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Abstract

Many medical interventions, such as drug delivery and biopsy, require
steering a needle towards the desired site. Robotic needle insertion can
potentially provide reliable needle access independent of practitioner
experience and availability. Significant challenges for achieving automatic
needle steering are: (1) tracking a needle using non-invasive imaging
techniques to provide image feedback of the needle shape and the target
location; (2) modeling the tissue deformation and needle bending to
accurately estimate the needed manipulation; (3) planning and replanning
the needle steering path to improve the safety of the steering procedure
and to adapt to the dynamic environment.

This thesis presents novel methods targeting the above challenges. Two
different algorithms are presented to track a partially visible needle using
2D ultrasound. One algorithm focuses on tracking a curved needle, and
the other algorithm focuses on tracking a straight needle utilizing both
computer vision and robot kinematics. We then present a mechanical
model-based steering planning algorithm to robotically insert an ordinary
clinical needle to successfully reach an internal moving target in the
presence of tissue motion and needle bending.
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Chapter 1

Introduction

Needle intervention enables many clinical procedures such as blood drawing, endovas-

cular devices insertion, and biopsy, but the intervention poses risk to critical anatomic

structures. The use of robotic support for needle steering and insertion can potentially

provide needle intervention independent of practitioner experience and availability.

Image-based feedback of the needle’s shape and position is required to close the loop

on fully autonomous needle insertion. Multiple medical imaging techniques can be

used to provide imaging feedback, such as MRI [17, 21], CT [6, 41] and ultrasound

[20, 47]. Among these techniques, ultrasound has several advantages. Ultrasound has

no ionizing radiation, making it safer to be used on patients. Ultrasound also requires

a smaller workspace and lower cost than MRI and CT, and it has a shorter imaging

time allowing it to provide real-time internal gray-scale images of patients. Among

different kinds of ultrasound imaging, 2D point-of-care ultrasound (POCUS) is used

most often because of its lower cost, increased portability, and ubiquity, making it

ideal to localize the needle inside the patients in real-time, whether in the emergency

room or at the patient’s bed side.

However, when the needle is inserted into heterogeneous tissue, the complicated

needle-tissue interaction can introduce multiple challenges to automatic needle steering

using 2D ultrasound as image feedback.

First, the needle-tissue interaction can bend the needle, and segmenting a curved

line inside the ultrasound images is challenging under interference from the tissue

layers. Another difficulty is that the bending needle can make the needle deviate
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CHAPTER 1. INTRODUCTION

from the image plane. Since the 2D ultrasound only shows a 2D plane of anatomy, a

small deviation from the image plane can make the needle become partially (or even

not) visible inside the ultrasound image.

Second, the needle-tissue interaction can move the critical structures and the

targets. For example, in vascular intervention, the inserted needle can introduce vein

deformation [13]. The motion of the targets and critical structures requires that the

robot should be able to re-plan the needle steering path to adaptively steer a needle

inside a dynamic environment.

This thesis provides multiple methods targeting the problems mentioned above.

A novel needle tracking algorithm is presented to track a partially visible curved

needle using 2D ultrasound, and a novel information-fusion algorithm is presented

to track a robotically inserted needle. We also introduce a new planning algorithm

based on both a rapidly-exploring random tree (RRT) [26] and Bubble Bending [53]

that can re-plan the needle steering path in dynamic environments where the critical

structures and the targets are moving slightly due to the needle-tissue interaction.

The rest of the thesis is organized as follows. Chapter 2 provides a literature

survey on 2D ultrasound needle tracking and robotic steering for ordinary clinical

needles. Chapter 3 introduces a novel partially-visible-and-curved needle tracking

algorithm utilizing a novel weighted RANSAC curve fitting algorithm combined with

a probabilistic Hough transform to track the curved needle robustly. Chapter 4

describes a new information fusion-based algorithm to localize a robotically inserted

needle by fusing the robot kinematics and ultrasound-based tracking. Chapter 5

presents a mechanical model of needle bending and new replanning algorithms to

guide a robot to steer the needle towards a moving vessel.
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Chapter 2

Related Works

2.1 Needle Localization in 2D Ultrasound

Ultrasound image guidance can provide visual feedback of the shape of the needle

and the locations of obstacles and target(s) to enable autonomous needle insertion

into non-rigid internal structures, such as inserting needle towards a vessel which

can bend, roll and shift [12, 13]. The ultrasound image feedback can bring multiple

improvements to the robot’s performance. Chen et al. [14] report that robotic

cannulation has a higher first-time success rate and shorter total time to access

with ultrasound image guidance than the tests without ultrasound even the tissue

conditions are different.

2.1.1 Needle Tip and Straight Needle Localization

There are multiple ways to track a needle inside the 2D ultrasound images. Some

works only focus on tracking the needle tip and ignore the needle shaft segmentation,

since the primary goal of robotic needle insertion is to let the needle tip reach a target.

Kaya et al. [29] propose the algorithms to track the needle tip using optical flow in

both lateral and transverse 2D US images. Convolutional Neural Network models

can also be used to localize the needle’s tip [46].

However, in needle control, the shape of the needle shaft is also important if the

control inputs include the insertion angle. Knowing the needle shape can also help us
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identify the needle bending to estimate the needed control input to control the needle

tip. However, the majority of the research assumes that the needle is a straight line

in the US images. Therefore, line detection algorithms such as Hough Transform [18],

RANSAC [28], and Maximum Likelihood Estimation Sample Consensus (MLESAC)

[45, 59, 69] are often used to detect the needle inside the ultrasound images. Some

researchers combine the segmentation algorithms with statistical filters to stabilize the

tracking results. For example, Mathiassen et al. [42] first use a search-based method

to estimate the needle axis in a region of interest (ROI) and then use statistical

filters to track the needle tip. Deep learning-based detection is also a recent trend in

needle localization. Mwikirize et al. [44] use a Fast-RCNN network to estimate the

needle trajectory roughly and then use phase-based features to refine the needle axis

estimation and localize the needle tip.

2.1.2 Curved Needle Localization

Needles can bend due to the interaction with soft tissue, and the needle deflection due

to the force interaction can cause inaccuracy in percutaneous therapies [1]. Curved

needle tracking can address the tip misplacement caused by needle bending and

improve the needle segmentation accuracy.

Previous research scans and localizes the curved needle in different ways. In

2D ultrasound, there are two scanning modes: transverse (out-of-plane) scanning

and longitudinal (in-plane) scanning. Transverse scanning scans the needle along

the needle axis and detects the needle cross-section in the ultrasound images to

reconstruct the needle shape. This method is often combined with robot kinematics

to reconstruct the needle shape in 3D. Waine et al. [64] localize the needle cross-

section with intensity thresholding and use RANSAC fitting to detect the curved

needle shaft. Li et al. [40] use thresholding and a Kalman Filter to track the needle

cross-section and use least-square fitting to fit a curved needle axis. Other methods

include detecting the comet tail artifact [29] or using blob detection [34] to detect the

cross-section. Vrooijink et al. [63] estimate needle’s 3D curvature using ultrasound

needle cross-section location and robotic kinematics. Zhang et al. [71] use Large

Margin Mask-RCNN to detect the cross-section of needles and use DBSCAN clustering

to localize multiple needles.
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Tracking curved needles in the longitudinal plane has the advantage that lon-

gitudinal scanning doesn’t require moving the probe to see the entire needle shaft.

Therefore, longitudinal scanning is more suitable for tracking an inserted needle in

real-time. Extension of line detection algorithms, such as Parametric Hough transform

[50] and RANSAC polynomial fitting ([10] and [30]) can be used. Ayvali et al. [7]

approximate the curved cannula as multiple line segments and use optical flow and

edge detection to track the cannula. However, these methods require that the needle

shaft is seen clearly. When the needle is bending, the misalignment between the

needle axis and the image plane makes the needle hard to be seen. If the needle is

partially visible or the images contain other bright structures, it will be harder to

localize the curved needle based on ultrasound images only.

2.1.3 Tracking a Partially or Hardly Visible Needle

Many factors can influence the visibility of needles in ultrasound images, such as the

size and placement of the needle and transducer properties [11, 54]. A needle can

hardly be seen in the ultrasound images due to bending and misalignment with the

image plane. There are relatively few methods to detect a needle when it is partially

out of plane and hardly visible. One method is to use other features instead of pixel

intensity to detect the needle. Hacihaliloglu et al. [25] use Log-Gabor filter to extract

phase-based features and select the region of interest inside the images, then use

MLESAC to estimate the needle trajectory of a partially visible needle. Another

idea is to detect the micro-motion of tissue introduced by the needle. Humans can

roughly estimate the needle location utilizing the temporal information and looking

at the moving region in the tissue even they can not see the needle in the images.

Czajkowska et al. [15] use a Histogram-of-Gradients approach to detect the tissue

motion and estimate needle location. Beigi et al. [8] use Support Vector Machines to

locate a non-visible needle based on time-domain features. However, the Histogram-

of-Gradients method has a strong assumption that the scanned region does not have

large relative movement to the ultrasound transducer, which is hard to achieve when

the subject is alive, or the scanning surface is not flat. The learning-based algorithm

has not yet shown its generalization ability.
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2.1.4 Information Fusion-based Needle Tracking

The ultrasound image-based needle tracking can fall short when the algorithms can

not detect the needle due to occlusion or misalignment. Besides the ultrasound-based

tracking algorithms, the robot’s forward kinematics can also estimate the location

of a needle. In robotic needle insertion, robotic kinematics can be used to localize

the needle with proper calibration [5, 32, 65]. The issue with relying entirely on

robot kinematics is the error introduced during calibration procedures or from needle

bending induced by external forces. The fusion of ultrasound-based localization and

robot kinematics-based localization has the potential to provide a more stable and

accurate needle localization. One way is to use robot kinematics as prior knowledge

of the needle location to assist computer vision-based localization algorithms. For

example, Chen [12] uses robot kinematics to build a probabilistic map of the needle

location, and he reports that computer vision improves needle-tracking accuracy

over purely kinematic tracking. Su et al. [57] use the kinematics to build a prior

mask on the RGB camera image for surgical instrument detection. Another way is

to use information fusion algorithms such as statistical filters to fuse the output of

different algorithms. For example, Mathiassen et al. [42] use a Kalman Filter or a

Particle Filter to track the needle tip, and they add the robot velocity measurement

in Kalman Filter and Particle Filter to increase the robustness and accuracy of needle

tip localization.

2.2 Needle Steering Planning

The survey in [1] shows that ordinary clinical needles can bend undesirably due to

interaction forces with the surrounding soft tissue, and the bending can influence

needle-steering accuracy in percutaneous therapies. The bending is hard to ignore

when reaching deep targets. However, purposeful ex-vivo manipulation can utilize

in-vivo tissue forces to deliberately bend the needle in vivo to reach around critical

structures and re-orient the needle-tip trajectory to reach deep moving targets. Thus,

it is important to account for needle bending in robotic needle steering applications.

Much previous robotic needle steering research focuses on steering flexible needle

(such as the nitinol needle) and models the needle tip kinematics as bicycle/unicycle

6



CHAPTER 2. RELATED WORKS

kinematics [67], nonholonomic stochastic model [51], duty-cycle spinning [43]. The

control inputs are axial rotation and insertion [55, 66]. The path planning algorithms

included variations of Rapidly-Exploring Random Tree (RRT) algorithm [22, 52, 70],

motion primitives-based planning [23] optimization-based planning [3, 19, 58]or

considering the motion uncertainty [4, 58]. The advantages of such models are

that the needle-tissue interaction model is much simpler. The planning and control

operation only needs to consider the needle tip position and orientation. However,

this model assumes that the needle stays in the tip cutting path and will not cause

large tissue displacement. This assumption is valid when the needle is flexible but

can be violated when the needle has larger stiffness.

For more rigid needles, most studies use mechanical models to estimate needle

deflection. The main challenge is that it is difficult to measure and model the forces.

Okamura et al. [49] measure the forces acting on a needle when it is inserted into

a liver sample and build a force model that includes capsule stiffness, friction force

and tip cutting force. Khadem et al. [31] divide the interaction into three phases

(puncturing, cutting, insertion and retraction) and test their model in inhomogeneous

tissue. With force models, many studies can model the needle as a beam reacting

to external forces. There exist several models for needle-tissue interaction forces.

The virtual spring model considers the tissue as a series of springs supporting the

needle. Neubach and Shoham [47] and Zhao et al. [72] both use virtual springs

to model tissue support forces in inhomogeneous tissue. Finite element models are

also common approaches. Adagolodjo et al. [2] use an inverse Finite Element (FE)

simulation to control a robot steering a needle into deformable structures. Dimaio

and Salcudean [16] use finite element analysis to analyze the tissue deformation and

needle bending.

Some research on mechanical model-based planning is about preoperative planning:

finding the best insertion location (Tsumura et al. [62], Zhao et al. [72]). However,

preoperative planning is sensitive to model uncertainty and the motion of internal

structures and cannot adjust the manipulation based on external feedback. DiMaio

and Salcudean [16] use an artificial potential field to plan the needle steering path.

While this method can adjust to the dynamic scenes, potential field-based planning

can be stuck at a local minimum. Lehmann et al. [39] use an optimization-based

method to find the best lateral force profile and adjust the tip trajectory using inverse
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kinematics. They do not consider complicated obstacles in the insertion scene, and

their goal is to minimize the needle deflection. Rapidly-exploring Random Tree (RRT)

is a method that can be easily implemented and widely used in robotics planning.

Xu et al. [70] use RRT to plan the needle insertion path in a 3D environment with

obstacles. Huang and Lei [26] propose the potential field-guided RRT with iteration

learning to plan the needle control sequence. However, their methods can not adjust to

dynamic environments. In needle steering, the environment often does not have rapid

and severe changes. Elastic Band algorithms can provide real-time path deformation

to avoid critical structures and adjust the target location. For example, Pinzi et al.

[53] use Bubble Bending, which is a variant of elastic band algorithm, to replan the

needle steering path smoothly.
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Chapter 3

Ultrasound-based Tracking of

Partially In-plane, Curved Needles

Chapter 3 is adapted from the publication: Wanwen Chen, Kathan Nilesh Mehta,

Bhumi Dinesh Bhanushali, and John Galeotti. “Ultrasound-Based Tracking Of

Partially In-Plane, Curved Needles.” In 2021 IEEE 18th International Symposium

on Biomedical Imaging (ISBI), pp. 939-943. IEEE, 2021.

Wanwen Chen’s contributions as the first author of the publication include: de-

veloping the algorithm, conducting the experiments, analyzing the data, writing the

manuscripts, and responding to reviewers with revisions. Kathan Nilesh Mehta and

Bhumi Dinesh Bhanushali are responsible for implementing a U-Net needle tracking

algorithm as a baseline comparison in this paper, and John Galeotti is the supervising

faculty advisor.

This chapter introduces a novel algorithm to track a curved needle in 2D ultra-

sound images. The algorithm includes a novel weighted RANSAC polynomial fitting

approach, which uses the agreement between the kinematics and the segmentation

to penalize inaccurate RANSAC fitting for increased accuracy with less influence

from similar tissue pixels. It can estimate the kinematic information, including the

needle’s entry point in the image, inserting angle and length, or utilizing kinematic

information from an actual needle-inserting robot.
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CURVED NEEDLES

3.1 Methods

Algorithm Overview

The needle must first be partially inserted so that its tip is visible in ultrasound.

The algorithm is then initialized with either a user-provided needle location, or an

external needle pose obtained from robot kinematics or electromagnetic tracking.

The algorithm first uses probabilistic Hough transform to detect a straight line. Once

the length of the detected needle exceeds a threshold, the algorithm uses our novel

weighted RANSAC approach to fit a polynomial curve. The detected needle is fed to

a Kalman filter to obtain stabilized locations of the needle tip and the insertion site.

Kinematic information is used to evaluate the detection and to reject outliers. The

process is described in the flowchart in Figure 3.1.

Figure 3.1: The flowchart of the curved needle tracking algorithm. The dashed line
means that the connection is optional.

Image Pre-processing

All the ultrasound images are filtered with a median filter to reduce speckle noise.

The images are cropped into a rectangular region of interest (ROI) that is 20 pixels

wider and deeper than the bounding box from needle tip to insertion site based on

the kinematics. The number of pixels is tuned by the insert speed and the image

resolution.

Kinematics Estimation

The needle kinematics estimation includes three kinematic variables to represent

the pose of the needle: insertion location, insertion length, and insertion angle. The

variables are used to reject outliers, which will be described later. The variables can

be calculated from the state of the Kalman filter when the external estimation is not

10



CHAPTER 3. ULTRASOUND-BASED TRACKING OF PARTIALLY IN-PLANE,
CURVED NEEDLES

available or can be estimated from external information such as robotic kinematics.

Curved Needle Tracking with Weighted RANSAC

The motivations of our weighted RANSAC are to assign higher weights to the

candidate pixels that have a higher probability of being the needle and penalize the

curve that deviates from the kinematics estimation.

The curved needle tracking algorithm will fit a third-order polynomial using our

novel weighted RANSAC in Algorithm 1. We first use thresholding to select pixels

with high intensity and significant response to a Sobel filter in order to detect the

edge of the needle. Then the algorithm discards the pixels that are too far away

from a straight-line approximation of the prior frame’s needle to reject outliers. The

distance threshold is necessarily increased in proportion to needle curvature. In our

experiments we set the threshold as 25 pixels for needles with a large curve and 10

pixels for others.

Our weighted RANSAC selects the curve with the highest weight as shown in

Algorithm 1. The weight is evaluating the possibility of the pixel belonging to the

needle. We consider four aspects: (1) the needle usually has higher intensity, (2) the

needle usually appears as a line in the images, so the pixels have a larger response to

the Sobel filter, (3) the needle might have large intensity changes since it can appear

or disappear in the images, (4) we want to add more weights to the pixels that belong

to the needle tip since our needle tip has a larger echo in the images. In Algorithm 1,

wp is the weight of the candidate pixel, wI is the min-max normalized intensity in the

ROI, wG is the min-max normalized response of Sobel filtering, wD is the min-max

normalized absolute difference with the last image, and wT is the distance between

the estimated tip location from the set of pixels: wT = exp(−(xT − x)/c), where x is

the current x coordinate of the pixel, xT = argmaxx|x− xK | (xK is the x coordinate

of the entry point in the Kalman filter), and c is a constant. To penalize deviation

from the insertion location on the side of the image, wK = 1/(log |yC − yK |). yK is

the y coordinate of the entry point in the Kalman filter, and yC is the estimated

y coordinate entry point on the curve, which is the value of xK of the estimated

curve. Curve fitting can fail for many reasons such as if the curved needle is partially

out of plane and doesn’t have good visibility. Therefore, we use three thresholds to

evaluate the result: the distance between the detected tip and the reference tip, the

distance between the detected and reference entry point, and the angle of the line
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that connects the tip and entry point. If any of these values exceeds its threshold,

we will switch to our more robust but potentially less accurate straight-line needle

approximation for that frame.

Algorithm 1 Pseudocode for Weighted RANSAC

procedure WeightedRANSAC(IROI)
P = Threshold(IROI) ∩ Threshold(Sobel(IROI))
P = Reject Outliers(P )
for p in P do

wp = wi × wG × wT × wD
maxw = 0, modelbest = None
while i ≤ Itmax do

Psample = Random Sampling(P )
model = Polynomial Fitting(Psample)
wcurve =

∑
p∈Pclose

wp × wK
if wcurve ≥ maxw then

maxw = wcurve, modelbest = model

i = i+ 1

Return modelbest

Straight Needle Tracking

We use probabilistic Hough transform [24] to detect a straight needle because

it has a smaller tip localization error comparing with straight line RANSAC and

Hough transform in [12]. The candidate pixels are provided by Otsu thresholding

in the ROI region. Of the resulting lines, we select the longest line meeting two

maximum-difference threshold tests: (1) the difference between the line’s angle and

the kinematic angle estimate, and (2) the difference between the line’s intersection

with its apparent insertion location and the kinematic estimate of the insertion

location. Since the needle might be partially visible, we adjust the length of the

detected needle: we extend the needle until it reaches the edge of the image at one

end and its length becomes equal to the length in the kinematics, and then search

along the deeper end of the needle. As in [47], the algorithm subtracts the previous

image frame from the current image frame, and the tip is the pixel having the largest

intensity change.

Kalman Filter

An Extended Kalman filter is used in the final stage of the process to stabilize
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the tracking. The state variables of the Kalman filter are the coordinate and speed

of the tip location, and the coordinate of the insertion location. The observation

variables are the detected tip and insertion location. If the distance between the

prediction from Kalman filter and the output of the tracking algorithm is smaller

than a threshold, the inserted location and angle in the kinematics estimation will be

updated to the prediction from the Kalman filter.

3.2 Experiments

We contain two part of experiments to collect both phantom and in-vivo images.

Phantom Experiments

The experiment setup is in Figure 3.2. The data was collected using a PaoLus

UF-760AG Portable Diagnostic Ultrasound Imaging Equipment (FUKUDA DENSHI,

UK) and a linear transducer with 51mm scanning width. The transducer was set

to 12MHz with an imaging depth of 4cm. The original frame rate was 94 fps but

was downsampled to 15.67 fps in testing. The gain value was 21dB. The dimension

of each image is 512 × 532 pixels, and the pixel pitch is 0.10mm horizontally and

0.075mm vertically. The images were cropped to 430× 496. The ultrasound probe

was held by hand, and all images were acquired from an anthropomorphic tissue

phantom with simulated blood vessels (Advanced Medical Technologies, WA). Four

2.5-inch echogenic needles were used, and three of which were pre-bent by differing

amounts. Each needle was inserted for 6 trials with an insertion angle between 30◦

to 60◦. Each insertion sequence had 50-80 frames. There were 384 test images for

straight needles, 364 test images for small curvature, 408 test images for medium

curvature and 373 test images for large curvature in total. We asked two graders to

contour the boundary of the needle shaft in the images. The needle axis is a third

order polynomial to approximate the average of the upper and the lower edges. The

needle tip is the end of the top edge.

In-vivo Porcine Experiments

We did in-vivo robotic needle insertion experiments into the legs of anaesthetised

pigs, and the illustration of the robotic mechanism is in Figure 3.3. The needles were

inserted into the muscle or toward the femoral artery. The data was collected using

the same ultrasound machine and transducer, with an imaging depth of 5cm. The
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frame rate is 30 fps and were downsampled to 10 fps in testing. The probe is fixed

to the end-effector of a UR5 robot arm (Universal Robots, Denmark), next to the

needle insertion mechanism. Before the insertion, we collected the ultrasound images

of the robot inserting the needle into a water tank, and we had a linear regression on

the x, y coordinate of the tip and the linear actuator feedback. The relation between

the linear actuator feedback and tip location then provided our kinematic estimates.

The images were captured by ROS for synchronization. The dimension of the images

is 503× 510 pixels, with pixel pitch being 0.10mm horizonally and vertically. One

grader was asked to label every third frame and in total, we have three valid insertion

trials, 527 test images, with 177 labeled images for evaluation.

We compare the result of probabilistic Hough transform, probabilistic Hough

transform with classical RANSAC (“classic RANSAC”), and probabilistic Hough

transform with our weighted RANSAC (“weighted RANSAC”), and a trained U-Net

[56]. We compare the metrics below: (1) error of the tip localization, which is defined

as the Euclidean distance between the detected and labeled tips, (2) tip angle error,

which is the absolute difference between the detected and labeled tip angles (the

tangent angle of the polynomials at the tip), (3) shaft fitting error, which is the mean

Euclidean distance between the pixels on the polynomial of the labeled needle to the

pixels on the detected needle which has the same x coordinate. When calculating

these metrics from U-Net, we used morphology before fitting a polynomial in phantom

images but without it in pig because it degrades the performance.

Figure 3.2: The image on the left is the phantom experiments set up, and the image
on the right are the curved needles used in phantom experiments.
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Figure 3.3: The robotic mechanism in the in-vivo experiments.

Needle Straight Small Medium Large

Tip 1.77± 1.29 2.30± 1.95 2.50± 2.53 2.61± 2.05
Shaft 0.60± 0.62 0.89± 1.09 0.56± 0.63 0.59± 0.59

Table 3.1: The maximum error of tip localization and shaft fitting compared with
two graders for our weighted RANSAC. All errors are in mm.

Method Tip error/mm
Test 1 Test 2 Test 3 Avg.

Method 1 3.30± 1.36 2.78± 1.85 1.81± 1.14 2.26± 1.46
Method 2 3.14± 1.51 2.78± 1.79 1.69± 1.06 2.16± 1.43
Method 3 3.08± 1.28 2.68± 1.77 1.47± 0.90 1.98± 1.35

Method Shaft fitting error/mm
Test 1 Test 2 Test 3 Avg.

Method 1 0.69± 0.29 0.57± 0.56 0.90± 0.89 0.81± 0.77
Method 2 1.00± 0.63 0.97± 0.91 1.16± 1.11 1.10± 1.00
Method 3 0.95± 0.52 0.77± 0.81 0.97± 0.86 0.94± 0.80

Table 3.2: Error of tip localization and shaft fitting in in-vivo experiment of inserting
a straight needle that slightly bent in the tissue. Method 1 is probabilistic Hough
transform, method 2 is classical RANSAC and method 3 is our weighted RANSAC.

15



CHAPTER 3. ULTRASOUND-BASED TRACKING OF PARTIALLY IN-PLANE,
CURVED NEEDLES

3.3 Results and Discussion

Phantom experiments: Our weighted RANSAC algorithm is implemented in

Python and C++, running at 11 fps (0.093 sec/image). Figure 3.4 shows that our

weighted RANSAC algorithm has the smallest error in tip localization, with the

quantitative results in Table 3.1. Figure 3.5 is an example of the results of the

tracking algorithms. The error of probabilistic Hough transform increases with the

curvature because it can fit only partial of the needle. Compared with our weighted

RANSAC, the classical RANSAC is less robust, with a larger shaft fitting error for

some needle curvatures and larger error in tip localization, showing that our weighted

RANSAC improves the performance of classical RANSAC. The reasons might be

that (1) our designed weights allow our weighted RANSAC to focus on more pixels

instead of only the bright structures that look similar to the needle (2) our weights

add more weights to the tip, so it has better ability to keep track to the needle tip

(3) our penalized kinematics also make sure that the selected curve does not deviate

from the kinematics too much.

To evaluate the performance of tip angle estimation, we selected the frames that

both our weighted RANSAC and classical RANSAC have a tip error smaller than

2mm and ran a two-sample two-sided t-test. The mean error of the tip angle in these

frames is 8.98◦ for weighted RANSAC, 9.67◦ for classical RANSAC, and 7.10◦ between

the graders. The null hypothesis is that the tip angle error of classical RANSAC and

weighted RANSAC has no difference. The p value is 0.049, showing that our method

has a significantly smaller error in tip angle estimation. The reason of the large error

in the angle fitting for all algorithms and in-grader comparison might be the needle

tip is hard to perceive sometimes. The U-Net model has a Dice loss of 0.34. The

tip error is 4.97 ± 5.99mm for straight needle, 3.14 ± 3.43mm for small curvature,

1.99± 4.17mm for medium curvature and 3.54± 3.59mm for large curvature. The

results of the U-Net model show the difficulty to segment the needle and clean the

false positive to detect the tip because the shaft is often partially visible, and similar

structures confuse the classifier.

In vivo experiments. Table 3.2 shows the in-vivo error of tip localization and

shaft fitting, and results are shown in Figure 3.5. The U-Net model has a Dice loss of

0.27. The test set is Test 1 and 2 in Table 3.2: the mean tip error is 2.70± 3.09mm,
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Figure 3.4: The accuracy of the tracking algorithms for different needle curvatures vs
two graders and between two graders (G1 vs G2). The point is the mean of the error,
and the line is the error bar.

and the shaft error is 2.71 ± 4.68mm. The U-Net has a better tip localization in

in-vivo experiments, but behaves poorly in shaft fitting. Our weighted RANSAC

performs better in localizing the needle tip than other classical methods. It has

worse performance in shaft fitting than probabilistic Hough transform, because the

natural curvature was small in a shallow stick and also because the complex, bright

tissue layers had undue influence on RANSAC. However, the needle tip is bright in

these test cases, and our weighted RANSAC tracks the needle tip well. We suspect

that future in-vivo studies of deeper needle punctures will include larger naturally

occurring needle bending, for which our method might have a greater performance

improvement over other methods.

A shortcoming of our algorithm is that it can not be initialized with computer

vision alone but rather needs human initialization or external measurements. However,

this is not a concern for robotic needle insertion, which is our primary application

and the subject of our experiments. Another problem is that it can’t consistently

discriminate a bending needle from other bright, gently curing nearby structures, such

as transverse vessel walls or tissue layers. Even on such a challenging problem, our

algorithm has high accuracy on tip localization, which is more important in needle

tracking.
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Figure 3.5: Results in phantom experiments (upper row) and in vivo experiments
(lower row). The images from left to right are the raw images and the results of
probabilistic Hough transform, classic RANSAC, weighted RANSAC and U-Net. The
solid line is the result of segmentation. The dashed line connects the tip and the
entry point from the Kalman filter.

3.4 Conclusion

This chapter presents a novel curved-needle tracking algorithm in 2D ultrasound.

This approach was validated with different needle curvatures in phantom and in-vivo

robotic needle insertion experiments. It achieved higher overall accuracy than the

other algorithms we tested, especially for needle-tip localization. Future work may

include automatic tracking initialization or multi-algorithm fusion with machine

learning.
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Chapter 4

On-line Information Fusion-based

Needle Tracking in Ultrasound for

Robotic Needle Insertion

Chapter 4 is adapted from the manuscript: Wanwen Chen, Evan Harber, Nicolas

Zevallos, Kirtan Patel, Yizhu Gu, Kenneth Sladick, Raghavv Goel, Howie Choset,

and John Galeotti. “Real-time Needle Tracking in Ultrasound for Robotic Needle

Insertion.”

This chapter presents the original work of Wanwen Chen, whose specific con-

tributions as first author of the publications include: developing the needle tracking

algorithm, analyzing the data, writing the manuscripts and responding to reviewers

with revisions. Evan Harber and Nicolas Zevallos are responsible for the needle control

algorithms and experiments. Evan Harber and Raghavv Goel are responsible for

the needle kinematics calibration. Kirtan Patel, Yizhu Gu and Kenneth Sladick are

responsible for designing the needle insertion mechanism. Howie Choset and John

Galeotti are the supervising faculty advisors.

This chapter introduces a new data fusion algorithm that combines robot kine-

matics and computer vision to track the needle robustly with the time-delay and

online asynchronous tracking from ultrasound images. The contributions of this work

include:

1. an ultrasound image-based needle tracking algorithm to estimate the location
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Figure 4.1: The two degrees of freedom (DOFs) needle insertion mechanism mounted
to a UR3e arm along side an ultrasound probe.

of a poorly visible needle;

2. an adaptive Kalman filter-based data fusion method to localize the needle fusing

the measurements from ultrasound-based tracking and robotic kinematics, and

the method to use the ultrasound-based tracking to correct the kinematics

estimation on-the-fly;

3. an approach for fusing asynchronous and time-delayed data in from visual track-

ing and robot kinematics, making them more flexible for real-time applications.

4.1 Methods

In this section we introduce the three individual needle tracking methods that comprise

our novel needle tracking algorithm, and the data fusion method.

4.1.1 Robot Kinematics

Insertion Mechanism

We used a system designed for the development of automatic femoral access as seen

in Fig. 4.1. Specifically we focused on the last two degrees of freedom of the system
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(Fig. 4.2), the angular and the linear degree of freedom (DOF). Together they can be

used to control the angle and depth of the needle tip in the 2D ultrasound image.

Based on our mechanical constraints, we derive the following functions to map

angular and linear actuator feedback to needle tip position:

xpixel = (pll + loff ) cos(pθθ + θoff )xscale − xoff (4.1)

ypixel = (pll + loff ) sin(pθθ + θoff )yscale − yoff (4.2)

Where l and θ are the feedback from the angular and linear DOFs, pl, loff , pθ, θoff

are parameters in linear functions to convert the actuator feedback to insert length

and angle. xoff and yoff are the location of the center of rotation in pixel space and

xscale and yscale are ultrasound scaling factors due to distortions of the ultrasound

image. In total this gives 8 parameters necessary to estimate the forward and inverse

kinematics of the needle in the ultrasound image frame.

Figure 4.2: The diagram on the left shows the simplified mechanism design with its
two DOFs used to measure the position of the needle in the ultrasound frame. The
right half shows our calibration result converting the feedback from the actuators to
the ultrasound image plane. The black dots are the detected tip locations from the
Hough transform, and the red dots are the selected tip locations filtered out due to
noisy detection. The blue lines are the calibrated kinematics.
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Kinematic Calibration

The calibration routine is to fit the 8 parameters described in Eq. 4.1 and Eq. 4.2. We

place the ultrasound tip in a water bath to provide clear images and free movement

of the insertion mechanism without any outside forces. Next, we discretely sweep

linear and angular actuator positions, covering the entire workspace of the mechanism.

In order to estimate the tip of the needle we use the Otsu thresholding and Hough

transform described in Sec. 4.1.2, to automatically estimate xh and yh as our ground

truth needle tip locations. From here the 8 kinematic parameters can be optimized

to reduce reprojection error of the needle tip (xpixel, ypixel) in Eq. 4.3.

∑
(xi,yi)

[(xipixel − xih)2 + (yipixel − yih)2] (4.3)

4.1.2 Probabilistic Hough Transform

The Probabilistic Hough transform [33] is a line detector which is a variant of the

Hough transform. A Hough transform uses the line equation r = x cos θ + y sin θ

to associate line parameters (r, θ) with point (x, y): given a single point (x, y) in

the image plane, the set of all possible lines going through this point corresponds

to a curve in (r, θ) plane. Hough transform finds the intersection points in the (r, θ)

plane, meaning that the straight line with the parameters passes considerable points

in the (x, y) plane. The Probabilistic Hough transform randomly selects a subset of

the points as the input for the Hough transform to improve the efficiency with little

impairment on the performance.

We use probabilistic Hough transform because it has higher needle tracking

accuracy and speed than Hough transform and RANSAC in [12]. Before the detection,

the images are cropped into a rectangular region of interest (ROI) 20 pixels wider

and deeper than the bounding box from needle tip to insertion site based on the

kinematics. Then the candidate pixels are selected by Otsu threshold. Of the resulting

lines, we select the longest line meeting two maximum-difference threshold tests: (1)

the absolute difference between the line’s angle and the kinematic angle estimation,

and (2) the Euclidean distance between the line’s insertion location and the kinematic

estimate of the insertion location in the image coordinate system. In our dataset, the
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thresholds are set to be 8◦ in angle difference and 30 pixels in the distance between

the insertion location.

4.1.3 Optical Flow-based Tissue Motion Segmentation

The idea of this algorithm is to detect the motion introduced by the needle insertion

in the images. When the needle is inserted, the needle motion often introduces tissue

motion locally, and experienced clinicians can tell the needle location based on the

tissue motion even if the needle is not seen in the ultrasound. Live tissue usually

has visible structures and small structures that produce speckle noise, both of which

allow block matching [35, 47] or optical flow [27, 60] to use these features to track

the pixel-level motion in ultrasound images. We specifically use Brox Optical flow [9]

to estimate the pixel-level motion, then estimate and subtract a global affine motion

from the motion vectors to obtain the dense optical flow. The graph-based min-cut

segmentation in [68] is used to segment the dense optical flow. The segmentation

algorithm assigns every pixel x with a binary label L(x) into “static” and “moving”

regions. Suppose L(x) = 0 is “static” and L(x) = 1 is “moving”. The algorithm finds

L(x) which minimizes the energy in Eq. 4.4, and in our dataset we set λ = 1.5. The

static likelihood ξstatic is set to 1, while the motion likelihood ξmotion is calculated

using Eq. 4.5, where ~vof is the flow vector of the pixel, ~vrobot is the unit vector of

the insertion direction estimated by the forward kinematics multiplied by a tuning

scalar k. We set k = 2 after tuning. The likelihood of the pixel which is recognized

as “moving” in the previous frame will be multiplied by a constant scalar α (we set

α = 3 in our dataset) to improve the consistency of the segmentation in the video. To

ensure the continuity of the region, we also include a neighbor cost ξn = ||~vx̂ − ~vx||2,
where x̂ is the pixel of 4-neighborhood of pixel x.

E =
∑
x

−L(x)ξmotion − (1− L(x))ξstatic − λ
∑

x̂∈N4(x)

ξn (4.4)

ξmotion = ||~vof · ~vrobot||k (4.5)

After the moving region is segmented, the direction of the needle is estimated by

the first component of principle component analysis relative to the center of the region
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Figure 4.3: The block diagram of the needle tracking algorithms. The arrows represent
the communication between the different nodes.

and the optical flow direction. We select the direction that has the smallest difference

from the estimation from the robot kinematics. We then draw a line from the center

of the moving region along the selected direction until it reaches the region’s boundary.

The needle axis is the line that passes the region center, and the needle tip is the

intersection of the needle axis and the region’s boundary.

4.1.4 Data Fusion

The above three tracking methods are implemented in python using the Robot

Operating system (ROS) to run independently in three different nodes whose detection

results (the tip location and the insertion location) are published to the other nodes

(Fig. 4.3). Our proposed information fusion has three aspects:

1. Kinematics estimation is used as a reference in the image-based needle detection

as described in 4.1.2 and 4.1.3.

2. Kinematics calibration update: The kinematics calibration is often inaccurate

because (1) When the needle punctures through the skin and tissue layer, the

insertion angle introduces deflections [61]; (2) Ultrasound artifacts encountered

during calibration interfere the Hough transform detection, so the result of the

ultrasound-based detection is often noisy.

We use ultrasound-based tracking to correct the kinematics estimation. When the

outputs of the two ultrasound-based tracking algorithms pass a maximum-difference

test of the tip location and angle, we trust the estimation from the ultrasound

images and update the kinematics parameters based on the visual detection. The

measurement from probabilistic Hough transform is used to optimize parameters,
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because probabilistic Hough transform is more accurate than the tissue motion-based

detector. We use the same optimization procedure in the kinematics calibration to

optimize the new xoff , yoff , loff and θoff to minimize the cost function Eq. 4.6,

where (xpixels, ypixels) and θpixels is the tip and insert angle estimated from robotic

forward kinematics, (xh, yh) and θh is the tip and insert angle detected from the

probabilistic Hough transform. We found that these 4 parameteres were enough to

’fix’ the error in the kinematics previously mentioned.

∑
i

(xipixels − xih)2 + (yipixels − yih)2 + (θipixels − θih)2 + ∆p (4.6)

Where ∆p is the change in parameters from the calibrated values.

3. Kalman filter: An adaptive Extended Kalman filter (EKF) which is able to take

the measurements with time-delay and asynchronous measurement modified from

[48] is used to fuse the estimation from kinematics and ultrasound-based detection.

The states of the EKF are the insert location, angle, insert length and insert speed in

the ultrasound image coordinate system, as in Eq. 4.7. The kinematics model and

the observation model are in Eq.4.8, 4.9 and 4.10. The detection from probabilistic

Hough transform, optical flow-based motion detector and robot kinematics are the

measurements to update the Kalman filter. Inspired by [37], we adapt the intersec-

tion over union (IoU) of the bounding box between the detection from kinematics

estimation and the ultrasound-based estimation to give a confidence score to the

detection. The confidence score is used as a scalar to adjust the covariance of the

measurement. When the detection is of lower confidence, the covariance matrix will

divide the confidence score, making this detector has less effect in the Kalman Filter

update. Because the Kalman filter only needs to do small matrix operations, it can

keep publishing its estimation of the needle localization at 100Hz, having the potential

to return tracking estimation in real-time.

X = [px, py, θ, l, v]T (4.7)

Xk = FXk−1

yk = HXk

(4.8)
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F =


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 dt

0 0 0 0 1

 (4.9)

H =


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

 (4.10)

4.2 Needle Tracking Experiments

All the images are collected using a PaoLus UF-760AG Portable Diagnostic Ultra-

sound Imaging Equipment (FUKUDA DENSHI, UK) and a linear transducer (51mm

scanning width). The transducer was set to 12MHz with an imaging depth of 5cm.

The gain value was 21dB. The images were captured by ROS for synchronization

with 30 fps. The dimension of the images is 503× 510 pixels, with pixel pitch being

0.10mm horizontally and vertically. Furthermore, the angular DOF was controller by

H42P-020-S300-R Dynamixel. The linear DOF was controlled by PA-12-22017512R

linear actuator with an 18 Gauge GWI1802 guide wire introducer needle mounted at

the tip.

The proposed tracking algorithm was evaluated in in-vivo robotic needle insertion

experiments. The needles were inserted into the muscle or toward the femoral artery

of anesthetized pigs. During the insertion, the angular degree of freedom is set to be

a constant 45◦ based on clinicians’ recommendation. Afterwards, two graders were

asked to label the videos using the Computer Vision Annotation Tool using a straight

line to label the tip location and the insertion location. The dataset includes three

insertion attempts into the artery and three attempts of insertion into muscle. In

total, there are 2037 images for muscle insertion and 5147 images of artery insertion

attempts.

The evaluation metrics for the needle tracking algorithms are: (1) the mean

Euclidean distance of the tip localization, (2) the mean absolute error between the
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angle, (3) the dropout rate, which is the ratio of the number of images for which the

needle cannot be detected to the total number of test images in the trial. For the

individual modules, we test them offline by time synchronizing the data source and

running the individual needle detection algorithms. We compare the three different

tracking modules in our algorithms with the fusion result in Table 4.1. The result

shows that our proposed fusion algorithm improves the accuracy of tip localization,

which is the most important metrics in needle tracking, using multiple tracking

methods with lower accuracy.

Table 4.1: Quantitative evaluation of the individual modules and the final results
from our needle tracking algorithm.

Algorithm HoG Optical Flow Hough Transform Robot Kinematics Kalman Filter In-

Grader 1 2 1 2 1 2 1 2 1 2 Graders

Tip muscle 27.5± 8.9 28.0± 8.9 6.3± 4.9 6.6± 5.1 4.6± 4.1 4.7± 3.9 5.0± 2.1 5.2± 2.2 3.6± 3.0 3.8± 3.1 1.2± 0.8
Error/mm artery 17.5± 7.9 17.6± 7.9 6.1± 4.8 5.9± 4.9 3.0± 2.6 3.0± 2.6 5.2± 1.2 5.3± 1.3 4.0± 2.2 4.0± 2.3 0.5± 0.4

Angle muscle 6.4± 8.4 6.5± 8.6 18.6± 13.4 18.1± 13.8 3.7± 2.8 3.7± 2.8 3.5± 2.0 3.3± 2.9 4.5± 4.4 4.4± 5.3 1.0± 1.0
Error/◦ artery 14.1± 15.5 13.6± 19.0 21.4± 12.9 21.9± 19.3 3.7± 2.8 5.5± 14.6 3.0± 2.4 6.4± 13.7 4.8± 5.1 7.1± 13.8 3.8± 13.6

Dropout muscle 22% 30% 75% 0% 0% /
Rate artery 83% 69% 83% 0% 0% /

Figure 4.4: Example images for different needle tracking algorithms. The upper
row is the tracking for artery insertion, and the lower row is the test trial of muscle
insertion. The blue line is the estimate line in the image. The green and red boxes
are the detected moving regions using the HoG-based motion detection.

Different algorithms have different dropout rates and tracking accuracy. The

probabilistic Hough transform has the highest dropout rate since the complicated

structures in the ultrasound disturb the detection, along with the needle being hard

to perceive in some frames. The optical flow has a higher dropout rate, but the

accuracy is lower than other detection because it is influenced by local motions such
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as the pulses from a vessel. It also has difficulty detecting a needle when the needle

insertion stops. The robotic kinematics has a zero dropout rate because it is stable

data source, but the calibration error introduces large error in needle tracking. Our

algorithm successfully combines their advantages to keep track of an inserted needle

under difficult situations, providing a reliable estimation of the needle tip location for

the controller of robotic needle insertion. For the needle angle estimation, the robotic

kinematics has the lowest estimation error. The large inter-grader disagreement in the

angle estimation shows that the needle angle is hard to estimate from the ultrasound

images because the needle shaft is often partially visible. Hence the image-based

segmentation degrades our algorithm’s performance. However, the accuracy of tip

localization is more important in our application.

To evaluate our optical flow-based motion detection algorithm, we compare it

with the state-of-the-art Histogram-of-Gradient-based motion detector in [15]. Their

algorithm compares the histogram of gradients of the current image with a pre-

collected static image to find the moving region. We use an average of 50 images

before the insertion start as the static image. The quantitative result in Table 4.1

shows that our proposed optical flow-based motion detector performs much better

than the HoG-based tissue motion detector. Figure 4.4 shows that the HoG-based

motion detector overestimates the moving region. This is because in the in-vivo

experiments the breath and heart-beat of a subject can introduce external motions.

Compared with the HoG-based detector, our proposed optical flow-based detector is

more reliable in in-vivo studies. The optical flow-based detector only compares the

current image with the previous image in a short time interval, so that accumulated

large motions are ignored. Furthermore, we estimate a global affine motion from

the motion flow so that the component of motion from probe movement can be

eliminated.

4.3 Needle Insertion Experiments

In order to further evaluate the performance of our data fusion algorithm, we performed

needle insertion experiments using the robotic system shown in Fig. 4.1. For each

trial, the robot was moved to a new position on the chicken breast, the kinematics

were reset to their original calibrated state, a target point was chosen within the
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Figure 4.5: The change of the targeting error with different insertion attempts. The
red lines are the test trials with kinematics update and the blue lines are the test
trials without update. Different trials are distinguished by the linestyle.

workspace of the mechanism, and the needle was inserted five times. The needle

tracking algorithm is used to track the needle and to provide kinematics update.

We tested the performance of the system with and without the kinematics update.

The ground truth was estimated by asking one grader who was not present for the

experiment to label the location of the needle tip when the insertion stopped. Fig. 4.5

shows that our proposed data fusion algorithm greatly improves the performance of the

mechanism and reduces the distance of the needle tip to the goal. The targeting error

is reduced 3.61± 0.44 mm on average when the controller has kinematics update and

only 0.37± 0.23 mm without the update procedure. The percentage of improvement

between the first and last attempts is 66.72% for the tests with kinematics update

and only 7.15% for the tests without kinematics update. The results show that

our information fusion-based algorithm is able to update the kinematics calibration

parameters during the insertion to improve the targeting accuracy.
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4.4 Conclusion

We introduce a novel data fusion algorithm to track a needle inserted by a robot which

has higher tip localization accuracy then individual algorithms and a zero dropout

rate. We also propose a new algorithm for needle detection in 2D ultrasound images

by estimating the tissue motion induced by needle insertion, which is more robust

than the state-of-the-art tissue motion-based detector. Our data fusion algorithm

achieves robust on-line needle tracking, which can be applied in the control of robotic

needle insertion.
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Chapter 5

Planning Robotic Lateral

Manipulation with Ordinary

Deflecting Clinical Needles

Parts of Chapter 5 are adapted from the manuscript: Wanwen Chen, Blake

Buchanan, Evan Harber, Howie Choset, and John Galeotti. “Planning Robotic

Lateral Manipulation with Ordinary Deflection Clinical Needles by Potential Field-

guided RRT.”

This chapter presents the original work of Wanwen Chen, whose specific con-

tributions as the first author of the publications include: developing the mechanical

model, steering simulation and planning algorithms, analyzing the data, writing the

manuscripts. Blake Buchanan’s contributions include giving feedback on the mechani-

cal model and planning algorithms. Evan Harber is responsible for data collection in

the model verification experiment. Howie Choset and John Galeotti are the supervising

faculty advisors.

This chapter proposes path planning methods based on a cantilever beam model.

Two methods are compared, each of which is able to adapt to dynamic environments

where both the target vessel and critical structures are moving. The primary con-

tributions are: (1) a novel, broadly applicable model that is suitable for ordinary

clinical needles of different stiffness, size and with either symmetric or asymmetric

tips, (2) a novel artificial potential-guided Rapidly-exploring Random Tree (RRT)
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planning algorithm that does not require specifying a fixed starting point and (3)

extended planning methods that work in dynamic environments.

The method can be divided into two parts. First is the mechanical model of the

needle-tissue interaction. In this part, the model predicts how the needle shape will

change given the lateral manipulation, current tissue layout, and current needle shape

in the simulation. The model is also used to calculate the Jacobian matrix to estimate

how to move the needle base given the desired tip location. The second part is the

planning method: given the tissue layout and the current tip location, the planning

algorithm should be able to give a desired tip steering path.

5.1 Needle Tissue Interaction Modeling

Our mechanical model leverages [39] in the development of modeling the motion at

the needle base. As in [39], we model the needle as a cantilever beam y(x) with the

free end inserted into the tissue, but we consider its base to move under actuation.

This model assumes that when the needle is in its tip cutting path (the trajectory of

the tip), the tissue does not have deformation. The tissue is modeled as a series of

virtual springs connected to the needle, and the tip cutting path is the free end of the

spring in its “relaxed” position. When an external force is applied at the base, the

needle is pushed, moving it away from the tip cutting path, compressing or expanding

the tissue as it moves. The amount by which the free end of the virtual spring was

displaced from its “relaxed” position can be estimated by the difference between the

shape of the needle and its natural cutting path.

The model assumes that the system is quasistatic to use the Rayleigh-Ritz method.

The potential energy of the system is given by Eq. 5.1, where Πneedle is the strain

energy stored in the needle, Πtissue is the compression energy stored in the tissue,

Wbase is the work done by the lateral manipulation force, and Wtip is the cutting force

introduced by the bevel tip.

Π = Πneedle + Πtissue −Wbase −Wtip (5.1)
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The needle bending energy is calculated using the Euler cantilever beam theory:

Πneedle =

∫ l

0

EI

2

(
∂2y(x)

∂x2

)2

dx (5.2)

where y(x) is the shape of the needle shaft, E is the elastic modulus and I is the

second moment of area of the needle.

The tissue strain energy is in Eq. 5.3 with the assumption that the tissue is not

deformed when it is not cut:

Πtissue =

∫ l

d

K

2
(y(x)− ytip(x))2 dx (5.3)

where ytip(x) is the tip cutting path, and K is the tissue stiffness.

Finally, the work done by the lateral force and by the bevel tip cutting force is in

Eq. 5.4 and Eq. 5.5, where Fl is the force acting at the needle base, and Ftip is the

force acting at the needle tip.

Wbase = Fly(0) (5.4)

Wtip = Ftipy(l) (5.5)

From minimal potential energy, we have:

δΠ = 0 (5.6)

Previous work in [39] assumes that the base of the needle is fixed, so the solution

y has a fixed boundary. Since we allow the base to move, we approximate y with the

series,

y(x) = p(x) +
n∑
i=1

qi(x)gi (5.7)

where qi(x) are the modal functions with zero boundary conditions used in [39]

and gi are the curvature coefficients to be solved. The p(x) is used to model the

moving boundary. In our case, the boundary is the location of the insertion point

and the insertion angle. That is, we have y(0) = dy and y′(0) = θ. Therefore, we use

p(x) = dy + θx to model the non-zero boundary, and choose qi(x) with zero boundary

conditions. After inserting Eq. 5.7 into the Eq. 5.6, we have Eq. 5.8 to solve the
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unknown coefficients gi, where gi is g(i, 1).

Φg = Ftip + Ω (5.8)

The elements in Φ and the elements in Ω are in Eq. 5.9 and Eq. 5.10, respectively.

Φ(i, j) = EI

∫ l

0

q′′i q
′′
j dx+K

∫ l

l−d
qiqjdx (5.9)

Ω(i, 1) = K

∫ l

l−d
(ytip − dy − θx) dx (5.10)

To solve the inverse kinematics of the needle we use the numerical Jacobian

method in [16] to calculate the inverse Jacobian matrix. The control input is lateral

motion and rotation at the needle base.

5.2 Potential Field-guided Rapidly-exploring

Random Tree (PF-RRT)

The PF-RRT planning algorithm is based on Huang et al.’s implementation that

grows the RRT from a given initial insertion point [26]. In our method, we extend

the algorithm to be able to select the initial insertion point. Before growing the

RRT, we employ an optimization-based method to select the initial insertion location.

We first conduct an optimization that finds the straight line maximizing the sum of

the distance between the line and the critical structures. For the line with insertion

location ybase and angle θ, the line equation can be written as y = ybase + x tan θ.

We select the initial insertion location and orientation that maximize the objective

function in Eq. 5.11.

L(ybase, θ) =
N∑
n=1

(Dn − rn)

s.t. ytarget = ybase + xtarget tan θ

(5.11)

where Dn is the distance from the center of the n-th critical structure to the pre-

planned straight line, and rn is the radius of the n-th critical structure. The initial

insertion location ybase is used to grow an RRT using PF-RRT.
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The PF-RRT algorithm is shown in Algorithm 2. The difference between the PF-

RRT and classical RRT is that while the classical RRT grows the new node by random

sampling Fsample only, the PF-RRT grows the new node by Fpf + Fsample, where Fpf

is the direction of the gradient of the potential field at the randomly sampled point.

Our potential field includes the repulsive field generated by the critical structures and

the attractive field generated by the target [16], along with a curvature field, which is

the square of the distance from the point (x, y) to the preplanned line. The curvature

field is intended to reduce the curvature of the preplanned path. The total potential

field is Upf = µ1Urepulsive + µ2Uattractive + µ3Ucurvature, and each potential field is in

Eq. 5.12, 5.13 and 5.14. µ1, µ2, µ3 are the constant to normalize the potential field to

have the max magnitude as 1.

Ucurvature(x, y) = (x tan θ + ybase − y)2/(1 + tan2 θ) (5.12)

Uattractive(x, y) =
1

2

(
(x− xtarget)2 + (y − ytarget)2

)
(5.13)

Urepulse(x, y) =

1−
(
x−xcs
a

)2 − (y−ycs
b

)2 (
x−xcs
a

)2
+
(
y−ycs
b

)2
< 1

0 other
(5.14)

We then use the pruning method in [36] to prune the returned path. However,

the path is still not optimal since the randomly selected points can be closed to

the critical structures. We use spline interpolation to generate control points along

the path, and directly optimize the control points to minimize the cost in Eq. 5.15.

The cost includes the potential of the points on the path Cfield (since the critical

structures have higher potential and the target has low potential) and a continuous

cost Ccon (to reduce the length of the path).

Cpath = w1Cfield + w2Ccon (5.15)

where Cfield =
∑M

i=1 Upf (xi, yi), and Ccon =
∑M

i=1(yi − yi−1)2.
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Algorithm 2 Potential field-guided RRT algorithm.

procedure PF-RRT(xstart, Imap)
Graph vertices V ←− {xstart}, edges E ←− φ, N = 1
while no point in V reaches the target or N < Nmax do

Randomly sample a point xsample in Imap
xsample = xsample + Fpf
Find the nearest point xnearest in V
xnew = Steer(xnearest, xsample)
if ObstacleFree(xnew, xnearest, Imap) then

V ←− V
⋃
{xnew} E ←− E

⋃
{(xnew, xnearest)}

if Reach target then
Find the shortest path in (V,E) that reaches the target

Return Graph (V,E), Shortest path P

5.3 Replanning

This section introduces two different replanning algorithms.

5.3.1 Replanning RRT

The first replanning method is to re-run the PF-RRT algorithm introduced above,

with the current tip location as the starting location. To increase the speed of

replanning, the number of random sampling points is also linearly related to the

random sampling area.

5.3.2 Bubble Bending

The second replanning algorithm is based on the modified version of Bubble Bending

algorithm in [53]. The Bubble Bending algorithm models the path as an elastic

band that deforms under the application of external and internal forces. In the

simulation, the path is modeled as a sequence of spheres (bubbles). The external

forces are generated from the critical structures to push the bubbles away, and the

internal attractive forces are generated between the consecutive bubbles to reduce

the displacement. The main algorithm of bubble bending replanning is listed in

Algorithm 3, which includes three steps.
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Algorithm 3 Bubble bending replanning.

procedure BubbleBendingReplanning(pbubble, Imap)
pnew = BubbleBending(pbubble, Imap)
pnew = BubbleReorganize(pnew, Imap)
pnew = Smoothing(pnew, Imap)
Return new bubble center pnew

Algorithm 4 Bubble bending.

procedure BubbleBending(pbubble, Imap)
i = 0
Urepulse = Urepulse(Imap)
Ucurvature = Ucurvature(Imap)
F = −∇(Urepulse + Ucurvature)
δmoving = 0
pnew = pbubble
while i < Imax and δmoving > δthreshold do

for j = 2 : Nbubble − 1 do
vj−1 = normalize(pj−1new − pjnew)
vj+1 = normalize(pj+1

new − pjnew)
fj = µnormalize(F(pjnew)) + vj−1 + vj+1

δmoving = δmoving + ||fj||2
pjnew = pjnew + λfj
i = i+ 1

δmoving = 0

Return new bubble center pnew

BubbleBending: This step is to adjust the centers of the bubbles with forces.

In our case, the external forces generated from the critical structures are the forces

from the potential field Urepulse + Ucurvature in Eq. 5.14 and 5.12. The algorithm

iteratively moves each bubble center until it reaches equilibrium or else the number

of iterations reaches the maximum iteration time, as shown in Algorithm 4.

BubbleReorganization: This step is to generate a new sequence of bubbles.

After the BubbleBending step, some bubbles might no longer be overlapping, and some

bubbles may have become redundant. In this step, we interpolate the bubble centers

generated from BubbleBending to generate a smooth path and then re-generate

overlapping bubbles around the path.

Smoothing: This step is to use optimization to smooth the locations of bubble
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Algorithm 5 Path Smoothing.

procedure Smoothing(pbubble)
p1
new = p1

bubble

pNbubble
new = pNbubble

bubble

O1 =
∑Nbubble−1

i=2 ||2pi − pi+1 − pi−1||2
O2 =

∑Nbubble−1
i=2 ||pi − pibubble||

pnew = argminpO1 +O2, s.t. p1 = p1
bubble, pNbubble = pNbubble

bubble

Return new bubble center pnew

centers to smooth the generated path. We minimize two objective functions related

to the path smoothness and the curvature constraints in Algorithm 5.

5.3.3 Replanning Simulation

We focus on the application of vascular intervention, so we use a simple model to

simulate the motion of the critical structures and the target vessel in the simulation

experiments in later sections. When the depth of the needle tip xtip is smaller than

the depth of the object (xtip > xobject), the object is fixed to the virtual spring and

moves along with the spring. When the difference between the depth of the object

and the needle tip is smaller than a moving threshold δmoving (xobject− xtip < δmoving),

the needle tip starts pushing the tissue in front of the tip so the object is moving

with the tissue. We use Eq. 5.16 to model the motion of the critical structures and

the target.

dx = (exp(1− xobject − xtip
δmoving

)− 1)/(exp(1)− 1)× dxmax

dy = νdx

(5.16)

where dxmax is the max moving distance of the objects and ν is a given constant.
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5.4 Experiments and Results

5.4.1 Model verification

We first measured the needle bending inside a phantom to verify the mechanical

model using the robotics system in Chapter 4. The experiment configuration is shown

in Fig. 5.1.

We inserted the needle into a phantom with a layer of water above. The ultrasound

probe was placed above the water. After part of the needle was inserted into the

phantom, we rotated the angular actuator to move the needle base and use the robot

kinematics to localize the needle base. One human labeler annotated the needle in

the ultrasound images. The images were collected with PaoLus UF-760AG Portable

Diagnostic Ultrasound Imaging Equipment (FUKUDA DENSHI, UK) with a linear

transducer. The phantom we used is an anthropomorphic tissue phantom with

simulated blood vessels (Advanced Medical Technologies, WA). The needle is a 7cm

18 gauge guidewire introducer needle (Argon Medical Devices, TX). We measured

the elasticity of the phantom to be 25.56kPa by measuring the deformation and the

applied forces on the phantom.

We compare the Euclidean distance between the annotated needle tip and the

prediction with and without the bending estimation. The results in Table 5.1 show

that the bending effects can not be ignored in the lateral manipulation, and that our

model reduces the error in tip localization. Fig. 5.2 visualizes the estimation of the

needle shape from robot kinematics and our simulation, showing that the simulation

model fits the annotation better.

Table 5.1: The mean Euclidean distance between the annotated tip and the tip
prediction.

Trial Number of Manipulation Without Bending/mm With Bending/mm

1 5 1.6683 1.3046
2 4 1.7882 1.4891

39



CHAPTER 5. PLANNING ROBOTIC LATERAL MANIPULATION WITH
ORDINARY DEFLECTING CLINICAL NEEDLES

Figure 5.1: The experiment set up. The needle insertion mechanism and the ultra-
sound probe are attached to a robot arm.

Figure 5.2: Results of the needle shape in the model verification. The “model” is
the estimated needle shape in the simulation, “kinematics” is the estimated needle
shape from robot kinematics, which assumes that the needle is a straight line. The
“annotation” is the annotated needle shape from the ultrasound images.
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Test Scene
Success Rate Curvature

RRT PF-RRT RRT PF-RRT

1 76.00% 72.00% 1017 1156
2 72.67% 74.67% 1512 1452
3 82.67% 86.67% 1582 1347
4 78.67% 81.33% 1517 1330

Table 5.2: The quantitative evaluation of the RRT and PF-RRT in four test scenes.

5.4.2 Simulation Experiments

The simulation code runs in Matlab R2020b. If not explicitly stated, the parameters

are set as the values below. The tissue elasticity is 16.24kPa, the same value in

[38]. The needle is a 22 gauge stainless steel needle with a symmetric tip. That is,

the stiffness of the needle is 200GPa, the outer diameter is 0.711mm and the inner

diameter is 0.394mm. The number of coefficients modeling the bending (the gi in Eq.

5.7) is set to be 6.

Evaluation on the Preplanning

We first compare the RRT-based preplanning with and without the potential field

guidance in four different configurations of the critical structures and the target.

The evaluation metrics include (1) success rate, which is the rate that the planning

method successfully generates an obstacle-free path, (2) the path curvature, which is

defined as κ = |y′′|/(1 + y′2)1.5. For each algorithm, we run 150 times to preplan a

path for each given configuration. The results in Table 5.2 show that in most cases,

the potential field guidance can increase the success rate of RRT and also reduce the

max curvature of the preplanned path. The visualization of the preplanned path in

the sample Fig. 5.3 shows that PF-RRT generates paths with higher quality and less

abrupt turns.

Replanning Methods Comparison

We run the experiments with two different replanning algorithms: rerunning PF-RRT

and Bubble Bending algorithm. We evaluate three different aspects of the planning.
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Figure 5.3: Example of preplanned paths in Test 3. The upper is planned with
classical RRT and the lower one is planned with artificial potential field-guided RRT.

1. Smoothness of the replanned path. In this evaluation, we compare a metric

that measures the curvature κ = |y′′|/(1 + y′2)1.5 of the path, and we calculate

the derivatives based on numerical differentiation.

2. Repeatability. This is to study whether the replanning algorithm is able to

generate the same path in the same tissue configurations. To do this, we compare

the standard deviation of the curvature and the needed lateral manipulation.

We run the replanning algorithm with the same preplanned path and compare

the lateral manipulation when the needle tip reaches the same depth. We report

the max absolute magnitude of the lateral manipulation dy and dθ, and the

max standard deviation of the dy and dθ. We also visualize the curve of the

lateral manipulation to evaluate the repeatability qualitatively.

3. Sensitivity with respect to the noise in K. We execute the planning and steering

simulation using the two different replanning algorithms with the same needle

and tissue parameters. K is often hard to measure in actual tissue and is not

homogeneous, so measuring K as in our compression experiments will often

result in only a rough estimation of the whole system. To simulate inaccurate

real-world estimation of K, we divide the simulated tissue into several layers

and add Gaussian noise on the K in different layers. In the simulation, we set

the width of the layer as 10mm and the standard deviation of the noise as 2kPa

and 5kPa.

We design three different configurations of the target and the critical structures

to evaluate the metrics mentioned above. For each test scene, we run the replanning

algorithm 10 times, with the same setting of the parameters and preplanned path. The
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Table 5.3: The results of the maximum curvature during the insertion under different
level of noise in K.

Test Scene 1 Scene 2 Scene 3
Noise in K Algorithm mean std mean std mean std

0kPa
rrt 175840 54158 30056 3806 122070 40632

bubble 1174 0 3164 0 3988 0

2kPa
rrt 230010 96148 36221 18279 89150 36098

bubble 1175 3 3151 26 3999 18

5kPa
rrt 212830 100400 34836 10980 105710 59015

bubble 1181 12 3156 29 4010 17

results are shown in Table 5.3, 5.4 and 5.5. Figure 5.4 and 5.5 show the manipulation

curve in test scene 1.

The results in Table 5.3 show that Bubble Bending generates smoother paths,

since the max curvature in all test scenes are all much smaller than the path generated

by PF-RRT. Also, the standard deviation of the max curvature mostly increases

with the noise in K when using PF-RRT, but it remains relatively small when using

Bubble Bending. All these indicate that the Bubble Bending algorithm can generate

a smoother path and is less influenced by noise in K.

The results in Table 5.4 and 5.5 show that the Bubble Bending algorithm does not

necessarily introduce smaller operation magnitude. It shows that the smoother tip

steering path does not guarantee that the needed lateral manipulation is also small.

However, the smaller standard deviation indicates that the Bubble Bending algorithm

has better repeatability, especially when the noise in K is large. Accordingly, the

Bubble Bending algorithm might be more stable in the real world, when actual tissue

is imperfectly approximated by K.

Sensitivity Analysis of Imaging Error

Computer vision-based segmentation algorithms usually return noisy and inaccurate

segmentations, so we also investigate multiple simulations of the Bubble Bending

algorithm to test its performance under different noise levels when estimating the

needle’s location. Since the needle shape has the parameters of ybase, θbase and the

curvature coefficients gi in Eq. 5.7, we add noises on these parameters directly. We
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Figure 5.4: The lateral translation during the insertion under different level of noise.
The upper image is without noise and the lower image is with 5kPa noise.
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Figure 5.5: The lateral rotation during the insertion under different level of noise.
The upper image is without noise and the lower image is with 5kPa noise.
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Table 5.4: The results of the maximum lateral translation operation during the
insertion under different level of noise in K.

Test Scene 1 Scene 2 Scene 3
Noise in K Algorithm max mean max std max mean max std max mean max std

0kPa
rrt 1.73 1.69 1.94 1.68 2.90 1.41

bubble 2.57 4.68E-16 2.51 4.68E-16 3.36 4.68E-16

2kPa
rrt 1.29 1.40 1.78 2.16 1.41 2.34

bubble 1.72 1.25 2.34 0.87 2.85 1.51

5kPa
rrt 1.89 3.19 1.90 2.01 1.31 3.48

bubble 1.71 1.19 2.22 0.79 2.80 1.46

Table 5.5: The results of the maximum lateral rotation during the insertion under
different level of noise in K.

Test Scene 1 Scene 2 Scene 3
Noise in K Algorithm max mean max std max mean max std max mean max std

0kPa
rrt 1.20 1.54 3.72 1.58 1.69 4.13

bubble 3.16 4.68E-16 4.50 4.68E-16 5.01 9.36E-16

2kPa
rrt 1.06 2.91 3.58 1.61 1.53 3.69

bubble 3.12 1.18 4.34 1.32 5.02 2.86

5kPa
rrt 1.34 1.84 3.36 1.79 1.78 3.86

bubble 3.04 1.18 3.55 2.23 5.01 2.61
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Figure 5.6: An example of Bubble Bending Replanning in test scene 1 with noise
level being 0.
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Figure 5.7: An example of PF-RRT replanning in test scene 1 with noise level being
0.
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add Gaussian noise on the ybase with different levels of standard deviation. The noise

levels on ybase were 0.05mm, 0.1mm and 0.15mm. We also add Gaussian noise on the

curvature coefficients with different levels of standard deviation, with the cut-off that

the noise should not exceed one standard deviation. The noise levels on the curvature

coefficients were 0%, 1%, 5%, 10%, 15%, 20%. We used the Bubble Bending replanning

algorithm, and the results are shown in Figure 5.8. The error in visual measurement

mainly influences the distance to the targets but does not show a clear trend on

influencing the needle curvature, which is directly related to the needle strain.

5.5 Conclusions

In this chapter, we use the cantilever beam model with a virtual-spring needle-tissue

interaction model to simulate the needle bending and use the PF-RRT and Bubble

Bending planning algorithm to plan the external lateral motion of a robot to steer an

ordinary clinical needle towards a moving vessel. Future work could include testing

with more arbitrary motions of the targets and critical structures as well as the

combination with image-based feedback to better steer the needle towards an internal

moving target.
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Figure 5.8: Sensitivity of the needle shape to the visual feedback.
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Chapter 6

Conclusions

This thesis focuses on solving the challenges brought by needle-tissue interaction

during autonomous needle insertion. The needle-tissue interaction can introduce

needle bending, which brings difficulties to track a needle inside 2D ultrasound and

challenges when planning lateral manipulation for needle steering. The bending

needle requires a computer vision algorithm to segment a curved needle which is often

only partially visible. It also requires mechanical modeling of the needle bending

and dynamic replanning of the steering path to adapt to the motion of the critical

structures and the targets inside the tissue introduced by the needle-tissue interaction.

The thesis develops several algorithms to target the problems stated above.

Chapter 3 describes a new algorithm to segment and track the curved needle robustly

even if the needle is partially visible in 2D ultrasound images. The proposed algorithm

is able to localize the partially visible curved needle more robustly than both classical

computer vision algorithms and a U-Net model, both in phantom experiments and

in in-vivo experiments. It can rely only on ultrasound images, or it can additionally

rely on a combination of external sensors. Chapter 4 proposes a robust online

algorithm to track the needle utilizing both information from computer vision and

robot kinematics, which has the potential for providing real-time tracking and image

feedback for autonomous needle insertion. A new algorithm is introduced that

localizes the needle based on the analysis of the tissue micro-motion introduced by the

needle insertion, which outperforms the state-of-the-art micro motion-based needle

localization algorithm. In Chapter 5, needle bending inside the tissue is mechanically
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modeled to develop two replanning algorithms to enable robotic needle steering

towards a moving target. The method is a fully autonomous replanning algorithm

without the need for a human to select a first insertion point or select from preplanned

paths.

Potential future work includes:

First, combine the curved needle tracking algorithm with the information fusion-

based tracking algorithm. The curved needle tracking algorithm is running at around

10 fps, which is slower than the kinematics-based estimation. Our proposed adaptive

Kalman filter has the potential to take the observation from the curved needle to

track the needle shape. However, the Kalman filter currently models the dynamic

procedure of inserting a straight needle. Therefore, a new model needs to be designed

to track a curved needle using Kalman filtering. One possible approach is to use the

parameters of the polynomials in the state of the Kalman filter.

Second, in the curved needle tracking, a U-Net-based segmentation algorithm

was also proposed. While the U-Net does not segment a curved needle sufficiently

accurately, it shows the potential of localizing the needle tip accurately. Therefore,

combining the U-Net output with other classical computer vision algorithms using

our novel Kalman filter has the potential to achieve higher accuracy of needle tip

localization.

Third, the replanning algorithms are only validated in the simulation environment.

The next step will be combining the tracking algorithm with the replanning algorithms

on an actual robot to achieve a fully autonomous needle insertion. One of the

difficulties is that our ultrasound probe has a narrow image width, so it is hard to

segment the shape of the whole needle shaft inside opaque phantoms. Also, new

algorithms are needed to track the moving critical structures and target(s). Another

difficulty is to measure the mechanical parameters inside the real tissue. Other future

directions include extending the mechanical model and the replanning algorithms to

3D environments.
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Appendix A

Sensitivity Analysis of Critical

Structure Configuration and

Model Parameters

Appendix A is adapted from the manuscript: Wanwen Chen, Blake Buchanan, Evan

Harber, Howie Choset, and John Galeotti. “Planning Robotic Lateral Manipulation

with Ordinary Deflection Clinical Needles by Potential Field-guided RRT.”

We provide a sensitivity analysis of the needle strain and the tissue tearing force

with respect to the insertion depth, the needle stiffness and the noise in tissue elasticity.

In the appendix, the model parameters are the same with Chapter 5 excepts that the

outer diameter of the needle is 0.64mm, and the inner diameter is 0.337mm. The

replanning algorithm is PF-RRT.

First is the sensitivity with respect to the insertion depth and the needle stiffness.

Fig. A.1 shows that the needle strain increases when the insert depth increases or

when the needle is more flexible. However, there might exist singularity locations

where the needle strain suddenly increases or decreases with respect to the insertion

depth. This problem can be caused by the tissue layout since the singularity points

are scene-dependent. Fig A.2 shows that the maximum tissue force also follows a

similar pattern.

We then provide a sensitivity analysis with respect to the error in the tissue

parameter K, which is difficult to measure in live heterogeneous tissue. We divide the
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Figure A.1: The sensitivity analysis of the max needle strain with respect to the
needle stiffness (y-axis) and the insertion depth (x-axis) in three different test scenes.
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Figure A.2: The sensitivity analysis of the max tissue strain with respect to the
needle stiffness (y-axis) and the insertion depth (x-axis) in three different test scenes.
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tissue into several layers and add Gaussian noise on the K in different layers. In the

simulation, we set the layer’s width as 10mm and the standard deviation of the noise

as 2kPa and 5kPa. Fig. A.3 shows that the max needle strain has more uncertainty

and being different from the original pattern with the noise in K. Fig. A.4 shows

that the max tissue spring force increases with added noise in the tissue elasticity but

following a similar pattern in that the force increases with increasing insertion depth.
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Figure A.3: The sensitivity analysis of the max needle strain with respect to the
needle stiffness (y-axis) and the insertion depth (x-axis) with three different level of
noise in K. The standard deviation of the noise (from top to the bottom) is 0kPa,
2kPa and 5kPa.
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Figure A.4: The sensitivity analysis of the max tissue strain with respect to the
needle stiffness (y-axis) and the insertion depth (x-axis) with three different level of
noise in K. The standard deviation of the noise (from top to the bottom) is 0, 2kPa
and 5kPa.
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