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Abstract

Automated inspection in industrial manufacturing can minimize the total
production cost of a part. Current inspection solutions often involve
measuring a part manually, which interrupts the machining process. We
present two non-contact real-time systems which integrate visual inspec-
tion in-line with CNC (computer numerical control) machines and ensure
dimensional model generation of parts with high accuracy. We first present
a camera-projector scanning system that uses photometric stereo and
structured light scanning to reconstruct the shape of objects in the pres-
ence of specular chip-like noise and high-speed object revolution. We
obtain reconstruction accuracies down to 0.5 mm for objects with complex
reflectance on a representative CNC lathe. For rotationally symmetric
objects, we also propose a novel shape from silhouette system which uses
principles from light transport theory to efficiently image transmissive
paths through a scattering medium. The system enables in-line and
highly accurate geometric reconstructions down to 60 µm on CNC lathe
machines in the presence of scattering fluid and specular metallic shavings.
Both systems are compact and cost-effective alternatives to the current
use of CMMs (coordinate measuring machines) for manual inspection of
machined parts.
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Chapter 1

Introduction

1.1 Motivation

CNC machining is ubiquitous in today’s manufacturing industries like aerospace and

aircraft, automotive, and electronics. CNC stands for computer numerical control,

and it is a subtractive manufacturing process that typically uses computerized controls

and machine tools to remove layers of material from a raw stock piece (e.g., a block

of aluminium metal).

It is impossible to manufacture parts on CNC machines like routers or lathes

to exact specifications due to imprecision in the machining process. This makes

inspection an integral part of the manufacturing process. Inspection is the process by

which a fabricated product is compared with the specifications defined at the design

stage. Automatic inspection for CNC machines is preferred over manual inspection

due to the following reasons:

1. Automatic inspection is devoid of manual errors which arise due to inconsistency

in product evaluation by humans.

2. Automatic inspection makes inspection possible in dangerous environments.

3. Automatic inspection consumes less time which decreases the production cost.

Automatic inspection methods are broadly classified into two categories: non-

contact (Aguilar et al. [2], Ahn and Schultes [3], Brosed et al. [11], Connolly [15],

Kostamovaara et al. [39], Li et al. [41], Reinhart [57], Smutny et al. [61], Usamentiaga
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1. Introduction

et al. [68]) and contact methods (Johnson [34], Vermeulen et al. [69], Zhou et al. [79]).

Contact based inspection techniques are normally carried out using a coordinate

measuring machine (CMM). A list of inspection methods is presented in Fig. 1.1.

The final detailed inspection is performed using any one of the contact/non-contact

Figure 1.1: Automatic inspection methods classification.

methods mentioned above. If a defect is detected in this final step, the part needs

to be reworked or a whole part needs to be re-manufactured again from raw stock,

increasing the production cost. Therefore, an important step in the production

pipeline is to ensure real-time precision while parts get manufactured.

Contact based systems cannot be used for real-time inspection due to their

bulkiness and extremely slow data captures. They also interrupt the machining

process by introducing manual work as the manufactured part has to be accurately

placed. Current non-contact systems address these limitations but they are less

accurate than CMMs and break down in non-ideal environments for the following

reasons:

1. CNC machines often machine metallic objects that exhibit complex surface

reflectance properties that are non-ideal for vision based setups.

2. The shearing of the raw stock surface generates metallic shavings introducing,

2



1. Introduction

sparse random noise in the environment. These metal shavings might also

damage the measurement equipment.

3. The friction between the cutting tool and the part generates a prohibitive

amount of heat which threatens the tool and the raw stock. They also introduce

unnecessary roughness on the object’s surface. Coolant fluids are used as a

lubricant to dissipate heat and to produce smoother parts. However, the light

scattering properties associated with these fluids hinder vision-based imaging

setups.

4. CNC machines tend to experience severe mechanical vibrations which might be

undesirable for measurement tools.

1.2 Contributions

This thesis serves as an attempt to bridge the gap between high accuracy dimensional

estimates and efficient in-line parts inspection. Specifically, we explore imaging-based

non-contact methods that ensure in-line high-quality parts inspection on CNC lathe

machines in noisy environments.

• We first explore the challenges of using structured light scanning methods and

photometric stereo in CNC environments. We demonstrate the capability to

measure objects up to an accuracy of 1
50

th of an inch (0.5 mm). We perform our

experiments in a lab-based setting where we mitigate the effect of specular chip-

like noise using a matrix decomposition method. We also translate this system

on a novel CNC machining environment and demonstrate reconstructions of

shiny metallic objects rotating at high revolutions per minute (RPM).

• We propose a novel shape from silhouette system that can reconstruct the

geometry of objects on a CNC lathe machine through dense scattering medium

and in the presence of sparse specular noise in the form of metallic shavings.

For descattering, we incorporate multiple clues from light-transport theory

to selectively separate transmissive paths from scattered paths. This ensures

high-contrast, non-blurry silhouetted images of objects. We also introduce

a spatio-temporal processing method to mitgate degradations in our image

measurements due to the presence of fluid, specular chips, high-speed rotation,

3



1. Introduction

and ambient light. This enables reconstruction accuracies up to 60 µm for

representative metallic objects. We also test our system in a lab-based setting

in the presence of a dense scattering medium with pathlength up to 5 cm to

demonstrate the descattering capabilities of our setup.

1.3 Outline

This thesis is organized as follows:

• Chapter 2 introduces background literature relevant to our works.

• Chapter 3 introduces our structured light and photometric stereo setup. It

provides the theory for the imaging setup, followed by simulation experiments

acting as a proof of concept, and experimental results in a controlled lab setting

and CNC machining environment.

• Chapter 4 proposes our ballistic shape from the silhouette scanning method. It

explains the light behaviour in a scattering medium, followed by the theory for

our setup, and concludes with experimental evaluations in different scanning

environments.

• Chapter 5 summarizes our work on robust 3D reconstruction and discusses the

limitations of our methods.

4



Chapter 2

Background

This section provides a brief review of background literature in 3D reconstruction,

including: (i) photometric stereo, (ii) structured light scanning, (iii) depth and normal

fusion, and (iv) light path separation. The first three components focus on 3D shape

estimation methods that are relevant to Chapter 3, and the fourth is relevant to Chap-

ter 4. Component one focuses on estimating surface orientation (i.e., normals) using

photometric stereo for both Lambertian and non-Lambertian objects. Component

two explores structured light scanning methods for depth estimation. Component

three surveys algorithms that combine depth and normal estimates for improving

3D reconstructions. The final component focuses on light path separation methods,

which is used in our proposed setup for 3D reconstruction of rotationally symmetric

objects.

Photometric stereo: The pioneering work of Woodham [74] introduces estima-

tion of normals of a surface using three or more images. However, this work assumes

that objects are always Lambertian which is never the case in real life. A lot of work

has been proposed in computer vision literature for shape estimation of objects having

arbitrary reflectance. Hertzmann and Seitz [22] proposed example-based photometric

stereo where they use a reference object to impart normal directions to a target object

using orientation-consistency. Mallick et al. [45] and Zickler et al. [80] eliminate the

requirement of a reference object by using the dichromatic reflectance model and

colour space consistency to separate the diffuse and specular components. Goldman
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2. Background

et al. [18] capture the shape as well as the spatially-varying BRDFs using an opti-

mization framework based on the observation that for general objects, the pixels can

be represented as a combination of one or two different materials. Barsky and Petrou

[7] use a 4-source colour photometric stereo procedure that uses spectral information

as additional visual cues for detecting the specular highlights and separating local

gradient information in an object.

Other methods exploit the symmetries in BRDFs to reconstruct the geometry of

surfaces. Zickler et al. [81] use Helmholtz reciprocity principle for stereopsis which says

that the pixel information of a surface point does not change if the ray direction and

viewing direction are interchanged. Alldrin and Kriegman [5] explore the symmetry

of BRDFs across the plane spanned by the normal and the viewing direction and

apply this constraint for photometric stereo. Holroyd et al. [25] reconstruct complex

isotropic and anisotropic object shapes using the analysis that BRDFs are symmetric

across the surface normal, normal-tangent plane, and the normal-bitangent plane.

They capture at least 100 images with varying light directions in the upper hemisphere

and optimize a distance function to get the per-pixel normals and tangents. Lu et al.

[43] extend the 1D/2D halfway symmetric property of BRDFs to uncalibrated lighting

situations using an elevated angle optimization method.

Robust photometric stereo for varying BRDFs have been explored under dictionary-

based data-driven frameworks in Alldrin et al. [4], Hui and Sankaranarayanan [29],

and Wagenmaker et al. [70]. Another direction of work exploits the rank-3 con-

straints of the normals. Wu et al. [75] use low-rank matrix recovery and completion

to decompose corrupted images into diffuse and error components. They perform

photometric stereo using this diffuse component which is non-susceptible to errors

caused by specularities and shadows. Ikehata et al. [30] use Bayesian approximations

to separate diffuse and non-Lambertian components. Photometric stereo has also

been combined with other shape estimation methods to increase generalization and

accuracy.

Structured light scanning: Structured light is another widely-used approach

for active scanning based shape acquisition. Structured light systems provide ambient

illumination independence over photometric stereo methods. Photometric stereo

methods preserve high-frequency details and have low-frequency biases while struc-

6



2. Background

tured light techniques are robust in low-frequency depths but lack high-frequency

details. Active triangulation used by structured light systems involves projecting a

light pattern on the scene and using the distorted geometric relations of the object to

reconstruct the shape. A prominent work using laser line scans for 3D shape recovery

is the digital Michaelangelo project by Levoy et al. [40] where they reconstruct the

statue of David merging 2 billion polygons and 7000 images. Using laser lines are

accurate but very time-consuming due to the huge number of patterns required to

find correspondences for triangulation. A lot of research in the last couple of decades

focused on proposing different coding patterns for time-multiplexing with varying

spatial frequency. Posdamer and Altschuler [56] pioneered the direction of structured

light by proposing a method that involved projecting a sequence of m binary patterns

to encode 2m different columns. Binary codes are noisy especially near the edges

of the projected patterns and this was resolved by binary gray code patterns as

proposed in Inokuchi [31]. An important property of gray code patterns are that

any two consecutive codes will differ by only one bit which makes it more robust to

correspondence errors. Caspi et al. [13] introduced scanning with n-ary codes where

mn stripes could be coded using m patterns. Structured light scanning has also been

explored in a spatial neighbourhood framework using coloured De Bruijn patterns by

Boyer and Kak [10].

Another group of patterns known as phase-shifting have continuous values in-

stead of binary codes. Due to the non-discrete nature of phase-shifting patterns,

correspondences are obtained at a very high sub-pixel resolution. The standard

N-step phase-shifting algorithm was proposed by Srinivasan et al. [63] where a set of

sinusoidal wave patterns of a certain frequency are projected into the scene. These

patterns are then encoded using a phase unwrapping method. Since, there are 3

unknowns in the solution equation, a lot of the methods in literature use 3-step

phase shift patterns (Bruning et al. [12]). Another set of works use 4-step shifted

sinusoidal patterns for better correspondence retrieval as explored in Abdelsalam et al.

[1] and [64]). The conventional 3-step shifting algorithm is not robust and suffers

from incorrect phase estimations and non-linearity error. These are corrected using

a double 3-shift algorithm proposed in works by Huang et al. [27] and Huang and

Zhang [26] where they project 3-shift patterns of two different frequencies producing

phase-maps that cancel each other’s errors on averaging. Other works include the

7
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Hariharan 5-step phase shifting method (Hariharan et al. [21]), triangular phase

shift patterns (Jia et al. [33]), and trapezoidal phase shift patterns (Huang et al.

[28]). Phase-shift patterns offer very high resolution but are limited spatially due to

their repetitive nature. To overcome this limitation, several works use hybrid binary

patterns along with phase-shift patterns. Gray code patterns give a coarse map

for the whole scenario and phase-shift patterns are used for refining correspondence

maps as presented in Zhang [78] and Wang et al. [73]. For our experiments, we

use gray code patterns with double three-step phase shifting patterns. Recently, a

couple of works Chen et al. [14], Mirdehghan et al. [47] propose automatic optimal

generation of structured light patterns using response inputs when a set of coded

patterns are emitted into the scene. Mirdehghan et al. [47] optimize the system using a

MLE framework while Chen et al. [14] use stochastic gradient-descent for optimization.

Depth and normal fusion: Efficiently combining normal estimates and 3D

locations offer us exact 3D reconstructions in terms of depth absolute accuracy as

well as intricate surface details. Song and Chung [62] illuminate the scene with a

coloured pseudorandom rhombic grid of patterns. Using the grid points between

patterns as the feature points, they estimate the position as well as the orientation

and combine them to get a better surface estimate. Lu et al. [44] propose a novel

3D imaging framework that combines coarse depth maps with fine normal maps.

They capture the depth equipped with a gray code structured light system. A macro

lens setup captures a focal stack of the object to extend the depth of field and then

performs photometric stereo on this focal stack to get the high-resolution normal

map. They fuse the normals and depth with a multi-resolution patch-based surface

reconstruction method. Another work by Haque et al. [20] combines photometric

stereo with depths from an infra-red camera. They reconstruct the surface geometry

using an adaptive weighing optimization algorithm that balances the reliability of

the normal and depth map. Zhang et al. [77] extend the fusion of normals and

depth to dynamic scenes by using a novel reconstruction method that considers the

depth discontinuities due to motion. Nehab et al. [52] propose a linear framework for

combining orientation and positional information that proceeds in two separate steps.

The reconstruction algorithm approximates a surface by minimizing a combination of

position error and normal error. The position error constrains the surface to match
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the dense depth map while the normal error causes the tangent to be orthogonal as

they are reprojected onto the normals. Joshi and Kriegman [35] extend Nehab et al.

[52] by adding a smoothness term on the second derivative of the estimated mesh.

A novel total generalized variation approach by Antensteiner et al. [6] improves the

surface reconstruction by minimizing the gradient distance of the surface orientation.

Light path separation: Nayar et al. [51] first demonstrated that with a set of

high frequency three-shift sinusoidal patterns, the scene can be decomposed into a

direct illumination component and a global illumination component. Gu et al. [19]

extend this work for recovering N direct components for N different light sources using

multiplexed illumination. The key idea of modulated multiplexing is to use a unique

frequency for each light source. Seeing through diffuse media by capturing select

light path has been explored through transient imaging techniques. These works use

sophisticated hardware equipment like streak cameras in Wang et al. [72], continuous-

wave time-of-flight cameras in Kadambi et al. [36], and single-photon avalanche diodes

in Boccolini et al. [9]. Another direction of work, especially involving biological

microscopy, uses optical coherence tomography for controlling light propagation in a

scattering medium (Nasr et al. [50], Popoff et al. [55]). Descattering by scattered path

rejection has been explored under a polarization setting in Gilbert and Pernicka [17]

and Treibitz and Schechner [67]. A number of light probing techniques have also been

presented for separating light paths using a projector-camera system. O’Toole et al.

[53] establish that image formation in a projector-camera system is dominated by

epipolar and non-epipolar paths. They propose a novel technique called Structured

Light Transport that combines light transport with stereo geometry in the optical

domain to selectively image direct and global illumination components in real-time.

In another work by O’Toole et al. [54], a low-light projector and a rolling shutter

camera is used to reconstruct the 3D shape of objects through smoke. This is done

through structured light epipolar-only probing that rejects non-epipolar scattered

lights. Mukaigawa et al. [49] present a new analytical method for light transport

in a scattering medium. They use 1-D high-frequency patterns to separate single

and multi-bounce light paths. They further decompose the complex multi-bounce

light field into individual bounce parts from the light transport equation. In a series

of works by Tanaka et al. [65, 66], an infra-red parallel high-frequency illumination
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measurement system is used to separate transmissive and scattered light paths.

They demonstrate their results for descattering as well as recovering inner slices in

translucent objects. Our proposed shape from silhouette setup in Chapter 4 efficiently

combines light path probing techniques with descattering cues from light transport

theory to image ballistic photons for scanning objects through a scattering medium.
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Chapter 3

Combining surface orientations

and range estimates for 3D

geometry

In this chapter, we use existing 3D geometry methods for shape reconstruction in noisy

environments and CNC machining environments. This chapter provides insight into

the performance of previously-proposed algorithms for complex reflectance objects in

non-ideal situations like high-speed revolution and ambient noise. Sec. 3.1 focuses

on normal estimation methods using photometric stereo. Sec. 3.2 explores depth

estimation methods using different types of time-multiplexing structured light coding

strategies followed by a description of a simple linear framework for combining depth

and normal estimates into a surface mesh. Sec. 3.3 explores a matrix factorization

method to mitigate specular sparse noise exhibited in noisy machining environments

for photometric stereo and structured light scanning. Sec. 3.4 shows some simulated

scanning and reconstruction results for objects with different reflectances. Sec. 3.5

describes our hardware implementation, calibration methods for our system, followed

by qualitative and quantitative results for 3D geometry reconstruction of objects with

different BRDFs (Bi-directional Reflectance Distribution Functions) in a controlled

environment and machining environment.
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3. Combining surface orientations and range estimates for 3D geometry

3.1 Surface orientation estimation

3.1.1 Photometric stereo for normal maps

A common way of representing the surface geometry of an object is through a

per-pixel orientation map. Photometric stereo is a technique used to recover the

surface structure using multiple images under different illumination captured from

the same viewpoint. It exploits image pixel intensity changes arising due to unique

illumination positions for static objects to generate these orientation measures. For

any Lambertian object, the image captured can be represented as:

I = ρ (N · L) (3.1)

where N represents the normals, L are the positions of the light sources in 3D, and

ρ is the diffuse albedo of the object. To recover the normals, at least 3 images

under different illumination are required. We solve this problem using a least-squares

method to estimate the pseudo-normals, which can be decomposed into unit normals

and albedos. The positions of the light sources can be estimated through a calibration

method that detects specularity of a mirror-like chrome sphere. In real-life, objects

are never perfectly Lambertian which is why photometric stereo fails in such cases.

In the next sub-section, we explore a more generalized photometric stereo method for

estimating normals for objects having spatially varying BRDFs.

3.1.2 Improving normal maps for complex isotropic and

anisotropic objects

One of the key areas in computer graphics involves describing the interaction of

light and objects realistically. This interaction of light with different materials can

be described by the BRDF. A BRDF, f(ωi, ωo), is defined as the ratio of radiance

reflected from a surface in the direction ωo corresponding to a unit incoming irradiance

from direction ωi. Both ωi, ωo are characterized by their azimuthal and zenith angles

[θi, φi] and [θo, φo] respectively. It is defined as:
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3. Combining surface orientations and range estimates for 3D geometry

Figure 3.1: Photometric stereo used for estimating per-pixel normals and albedos.

f(ωi, ωo) =
dLr(ωo)

dEi(ωi)
=

dLr(ωo)

Li(ωi) cos θidωi
(3.2)

Ei = Irradiance of the surface in direction (θi, φi)

Lr = Radiance of the surface in direction (θo, φo)

where n is the normal of the surface as shown below. An elaborate discussion about

BRDF and reflectance models can be found in [58, 71].

Figure 3.2: Bi-directional Reflectance Distribution Function (BRDF) representation.
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3. Combining surface orientations and range estimates for 3D geometry

In CNC manufacturing settings, objects are metallic, thus rendering Lambertian

assumptions in photometric stereo inaccurate. To obtain consistent surface orienta-

tions of real-world objects with varying BRDFs, we use the technique described in

Holroyd et al. [25]. The algorithm leverages reflective symmetries observed in 2D

BRDF slices, parametrized using the halfway vector. The halfway vector is described

using the light position and the viewing position as h = l+v
|l+v| . We lit the scene with

a set of 150 different light positions in the visible hemisphere and construct the 2D

BRDF slices βv(θh, φh) for every single pixel (Fig. 3.3). Here, θ ∈ [0, 90] represents

the polar angle while φ ∈ [0, 180] is the azimuth angle.

Figure 3.3: 2D BRDF slices of diffuse, specular isotropic, and anistotropic BRDF.

We exploit symmetries across the normal, normal-tangent, and the normal-

bitangent planes as follows:
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3. Combining surface orientations and range estimates for 3D geometry

1. Reflection of h across the normal-tangent nt plane

βv(θh, φh) = βv(θh,−φh)

2. Reflection of h across the normal-bitangent nb plane

βv(θh, φh) = βv(θh,−φh + π)

3. Reflection of h across the surface normal

βv(θh, φh) = βv(θh, φh + π)

Using the generated BRDF slices and the symmetry functions, we optimize a symmetry

distance (Eq. 3.3) that uses the Singer and Nelder [59] simplex algorithm:

SD(n, t) = SDτnt(n, t) + SDτnb(n,b) + SDτn(n) (3.3)

SDτ (n, t) =

∫
Ωτ
||(n · τ(l))I1 − (n · l)Iτ(l)||2dωl∫

Ωτ
||(n · τ(l))Il||2dωl

(3.4)

Here, b = n×t, τ(l) describes any arbitrary transformation on the lightning positions

l, and Ωτ is the domain of integration. Light positions l and their transforms τ(l)

that are not in the upper hemisphere or whose halfway vectors hn, hτ(l) /∈ [0, θdmax ]

are culled away.

3.2 Range scanning using structured light

3.2.1 Multiplexing structured light line scanning using

gray codes

Normal maps can be integrated using a normal integration procedure to derive the

object depths. However, these integrated normal maps are very sensitive to small

noise or deviations. In addition, they do not offer accurate relative depth estimates

and suffer from low-frequency bias. Therefore, we explore explicit depth estimation

algorithms using structured light methods. A schematic representation of the general

structured light scanning setup is shown in Fig. 3.4

A simple way of using structured light scanning is to use a rectified camera-

projector setup to project single lines sequentially on the scene and compute the
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3. Combining surface orientations and range estimates for 3D geometry

Figure 3.4: Schematic of a general structured light line scanning setup.

disparity map. In practical situations, single line structured light scanning is forbidden

due to two factors: the number of images required for line scanning is too high

(equivalent to the resolution of the projector in the horizontal direction) and rectifying

a camera projector system is inconvenient. Therefore, practical scanning systems use

time-multiplexed spatial binary patterns for object scanning. These encoded binary

patterns projected on the objects are captured by the camera and then decoded to

find the correspondence map. For our experiments, we use gray code patterns which

are a type of sequential binary codes that vary only at a 1-bit position. They are

chosen for their error correction capabilities in case of discontinuities around spatial

pattern edges due to projector hardware limitations. The binary images are created

by converting the indices of each column into its corresponding gray code and then

traversing the bits from the most significant bit (MSB) to the least significant bit

(LSB). Some example gray code patterns are shown in Fig. 3.5. These encoded

patterns are used for getting the horizontal and the vertical correspondence maps.

The object shape is reconstructed using 3D triangulation from the distortions of these

correspondence maps.
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3. Combining surface orientations and range estimates for 3D geometry

Figure 3.5: Generated binary gray code patterns used for structured light scanning.

3.2.2 Improving reconstruction resolution using phase

shifting fringe projection

Gray code patterns guarantee uniqueness but have limited resolution and smoothness

due to their discrete nature causing harsh quantization effects, especially at pattern

edges. This creates rough surface meshes with redundant repetitive high-frequency

artifacts. To get rid of such uneven correspondence retrievals, we use the phase-shifting

profilometry (PSP) technique that exploits higher spatial resolution periodic patterns

to give high-resolution distortion estimates of the object. Instead of projecting binary

patterns, we project continuous sinusoidal fringe patterns on the scene and recover

the correspondence indices using phase unwrapping methods. The drawback of using

a phase-shift pattern method is the limited depth range it offers, causing inherent

ambiguities arising due to pattern repetition. As gray code scanning methods are

efficient in recovering the approximate depth of objects, we combine gray code scanning

with phase-shifting profilometry. The first gives us a coarse absolute correspondence

map devoid of ambiguities, while the latter refines this correspondence map resolution

at sub-pixel levels. A standard phase-shift projector pattern can be defined with the

intensity values such as:

Ip(x
p, yp) = ap + bp cos(2πfp0x

p − 2πn/N) (3.5)

where (xp, yp) is the projector pixel, a is the mean value of the pattern, b is the

amplitude, n is the phase shift index, N is the total number of patterns, and f0 is

the frequency of the pattern repetition. The patterns after projecting and getting

captured can be represented as:

17



3. Combining surface orientations and range estimates for 3D geometry

I(x, y) = A(x, y) +B(x, y) cos[φ(x, y)− 2πn/N ] (3.6)

Here we have 3 unknowns: A(x, y), B(x, y), and φ(x, y) and hence we need at least

three phase-shifted patterns. We use the double three-phase shift algorithm by Huang

et al. [27] as they reduce errors caused due to projector luminance nonlinearity. The

only overhead is the requirement of 3 more patterns for both vertical and horizontal

directions. The first set has phase-shifts 0, 2π
3
, and −2π

3
and the second set has

phase-shifts π
3
, π, and 5π

3
. The patterns used are shown in Fig. 3.6. The intensities of

the three sinusoidal fringe pattern images for the first set can be represented as:

I0 = A+B cos(φ) (3.7)

I1 = A+B cos(φ− 2π

3
) (3.8)

I2 = A+B cos(φ+
2π

3
) (3.9)

We can estimate them as:

φ = arctan

√
3(I1 − I2)

2I0 − I1 − I2

(3.10)

A =
I0 + I1 + I2

3
(3.11)

B =
1

3

√
3(I1 − I2)2 + (2I0 − I1 − I2) (3.12)

Similarly, we can estimate the phase map for the second set using the same formula

and average the phase maps to cancel the errors arising from using a single phase-shift

pattern method.

3.2.3 3D mesh from normals and depths

Mesh formation using only the depth information is not accurate due to the loss

of high-frequency details. To retain the high-frequency information of the objects

as well as the accurate range information, we use the method proposed by Nehab

et al. [52] for all our experiments to combine orientation and position estimates. This
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Figure 3.6: Generated double three-phase shift patterns used for phase-shift profilom-
etry.

process improves the quality of geometric information by approximating a surface

that uses both normal and depth under a two-stage linear framework.

The first step is eliminating the low-frequency bias in the measured normal

maps from the photometric stereo Nm using the position map. This is done by first

constructing the normal map from the position map using gradients Np and then

smoothing both normal maps by the same amount using a Gaussian filter, giving us

SNm and SNp. A rotation field R is defined which has a one-to-one correspondence

from SNm to Nm, that captures only the high-frequency details in Nm. Finally, the

corrected normal map Nc is computed as Nc = R · SNp. The second step involves

minimizing the sum of two errors: the normal error En and the position error Ep.

Using perspective projection, we define the position P (x, y) as:

P (x, y) =
[
− x
fx
Z(x, y) − y

fy
Z(x, y) Z(x, y)

]T
(3.13)

where fx and fy are the focal length in the x and y direction in pixels. The position
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error between the measured position Pmi and the optimized position Pi is defined as:

Ep =
∑
i

||Pi − Pmi||2 (3.14)

= µ2
i (Zi − Zmi)2 (3.15)

µ2
i =

(
x

fx

)2

+

(
y

fy

)2

+ 1 (3.16)

For the normal error, we first construct the tangents Tx and Ty corresponding to x

and y directions using partial derivatives as follows:

Tx =
∂P

∂x
=
[
− 1
fx

(x∂Z
∂x

+ Z) − 1
fy
y ∂Z
∂x

∂Z
∂x

]T
(3.17)

Ty =
∂P

∂y
=
[
− 1
fx
x∂Z
∂y
− 1
fy

(y ∂Z
∂y

+ Z) ∂Z
∂y

]T
(3.18)

Using the tangents and corrected normals Nc, we define the normal error En which is

minimized when the corrected normals are orthogonal to the corresponding tangents:

En =
∑
i

|Tx(Pi) ·Nci |2 + |Ty(Pi) ·Nci |2 (3.19)

The entire minimization process is formulated into a large sparse linear system that

is solved by least-squares optimization process: λµI

. . .

(1− λ)Nc · T

Z =

λµZm. . .

0

 (3.20)

Here, λ controls the weight of the influence of normals and positions. We solve this

system using the conjugated gradient method for sparse systems [23]. The depth map

is retrieved from any structured light method and we use any of the above-mentioned

photometric stereo methods for normal maps. Using these optimized normals and

positions, we create an oriented point cloud that is used for an accurate surface mesh

reconstruction.

The creation of meshes from oriented point clouds are done using screened Poisson

surface reconstruction [37]. This method constructs the surface by defining a con-
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tinuous 3D vector field ~V : IR3 → IR3 and finding a scalar function whose gradients

matches the vector field. This scalar function is known as the indicator function

f : IR3 → IR which has a value of 1 inside the model and 0 outside the model. A

weighted offset energy term is also incorporated that penalizes the objective function

if its value deviates from zero at the point cloud samples. The objective function is

defined as:

E(χ) =

∫
p

||~V (p)−∆f(p)||2dp+ α
Area(P )∑
p∈P w(p)

∑
p∈P

w(p)f 2(p) (3.21)

Here, P is the set of oriented points, w describes the weight of every point, and α is

the parameter that expresses the importance of the additional screened term. The

weight w(p) is set to be 1 for every point. The above equation is solved using a

discretized multi-grid octree. The weighting parameter for the two energy terms is

adaptively adjusted across different octree depths. We use the Dirichlet boundary

conditions for all the reconstructions which has a value of −1
2

along the boundaries

of the integration domain.

3.3 Robust image decompostion for specular

sparse noise elimination

One of the adversities of manufacturing objects in a CNC machine is the presence of

random metal shavings which corrupt the captured images in two ways: 1) blocking

light rays from the light source creating shadows and 2) introducing specular non-

uniform spots captured by the camera. Generally, these artifacts tend to be sparse

and are present in both photometric stereo and structured light scanning.

It is a well-studied concept that Lambertian objects, under a fixed viewpoint,

when illuminated from at least 3 different directions, can be used to determine the

surface orientation [8]. We use the approach described in Wu et al. [75] that uses

this 3-rank constraint to cast the photometric stereo problem into a low-rank matrix

decomposition problem. This decomposition separates the diffuse component from

the noisy corrupted image measurements. We represent the corrupted measurements

in photometric stereo as a combination of the low-rank approximation matrix from
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the N · L Lambertian model and the sparse noise matrix as follows:

I = ρ (N · L) + E (3.22)

I = M + E (3.23)

Enforcing the low-rank constraints, the optimization problem becomes:

argmin
M,E

rank(M) + λ||E||0 (3.24)

Here, ||E0|| is the `0-norm denoting the number of non-zero entries in the matrix.

This optimization is an NP-hard problem and using a convex relaxation method

known as principal component pursuit (PCP), this problem has the same optimal

solution as:

argmin
M,E

(||L||∗ + λ||E||1) (3.25)

Here, ||L||∗ is the nuclear norm and ||E||1 represents the `1-norm.

We extend the same idea to structured light gray code scanning, where for a single

binary pattern, we capture multiple images of the object. The set of single-patterned

images are decomposed into low-rank and corrupted measurements where we expected

the rank of the low-rank matrix to be 1. We solve both these optimization problems

using Augmented Lagrangian Multiplier by Lin et al. [42].

3.4 Simulation experiments

The purpose of simulated experiments is to gauge the performance of our algorithms

in an ideal noise-free situation. We perform experimental evaluations on a physically

accurate simulation platform called Mitsuba [32] using the pipeline shown in Fig. 3.7.

The scene usually consists of an environment map describing the surroundings of

the object, a camera, a controllable light projector, light sources, and the object’s

geometry. To render scenes realistically, we use the library of BRDFs provided
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by Mitsuba that is based on the microfacet model by Cook and Torrance [16]. In

the microfacet model theory, the surface of an object is represented as microscopic

surfaces that behave like Fresnel mirrors when light rays are cast. The two main

components of the microfacet model are the distribution of the facets and a function

describing the masking/shadowing properties of the facets. Mitsuba provides multiple

tune-able parameters like material type, material properties, and roughness extent

in the tangent-bitangent directions. This enables easy reproduction of objects with

versatile surface appearances. For all our simulation experiments, we use the wrench

object that has 14,799 vertices and 29,312 faces. The centre of the object is always

kept 10 cm away from the camera centre in the z-direction. A mesh skeleton and a

rendering of the wrench in an environment is shown in Fig. 3.8

For simulation experiments, we use structured light line scanning as a baseline as

it guarantees more accuracy than multiplexed patterns like gray codes or PSP. The

resolution of the projector is 1024×768 and therefore, we project 768 spatially-varying

line patterns on the scene. We use a rectified camera-projector system and generate

a disparity map by finding correspondences on every row of the captured image. The

depth map is then generated from the disparity map by using the formula D = bf
d

,

where d is the disparity map, b is the distance between the camera and the projector

centre in the x-dimension, also known as baseline, and f is the focal length of the

camera.

We show the qualitative and comparative quantitative results for estimating

normal maps and depth maps, followed by the optimization process in Nehab et al.

[52], and finally creating a 3D surface mesh. In the figures, rc-α-β means a parametric

rough conductor BRDF (material type) and α, β ∈ [0, 1] specifies the anisotropic

roughness parameters along the tangent and bi-tangent directions. If α = β, the

object is isotropic, else it is anisotropic.

The surface orientation maps using the two photometric stereo methods for

objects with different BRDFs are shown in Fig. 3.9. Normals in all result figures are

visualized as (N + 1)/2 to prevent the clipping of negative values. From the normal

map estimation results, it is clear that photometric stereo performs the best when

the object is diffuse and gives erroneous results in cases of specular isotropic and

anisotropic BRDFs. Also, the method mentioned in 3.1.2 gives us more accurate

normal map estimation as shown in the middle row of 3.9. The normals estimated
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Figure 3.7: Rendering pipeline used for simulation experiments.

Figure 3.8: Left: Mesh skeleton of wrench object. Right: Rendering of the wrench
mesh using Mitsuba.

using this method is more uniform, compared to photometric stereo, even in cases of

complex BRDFs.

BRDF Diffuse rc-0.5-0.5 rc-0.1-0.1 rc-0.5-0.1 rc-0.2-0.05
Error 0.718 0.723 0.781 0.81 0.815

Table 3.1: Mean depth map reconstruction error (in mm) versus BRDF.
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Ground Truth Diffuse rc-0.5-0.5 rc-0.1-0.1 rc-0.5-0.1 rc-0.2-0.05

Figure 3.9: Simulation experimental results for estimating normal maps. Top Row:
Normal maps from photometric stereo. Middle row: Improving normal maps using
the method discussed in Section 3.1.2. Bottom Row: Reference rendering of a sphere
for the corresponding BRDF.
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Ground Truth Diffuse rc-0.5-0.5 rc-0.1-0.1 rc-0.5-0.1 rc-0.2-0.05

Figure 3.10: Simulation experimental results for estimating depth maps using struc-
tured light line scanning. Bottom Row: Reference rendering of a sphere for the
corresponding BRDF.

The reconstructed mesh is compared with the reference mesh using Hausdorff

measure, which is defined as the average distance between two meshes obtained by

sampling points on the reconstructed mesh and computing the closest distance from

the reference mesh.

We use the depth and normal maps from the previous results to reconstruct a 3D

surface mesh. Specifically, we compare three different types of algorithms for mesh

error comparisons:

Algo 1: Depth from structured light scanning + normals from fitting planes

to neighbourhood points

Algo 2: Depth from structured light scanning + normals from photometric

stereo

Algo 3: Depth from structured light scanning + normals from the method

discussed in Section 3.1.2

The first algorithm estimates per-point normal for each point in the point cloud by

fitting planes using 10 neighbour points. The second algorithm uses the normal map

from photometric stereo while the final algorithm uses the generalized photometric

stereo method. The dimension of the object is 10 cm in height, 4 cm in width, and
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1 cm in depth. We provide the qualitative results for the wrench object for all the

5 BRDFs showing the mesh reconstruction results in Figs. [3.11, 3.12, 3.13, 3.14,

3.15]. A summary of the error metrics is shown in Tab. 3.2 for all the 3 listed

algorithmic processes. We conclude from these simulation experiments that as the

object reflectance moves from Lambertian to specular isotropic and anisotropic, the

reconstruction error for all the algorithms increase.

(a) Rendering (b) Expected (c) Algo 1 (d) Algo 2 (e) Algo 3

Figure 3.11: 3D mesh reconstruction comparison for diffuse BRDF.

Method
BRDF

Diffuse rc− 0.5− 0.5 rc− 0.1− 0.1 rc− 0.5− 0.1 rc− 0.2− 0.05

Depth +
Plane-fit normals

0.31 0.315 0.32 0.32 0.315

Depth +
Photometric stereo normals

0.286 0.288 0.293 0.29 0.295

Depth +
Holroyd et al. [25] normals

0.219 0.22 0.223 0.221 0.232

Table 3.2: Simulation results: 3D mesh geometry error in mm versus BRDF for our
comparative algorithms.
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(a) Rendering (b) Expected (c) Algo 1 (d) Algo 2 (e) Algo 3

Figure 3.12: 3D mesh reconstruction comparison for isotropic specular BRDF with
roughness parameter = 0.5 in both directions.

(a) Rendering (b) Expected (c) Algo 1 (d) Algo 2 (e) Algo 3

Figure 3.13: 3D mesh reconstruction comparison for isotropic specular BRDF with
roughness parameter = 0.1 in both directions.
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(a) Rendering (b) Expected (c) Algo 1 (d) Algo 2 (e) Algo 3

Figure 3.14: 3D mesh reconstruction comparison for anisotropic BRDF with roughness
parameters = 0.5 and 0.1 in tangent and bi-tangent directions respectively.

(a) Rendering (b) Expected (c) Algo 1 (d) Algo 2 (e) Algo 3

Figure 3.15: 3D mesh reconstruction comparison for anisotropic BRDF with roughness
parameters = 0.2 and 0.05 in tangent and bi-tangent directions respectively.
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3.5 Experiments

In this section, we first show experiments using our practical setup for photometric

stereo and structured light scanning. We reconstruct the 3D shape of multiple objects

and perform quantitative analysis for our reconstructed 3D geometries. We then deal

with specular noisy environments using the low-rank matrix decomposition method

(Sec. 3.3) for robust 3D reconstructions. Finally, we perform experiments using our

setup on a representative CNC lathe.

3.5.1 3D geometry reconstruction

Hardware setup: Our hardware setup consists of the following: Allied Vision

Prosilica GX-1910 camera, Edmund Optics 8.5 mm/F1.3 lens, DLP LightCrafter

4500 projector by Texas Instruments, Lowel ViP Pro-Light, and a chrome sphere ball

for photometric stereo light position calibration. For structured light scanning, we

use a calibrated projector-camera pair. The chrome sphere ball and the collimated

light source are required especially for photometric stereo. Our setup is shown in Fig.

3.16. We use three objects: a planar white box, a pink spherical ball, and a white

horse. The objects in our experiments are always placed in front of a black surface

for simple background-foreground segmentation.

Figure 3.16: Hardware setup used for photometric stereo and structured light scanning.
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System calibration: We describe different types of calibration required for pho-

tometric stereo, gray code scanning, and phase-shifting patterns. These calibration

processes are essential for increasing the accuracy of a scanning system.

1. Light direction calibration for photometric stereo

For photometric stereo, we calibrate the light positions using the toolbox

provided by Xiong [76]. A sphere chrome ball is placed in the scene and the

points of the boundary of the sphere are manually selected. Then, a circle

is fitted to the manually extracted positions (Fig. 3.17). For every lightning

position used for capturing the image, we estimate the 3D direction from the

specular highlight present in the 2D circle image of the chrome sphere as shown

in Fig. 3.18.

Figure 3.17: Left: Image of the chrome sphere in the scene. Right: Fitted circle on
the sphere using manually selected points.

2. Projector-camera calibration for structured light scanning

High-precision in gray code structured light systems can only be obtained

through accurate calibration of the camera and the projector. We calibrate our

projector-camera system using the method described by Moreno and Taubin

[48] that models the projector as an inverse camera using the general pinhole

camera model. They take into account the radial and the tangential distortions

of both the camera and the projector. A plane checkerboard pattern is used

as a calibration object for computing the local homographies as corners are

easy to identify. The homography is a 3× 3 matrix that relates the camera’s
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Figure 3.18: Left: Specular highlights in the chrome sphere for various lighting
positions. Right: Estimated lighting positions in red.

reference frame with the projector’s reference frame.

The camera-projector calibration steps are mentioned in Algorithm 1.

Algorithm 1 Camera projector stereo calibration.

1: procedure CalibrateCameraProjector(img)
2: Generate gray code patterns for the projector resolution.
3: Capture multiple sequences S of the gray code pattern with different positions

of the checkboard pattern (sample captured checkerboard images in Fig. 3.19)
4: Calibrate the camera first using the all-on images i of the sequences S
5: Compute the correspondences of the known points in the calibration object

using all the gray code sequences S. An example correspondence map for the x
and y co-ordinates are shown in Fig. 3.20

6: Calibrate the projector using the same process to calibrate the camera
7: end procedure

3. Projector radiometric calibration for phase shifting

Phase shifting profilometry (PSP) are very commonly used methods to get

sub-pixel resolution accuracy for the correspondence maps between a camera

projector system which results in smoother point clouds and surface meshes.

The performance of PSP systems are often impaired due to the nonlinear lu-

minance, commonly known as gamma correction. To increase the accuracy of

the reconstruction we calibrate the projector compensating for the intensity

nonlinearity using the method described in Hoang et al. [24]. The process

involves generating two sets of PSP patterns with arbitrary gamma encoding
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Figure 3.19: Captured gray code patterns projected on the checkerboard pattern.

(a) Horizontal correspondences (b) Vertical correspondences

Figure 3.20: Camera projector dense point correspondences for checkerboard gray
code sequence.

values. The patterns are projected on a planar surface and images are captured.

The total gamma γt of the scanning system can be described with the actual

projector gamma γp along with two other gamma parameters γa, γb arising

due to the complexity of the projector-camera system. Estimating interme-
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diate gamma values γa, γb through the phase-shift scanning and then using

γp = (1−γb)γa gives the gamma correction value of the projector-camera system.

Normal map estimation: The captured images for estimating the normal map

using photometric stereo along with the estimated normal maps for three objects

(box, ball, and horse) are presented in Figs. [3.21, 3.22, 3.23] respectively.

Figure 3.21: Left: Captured images used for photometric stereo. Right: Recovered
per-pixel normal map for planar box.

Figure 3.22: Left: Captured images used for photometric stereo. Right: Recovered
per-pixel normal map for spherical ball.

Gray code structured light: We project 44 gray code patterns into the scene,

capture, and then decode them to get correspondence maps. These correspondence
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Figure 3.23: Left: Captured images used for photometric stereo. Right: Recovered
per-pixel normal map for horse.

maps relate the projector pixels with the camera. The gray code patterns projected

on all the objects along with their correspondence maps visualized using pseudo-color

are shown in Figs. [3.24, 3.25, 3.26].

(a) Sample captured images (b) Horizontal (c) Vertical

Figure 3.24: Captured images and correspondences used for gray code scanning for
planar box.

Gray code + Phase-shifting patterns: For the hybrid gray code-PSP pattern
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(a) Sample captured images (b) Horizontal (c) Vertical

Figure 3.25: Captured images and correspondences used for gray code scanning for
spherical ball.

(a) Sample captured images (b) Horizontal (c) Vertical

Figure 3.26: Captured images and correspondences used for gray code scanning for
horse.

scanning process, we first project the 44 gray codes to compute the pixel-wise indices

and then use 2 different frequencies of sinusoidal patterns with 3 phase shifts. The

sinusoidal patterns are projected for horizontal as well as vertical directions, to refine

these correspondence indices, thus making a total of 54 images. The hybrid gray

code-PSP patterns projected on all the objects along with their correspondence maps

are shown in Figs. [3.27, 3.28, 3.29].

3D shape from normals and depths: The estimated correspondences between

the camera and projector matrix from gray code and the hybrid scanning process

are used to construct the point cloud of the object, using the intrinsic and extrinsic

camera projector matrices. Normals maps are used from the photometric stereo

process. Finally, we input the point cloud and the per-pixel normal map (oriented
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(a) Sample captured images (b) Horizontal (c) Vertical

Figure 3.27: Captured images and correspondences used for gray code + PSP patterns
for planar box.

(a) Sample captured images (b) Horizontal (c) Vertical

Figure 3.28: Captured images and correspondences used for gray code + PSP patterns
for spherical ball.

(a) Sample captured images (b) Horizontal (c) Vertical

Figure 3.29: Captured images and correspondences used for gray code + PSP patterns
for horse.
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point cloud) for the surface reconstruction process for multiple objects.

We observe that the point clouds generated using the gray code-PSP patterns

generate more accurate and denser point clouds compared to gray codes scanning.

This is due to the discretization of the correspondence maps by the encoding-decoding

process in gray code pattern. Also, the 3D surface mesh reconstructions in case

of using the hybrid patterns are more smooth and devoid of repetitive artifacts.

Comparative point cloud and mesh reconstruction figures for all three objects are

shown in Figs. [3.30, 3.31].

Figure 3.30: Top: Recovered point cloud and surface mesh using gray codes. Bottom:
Recovered point cloud and surface mesh using gray codes + PSP for planar box.

Quantitative evaluations: We use the planar box and spherical ball for our
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Figure 3.31: Top: Recovered point cloud and surface mesh using gray codes. Bottom:
Recovered point cloud and surface mesh using gray codes + PSP for spherical ball.

reconstruction error evaluation. For the box, we fit a parametric plane to the

recovered point cloud. The average error estimate is the mean distance of samples in

the point cloud with the planar model. For the ball, we measure the diameter first

and then create a parametric sphere for ground truth. We calculate the distance of

every point from this expected spherical model. The average error values in mm are

presented in Table 3.3. From the table, we infer that using a combination of gray

codes and PSP patterns offer an improvement over using just gray code patterns. In

addition to improving the visual quality of the mesh, it is also capable of estimating

surface geometries more accurately.
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Figure 3.32: Top: Recovered point cloud and surface mesh using gray codes. Bottom:
Recovered point cloud and surface mesh using gray codes + PSP for horse.

Table 3.3: Comparative error analysis using our practical setup for 3D range scanning.

Object Method Error in mm

Box
Photometric stereo + gray code scanning 0.513

Photometric stereo + PSP + gray code scanning 0.320

Ball
Photometric stereo + gray code scanning 0.421

Photometric stereo + PSP + gray code scanning 0.260
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3.5.2 Robust 3D reconstruction in noisy environment

Hardware setup modifications and scanning environment: Our previous 3D

scanning system consisted of a collimated spotlight required for photometric stereo.

This light required manual movement for obtaining different illumination directions.

For convenience, we replace the light source with a monitor display. This enables

automatic light illumination direction manipulation by selective pixel multiplexing

of the display. The light direction calibration process for photometric stereo is the

one as described in Section 3.5.1. Our modified setup is shown in Fig. 3.33. For

creating a sparse specular noisy scanning environment, we scatter mirror-like confetti

particles around the viewing area of the camera and projector. These particles

emulate sparse shadows and shiny spots on and around the object like in a real ma-

chining environment. The effect of confetti on our image captures is shown in Fig. 3.34.

Figure 3.33: Our modified setup used for specular sparse noise elimination experi-
ments.

Normal map improvement: We use the diffuse horse object mentioned above for

all our noise elimination experiments. We capture 11 images for photometric stereo.

The decomposed diffuse and noisy components from the corrupted measurements

are presented in Fig. 3.35. The normal map estimation comparison using the noisy
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Figure 3.34: Left: Image frame showing the effect of confetti while scanning with our
setup. Right: Setup image taken after scanning the object in the presence of specular
noise-generating confetti particles.

corrupted and the low-rank recovered set of images are shown in Fig. 3.36. We deduce

that the algorithm gives us better estimates of the surface orientation on using the

low-rank decomposed diffuse images.

(a) I (corrupted) (b) L (diffuse) (c) E (sparse)

Figure 3.35: Low-rank matrix completion and recovery for photometric stereo.

Depth map improvement: We use gray code scanning for our robust depth

estimation experiments as sinusoidal phase-shift patterns are intensity dependent. This

makes them sensitive to surface reflectance and more vulnerable to correspondence
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(a) Expected normals (b) Normals using cor-
rupted images

(c) Normals using low-
rank images

Figure 3.36: Photometric stereo normal improvement using corrupted and low-rank
recovered non-corrupted images.

errors. We capture 6 images for every single gray code pattern. The normal gray

code scanning requires 44 images which takes a capture time of 0.7 seconds while the

low-rank matrix decomposition method requires 264 images with a capture time of

4.2 seconds. The sparse noise removal process for gray code scanning is shown in Fig.

3.37.

(a) Multiple captures of a single gray code pattern (b) Recovered non-
corrupted image

Figure 3.37: Low-rank matrix completion and recovery for gray code structured light
scanning.

We observe improvement for the depth map estimation using low-rank matrix

decomposition in the case of gray code scanning as shown in Fig. 3.38. We reconstruct

the 3D point clouds using triangulation for the corrupted and non-corrupted cases
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(a) Expected depth map (b) Depth map using corrupted
images

(c) Depth map using low-rank
images

Figure 3.38: Depth map improvement using corrupted and low-rank recovered non-
corrupted images.

(a) Expected point cloud (b) Using corrupted images (c) Using low-rank images

Figure 3.39: Point cloud reconstruction improvement using corrupted and low-rank
recovered non-corrupted images.
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as shown in Fig. 3.39. The corrupted point cloud has holes and more outlier

point locations due to shadows and complex reflectivity generated from the specular

particles. The low-rank recovered point cloud closely conforms with the expected

ground truth point cloud.

Quantitative evaluations: The mesh errors are computed by comparing our re-

constructed mesh with a ground truth mesh in the absence of specular confettis.

We compare the errors relative to a reference mesh as finding the real mesh shape

required precise equipment which was infeasible for our situation.

The normals error in degrees and depth error in mm is shown in Table 3.4. Using

the normal and depth maps obtained for both scenarios (with and without low-rank

completion captures), we reconstruct the surface mesh for 4 different scenarios:

1. Photometric stereo images and gray code scanning images (Noisy)

2. Low-rank completion of photometric stero images and gray code scanning images

(Stereo LR only)

3. Photometric stereo images and low-rank completion of gray code scanning

images (Gray code LR only)

4. Low-rank completion of photometric stereo images and low-rank completion of

gray code scanning images (Both LR)

The mesh reconstructions for all the four cases are shown in Fig. 3.40 and the

errors are reported in Table 3.5. The effect of not using low-rank decomposition

lowers the reconstruction errors as visually inferred from the mesh reconstructions. In

the cases where gray code low rank decomposition is not used, these sparse artifacts

manifest as arbitrary blobs around the actual object mesh.

Table 3.4: Comparison of normal and depth errors for corrupted captures vs low-rank
non-corrupted captures.

Error type Normal captures (corrupted) Low-rank captures

Normal (in degrees) 15.82 10.72
Depth (in mm) 2.63 1.79
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Table 3.5: Comparison of mesh reconstruction errors (in mm) for the 4 scenarios
mentioned in Section 3.5.2.

Method Noisy Stereo LR only Gray code LR only Both LR

Avg error 4.89 4.83 0.383 0.312

(a) Noisy (b) Stereo LR only

(c) Gray code LR only (d) Both LR

Figure 3.40: 3D mesh reconstruction errors in noisy environments for the 4 scenarios
mentioned in Section 3.5.2.
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3.5.3 3D scanning on a representative CNC lathe

Machining environment and setup modifications: We perform all CNC ma-

chining environment experiments on a Haas Toolroom Lathe (TL)-1. The machining

environment and the lathe system is shown in Fig. 3.41. The raw stock that needs

Figure 3.41: Machining environment for our scanning experiments.

to be manufactured is held tightly by the three metallic jaws known as chuck. The

spindle is the part of the machine that spins at very high revolutions per min (RPM).

We observed that putting in a raw stock and revolving it produces chatter at the

edges due to manual setting errors. To prevent these edge chatters, we do a manual

cut of the raw stock into a smooth cylinder such that the axis of this cylinder is

centre-aligned with the spindle. To make sure, these edge movements are at a mini-

mum, we use a touch probe system whose deviations determine the smoothness of this

cylinder. We carry this process in an iterative fashion, till we are below a roughness

tolerance for the object surface. We build a stage on one side of the lathe system

to place our 3D reconstruction setup. Our scanning schematic and actual setup on

the lathe machine is shown in Fig. 3.42. Due to the space constraints on the CNC

lathe machine, we use a mirror in front of the projector as it has a minimum working

distance for the light to be in focus. We also incorporate polarizers in our setup

to mitigate the effect of the complex light interaction with the specular/anisotropic

object which interferes with accurate shape reconstruction. The effectiveness of using

polarizers for 3D point cloud reconstruction using structured light scanning is shown

in Fig. 3.43. The algorithm gives us wrong estimates of the point cloud due to
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Figure 3.42: 3D scanning setup on a representative CNC lathe machine.
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(c) Image capture (d) Point cloud

Figure 3.43: Advantage of using polarizers for imaging objects with complex isotropic
and anisotropic BRDFs.

saturated specular highlights near the front middle area of the object when there is

no polarizer. Using a polarizer, results in smoother point clouds and also reduces the

errors in camera projector correspondences resulting in more accurate 3D location
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estimates.

Results: We calibrate our camera projector system for 3D stereo reconstructions

using the procedure mentioned in Section 3.5.1. We use a metallic aluminium cylinder

that has been manufactured on the lathe for stable centre alignment with the spindle

axis. We generate the mesh from the oriented set of point clouds under varying

revolutions per minute (RPM) of the object. For the reference ground truth mesh

structure, we measure the object at 10 different positions along its length using a

digital micrometer and average the distance. We fabricate the reference cylindrical

point cloud using this ground truth distance for our error comparisons.

We scan the object under 0, 10, 100, and 200 RPM for our quantitative evaluations.

From Fig. 3.44 and Table 3.6, we conclude that the object reconstruction has the

highest accuracy when it is static. When the object is revolving at 10 RPM, the

textures/scratches on the object manifest as line-like artifacts in the image captures.

These cause 3D location outliers as well as line-like artifacts as seen in the point cloud

image (zoom in). These artifacts are prominently visible in the mesh reconstruction

for 10 RPM. However, when the object rotates at 100 RPM, these artifacts tend to

average out due to the high speed. This makes captures under 100 RPM more robust,

decreasing the mesh reconstruction error and producing a better surface mesh. In

200 RPM, we observe more edge vibrations compared to 100 RPM due to the higher

capacity at which the machine operates. This results in some wrong correspondence

estimates near the edges thus increasing the reconstruction error compared to 100

RPM.

Table 3.6: Comparison of mesh reconstruction errors (in mm) for different RPM of
object on CNC lathe.

Revolution speed 0 RPM 10 RPM 100 RPM 200 RPM

Avg rec. error 0.515 0.574 0.52 0.548
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(a) Image capture (b) Point cloud comparison (c) 3D mesh

10
R

P
M
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Figure 3.44: Structured light scanning sample captured image, point cloud comparison
with reference point cloud (in red), and the reconstructed 3D mesh for part under 0,
10, 100, 200 RPM.
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3.6 Summary

We present an active scanning imaging setup that combines photometric stereo with

structured light scanning. We use the estimated normals and depths to reconstruct

point clouds and 3D meshes. We use our setup to:

1. reconstruct 3D geometries objects of different BRDFs in a desktop environment;

2. make our 3D reconstruction robust by mitigating sparse specular corruptions -

ubiquitous in a machining environment - through a low-rank matrix recovery-

completion algorithm;

3. reconstruct accurate 3D shapes of representative specular and anisotropic objects

on a CNC lathe under high-speed revolutions.

This chapter addresses the performance of structured light scanning and photo-

metric stereo in lab-based noisy environments and machining environments. The high

reconstruction error (0.5 mm) and long capture times required are unfavourable for

accurate real-time scanning on CNC machines. We resolve these issues in the next

chapter where we propose a novel scanning setup having rapid acquisition times and

improved 3D reconstruction accuracy.
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Chapter 4

Ballistic shape from silhouette for

3D reconstruction in scattering

medium

The presence of coolant fluids is essential in an active machining environment. They

are used for dissipating the heat generated from the friction between the cutting

tool and the high-speed revolving raw stock. Coolant fluids also help in the smooth

machining of objects by lubricating the cutting tip as well as preventing them from

rusting. However, they possess an inherent disadvantage for vision-based scanning

systems due to their scattering properties. In this section, we deal with the problem of

scanning and reconstructing the shape of objects in the presence of different scattering

mediums and specular metal shavings. We propose a shape from silhouette ballistic

scanning setup that efficiently images high contrast and sharp silhouette images by

selective light path captures. In addition, we propose an algorithm that is used to

reconstruct the point cloud and mesh from a single silhouette image, enabling rapid

in-line error feedback. We use our scanning system to accurately reconstruct the 3D

shape of rotating objects on a representative CNC lathe machine down to 60 µm.

We also introduce a spatio-temporal processing technique that mitigates the effect of

scattering fluids and sparse specular shavings, making our scanning setup robust in

an active machining environment.

This chapter is arranged as follows: Sec. 4.1 describes general light transport
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theory in scattering medium. Sec. 4.2 forms the core theory behind our novel ballistic

shape from silhouette scanning setup. Sec. 4.3 delves into the hardware details of our

novel scanning system. Sec. 4.4 contains algorithm designs for single-image 3D shape

reconstruction and spatio-temporal processing. Sec. 4.5 shows our descattering and

3D geometry reconstruction results in controlled lab settings and noisy machining

environments.

4.1 Light interaction in scattering medium

Conventional vision based systems are often inefficient in imaging through scattering

media like murky water, fog, and diffusing liquids. An extensive amount of work

has been done in hazy image restoration through removal of the back-scattering

component known as airlight [60]. A common assumption in such methods is the

linear propagation of the light paths from distant light sources which is violated in

near-field illumination. Light undergoes multiple travel paths in a complex scattering

medium (Fig. 4.1). A part of the photons may lose their energy as well as coherence

properties completely. These photons get absorbed by the particles of the medium

after undergoing multiple scattering events. A few of the photons will undergo specular

reflection following Snell’s law. The energy content of such photons is completely

preserved with a reversal in the propagation direction about the normal. Following,

we have multiple scattered photons, that prohibit the clear imaging of objects inside

or behind the scattering medium. These photons are called diffusive photons and

are the principal reason for brightness attenuation, blurred boundaries, and contrast

loss in captured images. The degradation effects of the scattering medium on images

increase exponentially with distance, making it challenging to capture internal object

details. A fraction of the photons might undergo very few scattering events. These

photons are called snake photons and may also be helpful in imaging the objects

behind the scattering medium. Finally, we have photons that take the shortest path

and pass straight through without scattering. They are called ballistic or transmissive

photons and they exit the medium at the same angle that they entered. They also

have their coherence properties preserved. The amount of ballistic photons exiting

the medium is dependent on the concentration and the wavelength of the light source.

It is crucial in our application to reduce the effects of scattering paths and amplify
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the effects of these transmissive photons for gaining the ability to reconstruct object

geometry accurately.

Figure 4.1: Interaction of light with scattering medium.

4.2 Seeing through scattering medium

Transmissive paths are vital in revealing the structure of an internal object present

in a diffuse medium. Multiple strategies derived from light propagation theory can

be used for isolating transmissive photons from scattered paths. The first strategy

is using polarization that constrains the electric field wave oscillation orientations

to a single plane. When incident light paths travel through a medium in a straight

line, they do not change the polarization direction. This can be used to separate

the scattered light paths that encounter a change in their polarization properties

due to collision with multiple particles inside the medium. The second strategy is

to use angular cues. When photons travel from the light source to the camera in

a straight line, they do not undergo a change in the direction at the other end of

the scattering medium. However, this direction is modified in the case of scattered

light paths due to multiple interactions with the scattering medium particles. The

third strategy exploits the positional differences between the incident and the emitted

photon paths. A collimated beam of light in air will originate from the opposite

55



4. Ballistic shape from silhouette for 3D reconstruction in scattering medium

Figure 4.2: Different cues for imaging using only transmissive light paths.

end at the same position. However, in a scattering medium, photons on the other

side might emerge in straight lines but will observe a shift in positions compared to

the ballistic photons. Thus, through careful alignment of the light source and the

sensor, we can use the position as a cue, such that the camera only captures the

photon beam that is straight to the light source. The final strategy is using light

probing techniques for rejecting scattered paths. A probing strategy that can be

used for capturing only ballistic paths is aligning the illumination light plane and

the corresponding sensor rows such that only one row is exposed in the camera at

one time. This idea is similar to the epipolar scanning strategy [54] where they only

expose the camera rows that lie the epipolar plane. A minor cue that can be used

for descattering is wavelength that suggests using longer wavelength light sources to

minimize the scattering effect. These cues are summarized in Fig. 4.2

Our objective is to capture the ballistic photons that travel in a straight line giving

us sharp high-contrast silhouette images. Theoretically, we could use a collimated

point light beam with a 2D micron-scale resolution translation stage to light up the

scene one pixel at a time and activate only the corresponding camera pixel on the

opposite side. Additionally, we could measure the distance between the light source
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and the sensor and compute the light travel time for time-gating the sensor pixel.

This will only deliver the rays that travel in straight lines from the source pixel to

the sensor pixel. However, due to hardware limitations and complexity it is not

feasible. Our designed imaging setup is a more generalized version of this idea and

uses positional and angular information, combined with ballistic light path probing

strategies. The incorporation of multiple cues helps to disambiguate scattered light

from ballistic light.

Our setup is essentially a projector-camera system. Our projector emits light

planes into the scene, which gets modified by the scattering medium containing the

object and is received on the sensor end. A prototype diagram of our setup is shown

in Fig. 4.3. We align our projector-camera in a confocal fashion. The projector and

camera are placed on the opposite sides of the scattering medium. This satisfies

positional cues, as in air, light planes transmitted from the source will enter the

sensor directly on the other side. The choice of camera and imaging lens, as well as

the illumination source, play an integral role in our setup. For satisfying angular cues,

we use a telecentric projector along with a telecentric imaging lens that captures only

the rays parallel to the optical line. Telecentricity is a property of imaging optics

that makes the principal rays emerging from a lens parallel to the optical axis. This

is done by placing an aperture at the focal point of the lens to block all off-axis

light rays. Telecentric lenses offer an orthographic view of the object eliminating

perspective error, thus negating any angular deviation of the field-of-view of the

object. Another advantage of telecentric lenses is the larger useable depth-of-field

due to symmetrical blur outside the working distance area. In this case, the edges

tend to retain their centre of mass making it possible to estimate the exact location

due to the absence of parallax error. Telecentric lenses combined with telecentric

illumination offer enhanced performance of the system. Diffuse sources tend to

create incorrect edges due to the ray bending that causes overlaps of bright pixels

in the background with the dark pixels of the silhouette edges. The characteristic

combination of telecentric lenses having zero parallax error along with minimal lens

distortion values (0.1%) and telecentric light sources emitting only parallel rays give

us non-overlapping transmissive paths for accurate silhouettes.

We use our telecentric lens with a rolling shutter CMOS sensor. A camera equipped

with a rolling shutter does not expose the whole sensor to the scene at once. Instead,
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Figure 4.3: Proposed scanning setup concept for ballistic path captures.

it scans the scene from top to bottom by exposing only the rows of the image pixels

to the scene. We use this space-time sampling of the rolling shutter sensors for our

benefit by controlling the pixel clock timings of the row readouts. As we have the

camera and projector placed opposite each other satisfying the positional strategy,

we sync the positions of the light planes according to the exposed row positions

of the rolling shutter camera. We are using the ballistic probing cue because the

exposed camera row and the corresponding light plane lie on a single plane at any

given time, having a one-to-one correspondence. A CMOS sensor with telecentric

imaging and telecentric illumination lowers the exposure time while maintaining a

high signal-to-noise ratio because almost all the rays travelling from the source are

delivered directly to the camera sensor with minimal energy loss. An advantage of

low exposure times are rapid image acquisition. This is extremely advantageous as

CNC lathes operate at very high RPMs when they manufacture parts, thus modifying

the object part in milliseconds. We do not incorporate the polarization cues in our

setup due to the loss of light requiring more exposure time.

4.3 Hardware setup implementation

The schematic diagram of our ballistic shape from silhouette setup is shown in Fig.

4.4. It consists of broadly three components: the illumination side, the imaging side,

and electronic equipment required to sync the illumination and the rolling shutter
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camera.

The illumination part is the orthographic projector which projects horizontal light

planes on the medium containing the object. The light source is a photodiode Lasos

532 nm 50 mW that gets focused on a fibre collimator lens (Thorlabs PAF1P-11A).

The tip of this optical fibre acts as a point light source and is kept at a focal distance

away from a Nikon 105 mm f/2.8 AF Micro lens. This, essentially, behaves as a

collimated source of light. The beam diameter is approximately 13 mm in size and

is dependent on the focal length of the collimating lens used. We pass this beam

of light pass through a Thorlabs plano-convex 75 mm cylindrical lens (LJ1703RM)

that makes the beam stay collimated in the horizontal direction but diverging in the

vertical direction. This single-axis collimated light beam travels to the galvo mirror

and gets reflected into the Thorlabs telecentric scan lens (LSM03-VIS). The laser

line generated from this scan lens is around 6 mm limiting our scanning area. To

increase our scanning field-of-view we place a 0.16X SilverTLTM telecentric lens at the

working distance of this scan lens that increases the length of this laser line offering

us a scanning area of 40 mm× 30 mm (H ×W ).

Figure 4.4: Schematic of our shape from silhouette setup for seeing though scattering
medium.

59



4. Ballistic shape from silhouette for 3D reconstruction in scattering medium

Figure 4.5: Imaging side of our practical hardware setup.

The light plane interacts with the object in the scattering medium and is captured

on the other side of the object using another 0.16X SilverTLTM telecentric lens. We

use an IDS UI-5240SE-M-GL monochromatic rolling shutter CMOS sensor camera.

The pixel clock of the camera determines the speed of the rolling shutter as it moves

from the top to bottom scanning the whole field of view. The angular positions

of the galvo mirrors are also aligned to match the corresponding positions of the

camera rows. Therefore, at any given time, and in no participating medium, the

light from a single laser plane will only get transmitted to the exposed camera row

while getting blocked anywhere else on the camera sensor. The exposed camera

row and the light plane are coplanar. We use a National Instruments (NI) data

acquisition system (USB-6343-BNC) for synchronising the galvo mirrors and the

camera rows together that operate after receiving a manual trigger signal. The scene

gets illuminated from the top-most galvo position to the bottom-most galvo position.

The one-to-one correspondence between the laser plane and the camera row allows

only the transmissive photons from the scene, giving us a clearer silhouette image.

The actual illumination side of our proposed setup is shown in Fig. 4.6 and the

imaging side is shown in Fig. 4.5. The laser line generated by our illumination system

is shown in Fig. 4.7
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Figure 4.6: Illumination side of our hardware prototype.
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Figure 4.7: Laser line generated and captured using our setup.

4.4 Shape reconstruction from silhouette images

In this section, we first describe an algorithm to reconstruct the 3D geometry of

a rotationally symmetric object from a single silhouette image in a non-machining

environment. Next, we propose a spatio-temporal silhouette processing method for

fluid and specular artifacts alleviation in a CNC lathe machining environment. This

spatio-temporal processing combined with the reconstruction algorithm is used to

reconstruct accurate object geometries for parts rotated at high RPM in the presence

of dynamic sprayed fluids and metallic specular shavings.

4.4.1 3D shape from single image

In lab settings with static objects, we generally need a single silhouette image of

rotationally symmetric objects to reconstruct the 3D shape accurately. Algorithm 2

describes the steps taken to generate a point cloud and the surface mesh.

4.4.2 Spatio-temporal processing for silhouette images

When scattering coolant fluids sprays objects revolving at high RPM, they get

dispersed over a wide area. Similarly, the presence of metallic shavings makes imaging

systems vulnerable to incorrect image measurements due to obscurity or specularities.

In addition, both these adversities possess a threat of damaging the optical and
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Algorithm 2 Algorithm for converting single captured image to point cloud and
surface mesh.

1: procedure CreatePointCloud(img)
2: Threshold the captured silhouette image I with value t = 2

N

∑i=1
N I(i)

3: Apply morphological snakes with an initial circular structural element of 100
pixels placed at the centre of the image (Marquez-Neila et al. [46]) to get a binary
image

4: Find the edges from the binary image using Sobel filter
5: Using Hough transform, fit a line to the left and the right edge
6: Compute the minor axis of the silhouette region
7: D = LIST; PC = LIST; z = 1; . Initialize diameter and point cloud list
8: for p ∈ P do . P is the set of points in the left edge
9: Using point p = (x, y) and the minor axis direction d = (d1, d2), traverse

along the ray to find a point q = p+ t · d on the right edge
10: d = p− q = distance in pixels×pixel size

1000×magnification of lens
. Euclidean distance (mm)

11: D.append(d)
12: θ = linspace([0 : 2π

N
: 2π] . Circle polar form angle sampling

13: x = d cos(θ)/2
14: y = d sin(θ)/2
15: xyz = [x; y; z] . Create circle point cloud for every pixel
16: PC.append(xyz)
17: z = z + 1 . Increment z (height of cylinder)
18: end for
19: Average edge estimation error: E = rms(D −R) . R = reference measured

distance
20: Estimate normals (N) of point cloud (XYZ) at every point by fitting 10

neighbourhood pixels forming a plane
21: Input (N, PC) → 3D mesh . Using [38]
22: end procedure
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electronic equipment. To avoid that, we shield our setup with clear acrylic sheets on

the imaging and illumination side.

The presence of fluids and chips introduces many noticeable adversities in our

scene. Fig. 4.8 shows the different kinds of degradation caused by the presence of

fluids and specular shavings. Firstly, due to the friction of the object and surface

tension of the fluid, drops tend to cling to the object edges. The adherence of these

coolant fluid drops introduce black blob-like structures on object edges in images (red

in left image of Fig. 4.8). This is because these drops act as spherical lenses that

modify the straight light paths from the projector. They produce incorrect diameter

estimation at the edge pixels, resulting in wrong point cloud location estimates and

increased reconstruction errors. Secondly, some fluid particles get deflected from the

object due to high RPM and get attached to the acrylic sheets. This hampers camera

visibility producing bokeh-like patterns due to unfocused drops (yellow in left image

of Fig. 4.8). Thirdly, the drops on the acrylic sheets also appear as random dark

patches in the background (blue in left image of Fig. 4.8). The specular chips appear

as sparse random gray artifacts in the camera image captures. This can be due to

the metallic particle itself or due to the shadow cast by the particle on the object

(red in right image of Fig. 4.8). We observe that both in the case of adhering drops

and specular shavings, the positions of these degradations vary spatially with time.

Figure 4.8: Left: Degradations caused due to the presence of scattering fluids. Right:
Degradations caused due to the presence of specular shavings.

We benefit from the time-varying characteristics of these degradations and use a

spatio-temporal processing to mitigate the effects of scattering fluids and specular
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metal shavings. In a noisy machining environment, single image capture of the object

contains bumpy edges, bokeh circular patterns due to unfocused drops, and sparse

random dark patches due to specular chips. Instead of capturing a single image

through a manual trigger, we capture a sequence of images through multiple VSYNC

trigger signals that are synchronized with the capture of the images using the data

acquisition board. The spatio-temporal processing algorithm uses the maximum

intensity value among all the sequence images for every pixel location. As the object

stays axially fixed, the uneven bumps on object edges created by the fluid get negated.

The spatio-temporal processing also gets rid of the random dark patches created by

the metal specular shavings as they change their position in every frame. Due to

the benefit of our proposed telecentric setup, photons that get refracted due to the

drops on the protective sheets get rejected. This does not introduce any bokeh-like

halo structures in our ballistic image captures. Using the processed image from our

spatio-temporal frames, we compute the gradient image. For every row in the gradient

image, we select the top-2 column values of the gradient magnitudes. These two

indices represent the two edge pixels of our object for that corresponding row. Our

proposed spatio-temporal processing algorithm used for enhancing the camera vision

system for accurate silhouette image is presented in Algorithm 3.
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Algorithm 3 Temporal-spatial silhouette image extraction.

1: procedure GenerateSilhouetteImage(Sequence of images)
2: Given I number of images in a sequence with dimensions H ×W
3: Initialize final image F = 0
4: for i ∈ I do . Select one image from the sequence
5: for h ∈ H do
6: for w ∈ W do F(i, j) = max(F(i, j), i(i, j))
7: end for
8: end for
9: end for

10: Find the x and y gradients of the final processed image
11: Calculate the magnitude of the gradient images: Ixy = sqrt((Ix)

2 + (Iy)
2)

12: Traverse every column and find the top 2 gradient value indices i1, i2
13: if i1 < H/2 then . H is the image height
14: Assign i1 to top edge index
15: else
16: Assign i1 to bottom edge index
17: end if
18: Fit line to top and bottom edges using Hough transform
19: Find slope of top line c
20: if c 6= 0 then
21: rotateImg(F, c) such that silhouette image is horizontally aligned
22: end if
23: D = LIST; PC = LIST; z = 1; . Initialize diameter and point cloud list
24: for p ∈ P do . P is the set of points in top edge
25: Traverse vertically to find a point q on the right edge
26: d = p− q = distance in pixels×pixel size

1000×magnification of lens
. Euclidean distance (mm)

27: D.append(d)
28: θ = linspace([0 : 2π

N
: 2π] . Circle polar form angle sampling

29: x = d cos(θ)/2
30: y = d sin(θ)/2
31: xyz = [x; y; z] . Create circle point cloud for every pixel
32: PC.append(xyz)
33: z = z + 1 . Increment z (height of cylinder)
34: end for
35: Average edge estimation error: E = rms(D −R) . R = reference measured

distance
36: Estimate normals (N) of point cloud (XYZ) at every point by fitting 10

neighbourhood pixels forming a plane
37: Input (N, PC) → 3D mesh . Using [38]
38: end procedure
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4.5 Experiments

This section delves into our results demonstrating the effectiveness of our telecentric

scanning setup for imaging through scattering medium and high accuracy reconstruc-

tion in a lab setting and in a CNC machining environment.

4.5.1 Reconstruction algorithm

We show an example of our reconstruction algorithm described in Section 4.4 which

requires a single silhouette image. We use a Thorlabs cage rod (left most image Fig.

4.9) for as our experimental object which is radially symmetric and has a radius of 6

mm. We show the captured silhouette image along with the linear edge fits in Fig.

4.9.

Figure 4.9: Object, silhouette image along with estimated edge fits, major axis, and
minor axis used for point cloud and mesh formation.

The reconstructed point cloud along with the mesh is presented in Fig. 4.10

4.5.2 Descattering

We use objects of various shapes in different types of liquids as well consider different

path lengths of scattering medium for our experimental evaluations.

67



4. Ballistic shape from silhouette for 3D reconstruction in scattering medium

(a) Point cloud (b) Surface mesh

Figure 4.10: Reconstructed 3D point cloud and surface mesh using our algorithm.

Qualitative results: We first establish the capability of our scanning method using

a Thorlabs 1/4”-20 screw. We use a small glass container having a path length of 10

mm and mix together shampoo and water in various concentrations. We compare

our method with a shape from silhouette capture method where all the rows are

exposed at the same time. This deteriorates the camera vision by allowing diffuse

photons in the camera sensor. We call this reference method ‘telecentric capture’

throughout this thesis as it still uses the positional and angular cues from Sec. 4.2,

as captured with our telecentric scanning setup. However, it does not incorporate

ballistic probing in contrast to our method. Our ballistic shape from silhouette

scanning method captures only the transmissive paths by exposing the camera rows

one at a time in synchronization with the illumination line. Fig. 4.11 shows a

comparative performance of our scanning method with the telecentric method. We

present the results in 3 different concentrations of shampoo. In lower concentrations,

both methods give us relatively clear silhouette images. In the middle image, we can

observe that our method gives sharper edges especially in the bottom area of the

container where there is more concentrated liquid. For higher concentrations in the

third image, the telecentric scanning silhouette gets completely blurred due to the

scattering light paths while our method is still able to produce a coherent silhouette
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image.

(a) Target object (b) Object in scattering medium
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Figure 4.11: Silhouette capture results for a screw using telecentric and our ballistic
scanning method in different concentrations.

We also apply our scanning methods to a different scene. We use a different pot

object as well as a liquid container cube having a path length of 50 mm. As the diffu-

sion of light photons is path-length dependent, we observe more degraded vision in

this scenario. We also change our scattering liquid from shampoo to a representative

coolant fluid (TRIMTM MicroSolTM 585XT) used for general CNC machining. We
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capture silhouette image measurements at varying concentrations of the fluid and

demonstrate the performance of both our methods under different conditions in Fig.

4.12. We see from the results that in very dilute concentrations both the methods

can image accurate silhouette images though the telecentric silhouette images lack

contrast. However, in higher concentrations, our time-gated ballistic scanning method

is able to produce sharp silhouettes distinct from the background. Another noticeable

fact is the appearance of the flowery patterns in the first telecentric capture image.

Our ballistic scanning method rejects any surface textures present on the object due

to ambient noise rejection and gives us a dark silhouette image.

(a) Target object (b) Object in scattering medium

T
el

ec
en

tr
ic

B
al

li
st

ic

Figure 4.12: Silhouette capture results for the pot using telecentric and our ballistic
scanning method in different concentrations.
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HDR silhouette imaging in non-homogeneous fluids: In cases where we have

non-homogeneous liquid concentrations as in Fig. 4.11, the silhouette visibility varies

spatially. We can increase the camera exposure to capture the darker regions but

they will saturate the brighter regions causing a loss of information. Generally,

cameras have this limitation of a constrained exposure range which make pixels

over-saturated or under-exposed. For such conditions, we can capture multiple low

dynamic range (LDR) images of the object and combine them to form a high dynamic

range (HDR) image for better visibility. We capture 6 such low dynamic range

images and then use a simple weighing function to compost all these images together

into an HDR image which retains all the details of the silhouette as shown in Fig. 4.13.

(a) LDR images (b) HDR image

Figure 4.13: Improving silhouette image with HDR imaging.

Quantitative results: For computing diameter estimation errors of rotationally

symmetric objects, we use a Thorlabs cylindrical optical post which is 25.302 mm

wide. We place the post in the previously used container having a path length of

50 mm. The target object is shown in Fig. 4.14. We fill the container with water

and incrementally add 0.3 ml of the concentrated coolant fluid TRIMTM MicroSolTM

585XT. We use the process described in Algorithm 2 to generate the 3D point cloud.

We use morphological snakes [46] for binarizing our silhouette images as due to the

large path length, the light interaction with the scattering medium creates random

textured patterns. This makes it hard to separate the background region from the

foreground silhouette using simple thresholding operations. We show some results of

the captured images using our telecentric and ballistic scanning technique (first and
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third rows of Fig. 4.16). We show the results for some sample concentrations in rows

Figure 4.14: Target object for quantitative evaluations.

two and four of Fig. 4.16, which contain the estimated foreground silhouette (green

edges) separated from the background (pink overlay) using the morphological snakes

method. The concentration in the images is denoted as a− b where a = amount of

concentrated coolant fluid in ml and b = amount of water in ml. We can see that at

higher concentrations (1.8− 90) of the fluid, the morphological snake segmentation

process breaks down in the telecentric scanning method but scanning with our method

provides robust silhouettes. This is because our ballistic scanning method offers better

contrast and more pronounced edges by rejecting scattering paths, which is efficient

for active contour morphological snakes. We use root mean square as our error metric.

We compute this by taking the difference between the estimated edge distance at

every row and the measured object edge. Table 4.1 summarizes our distance error

estimates with increasing concentration. For the telecentric capture scenario, the

edge estimation error increases with increasing fluid concentration till Conc 5. The

∞ in Conc 6 onwards indicate that the morphological snake method was unable to

get a binary image due to image degradation in a scattering medium. For the ballistic

scanning, we obtain high-quality silhouette images for the first four concentrations,

thus having low reconstruction errors. After Conc 3, we observe a steady increase

in the edge reconstruction error till the point where we are not able to extract a

silhouette image for the ballistic capture. We also fit lines to our estimated edges as
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shown in the left image of Fig. 4.15. We observe that the quality of the silhouette

edge fits is dependent on the contrast between the background and the foreground.

To verify that dependency, we selected patches of the background and the foreground

(right image of Fig. 4.15), compute their mean, and calculate the difference in contrast

for different concentrations. Table 4.2 summarizes the effect of concentration on

the silhouette-background contrast. This reinforces the visual inference from the

qualitative results that contrast between foreground and background decrease with

increasing concentration making it harder to extract accurate edges.

Figure 4.15: Left: Example of estimated edge fits using the background segmentation
process using morphological snakes. Right: Silhouette and background patch selection
for contrast comparison.

Method
Concentration Conc 1

0.3-90
Conc 2
0.6-90

Conc 3
0.9-90

Conc 4
1.2-90

Conc 5
1.5-90

Conc 6
1.8-90

Conc 7
2.1-90

Telecentric 0.203 0.24 0.278 0.747 6.786 ∞ ∞
Ballistic 0.094 0.081 0.068 0.0952 0.248 1.67 3.11

Table 4.1: Effect of fluid concentration on diameter estimation error (in mm).

Method
Concentration Conc 1

0.3-90
Conc 2
0.6-90

Conc 3
0.9-90

Conc 4
1.2-90

Conc 5
1.5-90

Conc 6
1.8-90

Conc 7
2.1-90

Telecentric 164 127 23 11 8 7 4
Ballistic 233 231 232 155 30 20 6

Table 4.2: Effect of fluid concentration on silhouette-background contrast.
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0.3-90 1.2-90 1.8-90
Background foreground segmentation using morphological snakes for ballistic captures

Figure 4.16: Silhouette extraction (in green) for post object in different coolant fluid
concentrations for diameter error evaluations. Concentration of fluid is represented as
1—90 which means that the object was placed in a fluid having 1 ml of concentrated
fluid dissolved in 90 ml water.
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4.5.3 Scanning on a CNC lathe

In this subsection, we use our proposed setup to image objects on a lathe machine

when they are rotating at a very high speed in the presence of sprayed coolant fluids

and metal specular shavings. We perform experiments to demonstrate the effective-

ness of our setup in generating accurate 3D reconstructions of objects from a single

image frame in line with the manufacturing process. We discuss the description of the

noisy machining environment and modifications made to our setup to enable efficient

scanning, followed by our results using the spatio-temporal processing method as

described in Sec. 4.4. A detailed error analysis follows to gauge the reconstructed

point cloud and mesh errors.

Machining enviroment and setup modifications: We translate our shape from

silhouette ballistic scanning setup on the Haas TL-1 CNC machine by placing the

imaging side on the custom made stage. The illumination side and the synchronization

electronics are placed on a table on the open side of the lathe. Our ballistic scanning

setup on the CNC lathe is shown in Fig. 4.17.

Figure 4.17: Left: Our shape from silhouette ballistic scanning setup on a Haas TL-1
CNC lathe. Right: Transparent acrylic sheets used to prevent our setup from fluids.

We mix the fluid TRIMTM MicroSolTM 585XT in a 10:1 ratio (10 parts water in

1 part coolant) as used for actual machining purposes. To imitate an actual noisy

environment, we spray the coolant fluid continuously over the object as it rotates
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along the spindle (Fig. 4.18). For our later experiments, we sprinkle specular metal

shavings in our imaging field of view manually, along with spraying the scattering

fluid. For safety purposes, the highest speed that we operate our CNC lathe is 500

RPM.

Figure 4.18: Left: Manufactured object used for scanning. Right: Fluid sprayed on
the object.

Ambient noise removal: Our telecentric scanning setup is capable of taking high-

quality silhouette images in the presence of scattering medium from our experiments

in the previous subsection. The silhouette images captured are independent of the

type of BRDF the object exhibits. In a controlled dark environment, the presence of

ambient light can be neglected. This is not the same in a machining environment

where there will be a substantial presence of ambient light sources for safety protocols.

One of the very important advantages of our setup is its ability to reject ambient

light. These ambient light paths interact with our object having a complex reflectance

creating directional specularity when imaged under a telecentric capture setting. Due

to the ballistic scanning methodology and extremely low exposure times, our proposed

setup is able to reject these ambient light paths and textures on the object effectively

by capturing only the straight light paths. We show examples of this property in Fig.

4.19 where the object rotates at 0 RPM and 250 RPM. The object in the telecentric

capture appears to have a band like an appearance due to its material property while

the silhouette image captured using our ballistic scanning method is completely black

which enables efficient segmentation using simple thresholding operations.
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Figure 4.19: Ambient light rejection using our ballistic shape from silhouette scanning
method in a machining environment.
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Fluid effect mitigation using spatio-temporal scanning: We use a cylindrical

object already manufactured on our lathe to align it accurately with the spindle

axis. This prevents edge chatter when the part is rotated at high RPM. To ensure

smoothness of the object surface, we use a gauge probe and ensure minimum deviation

in its measurements.

The field-of-view is 40 mm× 30 mm, and therefore, the complete object in both

directions is not visible to the camera. We ensure accurate reference measurements by

using markers on the manufactured object. By doing this, we measure the scanning

object only within the section which is visible to the camera. We take step-by-step

measurements at ten different positions along the longitudinal section of the object

using a digital micrometre. We average these measurements to obtain our ground

truth diameter measurement and construct a reference point cloud.

The capture time for each frame is approximately 82 ms. For reference, at our

highest speed (500 RPM), each rotation around the axis takes 120 ms. We capture

continuous frames of the object when it is rotated in the lathe spindle. We spray

the coolant liquid continuously to ensure the presence of fluid in every frame. The

presence of bumps due to liquid drops is prevalent in the sample capture images for

the telecentric and ballistic case (Fig. 4.20). However, we can see the obscurity effect

caused due to drops adhering onto the protective acrylic sheets only in the telecentric

capture scenario. Using our spatio-temporal processing in the telecentric capture

setting improves the silhouette edges, but it also increases the obscurity effect due to

unfocused drops. This is because the drops cause higher-intensity bokeh regions which

are amplified when we take the maximum value across image sequences. Also, using

the spatio-temporal processing method in telecentric scanning reduces the occupied

area of the final processed silhouette image through pixel intensity saturation at

edges. This occurs due to the complex interaction of light paths with clinging drops

at the edges that do not get rejected. Our ballistic scanning method captured the

image measurements devoid of such drop obscurities and artifacts. We get a very

pronounced silhouette image devoid of any edge pixel saturations.

We perform two different types of quantitative analysis using the spatio-temporal

processing method. We first construct the processed final image from the set of 200

sequential frames, then compute the magnitude of gradient image for every pixel.

The edge pixels of the silhouette image are estimated by taking the top-2 maximum
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Figure 4.20: Results using spatio-temporal image processing for robust silhouette
images in telecentric capture vs our ballistic scanning.

values of the gradient image. This is shown in Fig. 4.21. We see that in the case of

telecentric capture, the final processed image gets corrupted due to its inability to

reject non-transmissive paths. These corruptions are in form of intensity saturation

near the edges and bokeh-like artifacts on the object silhouette. In the ballistic case,

we get sharp silhouettes with straight edges. This is because our ballistic scanning

system is robust to the degradation effects of scattering medium and ambient noise.

For computing the edge or diameter reconstruction error, we compute the root mean

square distance of the two edge pixels at every vertical location in the image. The

edge errors for both our scanning methods for different RPMs is presented in Table

4.3. This corroborates with our visual inferences as we obtain reconstruction errors

in the ballistic scanning case down to 60 µm . In case of our telecentric scanning,

the reconstruction error is at least 2× more and can go up to 400 µm. We also

show the relation between edge reconstruction errors and number of images used

for the spatio-temporal processing in Fig. 4.22 and Tab. 4.4. For this, we use only

400 RPM image measurements and a maximum of up to 500 sequential frames. In

case of telecentric scanning, the error is the maximum for 1 image and keeps on

decreasing till 200 images but again starts increasing. This can be attributed to the

fact that a larger number of images cause more reduced edges at multiple pixels due
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to saturation from drop refraction. Thus the area occupied by the object silhouette

becomes smaller from the edges as we increase the number of images. Our ballistic

scanning does not exhibit such behaviour and decreases expectedly with an increasing

number of images. This is because more images make the silhouette estimate tighter

thus reducing the error.
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Figure 4.21: Processed image using our spatio-temporal method, gradient magnitude
images (red spots show the highest magnitude pixels), and edge images for telecentric
and our ballistic scanning.

Method
Revolution speed

50 100 200 300 400 500

Telecentric 154 176 384 256 119 221
Ballistic 68 80 69 72 81 59

Table 4.3: Effect of different RPMs on edge reconstruction error (in µm) using
spatio-temporal processing method using 200 frames.
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Method
Revolution speed

1 5 10 25 50 100 200 300 400 500

Telecentric 1444 941 884 622 346 181 119 163 174 190
Ballistic 669 333 310 267 222 152 81 73 67 57

Table 4.4: Effect of number of images used for spatio-temporal processing method on
edge reconstruction error (in µm).
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Figure 4.22: Gradient magnitude images (red spots show the highest magnitude
pixels) and edge images for telecentric and our ballistic scanning for spatio-temporal
method using 1, 10, 50, and 500 sequential images.
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Scanning in presence of fluid and specular chips: To demonstrate the ef-

fectiveness of our scanning setup, we also perform experiments in the presence of

scattering coolant fluid and specular shavings. We spray the fluid as in the previous

experiments and manually pour metallic chips around the scanning field-of-view of

our setup as shown in Fig. 4.23. For these experiments, we only capture 200 frames.

The specular shavings manifest in our images as sparse and dark artifacts. The effect

of chips in the telecentric and ballistic capture is shown in Fig. 4.24 in red boxes.

The processed image using the spatio-temporal method, gradient image, and object

edges are shown in Fig. 4.25. We perform the same quantitative evaluations as

presented above: comparison with different RPMs and the effect of the number of

images used for spatio-temporal processing on the edge reconstruction error. These

are shown in Tables 4.5 and 4.6. The insertion of specular chips increases the edge

reconstruction error in both the telecentric and ballistic scanning methods. However,

for each setting, our ballistic scanning gives more accurate reconstructions.

Figure 4.23: Fluid and specular chips being introduced in our scanning environment.

Method
Revolution speed

50 100 200 300 400 500

Telecentric 271 132 163 190 203 160
Ballistic 79 87 100 103 83 106

Table 4.5: Edge reconstruction error (in µm) using spatio-temporal processing method
in the presence of specular shavings and coolant fluid for different RPMs.
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Figure 4.24: Effect of fluids and metal chips on telecentric and ballistic captures.
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Figure 4.25: Final processed image using our spatio-temporal method, gradient
magnitude images (red spots show the highest magnitude pixels), and edge images for
telecentric and our ballistic scanning in presence of both coolant fluid and specular
shavings.

Method
Revolution speed

1 5 10 25 50 100 200

Telecentric 1123 908 885 850 776 663 203
Ballistic 460 244 247 184 155 111 83

Table 4.6: Effect of number of images used for spatio-temporal processing method on
edge reconstruction error (in µm).
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4.6 Summary

We propose a novel scanning setup that uses silhouette images to reconstruct objects

in scattering media. It descatters the silhouette image by selectively imaging only

transmissive light paths through an ballistic-only scanning method. Using this setup

we:

1. Image through dense scattering medium having pathlength as large as 5 cm

2. Reconstruct the 3D geometry of rotationally symmetric objects with high

accuracy

3. Improve reconstruction accuracy for parts on a CNC machine by alleviating the

effect of scattering coolant fluids and specular shavings using a spatio-temporal

processing method

Our setup is capable of acquiring silhouette images rapidly and obtain 3D re-

construction accuracy down to 60 µm. Using our spatio-temporal processing, we

alleviate the degradations caused in the scanning environment due to the presence

of scattering coolant fluids and specular metal shavings. Our proposed setup and

scanning algorithm provides a fast, cheap, and convenient alternative to the use of

contact-based CMMs used for accurate inspection.
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Chapter 5

Conclusion and future directions

We explore non-contact vision-based setups for imaging under CNC noisy environ-

ments, and propose a novel silhouette-based imaging system for in-line scanning of

rotationally-symmetric parts manufactured on a lathe.

In Chapter 3, we use structured light scanning and photometric stereo setup

to scan objects with different BRDFs on desktop as well as on a CNC lathe. We

also use rank constraints of captured images to perform a low-rank decomposition

that mitigates the effect of specular chip-like noise. We get reconstruction accuracy

down to 0.5 mm. One of the limitations of using this setup on an in-line CNC

manufacturing unit is the time required to capture the images for 3D reconstruction

that is approximately 6 seconds. Typically, a CNC lathe operates at over 1000

revolutions per minute which equals 16 revolutions per second. Thus, the object is

bound to get modified throughout the projection-capture process involving multiple

structured light patterns. This temporal modification of object shape in consecutive

image captures will lead to incorrect 3D geometry estimates under a manufacturing

setting. For future work, we can explore single shot structured light methods that

encode colour and geometrical features for pattern design. Other disadvantages of

this setup are the limited reconstruction accuracy and inability to scan in scattering

medium. To increase the accuracy, we can increase the magnification of our imaging

and illumination optics. However, this requires designing a 2D translation stage and

capturing multiple sets of images for different locations of the object and stitching

them to form a complete point cloud. For scanning in scattering medium, we can use
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high-frequency patterns for separating transmissive paths from scattering paths.

In Chapter 4, we propose a shape from silhouette setup which uses ballistic probing

along with angular and positional strategies to see through a scattering medium.

We demonstrate efficient descattering of static objects in varying concentrations of

different fluids. We also use high dynamic range imaging to improve visibility in

non-homogeneous density distributions of fluids. We extend our proposed setup on a

CNC lathe and use a spatio-temporal scanning method to get rid of artifacts created

due to the presence of scattering fluid and specular shavings. This setup provides us

with 3D reconstruction accuracy down to 60 µm for rotationally symmetric metallic

objects under high-speed revolutions. A drawback of using this setup is the limited

scanning field-of-view which can be increased or decreased by interchanging the set of

imaging and illumination lenses. There is an inherent trade-off between magnification

and reconstruction error where a higher magnification lens with a lower scanning

field-of-view will reduce the reconstruction error while a lower magnification lens

with a higher scanning field-of-view will increase the reconstruction error. A more

complicated method for increasing the field of view is to use a 2D translation stage

as mentioned above and capture multiple frames for different positions of the object.

However, this requires precise engineering and accurate attachment of spatial image

captures. Another disadvantage of using this setup along with our spatio-temporal

processing method is that we can use only rotationally symmetric objects. For

future work, we can explore reconstruction methods using aligned visual hulls for

non-symmetric objects. Another direction of work involves exploring probing methods

for rejecting scattered light paths. Transmitted light rays travel the shortest path

length and take the least time to reach the camera because they travel in straight

lines. However, scattered light rays collide with particles in the medium, taking a

comparatively longer time to reach the sensor. We can use time-gated probing such

that we expose the sensor for a short amount of time that is sufficient to isolate the

ballistic photons from the non-ballistic ones.
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