1 Victim Saving Strategy

We analyze the next victim triage prediction with a random forest classifier using SHAP

values. Fig 4.4 shows the overall feature importance values for the model. We find that

the average feature importance values are highest for mission timer and map coverage.

This aligns with the human intuition that the player will generally triage yellow victims

initially before they expire. To analyze decision at each timestep, we explain it with two

examples.

Fig 4.5 and 4.6 show the force plots explaining the next victim type to be triaged

prediction at two given time instances. The direction indicating higher refers to increase

in likelihood of the next victim triaged to be green and the lower direction indicates that

the next victim to be yellow. The base value is 0.6182 which is the average prediction

probability if no features were present - which is aligned to the proportion of the number

of green victims in triaged in the training data.

More detailed list of model’s features, and associated importance value are discussed in

Appendix A.1.1.

We provide explain the model’s predictions in terms of input features and their values as

shown below.

Each model feature can contribute positively or negatively to an output prediction. For

example, ‘mission timer’ is an input feature whose value can positively or negatively

contribute to the prediction whether the next victim triaged will be green?

We prepare a list of expressions to explain how a feature positively or negatively con-

tributes to this prediction. For an instance at test time, our model makes a prediction

with the given input features and TreeSHAP computes the feature importance values

associated with each feature. Depending on the feature importance values, we select

the expressions to explain the model’s predictions in terms of the input features which

Chapter 4. Attributions for Sequential Prediction with Decision Trees 30

Figure 4.4: Mean feature importances by SHAP values for prediction next victim
triaged type; where class 0 indicates the prediction for critical (yellow) triaged next,

and class 1 indicates the prediction for less critical (green) victim triaged next

Figure 4.5: SHAP force plot showing that probability of next victim triage is green
only 0.3 which makes it likely that the next victim triaged is not green i.e. yellow.
Features such as mission timer approaching yellow victim’s death, having the latest
signal as ‘Beep Beep’ and not ‘Beep’, having doors in field of view decrease the likelihood
that a green victim will be triaged next (implying that the rescuer will triage a yellow
victim). But since the rescuer has triaged a green victim before and there is no yellow
victim in field of view, these features slightly increase the likelihood that a green victim

might be triaged next.

Figure 4.6: SHAP force plot showing that next victim triage is green is with probability
0.98; Features such as the mission timer close to the yellow victims death, and that the
map coverage is high greatly influence the model’s output for green victim next; But as
the rescuer has not triaged any green victim uptil this point, this feature decreases the

probability of that the next victim to be triaged is green

Chapter 4. Attributions for Sequential Prediction with Decision Trees 31

Figure 4.7: Explaining when hypothesis: next green victim triage is not supported

are based on the observations of the human’s trajectory so far. In Fig 4.7, SHAP force

plot shows that probability of next victim triage is green only 0.3 which makes it likely

that the next victim triaged is not green i.e. yellow. Features such as mission timer

approaching yellow victim’s death, having the latest signal as ‘Beep Beep’ and not ‘Beep’,

having doors in field of view decrease the likelihood that a green victim will be triaged

next (implying that the rescuer will triage a yellow victim). But since the rescuer has

triaged a green victim before and there is no yellow victim in field of view, these features

slightly increase the likelihood that a green victim might be triaged next.

In Fig 4.8, SHAP force plot shows that next victim triage is green is with probability

0.98; Features such as the mission timer close to the yellow victims death, and that the

map coverage is high greatly influence the model’s output for green victim next; But as

the rescuer has not triaged any green victim uptil this point, this feature decreases the

probability of that the next victim to be triaged is green.

The beeswarm summary plot shown in Fig 4.9 indicates how the values of each feature

affects the prediction. High values for mission timer indicate triaging of green victims as

it is perceived that finding yellow victims will be hard close to the time they are expected

to expire. If the human rescuer has saved few green victims saved per doors opened, they

probably understand the beep signal and do not open doors unnecessarily. So, lower

value of the less critical saved per doors opened feature is attributed to triaging

critical victim first, and vice versa.

Critical saved per doors opened is similarly important feature which did not get

clear SHAP attribution in this model. As a variation, we trained another model for

triage prediction, with all the features except the mission timer.

Chapter 4. Attributions for Sequential Prediction with Decision Trees 32

Figure 4.8: Explaining when hypothesis: next green victim triage is supported

Figure 4.9: SHAP beeswarm summary plot for next triage with mission timer as most
attributed feature for prediction

Chapter 4. Attributions for Sequential Prediction with Decision Trees 33

Figure 4.10: Mean SHAP values for Knowledge condition prediction; where class
0 refers to TriageSignal, class 1 refers to TriageNoSignal, and class 2 refers to No-

TriageNoSignal

4.4.2 Knowledge Condition

We train two xgboost models for knowledge condition prediction, one with a set of

indicator features and another with a set of count-based features.

Fig 4.10 shows that the overall feature importance values for the gradient boosted decision

tree model for knowledge condition prediction. We observe that the feature indicating

‘Beep’ signal has been received is the given the most importance. This is because the

knowledge condition can be distinguished based on the human’s actions when a beep

signal is received.

The area segment that the human rescuer is present in is also important indication in

conjunction with features like mission timer. This is because typically a person in full

knowledge condition will skip the rooms where there is no beep or a single beep signal

received, and would reach certain areas at earlier (mission timer) than those who do not

have the knowledge of the beep signal.

Chapter 4. Attributions for Sequential Prediction with Decision Trees 34

Figure 4.11: Force plot for output: TriageSignal, true: NoTriageNoSignal ; The
model’s output logit is 0.01, which is lower than baseline at 0.33. The higher direction
indicates having full knowledge and the lower direction indicates the other two knowledge
conditions. The features supporting the likelihood of full knowledge condition are non-
intuitive such as no signal message Beep. The factors such as the area segment that
the rescuer is present in (as compared to those in training instances) are considered
important on both sides to determine model’s output for full knowledge hypothesis.

Figure 4.12: Force plot for output: TriageNoSignal, true: NoTriageNoSignal ; The
model’s output logit is 0.06, which is lower than baseline at 0.54. The higher direction
indicates having partial knowledge of triage tradeoffs but not of the signaling device,
and the lower direction indicates the other two knowledge conditions. The features
increasing the likelihood of partial knowledge condition arenon-intuitive such as no
signal message Beep. The factors such as the area segment that the rescuer is present in
(as compared to those in training instances) are considered important on both sides to
determine model’s output. Mission timer has slight attribution to decrease the likelihood

of partial knowledge hypothesis.

Figure 4.13: Force plot showing model’s probability and feature importance for
output: NoTriageNoSignal ; true: NoTriageNoSignal ; The model’s output logit is
0.82, which way above the baseline at 0.61. The higher direction indicates having no
knowledge and the lower direction indicates the other two knowledge conditions. The
features increasing the likelihood of no knowledge condition are mission timer being
close to the yellow victims death and that latest signal received was a Beep. The factors
such as the area segment that the rescuer is present in (as compared to those in training
instances) and the ratio of less critical (green) victims saved per number of doors opened

contribute to slightly decrease the likelihood of being in no knowledge condition.

To explain the predictions at timestep 267 seconds into the mission, Fig 4.11, 4.12 and

4.13 show the SHAP force plots for the knowledge condition prediction on one instance

where the rescuer is in knowledge condition 3 i.e. NoTriageNoSignal condition. The base

value indicates the value that would be predicted if we did not know any features for

the output prediction. The base value and f(x) are expressed in logits, as the model’s

output in XGBoost is log-odds by default.

Chapter 4. Attributions for Sequential Prediction with Decision Trees 35

Figure 4.14: Explaining the Full Knowledge condition hypothesis

Table 4.3: Results of knowledge condition prediction with new concise set of features

Mission timer (t) 0 <t <150 150 <= t <300 300 <= t <600

Knowledge Condition Acc Conf Acc Conf Acc Conf

1 (TriageSignal) 51.54 0.45 70.98 0.70 76.93 0.86
2 (TriageNoSignal) 54.27 0.34 58.22 0.45 54.89 0.59
3 (NoTriageNoSignal) 31.79 0.46 31.66 0.65 43.77 0.63

Iterative Model Improvement

After analyzing the model performance and feature importance, we iterated over the

features and created a new subset as described in Table A.7. The results of gradient

boosted decision trees trained with these features is shown in Table 4.3. The accuracy

and the confidence of prediction generally improves with more evidence of the trajectory’s

observations as the mission timer increases. We observe that the new model on fewer

features is more confident on predicting full knowledge condition than the other two.

Feature importances based on this model with new concise set of features as input are

shown in Figure 4.15. We see that more number of features are attributed importance in

this set, notably the number of green and yellow victims seen is attributed importance

in predicting the human rescuer’s prior knowledge condition.

Also, the signal counts of Beep Beep is a prominent distinguishing feature when combined

with mission timer value. If the human rescuer have no knowledge of the signalling

messages, it is unlikely that they will hear a lot of signal for critical victim nearby, as

compared to one who understands and leverages the signal for exploration.

Chapter 4. Attributions for Sequential Prediction with Decision Trees 36

Figure 4.15: Mean SHAP values for Knowledge condition prediction with gradient
boosted decision trees with temporal count vectors as inputs;

Chapter 5

Embeddings for Spatial Semantics

Language provides a way for humans interpret the world and explain abstract concepts.

Incorporating language into the algorithm design for navigation provides explainability.

In this chapter, we discuss algorithms for object search in urban house environments

based on language and spatial priors. In the following chapter, we discuss modular

architecture for visual language navigation of a robot during search and rescue task.

Consider an example of finding a key-chain in a living room. A key-chain is found

either on a coffee table, inside a drawer, or on a side-table. When tasked with finding

the key-chain, a human would first scan the area coarsely and then navigate to likely

locations where a key-chain could be found, for example, a coffee table. On getting

closer, they would then examine the area (top of the table) closely. Following this, if the

key-chain is not found, they would try to navigate to the next closest place where the

key-chain could be found. In all these scenarios, the presence (or absence) of a co-located

objects would boost (or dampen) their confidence in finding the object along the chosen

trajectory. This would, in turn, influence the next step (action) that they would take.

Our goal is to enable embodied AI agents to navigate based on such object-based spatial

semantic awareness. To do this, we focus on the following problems: (a) training object

embeddings that semantically represent spatial proximity, and (b) evaluating these

embeddings on semantic search and navigation tasks. We aim to learn embeddings

that capture the following - (a) learn about larger objects around which the smaller

items could be found (e.g., key-chains are likely to be found on / near tables), and (b)

learn about objects that are found mutually close to each other, e.g., (key-chains and

credit-card). By learning such embeddings, we want to capture the semantic relations in

terms of distance.

37

Chapter 5. Embeddings for Spatial Semantics 38

{
Bed :{x1 y1 z1}
Lamp:{x2 y2 z2}
Table:{x3 y3 z3}
.
.
Lamp:{xn yn zn}

}

{
Bed : e1

Lamp: e2
Table: e3
.
.
Lamp: en

}

E(o)
argmax {𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝐸 𝑞 , 𝐸(𝑜)}

q = Credit-card Credit-card: eq

𝑝 𝐴∗{𝑒 }

E(o)

Extract Graph Learn Embedding

Embedding E

Figure 5.1: Top: Training the embeddings, Bottom: Using embeddings for navigation

5.1 Key Contributions

We learn and contrast representations to capture spatial semantics. We demonstrate that

a momentum inspired, similarity-based greedy navigation technique results in success

rate > 90%. We show that using spatial semantic prior knowledge can significantly

improve the navigation performance.

We train embeddings that capture the spatial semantics using a multi-relational knowledge

graph. Further, we formulate an algorithm to compare the performance in terms of

Success Rate (SR) and Success weighted by Path Length (SPL) across different kinds of

embeddings. Interestingly, embeddings trained with general-purpose text corpora like

Word2Vec [37], FastText [6] provide a strong baseline for our task. We demonstrate our

techniques on the AI2Thor [18] environment.

Graph convolutional networks have been used to learn neural-network based policy in

[54] and [60] for object search and navigation. These are data-driven approaches and

hence, require several interactions in the environment to learn the policy. We propose a

sample-efficient approach based on pre-trained embedding in section 5.3. While previous

approaches have attempted to learn an end-to-end navigation policy from scratch, we

demonstrate the promise of using embeddings for navigation, and their transfer to object

search in 3D simulations of urban household.

Chapter 5. Embeddings for Spatial Semantics 39

Algorithm 2: Navigation towards query for the objects in the field of view

Result: Plan to the query object
1 embedding module E;
2 visited = [];
3 while query q not found do
4 for all objects o in (360 degree) field of view do
5 if object o not in visited then
6 scores = similarity(E(q), E(o));
7 Add o to potential sub goals;

8 end

9 end
10 sub-goal =potential sub goals[scores];
11 proposed plan pT0 := A∗ search to sub-goal;

12 move according to initial part of the proposed plan pβT0 where β < 1;

13 end

5.2 Task Design

Our goal is to navigate an agent from a randomly initialized location in a scene to a

specified query object. The task is a success if the agent can view the object of interest,

and is within a small distance (∼ 1 units = 5× 0.25) of the query object.

Consider the agent is tasked to find a credit-card (query). The agent is initialized

randomly in a living room and records all the objects in its 360 field of view. By design,

we enforce that the agent can only see “large” objects. Imagine you enter a living room

and see a sofa, table, TV, etc. easily. However, depending on your distance, objects such

as the credit card might be occluded or not be visible. We consider large objects that

occupy more than 1% of the total screen size of the camera’s image. This threshold is

analogous to a real camera’s effects as detection of objects in the frame would depend on

the camera’s resolution.

The agent now finds a sub-goal. The sub-goal is the most likely (large) object in its field

of view, which we expect is close to the query object, or could lead the agent towards

a viewpoint that brings relevant sub-goals in the agent’s field of view. This is done by

finding the pairwise similarity of the query object’s embedding with the embeddings of

all the sufficiently large objects in sight. For example, out of visible objects like table,

lamp, and bed, we would expect embeddings of a table to have the highest similarity

with the embeddings of a credit-card.

Once we choose a sub-goal, we calculate the potential plan pTi0 where Ti is the total steps

required to reach the sub-goal i. The agent executes pβT0 that is some fraction of the

initial part of the potential plan. The agent then looks for any new object that is now

visible and re-ranks the similarity of all objects visible to it to find the new sub-goal. This

Chapter 5. Embeddings for Spatial Semantics 40

process repeats until the query object is found. Consider that in a 1D space, the agent’s

location is at 0, and the query object’s location is at 10. With β = 0.5, the agent would

first navigate to point 5, then to 7, and finally to 9 before reaching 10. This approach has

two advantages: a) improves the performance of the system by exponentially reducing the

amount of compute per navigation (scan, similarity computation, A∗ path computation).

b) helps overcome oscillation. Oscillations in navigation happen when the agent takes a

step towards sub-goal A, and finds B to be having a higher similarity. On shifting the

sub-goal, and taking a step towards B, B becomes occluded, and the sub-goal rotates

back to A (Appendix A.2.2)

5.3 Method

Our novel approach of finding the semantic similarity between the given query and visible

objects is formulated based on the distribution of distance between a pair of objects.

Additionally, we identified two broad kinds of embeddings for our analysis, as discussed

below. Each of these embeddings are evaluated for navigation as outlined in Algorithm 2.

Pre-trained word embeddings Language embeddings capture the word-level seman-

tics in their metric space. For example, FastText embeddings have shown promising

results for semantic navigation in procedurally generated environments [54]. To un-

derstand if these embeddings can be transferred in terms of object semantics for the

downstream task of navigation , we test our algorithm on the Word2Vec [37] and FastText

[6] embeddings.

Knowledge base embeddings Multi-relational embeddings encode abstract knowledge

that could be obtained by the agent from its sensors or an external knowledge graph.

RoboCSE [16] uses ANALOGY[32], a semantic matching method, to learn multi-relational

embeddings processed from the AI2Thor environment data, where the nodes represent

the objects and edges denote the relation between them. Further, we also learn a Graph

Embedding by treating all relations as being equivalent and using DeepWalk [40] to learn

embedding for the resulting undirected graph.

5.4 Experiments and Results

We use the AI2Thor environment to extract pairwise object relations to train the

embedding network. We make two interesting design choices that we think will be

valuable to the community. First, since we assume perfect object detection if the object

is sufficiently in the field of view, we determine sufficiency as a parameter with respect to

the percentage of pixels occupied by the object in the field of view. Second, we adaptively

Chapter 5. Embeddings for Spatial Semantics 41

SPL by shortest path length l
Room Type Embedding Type SR/SPL l¡ 10 10 ¡l¡ 20 l ¿= 20

Kitchen

Graph Embedding 0.992 / 0.639 0.644 0.642 0.644
RoboCSE 0.960 / 0.624 0.650 0.643 0.867
FastText 0.983 / 0.615 0.626 0.624 0.573
Word2Vec 0.984 / 0.626 0.633 0.649 0.581

Living Room

Graph Embedding 0.919 / 0.692 0.777 0.698 0.693
RoboCSE 0.942 / 0.686 0.766 0.692 0.614
FastText 0.908 / 0.682 0.774 0.727 0.619
Word2Vec 0.908 / 0.666 0.793 0.708 0.596

Bed Room

Graph Embedding 0.954 / 0.678 0.739 0.631 0.659
RoboCSE 0.966 / 0.681 0.731 0.628 0.690
FastText 0.960 / 0.686 0.738 0.657 0.544
Word2Vec 0.956 / 0.662 0.720 0.624 0.576

Bath Room

Graph Embedding 0.997 / 0.694 0.692 0.733

-
RoboCSE 0.994 / 0.692 0.693 0.716
FastText 0.994 / 0.688 0.692 0.690
Word2Vec 0.998 / 0.701 0.697 0.743

Table 5.1: Results for navigation using Algorithm 2. Success Rate (SR) and
Success weighted normalized inverse path length (SPL) for different floor plans in

AI2thor environment; l denotes the shortest path length to query object.

choose step-sizes to navigate towards the sub-goal. This allows the agent efficiently

to look for other objects in the field of view on the way. For more information refer

Appendix A.2.2.

In Table 5.1, we show the performance of different embeddings for navigation task in

terms of Success weighted by normalized inverse path length (SPL) metric. Further,

we also report SPL computed by grouping cases where the shortest path length to the

query object is within a particular range. For example, the credit card may be initialized

(randomly) 15m away from the agent, including it in the 10 < l < 20 bucket.

We observe that the graph-based embeddings (RoboCSE and Graph Embed-

dings) outperform the baselines in cases where the optimal path to the target

object is higher (10 < l < 20, l >= 20) but perform comparably to language-based

embeddings (Word2Vec, FastText) when optimal paths are shorter (l < 10). Our hypoth-

esis is that, for a query object close to the agent’s initialisation (l < 10), any action that

the agent takes has a higher probability of taking it closer to the query object. However,

for objects that are further away, the agent benefits from determining the most likely

path to get to the query object.

Chapter 6

Language to Goal Location

Intelligent agents can assist us in environments where human navigation is risky or

infeasible. For example, in hazardous situations such as poisonous gas or nuclear

radiation leak, autonomous agents can assist in scouting for damages and search for

possible victims. For effective collaboration with humans, we propose a modular system

design for autonomous agents that processes raw sensory inputs like vision and language

messages to take high-level decisions.

We describe a simulated search and rescue task in Minecraft, where the agent’s goal

is to aptly respond to natural language messages inquiring about the surroundings or

instructing it to navigate to a target in the environment. These messages mimic a

remotely situated human during the mission who needs to gain situational awareness of

the disaster site and set the target for the agent to act. Our modular architecture enables

the AI agent to parse a human’s natural language message and either (1) generate a

natural language response for the query or (2) interact in the environment to execute

the instruction/command.

While we could look into tele-operating the agent for search and rescue missions, this

has implications on network bandwidth requirements. The entire visual feed needs to be

received by the human in order to tele-operate the agent and lag in the frames received

could led to potentially fatal actions. On the other hand, developing ways for the agent

to learn a policy for its actions would reduce the response latency and enable learning

from demonstrations and mistakes. This also necessitates the agent to understand the

vision and language aspects for its decision making process.

42

Chapter 6. Language to Goal Location 43

Figure 6.1: Left: First person view of the agent in Minecraft, Right: Semantic 2D
map for bird’s eye view to provide context to the human commander

6.1 Key Contributions

This work proposes a learning driven system for collaboration between an autonomous

agent in search and rescue mission and a human located in a safe remote environment.

Just like the human first-person responders would communicate with their teammates

situated remotely, we build a system that enables an autonomous agent to parse a

human’s natural language message and either (1) generate a natural language response

for the query, or (2) interact in the environment to execute the instruction/command. In

this chapter, we focus on the qualitative analysis to demonstrate the capability of the

latter module across four simulated disaster scenarios.

6.2 Task Design

As a first step, we design a system for an autonomous agent to collaborate with humans

to solve simple simulated search and rescue task in Minecraft. Our specific scenario

considers a 3D simulation of a realistic office building with several rooms and corridors

where the disaster has taken place. For simplicity, victims are denoted as blocks in our

environment. We consider key objects such as shovel, rubble, extinguisher, fire, first-aid

kit and obstacles. A human may pose questions, requests or commands to the agent such

as ‘Do you see any fire in the corridor?’ or ‘Save the victims before extinguishing the fire

in the room’. Example of such dialogue conversation is shown in Appendix A.1.2.

We adopted a synthetic data generation process to generate data for training the learning

based modules and to evaluate them. This is inspired from prior works such as Emobodied

QA [56] and DAQUAR [35]. We utilize hand crafted templates to generate questions

that a human might ask while interacting with the system for the purpose of navigation

Chapter 6. Language to Goal Location 44

and scene description. Some examples of the types of templates used for generating

questions and answers are show in Tables 6.1.

Table 6.1: Instruction templates for navigation

search: ’Search for a ’
search + color: ’Find a #color ’
search + history: ’Go back to the previous ’
search + relation: ’Find a near a ’

6.3 Method

Figure 6.2: Proposed architecture for visual
dialogue system

Fig 6.2 provides an overview of the agent,

with the highlighted modules serve a spe-

cific role in enabling the agent to process

the natural language query input by a re-

mote user, understand visual input from the

robot’s environment and respond appropri-

ately by either generating a response in nat-

ural language or navigating to search for the

requested object.

If the human’s instruction requires the agent

to navigate, the agent needs to infer the

intended goal location from the natural lan-

guage message, map its surrounding and plan

to reach the goal. To construct any plan, al-

gorithms such as Djisktra’s or A∗ search require a world model with the agent’s and

the target’s location. Natural language messages may contain information about the

object type, its properties such color, any indicates time or spatial relation to the agent.

As shown in Fig 6.3, navigation goal identification module consists of a fine-tuned

DistilBERT [42] model that infers these goal attributes and provide it to the planner

submodule.

Figure 6.3: Navigation Goal Identification Module

To search and navigate in an un-

known environment, the exact

coordinates of these location are

often unknown. Mapping the un-

known environment is necessary

to plan for navigation. Several

approaches for object-centric si-

multaneous localization and mapping (SLAM) have been proposed [59, 7], which can

Chapter 6. Language to Goal Location 45

Table 6.2: Comparing accuracy for predicting goal attributes

Category Acc for Zero-shot Acc for Fine-tuned

Object 76% 97%
Color 22% 95%

Requires History? 81% 93%
Spatial Relation 40% 94%

Table 6.3: Evaluating SR and SPL of navigation module on 4 maps

Map Name Valid tests SR SPL

argon 28/35 75.86% 0.6463
neon 33/35 78.79% 0.6902
xenon 34/35 79.41% 0.6287
ozone 32/35 78.13% 0.6674

utilized with our system for real-world transfer. In our scope, we utilize the Minecraft

simulator to mimic such systems and provide field-of-view based maps incrementally.

Most path planning algorithms require some discretization of the environment to plan.

Given that the mapper to provides a voxel-grid semantic representation of the environment,

we utilize classical planning algorithms such as Dijkstra’s or A∗ search [20]. The goal

location is determined based on the not-yet-visited, closest location to the agent that

matches the identified goal attributes. If no such location exists in the visible map, then

one of the nearest frontiers [58] is selected as the goal. After a threshold number of steps,

the status (success/failure) is reported back to the human commander.

6.4 Experiments and Results

To understand the goal attributes in a navigation command, we fine-tune DistilBERT

model on 200 examples to predict the goal object or frontier, color, time relation (i.e.

whether it requires history or not), and spatial relation (left, right, in front of or back).

We compared the performance of model to zero-shot classification pipeline based on

BART-NLI. Table 6.2 shows the accuracy and the class-wise proportion on 100 held-out

samples of navigation instructions. Our fine-tuned models achieve accuracy > 90% for

predicting each of the four goal describing attributes.

Once the goal attributes are estimated from the natural language message, it is used to

estimate the goal location for planning. If the unvisited goal location is present in the

observed semantic map, the agent navigates to those coordinates. Otherwise, nearest

frontier coordinate is selected. Our navigation strategy achieves 78.15± 1.9% average

success rate (SR). When compared with an expert with full observability of the map,

we find that 0.6578± 0.28 average success weighted by (normalized inverse) path length

Chapter 6. Language to Goal Location 46

(SPL)1. These results are calculated based on independent experiments on 4 different

maps of size 100× 50 with 35 navigation instructions. Refer Table 6.3.

1SPL metric requires to compare the agent’s path length to that of the expert. While the expert
planner always knows the nearest goal location from the groundtruth attributes of the navigation
command, there could be multiple possible paths for our agent with partial observability. Due to the
sequential nature of these navigation commands, the agent often starts with a different location and
history. The expert and our agent’s position could be very different with time. For fair comparison, we
reinitialize the expert planner to start with the observed state and visited goals as our agent at each
instruction. A navigation test is considered valid is the expert is able to reach the goal location from a
random starting in a threshold number of steps.

Chapter 7

Explainable Exploration

Learning end-to-end policy for navigation with a focus on intelligent exploration has

been found to be a challenging task in embodied AI. While methods like soft-Q learning

and ensembles of policies have demonstrated navigation behaviors in completely observed

maps, we currently do not have ways of extending these policies to unexplored or partially

explored environments. To this end, we propose a modular hierarchical formulation by

decomposing the navigation task into two sub-problems: selecting the next best goal in

the visible space, followed by efficiently navigating to this space in the partial map setting.

Figure 7.1: FourRooms environment
with clutter and 2D human-like field of

view (in translucent grey)

When navigating in unknown environments, hu-

mans often invoke a decision criteria. This could

be the next sub-goal, and the decision could either

be based on some semantic context, or structural

priors. Learning how to select the next sub-goal

for higher level task such as coverage of the map is

a challenging open question. We consider frontiers,

which are the points at the boundary of known

regions of a map, as points to facilitate exploration

in a map. Therefore, we define such frontiers as

sub-goals, and learn a policy that can select such

frontiers on partial grid maps.

The concept of frontiers for exploration of unknown

spaces was first introduced in [58] by Yamauchi.

Related work in embodied AI literature has focused on the object and instance based

navigation in 3D world environments. Our work is very close to [8] which demonstrated

such a hierarchical policy for point- goal navigation tasks in 3D environments. Our

approach differs in terms of being a study on performance of reinforcement learning
47

Chapter 7. Explainable Exploration 48

Figure 7.2: Clutter density γ in FourRooms environment (a) γ = 0.01, (b) γ = 0.03,
(c) γ = 0.1, (d) γ = 0.3

algorithms to predict frontiers and contrast classical vs learning approaches for navigation

with systematically varying the clutter density in the environment.

7.1 Key Contributions

We demonstrate our approach in customized version of the classic FourRooms environment

in gym-minigrid [13], with a realistic human-like field of view (shown in grey area in Fig

7.1), and variation in clutter density γ for evaluating the navigation policies. We observe

that as the clutter density increases, the performance of learning based agent improves

as compared to the heuristic of nearest frontier based exploration.

7.2 Task Design

Gym-minigrid FourRooms environment has been a classic task for reinforcement learning

with full observability. We modified the current environment to include tunable parameter

γ to control the clutter density in the environment. Clutter density is the probability

of grid cell being impassable, in addition to the walls of the four rooms. In Figure 7.2,

the variations of different parameters for clutter density in the Fourrooms environment

are shown. Note that the increasing clutter density hinders the vision of the agent. The

agent’s trajectory is shown with white triangles. These snapshots are recorded for NFBE

with A∗ planner at 100 steps.

7.3 Method

We propose a global policy network that learns the selection of the next best goal(‘frontier’)

in the observable space, followed by a local policy that learns low-level navigation

conditioned on different sub-goal embeddings in known environments, as shown in Fig

7.3. Our local policy can be considered as a short term goal driven planner but trained

Chapter 7. Explainable Exploration 49

Figure 7.3: Proposed Architecture for modular hierarchical model-free learning

as goal-conditioned RL, and our global policy utilizes an A* star planner for learning

high-level policy.

The global policy is trained on a continuous action space to predict the next sub-goal,

and the local policy learns to take discrete actions like turn 15 degrees left/right and

move forward. The input to both the policies is the belief over the observed map so far.

Our local policy can be considered as a short term goal driven planner but trained as

goal-conditioned RL. The combined use of planning and RL aligns with our global policy

where we learn high-level goal selection policy by A∗ planning to find the sequence of

states in the path. We have trained both the policies with PPO, where the reward is

based on unique area covered at each timestep for the global policy.

Our local policy, while similar in spirit to a controller focused on grid-like environments,

is trained by reinforcement learning in randomized grid maps to enable generalization.

Our work is very close to [8] which demonstrated such a hierarchical policy for pointgoal

navigation tasks in 3D environments. Our method is different in two respects. Firstly,

our local and global policies can be trained in a disjoint manner and combined to solve

the task. Secondly, our global policy model can be decomposed to account for a soft

representation, such that we can provide different exploration strategies for complete

map exploration. Further, it is easy to see how our proposed global frontiers could also

become pointgoals for navigation, although that is not the main focus of this work.

7.4 Experiments and Results

We compare our method with nearest frontier based exploration (NFBE) and end-to-end

trained policies for coverage task. Although classic approaches perform well in the

original FourRooms environments, our research question is to compare the learning and

traditional navigation approaches when the clutter density in the rooms increases. The

Chapter 7. Explainable Exploration 50

Figure 7.4: Coverage % based on clutter density. In less clutter, the heuristic path
planning outperforms the learning based approach. With increasing clutter, the coverage

of both kind of policies reduces and the gap in performance also reduces.

notion of clutter density is analogous to the real world case, where a lot of frontiers

detected may occur in the small enclosed spaces, and requires learning of the structural

priors for intelligent navigation. In Fig 7.4, we observe that the gap in coverage of

nearest frontier based exploration (NFBE) and global policy trained with proximal policy

optimization (PPO) for higher clutter is less than 1%. This suggests that learning based

methods can perform at par with classical navigation techniques when the nearest frontier

may not be the optimal one to maximize coverage in cluttered environments.

Increasing the clutter density leads to impassable areas in the map and it becomes close

to the traditional maze puzzle without much learnable structural information. So, we

cannot arbitrarily increase the density in this comparison. The next step is to realistically

organize clutter and incorporate movable clutter in the 3D environments, for example

with indoor house simulators.

We note that learning based approaches are sensitive in terms of performance with the

change in environments and show a large variance in the coverage percentage. End-to-

end training of policy gradients algorithm is unstable due to non-stationary rewards

based on coverage. Decomposing the low-level navigation to local policy while using the

high-level structure information with the global policy allowed us to train the networks

for comparison.

Chapter 8

Conclusions

Explaining something can be tedious-both for the speaker and the listener. Assuming

the listener is as attentive as possible, the speaker should adapt their explanations to

help the listener understand better. From day-to-day experience, the explanations should

be starting with information of what the listener already understand [ted-dominic].

People can only take certain amount of information at a given time. The explanations

should be more clear to get the point across. Technically, the feature attribution based

explanations only give a part of the story, but it is approximately correct based on the

model’s attribution.

In Chapter 3, our work shows how explanation methods can be utilized for DRL models.

We demonstrate the use of visualizing feature attributions to investigate instances the

policy succeeds/fails. Visualizing attributions is just the first step to understand the

issues in the trained policy. We can further extend it to analyze why policy fails in

different distribution shifts of the environment settings.

Gradient with respect to the inputs connects attributions to adversarial attack/defenses

methods. Utilizing attributions to create more semantically guided variations in the

sensor input for training robust policies is open direction for future work.

In Chapter 4, we engineered features to explain search strategy and prior knowledge

condition from sequential human trajectory data. The input gradient-based explanations

heavily dependent on feature vectors that are interpretable and represent the Markov

state at each timestep. We utilized count based features for objects such as victims, doors

and rubble in field-of-view, signalling device and its use and general spatio-temporal

mission statistics. Gradient-based interpretability methods can be applied to other

sequential models such as LSTM and Transformers. While these models will reduce the

need for feature engineering to process sequential data into approximate Markov states,

these models often require a lot of demonstrations to generalize.

51

Chapter 8. Conclusions 52

However, feature attribution methods do not provide a full explanation for an action or

set of actions taken. The world view is limited in terms of the inputs to the model, but

we fail to take their frequency and scale into consideration, which is especially important

for credit assignment in sequential prediction and decision making.

In Chapter 5, we experimented with graph-based embeddings (RoboCSE and Graph

Embeddings) and found them to outperform the baselines in cases where the optimal path

to the target object is higher. These, however, perform comparably to language-based

embeddings (Word2Vec, FastText) when optimal paths are shorter (l < 10).

When the agent is tasked with navigating to n, (n > 1) objects, there are two possible

scenarios, a) all n objects are given as queries at the start, b) objects are queried

sequentially one-by-one. For addressing (a), Algorithm 2 can be modified to jointly

optimize for all the n objects. For addressing (b), it involves handling consecutive

searches based on the information gained during navigation for the first (n− 1) objects

to better navigate the nth object. Both of these are avenues for future work.

In Chapter 6, we present a modular approach for visual language understanding with

path planning in simulated search and rescue missions. The proposed system is trained

to reason over which human instructions require navigation. By utilizing language and

semantic map to provide context for the remote human commander instead of streaming

first-person video, our system is more suitable for limited communication bandwidth

scenarios. As the focus of this work is to enable efficient communication between humans

and agents, we do not address the vision-to-mapping challenge. Existing object-detection

and SLAM methods can be incorporated for generating required semantic maps for

planning in real-world environments.

Our system design can be extended to understand other kinds of human instructions and

set up specialized pipeline to process them. Each model’s output probability scores can

provide cues for dialog with the human. Evaluation for such dialog settings is challenging

as it requires real-time interaction. Scalable solutions for human-in-the-loop evaluation,

especially of the embodied AI dialog systems is an active research direction. In terms of

broader impact, our system can serve as a digital companion to assist a visually-impaired

person or help a maintenance worker after training these models with context-specific

interaction and visual-language grounding data.

In Chapter 7, we compare a modular learning-based approach to explore coverage with

heuristic nearest frontier search in varying clutter densities. Increasing the clutter density

leads to impassable areas in the map and it becomes close to the traditional maze

puzzle without much learnable structural information. So, we cannot arbitrarily increase

the density in this comparison. The next step is to realistically organize clutter and

incorporate movable clutter in the 3D environments, for example with indoor house

simulators.

Chapter 8. Conclusions 53

Learning based approaches are sensitive in terms of performance with the change in

environments and show a large variance in the coverage percentage. End-to-end training

of policy gradients algorithm is unstable due to non-stationary rewards based on coverage.

Decomposing the low-level navigation to local policy while using the high-level structure

information with the global policy allowed us to train the networks for comparison.

All of the experimental results are based on synthetic simulations and serve as proof

of concepts for some possible interesting scenarios for explainability in embodied AI.

Extending these insights to either more complex scenarios where different phenomena

coexist or to real-world applications is an interesting direction for future research.

Appendix A

Appendix Environments

A.1 Minecraft for Search and Rescue setting

A.1.1 Human Trajectory Data

Figure A.1: Area segments corresponding to the Falcon map

54

Appendix B. Environments 55

Hyperparameters for xgboost classifier

1 { ' c r i t e r i o n ' : ' g i n i ' ,

2 ' max depth ' : 7 ,

3 ' max features ' : ' s q r t ' ,

4 ' n e s t imato r s ' : 500}

Appendix B. Environments 56

Table A.1: Feature extracted from general mission statistics per timestep

Feature Type Description

mission timer continuous Time in seconds from the mission start

area present in categorical
Which area segment player is present in?
(shown in Fig A.1)

map coverage continuous Percentage of area covered in the map
trial categorical Player’s trial number : 1 - 2 - 3
map type categorical Map variant: easy - medium - hard

Table A.2: Feature extracted from player’s field of view events

Feature Type Description

door in fov count
Number of door in view
at current time

green victim in fov count
Number of green victim
in view at current time

yellow victim in fov count
Number of yellow victim
in view at current time

triaged victim in fov count
Number of triaged victim
in view at current time

blockage in fov count
Number of blockage/rubble
in view at current time

fire in fov count
Number of fire segments
in view at current time

is blockage seen binary
1 if any blockage seen
till now; else 0

Table A.3: Feature extracted from victim triaging/saving events

Feature Type Description

victim being triaged binary
1 if a victim is being triaged;
else 0

critical victims
triaged till now

count
Number of yellow victims
saved till current time

less critical victims
triaged till now

count
Number of green victims
saved till current time

is green victim triaged binary
1 if any green victim has
been saved till now; else 0

Appendix B. Environments 57

Table A.4: Feature extracted from victim detection signal events

Feature Type Description

signal message categorical No beep - beep - beep beep received at current second
latest beep signal categorical Last beep signal received: no beep - beep - beep beep
latest beep time continuous Time in seconds since last device signal was received
latest beep x continuous X coordinate where the most recent signal was received
latest beep z continuous Z coordinate where the most recent signal was received
distance latest signal
to player

continuous
Distance between player’s current location and where
last detection signal was received

time latest signal
to player

continuous
Time passed in seconds since last detection signal
was received

Table A.5: Feature extracted from player’s door related events

Feature Type Description

door entered binary 1 if door entered at current second; else 0
doors opened till now count Number of doors opened till current time
less critical saved
per doors opened

continuous
Ratio of regular or less critical victims saved
to number of doors opened till current time

critical saved
per doors opened

continuous
Ratio of critical victims saved to number
of doors opened till current time

latest door time continuous Time in seconds since last door opening event

latest door x continuous
X coordinate where the most recent door
was opened

latest door z continuous
Z coordinate where the most recent door
was opened

distance latest door
to player

continuous
Distance between the last door opened
and player’s current location

time latest door
to player

continuous
Time passed in seconds since last door
was opened

Table A.6: Feature extracted from player’s door opening and detection signal events

Feature Type Description

distance door signal continuous
Distance between the locations where
last signal was received and
where last door was opened

time door signal continuous
Time between the events when
last signal was received and
when last door was opened

Appendix B. Environments 58

Table A.7: Count-based features from Human Trajectory Data

Feature Type Description

mission timer continuous Time in seconds from the mission start
player position x continuous Player’s x coordinate in [0, W]
player position z continuous Player’s z coordinate in [0, H]

area present in categorical
Area segment player is present in as
shown in Fig \ref{}

map coverage continuous Percentage of area covered in the map

green seen count
Number of regular or less critical victims
seen till current time

yellow seen count
Number of critical victims seen
till current time

doors seen count Number of doors seen till current time

yellow triaged count
Number of critical victims saved
till current time

green triaged count
Number of regular or less critical
victims saved till current time

doors opened count
Number of doors opened by the player
till current time

less critical saved
per doors opened

continuous
Ratio of regular or less critical victims
saved to number of doors opened

critical saved
per doors opened

continuous
Ratio of critical victims saved to
number of doors opened till current time

Beep count
Number of beep (for regular victim nearby)
signals till current time

BeepBeep count
Number of beep beep (for critical victim nearby)
signals till current time

map type categorical Map variants: Easy - Medium - Hard

Appendix B. Environments 59

Features input at a timestep for Knowledge condition prediction

At 18 seconds in the trajectory, the rescuer is predicted in knowledge condition 3 with

high probability 0.6396. The probability for being in TriageSignal and TriageNoSignal

is relatively much lower (0.1723, and 0.1881 respectively).

The inputs given to the model at this instance are:

1 mis s i on t imer 18

2 a r e a p r e s e n t i n n01

3 map coverage 0.0465116

4 d o o r i n f o v 0

5 g r e e n v i c t i m i n f o v 0

6 y e l l o w v i c t i m i n f o v 0

7 t r i a g e d v i c t i m i n f o v 0

8 b l o c k a g e i n f o v 0

9 f i r e i n f o v 0

10 c r i t i c a l v i c t i m s t r i a g e d t i l l n o w 0

11 l e s s c r i t i c a l v i c t i m s t r i a g e d t i l l n o w 0

12 i s g r e e n v i c t i m t r i a g e d Fal se

13 i s b l o c k a g e s e e n Fal se

14 s i gna l mes sage No Beep

15 door ente red Fal se

16 d o o r s o p e n e d t i l l n o w 1

17 l e s s c r i t i c a l s a v e d p e r d o o r s o p e n e d 0

18 c r i t i c a l s a v e d p e r d o o r s o p e n e d 0

19 l a t e s t d o o r t i m e 5

20 l a t e s t d o o r x −2096

21 l a t e s t d o o r z 147

22 l a t e s t b e e p s i g n a l No Beep

23 l a t e s t b e e p t i m e 10000

24 l a t e s t b e e p x 10000

25 l a t e s t b e e p z 10000

26 d i s t a n c e d o o r s i g n a l 10000

27 t i m e d o o r s i g n a l 10000

28 d i s t a n c e l a t e s t d o o r t o p l a y e r 3 .89658

29 t i m e l a t e s t d o o r t o p l a y e r 13

30 d i s t a n c e l a t e s t s i g n a l t o p l a y e r 15597.3

31 t i m e l a t e s t s i g n a l t o p l a y e r −9982

32 t r i a l 2

33 v i c t i m b e i n g t r i a g e d Fal se

The force plot in Figure A.2 is an instance from the trajectory of trial 179 in No-

TriageNoSignal condition for the not-so likely output TriageSignal. The predicted logits

for TriageSignal are close to the base value at 0.43; The higher direction indicates having

full knowledge and the lower direction indicates the other two knowledge conditions. Fea-

tures contributing to increase the likelihood of rescuer being in full knowledge condition

Appendix B. Environments 60

Figure A.2: Force plot showing model’s probability and feature importance
for TriageSignal prediction at timestep of 18 seconds; True Knowledge Condi-

tion:NoTriageNoSignal ;

are the number of critical victims triaged and beep signal message. The fact that the

rescuer is not present in the first intersection (i1) and has opened a door 13 seconds,

hints that the rescuer might not be acting by the beep signal and thereby, decrease the

likelihood of them being in full knowledge condition.

Attribution-based Sentence Selection

We prepare a list of expressions to explain how a feature positively or negatively con-

tributes to this prediction. For an instance at test time, our model makes a prediction

with the given input features and TreeSHAP computes the feature importance values

associated with each feature. Depending on the feature importance values, we select the

expressions to explain the model’s predictions in terms of the input features which are

based on the observations of the human’s trajectory so far.

explanations.csv contains positive and negative explanatory sentence for most of the

attributes used for prediction. Below is the code showing how explanatory sentences are

selected

1 explainer = shap.TreeExplainer(model)

2

3 # Calculate Shap values

4 shap_values = explainer.shap_values(single_pred)

5

6 reasons = []

7 for i in range(x_test.columns.shape[0]):

8 reasons.append([x_test.columns[i], x_test.iloc[index, i],

shap_values[1][i]])↪→

9

10 sorted_reasons = sorted(reasons, key = lambda x: abs(x[2]),

reverse=True)↪→

11

12 df = pd.read_csv('explanations.csv')

13

14 for values in sorted_reasons:

Appendix B. Environments 61

15 if values[0] in features[:,0]:

16 print(values[0], ' = ', values[1])

17 if values[2] > 0:

18 print(df[df['Feature'] == values[0]]['Positive'].values)

19 else:

20 print(df[df['Feature'] == values[0]]['Negative'].values)

A.1.2 VLN by Goal Identification and Path Planning

Table A.8: Example of Dialogue between the Human and the Agent

Human : Find a victim
Agent : ... reached near victim!

Human : Search for a nearby switch
Agent : ... reached near switch!

Human : Is victim near the switch?
Agent : yes, victim seen near a switch.

Human : Search for fire nearby
Agent : ... reached near fire!

Human : locate more fire
Agent : ... reached near fire!

Human : is a bookshelf visible?
Agent : yes, bookshelf can be identified.

Human : go to the previous injured person
Agent : ... reached near last victim!

Appendix B. Environments 62

A.2 AI2Thor for Urban Household setting

A.2.1 VLN by Imitation Learning

ALFRED [45] is a benchmarking environment built on Unity3D game engine to learn a

policy from natural language instructions and egocentric vision to sequences of actions

for household tasks. The dataset of visual demonstrations is collected by PDDL planning

for a collection of tasks and using the underlying game simulator. The natural language

description of high-level goal and low-level instructions is collected from MTurkers.

Output action space:

1. –pad– (dummy; not important)

2. –seg– (dummy; not important)

3. –stop–

4. LookDown 15 degrees

5. MoveAhead 25 cm

6. RotateLeft 90 degrees

7. PickupObject

8. SliceObject

9. LookUp 15 degrees

10. RotateRight 90 degrees

11. OpenObject

12. PutObject

13. CloseObject

14. ToggleObjectOn

15. ToggleObjectOff

A.2.2 Embeddings for Object Search

Embedding Training

We describe our technique to train our Graph Embeddings. We used standard off the

shelf pre-trained Word2Vec (trained on Google News) and FastText embeddings (trained

on en Wikipedia), with no modifications. RoboCSE [16] uses ANALOGY[32], a semantic

matching method, to learn multi-relational embeddings processed from the AI2Thor

environment data, where the nodes represent the objects and edges denote the relation

between them.

To train the Graph Embeddings, we start by extracting a knowledge graph using a

subset of floor plans for each Room type in the AI2Thor environment. The knowledge

Appendix B. Environments 63

graph captures the co-location of objects and the relationship between them. Eg. Book

is located in the living room on a table. The nodes in the graph represents objects

(eg. Book, Table) and edges represents relationship (eg. on). We then used Deepwalk

(number of walks: 20, walk length: 8 and window size: 3) to generate a 25 dimensional

embedding. Once trained we do not modify the embeddings during navigation.

Navigation: Oscillations

Navigating to the object by choosing the object with the highest cosine similarity (with

respect to query object) could potentially suffer from oscillations. For example,consider

the agent is at position A, and is navigating to position B. On taking a few steps towards

position B, the object at position B could potentially become occluded. Then the object

would navigate towards the (next visible) object with highest cosine similarity. This

could be at position C. Now on taking a few steps towards position C, object at position

B becomes visible again. This cycle repeats. In algorithm ??, the agent takes pβT0

steps at a time, which is some fraction of steps of the plan. While this heuristic does

not alleviate the possibility of oscillations, in our experiments, we observed negligible

oscillations.

Hyperparameters for Reproducibility

The code is shared at https://github.com/vidhiJain/SpatialEmbeddings

Here, we report the hyperparameters which can be used to replicate the results presented

in Table 5.1.

VISIBLE AREA THRESHOLD = 0.01; Objects that are lower than this ratio, are discarded.

STEP MULTIPLE = 5; How many ‘‘Steps * 0.25 units’’ to move in each time step.

Random Seed: 33 to initialize agent in AI2Thor and randomize the object initialization

in the environment.

https://github.com/vidhiJain/SpatialEmbeddings

Appendix B

Appendix Attribution Methods

Most attribution techniques involve perturbations to simulate counterfactual reasoning.

These perturbations could be in the network state or the input space.

B.1 Shapley value

Let ni represent a player indexed at i. Consider N = n1, n2, · · · , ni, ...n|N | represent the

set of players in a coalition. Let S be a subset of N . Let v be the function that maps

the set of players to their team’s reward/payoff. This describes the value of the set of

players. Note that the whole can be greater than the sum of parts, i.e. it is possible that

v({ni}) + v({nj}) 6= v({ni, nj}) where ni, nj are players.

Marginal attribution to a player ni in a coalition set S ∈ N\{ni} is

mi(S) = v(S ∪ {ni})− v(S)

Marginal attribution of the player ni is decided based on what the team’s value is with

and without ni. Though this is efficient way of assigning attributions, it greatly depends

on the team set S.

As this calculation depends on the order of joining, a more ‘fair’ solution could be to

take all possible joining orders of the players to calculate average marginal attributions.

Consider σ as a vector of player indices denoting the order of their joining. Let mσ be a

vector of marginal attributions of each player considering all the before it in the team S.

64

Appendix A. Attribution Methods 65

Let Π(N) be all possible permutations of |N | players. Then Shapley value φ(N, v)

describing the fair payoff to each player is given as:

φ(N, v) =
1

|N |!
∑

σ∈Π(N)

mσ

Expressing Shapley value for each player’s attribution, we have

φi(N, v) =
∑

S∈N\{i}

|S|!(|N | − |S| − 1)!

|N |!
(v(S ∪ {i})− v(S))

Shapley values is a unique method that satisfies the following axioms to ensure fairness

in the feature attributions. [36]

1. Dummy: If a feature does not contribute to the output, it should not get any

attributions

2. Symmetry: Clone of a feature must receive equal attribution

3. Efficiency: Attributions must add to the total value or reward obtained by the

coalition.

4. Linearity: Attribution for weighted sum of two outputs must be same as the

weighted sum of attributions for each of the games.

B.2 TreeSHAP

Some of the other tools to analyze feature importance in ensembles of decision trees are:

1. Feature importance in XGBoost library: gain type shows the average gain across all

splits where feature was used. The weight shows the number of times the feature is

used to split data. This type of feature importance can favourize numerical and high

cardinality features. Be careful! There are also cover, total gain, total cover types

of importance.

2. Permutation based importance in scikit learn library permutation based importance

is computationally expensive (for each feature there are several repeast of shuffling). The

permutation based method can have problem with highly-correlated features. Feature

importance or attribution is an approximation of how important features are in the data.

TreeSHAP [34] considers averages attributions over all orderings of the features, instead

of just the decision path taken in a set of trees. This guarantees consistency for local

Appendix A. Attribution Methods 66

explanations as this approach impartially assigns credit to input features regardless of

their depth in the tree. TreeSHAP is shown to be better and intuitive for explanations

as compared to existing approaches.

B.3 Integrated Gradients

Integrated Gradients (IG) determines the salient inputs by gradually varying the network

input from a baseline x′ to the original input x and aggregating the gradients.

IG(x, x′)i = (xi − x′i)
∫ α=1

α=0

∂F (x′ + α(x− x′))
∂xi

dα

This integral is approximated with summation as follows:

IGapprox(x, x′;m) = (xi − x′i)
m∑
k=0

∂F (x′ + k
m(x− x′))
∂xi

× 1

m

B.4 XRAI

XRAI computes the effective attributions of integrated gradients over overly segmented

image. The image is segmented based on similarity such as color, which makes the

segment boundaries align with the edges. The segmentation is done at multiple scales to

obtain a set of overlapping image segments.

Assume that attribution mask over an image I of size H ×W is A of the same size. Using

graph-based segmentations over multiple scale parameters, we obtain a set of segments

S.

Let a pixel be indexed by i in the original image. For a segment s, the gain can be

calculated by gs =
∑

i∈s\M
Ai

area(s\M) . The segment with maximum gain is selected as

attribution to update the XRAI saliency set M. The process is repeated with the

remaining segments until the area of the mask set is equal to that of the image.

XRAI method seems to produce slightly better visual attributions over other variants of

IG, which create grainy regions.

However, this method depends on the size of segmentation scales selected for computation.

Further, dilation added to the final attribution masks to include edges may depict an

inflated version of model’s actual feature importance.

Appendix A. Attribution Methods 67

B.5 DeepSHAP

DeepSHAP [10] is a difference-from-reference approach. Both DeepLIFT and DeepSHAP

overcome the issues of gradient saturation and discontinuity in gradient-based attribution

approaches like IG. The most common way to calculate the attribution is by Rescale

rule, which is inspired from Shapley value computation. Here the positive and negative

influences are separated and calculated in all possible orderings to compute attribution

for the target.

difference-from-reference δz = z − z0 where z is the activation of a neuron. z0 is the

baseline/reference value of the activation of a neuron. Let y be a target neuron, and

x1, x2, . . . , xn be the input affecting the neuron y = f(x1, x2, . . . , xn). Contribution of

each neuron is
∑

iCδxiδy = δy where δy can be non-zero even if ∂y
∂x is zero.

By separating positive and negative contributions to a neuron as δy = δx+ + δx−, the

RevealCancel rule approximates the Shapley values of δx+and δx− for the target neuron

y.

DeepSHAP improves the RevealCancel rule by splitting by the mean than splitting

by zero as it better separates xi nodes, resulting in a better approximation of Shapley

values.

Bibliography

[1] Aishwarya Agrawal et al. “Don’t Just Assume; Look and Answer: Overcoming Priors

for Visual Question Answering”. In: 2018 IEEE/CVF Conference on Computer

Vision and Pattern Recognition (2018), pp. 4971–4980.

[2] Maruan Al-Shedivat et al. “On the Complexity of Exploration in Goal-Driven

Navigation”. In: CoRR abs/1811.06889 (2018). arXiv: 1811.06889. url: http:

//arxiv.org/abs/1811.06889.

[3] Andrew G. Barto, Richard S. Sutton, and Charles W. Anderson. “Neuronlike

adaptive elements that can solve difficult learning control problems”. In: IEEE

Transactions on Systems, Man, and Cybernetics SMC-13.5 (1983), pp. 834–846.

doi: 10.1109/TSMC.1983.6313077.

[4] Rhyse Bendell et al. “Towards Artificial Social Intelligence: Inherent Features,

Individual Differences, Mental Models, and Theory of Mind”. In: Advances in

Neuroergonomics and Cognitive Engineering. Ed. by Hasan Ayaz, Umer Asgher,

and Lucas Paletta. Cham: Springer International Publishing, 2021, pp. 20–28. isbn:

978-3-030-80285-1.

[5] Michael Bloesch et al. “CodeSLAM - Learning a Compact, Optimisable Repre-

sentation for Dense Visual SLAM”. In: June 2018, pp. 2560–2568. doi: 10.1109/

CVPR.2018.00271.

[6] Piotr Bojanowski et al. “Enriching Word Vectors with Subword Information”. In:

arXiv preprint arXiv:1607.04606 (2016).

[7] Carlos Campos et al. “ORB-SLAM3: An Accurate Open-Source Library for Visual,

Visual-Inertial and Multi-Map SLAM”. In: arXiv preprint arXiv:2007.11898 (2020).

[8] Devendra Singh Chaplot et al. “Learning To Explore Using Active Neural SLAM”.

In: International Conference on Learning Representations. 2020. url: https:

//openreview.net/forum?id=HklXn1BKDH.

[9] Devendra Singh Chaplot et al. “Object Goal Navigation using Goal-Oriented

Semantic Exploration”. In: In Neural Information Processing Systems. 2020.

68

https://arxiv.org/abs/1811.06889
http://arxiv.org/abs/1811.06889
http://arxiv.org/abs/1811.06889
https://doi.org/10.1109/TSMC.1983.6313077
https://doi.org/10.1109/CVPR.2018.00271
https://doi.org/10.1109/CVPR.2018.00271
https://openreview.net/forum?id=HklXn1BKDH
https://openreview.net/forum?id=HklXn1BKDH

Bibliography 69

[10] Hugh Chen, Scott Lundberg, and Su-In Lee. “Explaining models by propagating

Shapley values of local components”. In: Explainable AI in Healthcare and Medicine.

Springer, 2021, pp. 261–270.

[11] Tao Chen, Saurabh Gupta, and Abhinav Gupta. “Learning Exploration Policies

for Navigation”. In: International Conference on Learning Representations. 2019.

url: https://openreview.net/forum?id=SyMWn05F7.

[12] Valerie Chen, Abhinav Gupta, and Kenneth Marino. “Ask Your Humans: Us-

ing Human Instructions to Improve Generalization in Reinforcement Learning”.

In: International Conference on Learning Representations. 2021. url: https:

//openreview.net/forum?id=Y87Ri-GNHYu.

[13] Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. Minimalistic Gridworld

Environment for OpenAI Gym. https://github.com/maximecb/gym-minigrid.

2018.

[14] Maxime Chevalier-Boisvert et al. “BabyAI: First Steps Towards Grounded Language

Learning With a Human In the Loop”. In: International Conference on Learning

Representations. 2019. url: https://openreview.net/forum?id=rJeXCo0cYX.

[15] Angela Dai et al. “BundleFusion: Real-time Globally Consistent 3D Reconstruction

using On-the-fly Surface Re-integration”. In: ACM Transactions on Graphics 2017

(TOG) (2017).

[16] Angel Daruna et al. RoboCSE: Robot Common Sense Embedding. 2019. arXiv:

1903.00412 [cs.RO].

[17] Abhishek Das et al. “Embodied Question Answering”. In: Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR). 2018.

[18] Matt Deitke et al. “RoboTHOR: An Open Simulation-to-Real Embodied AI Plat-

form”. In: (2020).

[19] Daniel Gordon et al. “IQA: Visual Question Answering in Interactive Environments”.

In: Computer Vision and Pattern Recognition (CVPR), 2018 IEEE Conference on.

IEEE. 2018.

[20] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. “A Formal Basis for the

Heuristic Determination of Minimum Cost Paths”. In: IEEE Transactions on

Systems Science and Cybernetics 4.2 (1968), pp. 100–107. doi: 10.1109/TSSC.

1968.300136.

[21] Peter Hase and Mohit Bansal. Evaluating Explainable AI: Which Algorithmic Ex-

planations Help Users Predict Model Behavior? 2020. arXiv: 2005.01831 [cs.CL].

[22] L. Huang et al. “Using humans’ theory of mind to study artificial social intelligence

in minecraft search and rescue”. In: to be submitted to the) Journal of Cognitive

Science (2021).

https://openreview.net/forum?id=SyMWn05F7
https://openreview.net/forum?id=Y87Ri-GNHYu
https://openreview.net/forum?id=Y87Ri-GNHYu
https://github.com/maximecb/gym-minigrid
https://openreview.net/forum?id=rJeXCo0cYX
https://arxiv.org/abs/1903.00412
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1109/TSSC.1968.300136
https://arxiv.org/abs/2005.01831

Bibliography 70

[23] W. Johnson. “Agents that Learn to Explain Themselves”. In: AAAI. 1994.

[24] A. Kapishnikov et al. “XRAI: Better Attributions Through Regions”. In: 2019

IEEE/CVF International Conference on Computer Vision (ICCV) (2019), pp. 4947–

4956.

[25] Andrei Kapishnikov et al. “Guided Integrated Gradients: An Adaptive Path Method

for Removing Noise”. In: Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR). 2021, pp. 5050–5058.

[26] Been Kim et al. Interpretability Beyond Feature Attribution: Quantitative Testing

with Concept Activation Vectors (TCAV). 2018. arXiv: 1711.11279 [stat.ML].

[27] Alexander Ku et al. “Room-Across-Room: Multilingual Vision-and-Language Nav-

igation with Dense Spatiotemporal Grounding”. In: Conference on Empirical

Methods for Natural Language Processing (EMNLP). 2020.

[28] Tejas D. Kulkarni et al. “Hierarchical Deep Reinforcement Learning: Integrat-

ing Temporal Abstraction and Intrinsic Motivation”. In: Proceedings of the 30th

International Conference on Neural Information Processing Systems. NIPS’16.

Barcelona, Spain: Curran Associates Inc., 2016, 3682–3690. isbn: 9781510838819.

[29] C. Lacave and F. Dı́ez. “A review of explanation methods for Bayesian networks”.

In: The Knowledge Engineering Review 17 (2002), pp. 107 –127.

[30] S. Lapuschkin et al. “Unmasking Clever Hans predictors and assessing what

machines really learn”. In: Nature Communications 10 (2019).

[31] M. Lent, William Fisher, and Michael Mancuso. “An Explainable Artificial Intelli-

gence System for Small-unit Tactical Behavior”. In: AAAI. 2004.

[32] Hanxiao Liu, Yuexin Wu, and Yiming Yang. “Analogical inference for multi-

relational embeddings”. In: arXiv preprint arXiv:1705.02426 (2017).

[33] Scott M Lundberg et al. “Explainable machine-learning predictions for the pre-

vention of hypoxaemia during surgery”. In: Nature Biomedical Engineering 2.10

(2018), p. 749.

[34] Scott M. Lundberg et al. “From local explanations to global understanding with

explainable AI for trees”. In: Nature Machine Intelligence 2.1 (2020), pp. 2522–

5839.

[35] Mateusz Malinowski and Mario Fritz. “A Multi-World Approach to Question

Answering about Real-World Scenes based on Uncertain Input”. In: Advances in

Neural Information Processing Systems 27. Ed. by Z. Ghahramani et al. Curran

Associates, Inc., 2014, pp. 1682–1690. url: http://papers.nips.cc/paper/5411-

a- multi- world- approach- to- question- answering- about- real- world-

scenes-based-on-uncertain-input.pdf.

https://arxiv.org/abs/1711.11279
http://papers.nips.cc/paper/5411-a-multi-world-approach-to-question-answering-about-real-world-scenes-based-on-uncertain-input.pdf
http://papers.nips.cc/paper/5411-a-multi-world-approach-to-question-answering-about-real-world-scenes-based-on-uncertain-input.pdf
http://papers.nips.cc/paper/5411-a-multi-world-approach-to-question-answering-about-real-world-scenes-based-on-uncertain-input.pdf

Bibliography 71

[36] Luke Merrick and Ankur Taly. “The Explanation Game: Explaining Machine

Learning Models with Cooperative Game Theory”. In: CoRR abs/1909.08128

(2019). arXiv: 1909.08128. url: http://arxiv.org/abs/1909.08128.

[37] Tomas Mikolov et al. Efficient Estimation of Word Representations in Vector Space.

2013. arXiv: 1301.3781 [cs.CL].

[38] Volodymyr Mnih et al. “Asynchronous Methods for Deep Reinforcement Learning”.

In: ArXiv abs/1602.01783 (2016).

[39] Volodymyr Mnih et al. “Playing Atari with Deep Reinforcement Learning”. In:

ArXiv abs/1312.5602 (2013).

[40] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. “Deepwalk: Online learning of

social representations”. In: Proceedings of the 20th ACM SIGKDD international

conference on Knowledge discovery and data mining. 2014, pp. 701–710.

[41] Wojciech Samek et al. Explainable AI: Interpreting, Explaining and Visualizing Deep

Learning. Jan. 2019. isbn: 978-3-030-28953-9. doi: 10.1007/978-3-030-28954-6.

[42] Victor Sanh et al. “DistilBERT, a distilled version of BERT: smaller, faster, cheaper

and lighter”. In: arXiv preprint arXiv:1910.01108 (2019).

[43] J. Schulman et al. “Proximal Policy Optimization Algorithms”. In: ArXiv abs/1707.06347

(2017).

[44] Lloyd S. Shapley. A Value for N-Person Games. Santa Monica, CA: RAND

Corporation, 1952. doi: 10.7249/P0295.

[45] Mohit Shridhar et al. “ALFRED: A Benchmark for Interpreting Grounded Instruc-

tions for Everyday Tasks”. In: The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR). 2020. url: https://arxiv.org/abs/1912.01734.

[46] K. Simonyan, A. Vedaldi, and Andrew Zisserman. “Deep Inside Convolutional

Networks: Visualising Image Classification Models and Saliency Maps”. In: CoRR

abs/1312.6034 (2014).

[47] Kunal Pratap Singh et al. “MOCA: A Modular Object-Centric Approach for

Interactive Instruction Following”. In: ArXiv abs/2012.03208 (2020).

[48] D. Smilkov et al. “SmoothGrad: removing noise by adding noise”. In: ArXiv

abs/1706.03825 (2017).

[49] C. Stachniss, D. Hahnel, and W. Burgard. “Exploration with active loop-closing for

FastSLAM”. In: 2004 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS) (IEEE Cat. No.04CH37566). Vol. 2. 2004, 1505–1510 vol.2.

[50] Gregory J. Stein, Christopher Bradley, and Nicholas Roy. “Learning over Subgoals

for Efficient Navigation of Structured, Unknown Environments”. In: Proceedings

of The 2nd Conference on Robot Learning. Ed. by Aude Billard et al. Vol. 87.

Proceedings of Machine Learning Research. PMLR, 2018, pp. 213–222. url: http:

//proceedings.mlr.press/v87/stein18a.html.

https://arxiv.org/abs/1909.08128
http://arxiv.org/abs/1909.08128
https://arxiv.org/abs/1301.3781
https://doi.org/10.1007/978-3-030-28954-6
https://doi.org/10.7249/P0295
https://arxiv.org/abs/1912.01734
http://proceedings.mlr.press/v87/stein18a.html
http://proceedings.mlr.press/v87/stein18a.html

Bibliography 72

[51] Pascal Sturmfels, Scott Lundberg, and Su-In Lee. “Visualizing the Impact of Feature

Attribution Baselines”. In: Distill (2020). https://distill.pub/2020/attribution-

baselines. doi: 10.23915/distill.00022.

[52] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. “Axiomatic Attribution for

Deep Networks”. In: Proceedings of the 34th International Conference on Machine

Learning. Ed. by Doina Precup and Yee Whye Teh. Vol. 70. Proceedings of Machine

Learning Research. PMLR, 2017, pp. 3319–3328. url: http://proceedings.mlr.

press/v70/sundararajan17a.html.

[53] William R Swartout and Johanna D Moore. “Explanation in second generation

expert systems”. In: Second generation expert systems. Springer, 1993, pp. 543–585.

[54] Niko Sünderhauf. Where are the Keys? – Learning Object-Centric Navigation

Policies on Semantic Maps with Graph Convolutional Networks. 2019. arXiv:

1909.07376 [cs.LG].

[55] Jesse Thomason et al. “Vision-and-Dialog Navigation”. In: Conference on Robot

Learning (CoRL). 2019.

[56] Erik Wijmans et al. “Embodied Question Answering in Photorealistic Environments

with Point Cloud Perception”. In: Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR). 2019.

[57] Shawn Xu, Subhashini Venugopalan, and Mukund Sundararajan. “Attribution

in Scale and Space”. In: Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR). 2020.

[58] Brian Yamauchi. “A frontier-based approach for autonomous exploration”. In:

Proceedings 1997 IEEE International Symposium on Computational Intelligence in

Robotics and Automation CIRA’97. ’Towards New Computational Principles for

Robotics and Automation’ (1997), pp. 146–151.

[59] Shichao Yang and Sebastian Scherer. “CubeSLAM: Monocular 3-D Object SLAM”.

In: IEEE Transactions on Robotics PP (May 2019), pp. 1–14. doi: 10.1109/TRO.

2019.2909168.

[60] Wei Yang et al. “Visual Semantic Navigation using Scene Priors”. In: ICLR. 2019.

[61] Yichi Zhang and J. Chai. “Hierarchical Task Learning from Language Instructions

with Unified Transformers and Self-Monitoring”. In: ArXiv abs/2106.03427 (2021).

https://doi.org/10.23915/distill.00022
http://proceedings.mlr.press/v70/sundararajan17a.html
http://proceedings.mlr.press/v70/sundararajan17a.html
https://arxiv.org/abs/1909.07376
https://doi.org/10.1109/TRO.2019.2909168
https://doi.org/10.1109/TRO.2019.2909168

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Explaining ``Explainability''
	1.2 Why Explainability?
	1.3 Research Questions
	1.4 Contributions

	2 Background
	2.1 Feature Attributions
	2.2 Reinforcement Learning
	2.3 Language based navigation
	2.4 Modular Hierarchical Learning

	3 Attributions for Actor-Critic Neural Networks
	3.1 Key Contributions
	3.2 Method
	3.3 Experiments
	3.3.1 Cartpole
	3.3.2 Lunar Lander
	3.3.3 Visual Language Navigation

	4 Attributions for Sequential Prediction with Decision Trees
	4.1 Key Contributions
	4.2 Task Design
	4.3 Method
	4.4 Experiments and Results
	4.4.1 Victim Saving Strategy
	4.4.2 Knowledge Condition

	5 Embeddings for Spatial Semantics
	5.1 Key Contributions
	5.2 Task Design
	5.3 Method
	5.4 Experiments and Results

	6 Language to Goal Location
	6.1 Key Contributions
	6.2 Task Design
	6.3 Method
	6.4 Experiments and Results

	7 Explainable Exploration
	7.1 Key Contributions
	7.2 Task Design
	7.3 Method
	7.4 Experiments and Results

	8 Conclusions
	A Appendix Environments
	A.1 Minecraft for Search and Rescue setting
	A.1.1 Human Trajectory Data
	A.1.2 VLN by Goal Identification and Path Planning

	A.2 AI2Thor for Urban Household setting
	A.2.1 VLN by Imitation Learning
	A.2.2 Embeddings for Object Search

	B Appendix Attribution Methods
	B.1 Shapley value
	B.2 TreeSHAP
	B.3 Integrated Gradients
	B.4 XRAI
	B.5 DeepSHAP

	Bibliography

