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Abstract

Accurate layout estimation is crucial for planning and navigation in
robotics applications, such as self-driving. In this thesis, we introduce the
Stereo Bird’s Eye View Network (SBEVNet), a novel supervised end-to-
end framework for estimation of bird’s eye view layout from a pair of stereo
images. Although our network reuses some of the building blocks from the
state-of-the-art deep learning networks for disparity estimation, we show
that explicit depth estimation is neither sufficient nor necessary. Instead,
the learning of a good internal bird’s eye view feature representation is
effective for layout estimation. Specifically, we first generate a disparity
feature volume using the features of the stereo images and then project it to
the bird’s eye view coordinates. This gives us coarse-grained information
about the scene structure. We also apply inverse perspective mapping
(IPM) to map the input images and their features to the bird’s eye
view. This gives us fine-grained texture information. Concatenating
IPM features with the projected feature volume creates a rich bird’s
eye view representation which is useful for spatial reasoning. We use
this representation to estimate the BEV semantic map. Additionally,
we show that using the IPM features as a supervisory signal for stereo
features can give an improvement in performance. We demonstrate
our approach on three datasets: the KITTI [5] dataset, a synthetically
generated dataset from the CARLA [4] simulator and a dataset collected in
a forest environment. For all of these datasets, we establish state-of-the-art
performance compared to baseline techniques.
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Chapter 1

Introduction

Layout estimation is an extremely important task for navigation and planning in

numerous robotics applications such as autonomous driving cars. The bird’s eye view

(BEV) layout is a semantic occupancy map containing per pixel class information,

e.g. road, sidewalk, cars, vegetation, etc. The BEV semantic map is important for

planning the path of the robot in order to prevent it from hitting objects and going

to impassable locations.

In order to generate a BEV layout, we need 3D information about the scene.

Sensors such as LiDAR (Light Detection And Ranging) can provide accurate point

clouds. The biggest limitations of LiDAR are high cost, sparse resolution, and low

scan-rates. Also, as an active sensor LiDAR is more power hungry, more susceptible

to interference from other radiation sources, and can affect the scene. Cameras on

the other hand, are much cheaper, passive, and capture much more information at a

higher frame-rate. However, it is both hard and computationally expensive to get

accurate depth and point clouds from cameras.

The classic approach for stereo layout estimation contains two steps. The first

step is to generate a BEV feature map by an orthographic projection of the point

cloud generated using stereo images. The second step is bird’s eye view semantic

segmentation using the projected point cloud from the first step. This approach is

limited by the estimated point cloud accuracy because the error in it will propagate

to the layout estimation step. In this thesis, we show that explicit depth estimation

is actually neither sufficient nor necessary for good layout estimation. Estimating

1



1. Introduction

accurate depth is not sufficient because many areas in the 3D space can be occluded

partially, e.g. behind a tree trunk. However, these areas can be estimated by combining

spatial reasoning and geometric knowledge in bird’s eye view representation. Explicitly

estimating accurate depth is also not necessary because layout estimation can be

done without estimating the point cloud. Point cloud coordinate accuracy is limited

by the 3D to 2D BEV projection and rasterization. For these reasons, having an

effective bird’s eye view representation is very important.

SBEVNet is built upon recent deep stereo matching paradigm. These deep

learning based methods have shown tremendous success in stereo disparity/depth

estimation. Most of these models [2, 6, 9, 10, 12, 20, 22, 27] generate a 3-dimensional

disparity feature volume by concatenating the left and right images shifted at different

disparities, which is used to make a cost volume containing stereo matching costs

for each disparity value. Given a location in the image and the disparity, we can get

the position of the corresponding 3D point in the world space. Hence, every point

in the feature volume and cost volume corresponds to a 3D location in the world

space. The innovation in our approach comes from the observation: it is possible to

directly use the feature volume for layout estimation, rather than a two step process,

which uses the point cloud generated by the network. We propose SBEVNet , an

end-to-end neural architecture that takes a pair of stereo images and outputs the

bird’s eye view scene layout. We first project the disparity feature volume to the

BEV view, creating a 2D representation from the 3D volume. We then warp it by

mapping different disparities and the image coordinates to the bird’s eye view space.

In order to overcome the loss of fine grained information imposed by our choice of

the stereo BEV feature map, we concatenate a projection of the original images and

deep features to this feature map. We generate these projected features by applying

inverse perspective mapping (IPM) [14] to the input image and its features, choosing

the ground as the target plane We feed this representation to a U-Net in order to

estimate the BEV semantic map of the scene.

In order to perform inverse perspective mapping, we require information about

the ground in the 3D world space. Hence we also consider the scenario where we

perform IPM during the training time and not the inference time. Here, during the

training time, we use cross modal distillation to transfer knowledge from IPM features

to the stereo features.
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1. Introduction

SBEVNet is the first approach to use an end-to-end neural architecture for stereo

layout estimation. We show that SBEVNet achieves better performance than existing

approaches. SBEVNet outperforms all the baseline algorithms on KITTI [5] dataset,

a synthetically generated dataset extracted from the CARLA simulator and a dataset

collected in a forest environment. [4]. In summary, our contributions are the following:

1. We propose SBEVNet , an end-to-end neural architecture for layout estimation

from a stereo pair of images.

2. We learn a novel representation for BEV layout estimation by fusing projected

stereo feature volume and fine grained inverse perspective mapping features.

3. We evaluate SBEVNet and demonstrate state-of-the-art performance over other

methods by a large margin on three datasets – KITTI dataset, our synthetically

generated dataset using the CARLA simulator and a dataset collected in a

forest environment.
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Chapter 2

Background

SBEVNet is a deep learning based approach which heavily uses concepts of multi-view

geometry and stereo vision. In this chapter, we provide a brief introduction of all the

methods and algorithms used in this thesis.

2.1 Stereo Vision Preliminaries

In most of the stereo vision setups, it is assumed that the relative rotation and the

translation between the two cameras is known. The two cameras are called the

reference camera and target camera and the images produced by them are called

reference image IR and target image IT respectively. Given a point in the 3D world

space, the first step is to find the projection of it by the reference and target camera.

Given the intrinsic and extrinsic parameters of both the cameras, the 3D position

can be estimation via triangulation.

2.1.1 Rectified Stereo Pair

For an arbitrary camera setup, a point in the reference image can correspond to

any point along the epipolar line in the target image. If the two cameras have no

relative rotation and the translation is just across the x-axis, then the epipolar lines

will be parallel to the x-axis in the image. A rectified stereo pair makes searching

correspondences easy and also makes triangulation easy.
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d = 0

d = 1

d = 2

d = max disp

Reference Image

Target Image

Cost Volume

Figure 2.1: Illustration of plane sweep stereo.

Disparity

For a rectified stereo image pair, the disparity at a point is the shift in pixels of the

position of the point in the reference and the target image.

3D Reconstruction from Disparity

Given the disparity d of a point u, v in the reference image, we can easily get the

homogeneous 3D position in the world space using the following equation:


X

Y

Z

W

 =


1 0 0 −cx
0 1 0 −cy
0 0 0 f

0 0 − 1
Tx

0




u

v

d

1

 (2.1)

Here cx and cy are the principal points of the camera, f is the focal length and Tx is

the baseline length.

2.1.2 Plane Sweep Stereo

The simple way to find the disparity of a pixel is to search for the most similar pixel

in the horizontal epipolar line in the other image. This can be done by storing the
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2. Background

matching costs at all disparity levels in a tensor called cost volume. For image size

H ×W and maximum disparity D, the cost volume Vcost will be of size H ×W ×D.

Given a disparity d and the image point u, v , the cost volume can be constructed as:

V [u, c, d] = similarity(IR[u, v], IT [u + d, v]) (2.2)

The similarity function could be sum of squared differences or sum of absolute

differences. This cost volume is then used to find the disparity score of each pixel. To

account for noisy pixels and mismatched disparities, a smoothness function is applied

on the cost volume which penalizes when the disparity of a pixel is very different

from its neighbours.

2.1.3 Deep Learning Methods for Stereo Matching

The naive way for stereo matching using deep learning is to concatenate the reference

and the target image to a single 6 channel image and apply a 2D fully convolutional

network to regress on the disparity map. This is not a very good approach because

the convolutional filters have to learn how to look up for other pixels at different

disparities. A more efficient way for stereo matching using deep learning is to use

concepts from plane sweep stereo. The following changes can me made to the classical

plane sweep method to make it end-to-end trainable:

1. Rather than using the cost volume a feature volume can be created by con-

catenating the features of both images at all disparity levels. This gives the

network flexibility to learn the similarity function on its own.

2. Rather than creating the volume using the raw pixels, the disparity volume can

be created using image features extracted using a deep network.

3. The smoothness function can also be replaced by a series of 3D convolutions

which can also learn some global information in the scenes.

4. To train the network we can use either a supervised loss or an unsupervised

loss.

7
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Ground Plane

Image Plane

Projected Image
BEV Image

Figure 2.2: Illustration of inverse perspective mapping.

2.2 Inverse Perspective Mapping

Inverse perspective mapping (IPM) is a technique for image coordinate transformation,

which can be used to take a perspective projection image and transform it in the

bird’s eye view, removing the perspective effect. This transformation is a homography

transformation transforming the image from the road plane to the protective image

plane. To perform inverse perspective mapping, we need to have the position and

orientation of the ground plane with respect to the camera. The homography matrix

can be computed with 4 correspondences points, which could be the corners of the

BEV range on the plane.
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Chapter 3

Related Work

To the best of our knowledge, there is no published work for estimating layout given

a pair of stereo images. However, there are several works tackling layout estimation

using a single image or doing object detection using stereo images. In this section,

we review the most closely related approaches.

3.1 Monocular Layout Estimation

MonoLayout [15] uses an encoder-decoder model to estimate the bird’s eye view

layout using a monocular input image. They also leverage adversarial training to

produce sharper estimates. MonoOccupancy [13] uses a variational encoder-decoder

network to estimate the layout. Both MonoLayout and MonoOccupancy do not use

any camera geometry priors to perform the task. Schulter et al. [17] uses depth

estimation to project the image semantics to bird’s eye view. They also use Open

Street Maps data to refine the BEV images via adversarial learning. Wang et al.

[23] uses [17] to estimate the parameters of the road such as lanes, sidewalks, etc.

Monocular methods learn strong prior, which does not generalize well when there is a

significant domain shift. Stereo methods learn weak-prior plus geometric relationship,

which can generalize better.
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3. Related Work

3.2 Deep Stereo Matching

Several methods like [2, 6, 9, 10, 12, 20, 22, 27] extract the features of the stereo images

and generate a 3D disparity feature volume for disparity/depth estimation. They

use a 3D CNN on the feature volume to get cost volume to perform stereo matching.

PSMNet [2] uses a spatial pyramid pooling module and a stacked hourglass network

to further improve the performance. High-res-stereo [25] uses a hierarchical model,

creating cost volumes at multiple resolutions, performing the matching incrementally

from over a coarse to fine hierarchy.

3.3 Bird’s Eye View Object Detection

Several approaches like Shi et al. [18], Yang et al. [24] use LiDAR to perform 3D

object detection. Pseudo-lidar [21] and pseudo-LiDAR++ [26] use stereo input to

first generate a 3D point cloud and then use a 3D object detection network [11, 18, 24]

on top. BirdGAN [19] maps the input image to bird’s eye view using adversarial

learning. The closest work to our approach is DSGN [3] which constructs a depth

feature volume and map it to the 3D space which is then projected to bird’s eye

view to perform object detection. The task of object detection is of sparse prediction,

whereas layout estimation is of dense fine granularity prediction. Hence we introduced

IPM to fuse low level detail with the stereo information to improve the performance

of layout estimation.

10



Chapter 4

Approach

This section describes the detailed architecture of our proposed framework. SBEVNet

is built upon recent deep stereo matching paradigms and follows the rules of multi-view

camera geometry. An overview of the SBEVNet is summarized in Figure 4.1.

4.1 Problem Formulation

In this thesis, we address the problem of layout estimation from a pair of stereo

images. Formally, given a reference camera image IR and a target camera image IT

both of size H ×W × 3, the camera intrinsics K, and the baseline length Tb, we aim

to estimate the bird’s eye view layout of the scene. In particular, we estimate the

BEV semantic map of size Nx×Ny×NC within the rectangular range of interest area

(xmin, xmax, ymin, ymax) in front of the camera. Here H is image height, W is image

width, and 3 indicates RGB channels. Nx and Ny are the number of horizontal cells

and vertical cells respectively in bird’s eye view. NC is the number of semantic classes.

This BEV semantic map contains the probability distribution among all semantic

classes at each cell of the layout. We assume that the input images are rectified.

4.2 Feature Extraction

The first step for SBEVNet is to extract features FR and FT of size H ′ ×W ′ × C for

the reference image and the target image respectively. This is done by passing IR and

11
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Feature 
Extractor

Feature 
Extractor Disparity 

Feature 
Volume

Reduction 
across height

BEV 
Representation

Inverse 
Perspective 
Mapping

Warping to 
world space

Reduced Feature 
Volume

Stereo BEV 
Features

IPM Features

Semantic-map

Reference Image

Target Image

U-Net

Inverse 
Perspective 
Mapping

IPM RGB

Masked cross 
entropy loss

Visibility 
mask

H × W × 3 H’ × W’ × D × 2C

W’ × D × C’

Nx × Ny × (C’ + C + 3)

Nx × Ny × C’

Nx × Ny 

H’ × W’ × C

Figure 4.1: SBEVNet overview. We first extract the image features given the target
and reference image. Using the pair of features, we create a disparity feature volume.
We then reduce the disparity feature volume along with the height and warp it in the
bird’s eye view layout space. On a parallel branch of the network, we apply inverse
perspective mapping (IPM) on the reference image and its features. We concatenate
the IPM RGB, IPM feature, and the stereo BEV features. The BEV representation
is then used to estimate the semantic map through a U-Net. Visibility mask is used
to apply the supervised loss only at the locations in the BEV which are in the view
of the front camera.

IT through a convolutional encoder with shared weights. This produces multi-channel

down-sized feature representations which are next used for building disparity feature

volumes.

4.3 Disparity Feature Volume Generation

Similar to [2, 6, 9, 10, 12, 20, 22, 27] we form a disparity feature volume V by

concatenating the features FR and F d
T , where F d

T is FT shifted horizontally by a

disparity of d pixel, resulting in a 3D volume of size H ′×W ′×D× 2C. We then pass

the feature volume through a series of 3D convolution layers with skip connections

12



4. Approach

to learn higher level features. This feature volume at each d ∈ {0, 1, · · · , D − 1}
contains a representation of the 3D world at the depth corresponding to the disparity

d. Rather than using this feature volume to do disparity estimation, we project and

warp it to form a bird’s eye view representation in the next step.

4.4 Bird’s Eye View Representation

The bird’s eye view representation is composed of two parts – 1) The stereo BEV

representation which is derived from the disparity feature volume, 2) The IPM

BEV representation which is the result of applying inverse perspective mapping on

the reference image and the features of the reference image. These two parts are

concatenated to form the final bird’s eye view representation.

4.4.1 Stereo BEV Representation

The disparity feature volume generated is widely used to estimate depth/disparity in

the stereo image pairs. But this feature volume contains a lot of information about

the 3D scene which can be used for other tasks as well. Each point in the disparity

feature volume corresponds to a point in the 3D world space. We first need to map

the 3D feature volume to a 2D feature map containing information of the bird’s eye

view. If we do max/average pooling along height dimension, a certain degree of the

height information is lost quickly before being extracted for our task, which is not

desirable. Considering height information a good prior for layout estimation but we

don’t need to recover it explicitly, we concatenate the feature volume along the height,

creating a 2D image of size W ′×D×2CH ′. We then use 2D convolutions to generate

the reduced feature volume of size W ′′ ×D′′ × C ′. This reduced feature volume does

not spatially match with the bird’s eye view layout. Hence, we warp the reduced

feature volume, transforming it to a feature map of size Nx ×Ny × C ′ in the bird’s

eye view space. Given the disparity d, position in the image along width u, camera

parameters f , cx, cy, and stereo baseline length Tx, we can find the coordinates in

the bird’s eye space x′ and y′ as follows:

x′ =
(u− cx) · Tx

d
(4.1)
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Disparity space

Bird’s eye view space

Reference image

IPM transformation

(xmin,ymin,z) (xmax,ymin,z)

(xmin,ymax,z) (xmax,ymax,z)

0 W’
0

D - 1

xmin xmax

ymin

ymax

Nx × Ny 

Nx × Ny 

x
y

z

Figure 4.2: Illustration of mapping the disparity space to bird’s eye view space and
inverse perspective mapping. (a) The operation maps different disparities and x to
the BEV space in order to match the ground truth. We also show an example layout
warped to the disparity space. (b) The inverse perspective mapping operation maps
pixels of the reference image to the BEV space in order to match the ground truth.
The same mapping can be applied to the image features as well.

y′ =
f · Tx

d
(4.2)

The 2D origin of the bird’s eye view is co-located with the reference camera. An

example visualization of the layout in the disparity volume space is shown in Figure 4.2.

After mapping the coordinates to the BEV space, we map them to a grid of size

Nx ×Ny giving us the stereo BEV representation Rstereo.

4.4.2 IPM BEV Representation

The stereo BEV representation contains structural information for the bird’s eye view

space. Due to the refinement and reduction of the feature volume, the fine grained

details are excluded by design. To circumvent that, we need to fuse the low level

features to the stereo BEV features, while maintaining geometric consistency.

In order to fuse the image features to the stereo BEV features at the correct
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locations, we need to warp the image features to the BEV space. We apply inverse

perspective mapping on the reference image and the features of the reference image

to do that.

A point in the image IR can correspond to multiple points in the 3D world space

due to perspective projection, but there is a single point which also intersects with

the ground plane. Let z = ax + by + c be the equation of the ground plane in the

world space. Given the input image coordinates (u, v) and camera parameters f ,cx,

cy , we can find the coordinates in the bird’s eye space x′ and y′ as follows:

x′ =
cu− ccx

acx − au− bf − cy + v
(4.3)

y′ =
cf

acx − au− bf − cy + v
(4.4)

This can be easily derived by combining the camera projection equation with the

equation of the ground plane. For many applications, the ground is either planar or

can be approximated by a plane. This is also equivalent to computing a homography

H between the ground plane and the image plane of the layout and then applying the

transformation. We can have the parameters of the plane a, b, and c pre-determined

if the placement of the camera with respect to the ground is known, which is the case

for many robotics applications. We can also determine a, b and c by using stereo

depth and a semantic segmentation network for the road/ground class.

Examples of IPM on the input images is shown in Figure 4.2. We apply the

inverse perspective transform on both the input image and the features of the input

image to transform them to the bird’s eye view space:

RIPM feat = IPM(FR) (4.5)

RIPM img = IPM(IR) (4.6)

They are then concatenated with the stereo BEV representation to form the combined
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BEV representation:

RBEV = [RIPM feat;RIPM img;Rstereo] (4.7)

4.4.3 Layout Generation

We can generate the semantic map by inputting the BEV features to a semantic

segmentation network. We pass the concatenated stereo BEV feature map and IPM

BEV feature map to a U-Net [16] network to generate the semantic map C.

C = U-Net(RBEV) (4.8)

Some areas in the layout may not be in the view of the front camera, e.g. things

behind a wall. That is why it is not a good idea to penalize the model for the wrong

prediction for those areas. Hence, we use a visibility mask to mask the pixel-wise loss,

applying it only on the pixels which are in the field of view. This mask is generated

during the ground truth generation process by using ray-tracing on the point cloud to

determine which are in the field of view. For a visibility mask V , Vi is 1 if the pixel i

is in the view of the input image, and 0 otherwise. For the loss, we use a pixel-wise

categorical cross entropy loss as follows:

Lr =
∑
i∈P

Vi · CCE(Ci, C
h
i ) (4.9)

where Ch
i is ground truth.

4.5 IPM for Cross Modal Distillation

There can be use-cases where we cannot do inverse perspective mapping during

inference time, due to the unavailability of the ground information. Hence, we

consider the case where IPM is only available during the training time. We can

think of the IPM features and the stereo features as different modalities and apply

cross modal distillation [7] across them, and transfer knowledge from IPM features

to the stereo features. Hence, we use the IPM BEV representation as a supervisory
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Figure 4.3: SBEVNet-CMD overview. We first extract the image features given
the target and reference image. Using the pair of features, we create a stereo BEV
representation. During training time, we apply inverse perspective mapping (IPM) on
the image features which is used to predict the BEV layout separately. We minimize
the L1 distance between first K channels of both the BEV feature maps. During
inference time, we only use the stereo BEV representation to estimate the semantic
map.

signal for the stereo BEV features. This forces the stereo branch of the model to

implicitly learn the fine grained information learned by the IPM features. Rather

than concatenating the IPM BEV features with the stereo features, we minimize the

distance between them. We call this variant of SBEVNet as SBEVNet-CMD

(SBEVNet cross modal distillation). During the training time, the IPM BEV features

and the stereo features are used to generate the BEV semantic maps.

CIPM = U-Net(RIPM feat) (4.10)

Cstereo = U-Net(Rstereo) (4.11)
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This ensures both IPM BEV features and stereo BEV features learn meaningful

information. We jointly minimise the L1 distance between first K channels of the

features.

LKT = ‖RIPM feat[: K]−Rstereo[: K]‖L1
(4.12)

By this, we ensure that the stereo model can learn information that is not in the

IPM features. In our experiments, we found this to yield better results compared to

the approach of minimizing the L1 distance between all the channels of the features.

During test time, we only use the stereo features to get the BEV layout. Our

experiments show that the stereo model with cross modal distillation performs better

than the stereo model without cross modal distillation.

The total loss for SBEVNet-CMD is the sum of supervision loss from the two

feature maps and the L1 distance minimization.

Lc =
∑
i∈P

Vi · CCE(CIPM
i , Ch

i ) +
∑
i∈P

Vi · CCE(Cstereo
i , Ch

i ) + LKT (4.13)

4.6 Disentangling Segmentation and Disparity

In this section, we propose SBEVNet-disentangled, a variant of SBEVNet where

the disparity and segmentation are explicitly disentangled. This is done by having

separate disparity and segmentation branches. Both the disparity branch and the

segmentation branch have separate feature extraction networks. The disparity branch

learns disparity probabilities which are used to project the image features of the

segmentation branch in bird’s eye view. The image features in the segmentation

branch are also used to learn the front view semantic segmentation, whereas a

self-supervised disparity estimation loss is applied in the disparity branch.

4.6.1 Disparity Branch

In the disparity branch, we use a convolutional encoder to extract image features

FR and FT for the reference image and the target image respectively. Like previous

model, these features are used to compute a disparity feature volume Vfea of size
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Figure 4.4: SBEVNet-disentangled overview. In this model, the segmentation branch
is separate from disparity branch. We first extract image features in both the
branches using separate networks. In the disparity branch, a self-supervised disparity
loss is used to compute disparity probability volume which is used to project the
segmentation features in the bird’s eye view. Inverse perspective mapping also applied
on the reference image and the segmentation features.
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H ′ × W ′ × D × 2C. We then pass the feature volume through a series of 3D

convolution layers with skip connections to learn higher level features. We then apply

a 3D convolution block with softmax activation to get a disparity probability volume

Vdisp of size H ′ ×W ′ ×D × 1. The softmax is applied on the 3rd dimension of Vdisp

such that for a given image pixel, the sum of disparity probabilities is equal to one.

We then apply a self-supervised disparity loss to learn the disparity probabilities. In

that loss function, we first warp the target image to the view of the reference image

using the disparity probably volume and compute the distance with the reference

image.

4.6.2 Segmentation Branch

In the segmentation branch, we extract image features Fseg only for the reference

image. This is done by passing IR with a convolutional encoder which is separate

from the disparity branch. The image features Fseg are used for both front semantic

segmentation and bird’s eye view segmentation. The front semantic segmentation

Cfront is computed by applying some 2D convolutions on Fseg.

Cfront = Mfront(Fseg) (4.14)

The image features Fseg are also projected to bird’s eye view using the disparity

probability volume Vdisp. To do that, we first create a volume of the image features

in the disparity space. This volume Vseg is made by masking the image features with

disparity probabilities for all disparity levels.

Vseg[u, v, d, :] = Vdisp[u, v, d] · Fseg[u, v]∀u, v, d (4.15)

This volume is then reduced along height and warped into the bird’s eye view space

using an operation similar in the previous model. Just like the previous model, we

also do inverse perspective mapping RIPM feat and RIPM img on IR and Fseg respectively.

These three BEV feature maps are concatenated and passed to a U-Net model to

compute the BEV segmentation map.
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Chapter 5

Datasets

We use two real world datasets and a synthetic dataset to train and evaluate our

approaches. We use the CARLA [4] simulator to generate a synthetic dataset. For the

real world dataset, we use the publicly available KITTI dataset and a forest dataset.

5.1 CARLA Dataset

We use the CARLA [4] simulator to generate a synthetic dataset. We use a set of

standard paths in the CARLA environment and move the car along those waypoints.

We place two cameras on top of the car which look in front. Both of these cameras

are 0.2 meters apart and have identical rotation. We also place cameras in the air

looking at ground plane to get the ground truth semantic map. To ensure that we

evaluate the generalizability of the models, the training and testing are done on

entirely different city models in CARLA. Town01, Town02, Town03, and Town04

are used for training, and Town05 is used for testing. To get more diversity in the

images, we randomly change the cloudiness, precipitation, precipitation deposits, sun

azimuth angle and sun altitude angle. The training set contains 4,000 pairs of stereo

images and the testing set contains 926 pairs of stereo images. The classes we use for

the semantic map are road, vegetation, car, sidewalk, and building. The bounds of

the layout with respect to the camera are -19 to 19 meters in x direction and 1 to 39

meters in the y direction.
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Figure 5.1: Sample frames of our dataset collected using the CARLA [4] simulator.
The visibility mask is used to determine which areas in the BEV segmentation map
are in the view of the front camera.

5.2 KITTI Dataset

We also evaluate SBEVNet on the publicly available KITTI [5] dataset. Similar to

Mani et al. [15], we use the KITTI odometery subset and use the SemanticKITTI

[1] dataset for labeled ground truth point clouds. LiDAR is used to determine the

areas in the BEV map which are visible from the front facing camera. We use the

same training/testing split as used by Mani et al. [15], where separate sequences

are used for training and testing. The sequences numbered 00, 07 and 10 are used

for testing and rest of them are used for training. The training set contains 3,278

stereo image pairs and the testing set contains 1,371 stereo image pairs. The classes

we use for the semantic map are road, vegetation, car, sidewalk, and building. The

bounds of the layout with respect to the camera are -19 to 19 meters in x direction
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and 5 to 43 meters in the y direction. Apart from the KITTI odometry subset, we

also experiment with the KITTI object subset which only contains cars in the BEV

semantic map.
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Figure 5.2: Sample frames of the KITTI [5] dataset prepared for BEV segmentation.
The visibility mask is used to determine which areas in the BEV segmentation map
are in the view of the front camera.

5.3 Forest Dataset

We also evaluate SBEVNet on a dataset collected in a forest environment. The

dataset is collected by driving a utility task vehicle with a mounted stereo camera rig.

The stereo setup contains four cameras vertically on top of each other. The first and

the fourth cameras are grayscale near-infrared spectroscopy (NIR), the second camera

is a standard RGB camera and the third camera is a thermal camera. However,

we only use the two NIR gray-scale cameras for our experiments. The vehicle also

contains a Velodyne’s VLP-16 LiDAR sensor to capture ground truth 3D data.
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Figure 5.3: Sample frames from our forest dataset. The BEV segmentation maps are
sparse because they are generated using LiDAR data.

First the images are human annotated for standard semantic segmentation. Then

we use the LiDAR scan to project the segmentation annotation in the bird’s eye view.

The LiDAR data is very sparse, which results in very sparse BEV maps. Hence we

expand the projected points by few pixels. The visibility mask is also created using

LiDAR data.

The training set contains 1,114 stereo image pairs and the testing set contains 369

stereo image pairs. The classes we use for the semantic map are trees, road, rocks,

vegetation small and vegetation large. The bounds of the layout with respect to the

camera are -7 to 7 meters in x direction and 1 to 15 meters in the y direction.

24



5. Datasets

The main challenges for this dataset are:

1. The stereo pair images are in gray-scale rather than RGB. The lack of color

information makes the semantic segmentation harder.

2. This dataset requires vertical stereo instead of horizontal stereo. Hence SBEVNet

cannot be used as it is.

3. The ground truth BEV segmentation maps are very sparse and of low range.

Dataset
# Training

Samples
# Testing
Samples

Input
Resolution

Classes BEV Range

CARLA 4,000 936 512x228
road, vegetation,

car, sidewalk, building
38m x 38m

KITTI 3,278 1,371 640x256
road, vegetation,

car, sidewalk, building
38m x 38m

Forest 1,114 369 512x384
trees, road, rocks,
vegetation small,
vegetation large

14m x 14m

Table 5.1: Details of CARLA, KITTI and the forest dataset.
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Chapter 6

Experiments and Results

6.1 Evaluation Metrics

As not all the regions of the ground truth layout are visible from the camera, we

only consider pixels of the layout which are in the field of view. For evaluating the

semantic map, we use macro averaged intersection over union (IoU) scores for the

layout pixels which are in the visibility mask. We report the IoU scores for each

semantic class separately.

6.2 Compared Methods

There are no previously reported quantitative results for the task of stereo layout

estimation in our setting. Thus, we evaluate appropriate baselines which are prior

works extended to our task.

1. Pseudo-LiDAR [21] + segmentation: Uses Pseudo-lidar with PSMNet to

generate a 3D point cloud from the input stereo images which is used to project

the semantic segmentation of the front view to the bird’s eye view. The PSMNet

is trained separately on the respective datasets for better performance.

2. Pseudo-LiDAR [21] + BEV U-Net: The RGB 3D point projected in the

BEV aligned with the ground truth layout is used to train a U-Net segmentation

network.
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Method mIoU Road Vegetation Cars Sidewalk Building

Pseudo-LiDAR + Segmentaion 25.63 37.64 16.40 35.15 25.44 13.50
Pseudo-LiDAR + BEV U-Net 36.61 63.55 31.87 45.64 29.97 12.01

IPM + BEV U-Net 32.30 66.36 15.24 41.37 32.77 5.78
MonoLayout 22.16 52.88 9.00 16.36 23.17 9.41

MonoLayout + depth 21.85 52.94 9.95 14.07 23.02 9.31
MonoOccupancy + depth 29.49 67.96 16.56 7.66 36.35 18.91

SBEVNet only stereo 36.10 64.74 31.85 39.76 30.01 14.14
SBEVNet stereo + RGB IPM 39.77 65.01 33.20 47.88 33.24 19.53

SBEVNet stereo + features IPM 42.29 71.29 29.79 51.97 38.46 19.95
SBEVNet-CMD 40.10 69.07 32.71 45.45 35.16 18.08
SBEVNet 44.36 72.82 32.07 55.32 40.69 20.78

SBEVNet-disentangled 46.68 73.29 39.83 56.32 42.83 21.14
SBEVNet Ensemble 47.92 75.36 35.33 60.17 44.25 24.47

Table 6.1: Quantitative results of semantic layout estimation on the CARLA dataset.

3. IPM + BEV U-Net: Inverse perspective mapping is applied to the input

image to project it to the BEV space which is used to train a U-Net segmentation

network.

4. MonoLayout [15]: This baseline uses MonoLayout to generate BEV semantic

map from a single image. Rather than using OpenStreetMap data for adversarial

training, we used random samples from the training set itself. The comparison

this baseline with stereo/depth based methods is unfair, and is provided only

for reference.

5. MonoLayout [15] + depth: The input RGB image concatenated with the

depth is used as an input to the MonoLayout Model. Depth is generated using

PSMNet trained on the respective datasets.

6. MonoOccupancy [13] + depth: The input RGB image concatenated with

the depth is used as an input to the MonoOccupancy Model.

We also evaluate some variations of our model to perform ablation studies. In

SBEVNet only stereo we exclude the IPM features and only use features derived

from the feature volume. To gauge the importance of IPM on RGB images and

features, we also try applying IPM only on RGB images (SBEVNet stereo +

RGB IPM) and IPM only on the features of the input image (SBEVNet stereo
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Figure 6.1: Qualitative results on the test set of the CARLA and the KITTI dataset.
The major mistakes in the predictions are annotated by a blue rectangle.

+ features IPM). We also evaluate the cross modal distillation model SBEVNet-

CMD. Finally, we evaluate our complete model (SBEVNet ) where we use stereo

features and IPM on both RGB image and its features. We also evaluate SBEVNet

Ensemble where we take an ensemble of SBEVNet with the same architecture but

different initialization seeds.

6.3 Network Details

SBEVNet is mainly composed of the following modules: image feature extractor,

disparity volume generator, disparity volume refiner, BEV representation generator
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Figure 6.2: Qualitative results on the test set of the forest dataset.

and BEV segmentation head.

6.3.1 Image Feature Extractor

We use the same feature extractor which is used in the basic model of PSMNet

[2]. The network architecture uses 4 residual blocks [8] and the kernel size of all

convolutions is 3x3. First, three convolutions with 32 channels are applied on the

images. Then 4 residual blocks of filters 32, 64, 128 and 128 respectively are applied.

The dilation factor of the last residual block is 2. The stride of all convolutions is

1 except the first convolution layer and the second residual block. This results in

the image features be 1/4 the resolution of the input image. Every convolution is

followed by a batch normalization layer and a ReLU activation.
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Method mIoU Road Sidewalk Cars Building Vegetation

Pseudo-LiDAR + segmentation 18.69 35.51 14.56 13.50 12.64 17.26
Pseudo-LiDAR + BEV U-Net 28.97 61.83 21.36 5.55 12.74 43.38

IPM + BEV U-Net 34.93 68.40 26.65 28.49 4.53 46.57
MonoLayout 25.19 64.36 20.53 2.43 2.59 36.05

MonoLayout + depth 21.48 55.80 16.19 1.91 3.03 30.46
MonoOccupancy + depth 29.16 70.52 22.17 7.11 5.25 40.77

SBEVNet only stereo 50.01 78.41 40.16 41.96 30.45 59.05
SBEVNet stereo + RGB IPM 49.56 78.37 39.83 42.47 28.34 58.80

SBEVNet stereo + features IPM 50.60 80.16 41.08 43.64 29.19 58.92
SBEVNet-CMD 50.73 80.59 41.67 43.16 29.13 59.37
SBEVNet 51.36 80.23 41.86 42.81 31.35 59.43

SBEVNet-disentangled 48.92 81.32 41.80 44.77 18.98 57.73
SBEVNet Ensemble 53.85 82.22 45.70 44.97 34.54 61.83

Table 6.2: Quantitative results of semantic layout estimation on the KITTI dataset.

Method mIoU Trees Road Veg-Small Veg-Large Rocks

Pseudo-LiDAR + segmentation 16.04 63.70 2.79 13.70 0.04 0.00
Pseudo-LiDAR + BEV U-Net 19.75 26.35 33.36 20.51 18.51 0.00

MonoLayout 12.31 33.32 5.64 7.70 14.87 0.00
SBEVNet 50.31 86.76 61.62 33.26 46.62 23.28

SBEVNet-disentangled 55.65 86.64 64.92 34.82 49.64 42.22

Table 6.3: Quantitative results of semantic layout estimation on the forest dataset.

6.3.2 Disparity Volume Refiner

The disparity volume refining module is used to learn some additional information

from the raw disparity volume generated. It is used to learn to match the features

for various disparities and learn the 3D information. We use several 3D convolutions

to refine the disparity feature volume which is created using concatenating features

of images shifted at various disparities. The disparity volume refining module uses

five residual blocks, where each block comprises of two 3D convolutions of kernel size

3x3x3 and 32 filters. Every convolution is followed by a batch normalization layer

and a ReLU activation.
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6.3.3 BEV Segmentation Head

The BEV segmentation head is applied on the generated BEV feature representation

to generate BEV segmentation map. We first apply a U-Net [16] on the BEV feature

map. The U-Net model consists of a down-sampling network and an up-sampling

network. The down-sampling network consists of 3x3 kernel sized convolution followed

by 2x2 max-pooling operations. We use convolutions of filter sizes 64, 128, 256, 512

and 512 respectively. The up-sampling network consists of transposed convolutions

with kernel size 3x3 and stride 2. The outputs from the corresponding down-sampling

convolutions are also concatenated. After the up-sampling network, we also apply

three residual blocks consisting of convolutions with kernel size 3x3 and filter size

256. Finally a pixel-wise classification convolution with kernel size 3x3 and filter size

same as number of classes to get the BEV segmentation map.

6.4 Implementation Details

We implemented SBEVNet using Pytorch. We use Adam optimizer with the initial

learning rate of 0.001 and betas (0.9, 0.999) for training. We use a batch-size of 3 on

a Titan X Pascal GPU. We use the same base network which is used in the basic

model of PSMNet. The input image size for the CARLA dataset is 512×288, the

input image size for the KITTI dataset is 640×256 and the input image size for the

forest dataset is 512×384 We report the average scores of multiple runs to account for

the stochasticity due to random initialization and other non-deterministic operations

in the network.

6.5 Experimental results

We report the IoU scores of all the methods on the CARLA, KITTI [5] and forest

dataset in Table 6.1, Table 6.2 and Table 6.3 respectively. As we can see from the

tables, SBEVNet achieves superior performance on all the datasets. We also observe

the increase in performance if we use both stereo information and inverse perspective

mapping. We do not use inverse perspective mapping in the forest dataset because

the ground is not planar and in some images ground is not visible. IPM yields a
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greater increase in performance in the CARLA [4] dataset because the ground is

perfectly flat. If we use only RGB IPM along with stereo, the results are slightly

worse on the KITTI dataset because the ground is not perfectly planar. We see that

degradation does not persist if we also use IPM on the image features. We can also

see an improvement in performance, if we take an ensemble of SBEVNet due to some

variance in individual models. For the KITTI dataset, we see a sharp improvement

over pseudo-LiDAR approaches because of inaccurate depth estimation. On the

other hand, our model does not depend on explicit depth data/model. The results

of MonoLayout [15] and MonoOccupancy [13] are inferior due to lack of any camera

geometry priors in the network. We also show the qualitative results on the test set

of CARLA [4] and KITTI [5] dataset in Figure 6.1. The qualitative results for the

forest dataset are shown in Figure 6.2. We see that in certain regions SBEVNet gives

outputs closer to the ground truth. For example, Psuedo-lidar fails to segment cars in

the KITTI dataset. For the CARLA and the forest dataset, there is an improvement

in results with the SBEVNet-disentangle model for all the classes. Whereas for the

KITTI dataset, the improvement is only for the road and cars class. We also observe

a drop in quality in the estimated layout as we move further from the camera.

6.5.1 Ablation Study

IPM on RGB image

For the CARLA dataset, we observe an increase of 3.67 in the mIoU score, on

concatenating IPM RGB with the stereo features. We observe an increase in IoU

scores for all the classes, with the biggest increase of 8.12 in the cars class. For the

KITTI dataset, there is a small decrease of 0.45 in the mIoU score. This is because,

the ground is not perfectly planar, hence the IPM RGB images do not exactly align

with the ground truth layout.

IPM on image features

If we apply IPM on the features of the input image and concatenate it with the

features from the stereo branch, we see an improvement in both the datasets. The

improvements in mIoU scores are 6.19 and 0.59 for the CARLA and KITTI dataset.
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The improvement is higher compared to the RGB IPM because image features contain

higher level information which is transformed to the BEV space.

IPM on both RGB image and image features

We see the greatest improvement if we apply IPM on both the RGB image and the

features of the RGB image. The improvements in mIoU scores are 8.26 and 1.35 for

the CARLA and KITTI dataset respectively. This is because the model is able to

exploit the different information present in RIPM feat and Rstereo.

Cross modal distillation

The performance of SBEVNet-CDM is in between of stereo only SBEVNet and full

SBEVNet. We see an improvement of 4.00 and 0.72 in the mIoU scores on the CARLA

and KITTI dataset, if we train the stereo model using cross modal distillation via

IPM features. During inference, the architecture of SBEVNet-CMD is the same as

the stereo only SBEVNet. This shows that CMD is able to transfer most of the IPM

knowledge to the stereo branch.

Minimizing distance between first K features

We also evaluate the approach, where we try minimizing the L1 distance between

all the channels of the IPM features and stereo features. We observe mIoU scores of

32.27 and 50.03 for the CARLA and KITTI dataset respectively. This is worse than

the mIoU scores achieved by minimizing the distance between first K channels. This

is because, if we enforce all stereo branch channels to be the same as IPM branch

channel, the stereo branch is unable to learn information that is not present in the

IPM features.

6.6 Further Analysis

6.6.1 3D feature volume analysis

One claim of our approach is that our model learns 3D information without any

explicit depth/disparity supervision. To validate this claim, we use the learned 3D
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Figure 6.3: Performance as a function of maximum distance from the camera. We
consider the pixels in the BEV layout which are atmost a certain distance away from
the camera.

feature volume to perform disparity estimation. We freeze all the weights and add

a small 3D convolution layer to perform disparity regression on the learned feature

volume. We also observe that the feature volume which is trained with cross modal

distillation via IPM performs better at the task of disparity estimation. For the

CARLA dataset, we find that the SBEVNet only stereo model has a 3-pixel error of

7.92 and with cross model distillation the 3-pixel error goes down to 6.84.

6.6.2 Distance from camera

We wish to quantify how our system performs as we move away from the camera.

Hence, we plot the IoU scores for the pixels in the BEV layout which are more

than a given distance from the camera (Figure 6.4) and for the pixels which are less

than a given distance from the camera (Figure 6.3). For both the KITTI and the

CARLA dataset, we observe that there is a drop in performance as the distance from

the camera increases. We also observe that SBEVNet outperforms the stereo only

SBEVNet at all distances from the camera.

6.6.3 Amount of training data

We also quantify how the performance of SBEVNet changes with the number of

data-points in the training set, while keeping the test set same. On the CARLA

dataset, with just 10% of the training data, we get mIoU score of 26.10 compared to
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Figure 6.4: Performance as a function of minimum distance from the camera. We
consider the pixels in the BEV layout which are atleast a certain distance away from
the camera.
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Figure 6.5: Performance of the system as a function of amount of training data used.

the mIoU score of 44.36 with all the training data. For both the datasets, performance

starts to saturate when we use 100% of the training data. This shows that 3,000-4,000

training data points are sufficient for getting the optimal performance from SBEVNet.

6.6.4 Performance evolution during training

We also perform a qualitative analysis (Figure 6.6) of how the performance of the

model changes during training. We observe, during the initial stages of training,

the model learns to identify very course grained attributes such as the direction of

the road. However, there is ambiguity in detailed attributes such as size and exact
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 Figure 6.6: Evolution of predicted BEV layouts for different epochs during training

position. During the later stages of training, the model learns to identify the smaller

objects and exact positioning in the BEV space.

6.6.5 Ensemble

We observe some variance in the performance of the models on training with different

random seeds. For SBEVNet we observe a standard deviation of 2.16 and 2.46 in the

mIoU scores for the KITTI and CARLA dataset respectively. Due to the diversity in

outputs of the individual models [28], we see an improvement in the performance, if

we take an ensemble of individual models. We observe an absolute improvement of

2.49 and 3.56 in the mIoU scores for the KITTI and CARLA dataset respectively.

6.6.6 Inference time

On NVIDIA Titan X GPU, with the batch size equal to 1, the inference time of stereo

only SBEVNet for one input pair is 0.1307s on the average. For the full SBEVNet

the inference time is 0.1449s on the average, which is slightly higher than the stereo

only model. This inference speed is sufficient for majority of robotics applications.

The majority of computation is done in processing the 3D feature volume with 3D

convolutions.
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Chapter 7

Conclusions

7.1 Summary

In this thesis we proposed SBEVNet , an end-to-end network to estimate the bird’s

eye view layout using a pair of stereo images. We observe improvement in the IoU

scores compared with approaches that are not end-to-end or do not use geometry. We

also showed that combining inverse perspective mapping with the projected disparity

feature volume gives better performance. We also show that, using cross modal

distillation to transfer knowledge from IPM features to the stereo features gives us an

improvement in results. We also proposed a variant of SBEVNet which disentangles

disparity and segmentation, yielding better results.

7.2 Limitations and Future Work

Our work achieves good IoU scores on several classes, but still does not perform very

good on some classes such as the building class in CARLA and KITTI dataset and

vegetation class in the CARLA dataset. Another limitation of our work is that the

performance drops as the distance from the camera increases. This is because far

away objects have a very low disparity. Hence, using a depth volume rather than a

disparity volume might give us improvements. To create a larger dataset, we would

look into using areal images for the forest dataset. We are also looking into using
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domain adaptation to transfer knowledge from simulation to real world. As a part of

future work, we are also looking into other bird’s eye view applications such as height

map generation and object detection.
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Appendix A

Appendix

A.1 Results on KITTI object dataset

We also compare our method with the published numbers on the KITTI Object

dataset. We use the dataset and annotations provided by [15]. Here, there is only a

single cars class. We compare our approach with published monocular approaches

and 3D object detection approach on pseudo lidar with stereo input. AVOD + pseudo

lidar is an object detection method which also uses the large sceneflow dataset for

pre-training. More details of these baseline models can be found in [15]. Table A.1

shows the numbers on the KITTI object split which are provided by [15]. We observe

that our method achieves an improvement in the mIoU scores over all the other

methods. For segmentation, pixel level mAP is not a good metric as is does not

consider false negatives. We still report the pixel level mAP scores for reference.

Method mIoU mAP (pixel level)
ENet + Pseudo lidar input(Monodepth2) PointRCNN 0.24 0.37

PointRCNN + Pseudo lidar input(Monodepth2) 0.26 0.43
MonoLayout 0.26 0.41

AVOD + Pseudo lidar input(PSMNet) (Stereo) 0.43 0.59
Our (Stereo) 0.46 0.59

Table A.1: Quantitative results of BEV car segmentation on the KITTI object dataset.
All the results except SBEVNet are excerpted from [15]
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