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Abstract

In this work, we address the problem of goal-directed cloth manipulation,

a challenging task due to the deformability of cloth. Our insight is that

optical flow, a technique normally used for motion estimation in video,

can also provide an effective representation for corresponding cloth poses

across observation and goal images. We introduce FabricFlowNet (FFN),

a cloth manipulation policy that leverages flow as both an input and

as an action representation to improve performance for folding tasks.

FabricFlowNet also allows elegantly switching between dual-arm and

single-arm actions based on the desired goal.

We show that FabricFlowNet outperforms state-of-the-art model-free and

model-based cloth manipulation policies. We also present real-world

experiments on a bimanual system, demonstrating effective sim-to-real

transfer. In addition, we show that our method generalizes when trained on

a single square cloth to other cloth shapes, such as t-shirts and rectangular

cloths.
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Chapter 1

Introduction

Cloth manipulation has a wide range of applications in domestic and industrial

settings. However, it has posed a challenge for robot manipulation: compared to rigid

objects, fabrics have a higher-dimensional configuration space, can be only partially

observable due to self-occlusions in crumpled configurations, and do not transform

rigidly when manipulated. Early approaches for cloth manipulation relied on scripted

actions; these policies are typically slow and do not generalize to arbitrary cloth goal

configurations [3, 13, 28].

Recently, learning-based approaches have been explored for cloth manipulation [18,

30, 35, 36, 46], including model-free reinforcement learning to obtain a policy [22, 43].

For a cloth manipulation policy to be general to many different objectives, it must

receive a representation of the current folding objective. A standard approach for

representing a goal-conditioned policy is to input an image of the current cloth

configuration together with an image of the goal [22, 35].

We will show a number of downsides to such an approach when applied to cloth
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CHAPTER 1. INTRODUCTION

manipulation. First, the policy must learn to reason about the relationship between

the current observation and the goal, while also reasoning about the action needed to

obtain that goal. These are both difficult learning problems; requiring the network

to reason about them jointly exacerbates the difficulty. Additionally, previous work

has used reinforcement learning (RL) to try to learn such a policy [22, 43]; however,

a reward function can be a fairly weak supervisory signal, which makes it difficult

to learn a complex cloth manipulation policy. Finally, while many desirable folding

actions are more easily and accurately manipulated with bimanual actions, previous

learning-based methods for goal-conditioned cloth manipulation have been restricted

to single-arm policies.

In this thesis, we introduce FabricFlowNet (FFN), a goal-conditioned policy for

bimanual cloth manipulation that uses optical flow to improve policy performance

(see Fig. 1.1). Optical flow has typically been used for video-related tasks such as

object tracking and estimating camera motion. We demonstrate that flow can also

be used in the context of policy learning for cloth manipulation; we use an optical

flow-type network to estimate the relationship between the current observation and a

sub-goal. We use flow in two ways: first, as an input representation to our policy;

second, after estimating the pick points for a pick-and-place policy, we query the flow

image to determine the place actions. Our method is learned entirely with supervised

learning, purely from random actions without any expert demonstrations during

training and without reinforcement learning.

Our learned policy can perform bimanual manipulation and switches easily between

dual and single-arm actions, depending on what is most suitable for the desired goal.

Our approach significantly outperforms our best efforts to extend recent single-arm

cloth manipulation approaches to bimanual manipulation tasks [18, 22]. We present

2



CHAPTER 1. INTRODUCTION

Figure 1.1: FabricFlowNet (FFN) overview. We collect a dataset of random actions
and ground truth flow to train FFN. FFN learns to predict flow and uses it as both an
input and action representation in a manipulation policy. FFN successfully performs
single and dual-arm folding in the real world.

experiments evaluating our method’s cloth manipulation performance on a dual-

arm robot system and in simulation. FabricFlowNet outperforms state-of-the-art

model-based and model-free baselines, and we provide extensive ablation experiments

to demonstrate the importance of each component of our method to the achieved

performance. Our method also generalizes with no additional training to other cloth

shapes, textures, and colors. Our contributions include:

• A novel flow-based approach for learning goal-conditioned cloth manipulation

policies that can perform dual-arm and single-arm actions

• A test suite for benchmarking goal-conditioned cloth manipulation algorithms

encompassing and expanding on goals used in previous literature [15, 22]

• Experiments showing that FabricFlowNet significantly outperforms baselines

and ablations and generalizes to other cloth colors and shapes, even without

training on such variations.
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Chapter 2

Related Work

There is a large volume of prior work in bimanual manipulation, state representation,

policy learning for cloth manipulation, and the use of optical flow for policy learning

that is related to this work.

2.1 Bimanual Manipulation

A large body of research exists on dual-arm, or bimanual, manipulation [38]. Dual-

arm systems allow for more complex behaviors than single-arm systems at the cost

of greater planning complexity [14, 37], leading to research on closed kinematic

chain planning [4, 40], composable skill learning [7, 44], and rewarding synergistic

behavior [8]. Prior work has also explored bimanual cloth manipulation [33]. Cloth

manipulation is a highly underactuated task, and bimanual manipulation enables

controlling multiple cloth points [5]. A common approach for cloth flattening is

to lift a cloth with one arm and regrasp it with the other arm until it reaches the
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CHAPTER 2. RELATED WORK

flattened configuration [3, 10, 13, 24, 28]. Previous work in this direction uses hard-

coded policies [3, 13, 28], whereas we learn to achieve arbitrary folded configurations.

Tanaka et al. [41] learn bimanual actions for goal-conditioned folding, using a voxel-

based dynamics model to predict how actions will change the cloth state. We

compare to a state-of-the-art method for model-based cloth manipulation [18] and

show significantly improved performance. Dynamic bimanual manipulation has also

been explored in simulation from ground-truth keypoints [20] and for unfolding cloth

in the real world [16]; we perform real-world bimanual folding using depth image

observations.

2.2 State Representations for Cloth

Manipulation

Prior works have proposed various representations for cloth manipulation, such as

parametrized shape models [29] or binary occupancy features [23]. Recent approaches

have proposed to learn representations for cloth, such as using contrastive learning to

learn a latent vector dynamics model [46]. Other approaches use contrastive learning

to learn pixel-wise latent embeddings for cloth [6, 15, 39] which can be used to learn

to imitate an expert demonstration [15]; in contrast, our approach doesn’t require

expert actions, just sub-goal states provided at test-time to define the task. Semantic

segmentation has also been used to identify specific regions of cloth for grasping hems

and bed making [32, 34]. Goal-conditioned transporter networks are another approach

for deformable manipulation [35], where feature image crops are “transported” over a

goal image, and place actions are executed where the features crop aligns best with

6
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goal image features. We compare our approach to state-of-the-art approaches for

cloth manipulation and show significantly improved performance, due to our use of a

flow-based representation.

2.3 Policy Learning for Cloth Manipulation.

Various approaches have been applied to policy learning for cloth smoothing, such

as reinforcement learning [43] and imitation learning [36]. These approaches only

use a single-arm for smoothing, whereas we perform dual-arm goal-conditioned cloth

folding. Prior methods for learning goal-conditioned policies have used self-supervised

learning to learn an inverse dynamics model for rope [30, 31]. For cloth manipulation,

Lee et al. [22] learns a model-free value function, whereas other papers learn a cloth

dynamics model in pixel-space [18], over a graph of keypoints [27], or using a cloth

simulator [25]. We compare our approach to state-of-the-art approaches for cloth

manipulation and show significantly improved performance.

2.4 Optical Flow for Policy Learning.

Optical flow is the task of estimating per-pixel correspondences between two images,

typically for video-related tasks such as object tracking and motion estimation.

State-of-the-art approaches use convolution neural networks (CNN) to estimate

flow [12, 19, 42]. Optical flow between successive observations has previously been

used as an input representation to capture object motion for peg insertion [11] or

dynamic tasks [1]. Within the domain of cloth manipulation, Yamazaki et al. [45]

similarly use optical flow on successive observations to identify failed actions. We
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use flow not to represent motion between successive images, but to correspond the

cloth pose between observation and goal images, and to determine the placing action

for folding. Argus et al. [2] use flow in a visual servoing task to compute residual

transformations between images from a demonstration trajectory and observed images.

In contrast, we learn a policy with flow to determine what cloth folding actions to

take, not how to servo to a desired pose.

8



Chapter 3

Learning a Goal-Conditioned

Policy for Bimanual Cloth

Manipulation

3.1 Problem Formulation

Our objective is to enable a robot to perform cloth folding manipulation tasks. Let

each task be defined by a sequence of sub-goal observations G : {xg1, x
g
2, . . . , x

g
N}, each

of which can be achieved by a single (possibly bimanual) pick-and-place action from

the previous sub-goal. We require sub-goals, rather than a single goal observation,

because cloth can be highly self-occluded in a single goal observation (e.g., an

observation of a folded cloth) and fail to describe the full goal state. For our folding

task, it is important that the intermediate folds are performed correctly, even if they

become occluded by future folds. Defining a task using a sequence of sub-goals is

9



CHAPTER 3. LEARNING A GOAL-CONDITIONED POLICY FOR BIMANUAL
CLOTH MANIPULATION

(a) Naive system (b) FabricFlowNet (FFN)

Figure 3.1: (a) A naive approach to goal-conditioned policy learning is to input
observation and goal images directly to the policy and predict the action. (b)
FabricFlowNet separates representation learning from policy learning; it first estimates
the correspondence between the observation and goal as a flow image. The flow is
then used as the input to PickNet for pick point prediction, and as a way to compute
place points without requiring additional learning.

found in other recent work [31]. Similar to prior work [30, 31], even if the sub-goals

are obtained from an expert demonstration, we nonetheless do not assume access to

the expert actions; this is a realistic assumption if the sub-goals are obtained from

visual observations of a human demonstrator.

We assume that the agent does not have access to the sub-goal sequence G during

training that it must execute during inference time. Thus, the agent must learn a

general goal-conditioned policy at = π(xt,G), where xt is the current observation of

the cloth and at ∈ A is the action selected by the policy. In our approach, we input

each sub-goal xgi sequentially to our policy: at = π(xt, x
g
i ). A goal recognizer [31]

can also be used to decide which sub-goal observation to input at each timestep. For

convenience, we will interchangeably refer to xgi as a goal or sub-goal.

10
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3.2 Overview

A common approach for a goal-conditioned policy is to input the current observation xt

and the goal observation xgi into to a neural network representation of a policy [22, 31]

or a Q-function [22, 43]. However, the network must reason simultaneously about the

relationship between the observation and the goal, as well as the correct action to

achieve that goal. Our first insight is that we can improve performance by separating

these two components; for our task, this refers to the correspondence for parts of

the deformable cloth between the observation and goal, and use this to reason over

pick and place action required to achieve the goal. Specifically, we represent this

relationship using a “flow image” f , which indicates the correspondence between the

current observation xt and sub-goal xgi . Thus we propose using the flow image f as

an improved input representation of the policy, rather than directly inputting the

observation xt and goal observation xgi .

Our second insight is that we can also use flow in the output representation of

the policy. We use a pick and place action space; prior methods that learn pick and

place policies for deformable object manipulation predict place points using the policy

network, either explicitly [30, 31, 35, 36, 43, 46] or implicitly by transforming the

inputs to a Q-function [22]. Instead, we simplify the problem by leveraging flow: our

policy network only learns to predict the pick points. For the place point, we query

the flow image f for the flow vector starting at the predicted pick location, and use

the endpoint of that vector as the place point.

We demonstrate that using flow in the two ways described above for our policy

achieves significantly improved performance compared to prior work. Furthermore,

our approach extends naturally to dual-arm manipulation, allowing us to easily

11
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transition between single and dual-arm actions.

A schematic overview of our system can be found in Fig. 3.1b. We first compute

the flow f between the current observation xt and goal xgi . Next, we input the flow f

to a policy network (PickNet), which outputs pick points pi. We then query the flow

image f(pi) to determine the place points for each robot arm. Further details of our

approach are described below.

3.3 Estimating Flow between Observation and

Goal Images

We learn flow to use it as an input representation to our pick prediction network,

and as an action representation for computing place points. Given an observed depth

image xt and desired goal depth image xgi , we estimate the flow f = (f 1, f 2), mapping

each pixel (u, v) in xt to its corresponding coordinates (u′, v′) = (u+ f 1(u), v+ f 2(v))

in xgi . This task formulation differs from standard optical flow tasks as the input image

pair (xt, x
g
i ) are not consecutive images drawn from video frames. Pixel displacements

from sequences of video frames are often small relative to the image size; in our case,

the displacement can be large if there is a significant change in cloth pose from xt to

xgi .

To capture the complex correspondences between xt and xgi , we train a convo-

lutional neural network to estimate the flow image f . The training loss we use to

supervise the network is endpoint error (EPE), the standard error for optical flow

estimation. EPE is the Euclidean distance between the predicted flow vectors f

and the ground truth f ∗, averaged over all pixels: LEPE = 1
N

∑N
i=1 ‖f ∗ − f‖2. We

12
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Figure 3.2: PickNet architecture. We utilize a two-network architecture for bimanual
manipulation, where the second pick point is conditioned on the prediction of the
first pick point.

use a cloth simulation to collect training examples with ground truth flow. The

simulator provides the ground-truth correspondence between the particles of the cloth

in different poses. The simulation cloth particles are not as dense as the depth image

pixels; as a result, we only have ground-truth flow supervision for a sparse subset of

the pixels that align with the cloth particles. Thus, we mask the loss to only supervise

the flow for the pixels that align with the location of the cloth particles. We train

the flow network using data collected from random actions. See Sec. 3.6 for more

details on the simulator, data collection, and network training.

3.4 Learning to Predict Pick Points

Our bimanual action space A consists of actions a = (p1, p2, q1, q2), where p and q

are the pick and place points respectively, paired according to the subscripts. We

train a neural network called PickNet to estimate the pick points p1, p2. Crucially,

the input to PickNet is a flow image f , estimated between the current depth image

xt and the desired goal depth image xgi , as described in the previous section. The

flow image indicates, for each pixel (u, v) in the current observation, the location

13
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f(u, v) that the pixel has moved to in the goal observation. Previous methods for

goal-conditioned policy learning typically input the current image and goal image

directly to the policy network [22, 35], requiring the policy to reason about both

the observation-goal relationship and how to achieve the goal. In contrast, our flow

network (Sec. 3.3 above) reasons about the observation-goal relationship, so that the

policy network (PickNet) only needs to reason about the action, specifically the two

pick points (p1, p2); computing the place points is described in Sec. 3.5.

For dual-arm actions, the pick points must be estimated conditionally, as the

location of pick point p1 on the cloth influences the optimal location of pick point

p2, and vice versa. To decouple this conditional estimation problem, we propose a

two-network architecture, PickNet1 and PickNet2, to estimate the pick points (see

Fig. 3.2). This architecture was inspired by Wu et al. [43], which used two networks

for pick-conditioned placing; we instead use two networks to condition dual-arm

picking. PickNet1 is a fully convolutional network that receives flow image f as input

and outputs a single heatmap H1 estimating the optimal pick points for arm 1. We

compute the first pick point as p1 = arg maxpH1(p). The second network, PickNet2,

predicts the second arm’s pick point p2 conditioned on p1; PickNet2 takes as input

both the flow image f and an additional image with a 2D Gaussian centered on p1,

and is otherwise identical to PickNet1. PickNet2 outputs heatmap H2, from which we

compute the second pick point: p2 = arg maxpH2(p). The two-network architecture

decouples the conditionally dependent pick point predictions and does not require us

to resort to heuristics to extract two pick points from a single heatmap. We refer to

PickNet1 and PickNet2 together as “PickNet.”

To train PickNet, we collect a dataset of random actions (see Sec. 3.6 for details)

and record the current observation xt, the bimanual action a = (p1, p2, q1, q2), and
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the next observation xt+1. We also estimate the flow f from xt to xt+1, learned in

Sec. 3.3. We create ground truth pick heatmaps H∗i for arm i using the recorded

random action a, by placing a 2D Gaussian N (pi, σ) on each ground truth pick

location pi. We then supervise PickNet using the binary cross-entropy (BCE) loss

between predicted heatmaps H1, H2 and ground truth heatmaps H∗1 , H
∗
2 . However,

there is ambiguity about which pick point should be output by PickNet1 and which

should be output by PickNet2. To allow for flexibility, we compute the loss for both

possible correspondences and use the minimum:

lBCE(Hi, Hj, H
∗
i , H

∗
j ) = BCE(Hi, H

∗
i ) + BCE(Hj, H

∗
j )

LPick = min[lBCE(H1, H2, H
∗
1 , H

∗
2 ), lBCE(H2, H1, H

∗
1 , H

∗
2 )]

(3.1)

At inference time, PickNet outputs the pick points p1, p2, computed from the argmax

of H1, H2 respectively, as described above.

3.5 Estimating the Place Points from Flow

After estimating the pick points p1, p2 from flow, the remaining step to predict a

bimanual pick and place action a = (p1, p2, q1, q2) is to estimate the place points q1, q2.

A straightforward approach would be to train the network to predict place points

q1, q2, similar to the pick points p1, p2 as described above. Instead, our approach uses

the flow image to find the place points, so that the place points do not have to be

learned separately.

Our approach makes the assumption that, to achieve a desired subgoal configura-

tion, the point picked on the cloth should be moved to its corresponding position in

the goal image (which is estimated by the flow). This is a simplifying assumption,
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since it is possible that the picked point will shift slightly after it is released by the

gripper; our method does not take into account such small movements. Using this

assumption, to compute the place points q1, q2, we query the flow f at each pick point

p1, p2 to estimate the delta between the pick point location in the observation image

and the corresponding location of the pick points in the goal image. We use these

predicted correspondences as the place points: qi = f(pi) + pi, for each arm i.

It is possible for the action predictions estimated by flow to produce overlapping

or near-overlapping pick and place points, indicating that arm 1 and arm 2 should

perform identical actions. We observe this behavior from PickNet when the goal is

best achieved with a single-arm action, rather than a bimanual one. Therefore, to

switch between executing a single-arm or bimanual action, we compute the L2 pixel

distance between pick points dpick = ‖p1 − p2‖2 and place points dplace = ‖q1 − q2‖2.

We use a single-arm action when either distance is smaller than a threshold α, which

we set to 30 for all experiments.

3.6 Implementation Details

3.6.1 Simulator

We use SoftGym [26], an environment for cloth manipulation built on the particle-

based simulator Nvidia Flex, to collect training datasets. The simulator models

cloth as particles connected by springs. We use pickers that simulate a grasping

action by binding to the nearest cloth particle within a threshold to execute pick and

place actions in SoftGym. We demonstrate that we are able to train our method in

SoftGym and then transfer the policy to the real world in section 4.4.
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3.6.2 Data Collection

We collect data in SoftGym by taking random pick and place actions on a simulated

30 cm square cloth. A simulated camera is placed at a height of 65 cm above the

cloth. The random actions are biased to pick corners of the cloth mask (detected

using Harris corner detection [17]) 45% of the time, and “true” corners of the square

cloth 45% of the time. If the true corners are occluded then Harris corners are used

instead. For the remaining 10%, the pick actions are uniformly sampled over the

visible cloth mask. After the pickers grasp the cloth, they lift to a fixed height of 7.5

cm.

We constrain the place points of the action so that both place points are offset in

the same direction and distance from their respective pick points. The direction is

orthogonal to the line segment connecting the two pick points, and points towards

the center of the image so the cloth does not move out of the frame (similar to Lee et

al. [22]). The distance between the pick point and the place point along this direction

is uniformly sampled between [25, 100] px. The distance is truncated if it exceeds a

margin of 20 px from the image edge, again to prevent moving the cloth out of the

frame. While these heuristics may seem to overly constrain the data we collect, we

observe that our data still contains highly diverse cloth configurations, as shown in

Fig. 3.3.

For each sample, we save the initial depth observation image, the dual-arm pick

and place pixel locations of the action, the next depth observation resulting from the

executed action, and the cloth particle positions of both observations (See Fig. 3.3).

The simulated camera for captures top down depth observations from above the

support surface. We mask the depth observations to only include the cloth by setting
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Figure 3.3: Training data for FFN. The figure shows RGB images in simulation for
visualizing the example data but FFN utilizes only depth images to compute the flow.

all background pixels to zero. The dataset for training both the flow and pick networks

consists of 20k samples from 10k episodes, where each episode consists of two dual-arm

pick and place actions.

3.6.3 Flow Network Training.

We use FlowNet [19] as our flow network architecture. The input to FlowNet is the

initial and next depth image from a sample in our dataset, concatenated channel-wise.

The ground truth flow for supervising FlowNet comes from the cloth particles used by

the simulator to model the cloth’s dynamics: we collect the cloth particle positions

for each observation in our dataset and correspond them across observations to

get flow vectors (See Fig. 3.3). The ground truth flow is sparse because the cloth

particles are sparse, so we train FlowNet using a masked loss that only includes

pixels with corresponding ground truth flow. Similar to Lee et al. [22], we apply
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spatial augmentation of uniform random translation (up to 5 px) and rotation (up to

5 degrees) to augment the training data. We train the network using the dataset of

20k random actions described above. We train for approximately 600 epochs with

the Adam [21] optimizer, learning rate 1e-4, weight decay 1e-4, and batch size 8.

3.6.4 PickNet Network Training.

PickNet1 and PickNet2 are fully-convolutional network architectures based on Lee et

al. [22], with 4 convolutional layers in the encoder, each with 32 filters of size 5. The

first three layers of the encoder have stride 2 and the last one has stride 1. The

decoder consists of 2 interleaved convolutional layers and bilinear upsampling layers.

The input to the PickNet1 is a 200 × 200 flow image. PickNet2 receives the first

pick point location (the argmax of the Picknet1 output, as described in the main

text) as an additional input, represented as a 2D Gaussian N (p1, σ) (where σ = 5).

Similar to Nair et al. [30], the output of both networks is a 20 x 20 spatial grid. If

the pick points predicted by PickNet are not on the cloth mask, we project them to

the closest pixel on the mask using an inverse distance transform. In practice, we find

that the predictions are usually either on the cloth mask or very close to the mask.

To train PickNet1 and PickNet2, we use the same dataset of 20k random actions

described above. We train for 300k steps with the Adam [21] optimizer, learning rate

1e-4, and batch size 10.
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Chapter 4

Results

4.1 Folding goals

We evaluate our method on two sets of folding goals: 40 one-step goals that can

be achieved with a single fold action (see Fig. 4.1a), and 6 multi-step goals that

require multiple folding actions (see Fig. 4.2a). The multi-step goals each consist of a

sequence of sub-goal images, with the next sub-goal presented after each action. This

protocol follows from our problem formulation in section 3.1, and is similar to the

protocol in Nair et al. [30]. Our goals include test goals from Ganapathi et al. [15]

and Lee et al. [22] that are achievable with one arm, as well as additional goals more

suitable for two-arm actions.
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4.2 Baselines

We compare our method to Fabric-VSF [18], which learns a visual dynamics model

and uses CEM to plan using the model. We only use Fabric-VSF with RGB-D input,

as depth-only input performs poorly for folding tasks [18]. Note that FabricFlowNet

only uses depth and does not rely on RGB, which enables our method to transfer

easily to the real world without extensive domain randomization. We compare against

single-arm Fabric-VSF as well as a dual-arm variant.

We also compare to Lee et al. [22], a model-free approach. We extend the original

single-arm method to a dual-arm variant and compare against both. For both our

method and the baselines, we only allow each method to perform one pick-and-place

action for each subgoal (e.g. one pick and place action for each of the one-step goals).

4.2.1 Fabric-VSF [18] Implementation Details

The original Fabric-VSF [18] paper uses single arm actions and a top-down close

camera view such that the cloth covers the whole image. To match the camera view,

we set the camera height to be 45 cm above the table in our case. The training

dataset consists of 7115 trajectories, each with 15 random pick-and-place actions,

totaling 106725 data points. Note that this dataset is 5x larger than the 20k samples

we train FFN on. The action size is bounded to roughly half the cloth width. During

training, Fabric-VSF takes as input 3 context frames and predicts the next 7 target

frames.

We trained 8 variants of Fabric-VSF. Each variant differs in the following aspects:

1) whether it uses single arm or dual arms; 2) during data collection, whether the
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pick-and-place actions are randomly sampled, or use the corner biasing sampling

strategy as described in Sec. 3.6, and 3) whether it uses the original small action size

(“Small Action”, bounded to half of the cloth width) or a larger action size (“Large

Action”, bounded to the full cloth width). Other than these three changes, we set all

other parameters to be the same as in the original paper. Therefore, the variant with

single arm actions, no corner biasing during data collection, and small action size is

exactly how Fabric-VSF is trained in the original paper.

After the training, we plan with cross-entropy method (CEM) to find actions for

achieving a given goal image. We use the exact same CEM parameters as in the

original paper, i.e., we run CEM for 10 iterations, each with a population size of 2000

and elite size of 400.

4.2.2 Lee et al. [22] Implementation Details

Lee et al. [22] learns a fabric folding policy for a discrete action space using a fully

convolutional state-action value function, or Q-network. Observation and goal images

are stacked channel-wise, then duplicated and transformed to form a batch of m

image rotations and n scales to represent different pick and place directions and

action lengths. The whole batch is input to the Q-network to compute the Q-value

of executing an action for each rotation and scale at every point on the image. The

action corresponding to the max Q-value from the outputs is executed. The discrete

action space of m rotations and n action lengths for Lee et al. [22] enables efficient

policy learning, but greatly limits the actions of the learned policy compared to FFN.

We extend Lee et al. [22] from a single-arm approach to a dual-arm one. To

represent two pickers instead of one, we input two pairs of observation and goal
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images to the Q-network. When rotating and scaling the images to represent different

actions, the images are constrained to have the same rotation, but are allowed to be

scaled differently. In other words, the dual-arm actions are constrained to execute

pick and place actions in the same direction, but can have different pick and place

lengths. The Q-network outputs a pair (one for each arm) of Q-value heatmaps for

every action in the discrete action space (i.e., every rotation and scale). The max

Q-value in each of the two heatmaps is averaged, and the heatmap pair with the

highest averaged Q-value is selected from the set of all discrete rotations and scales.

The picker action corresponding to the argmax of each heatmap is executed.

We train each Lee et al. variant below using hyperparameters similar to the

original paper [22], training for 25k steps with learning rate 1e-4, batch size 10, and

evaluating performance on test goals every 500 steps to find the best performing step.

4.3 Simulation Experiments

4.3.1 Experiment Setup.

We evaluate our method and compare to state-of-the-art baselines in the SoftGym [26]

simulator; real-world evaluations are below in Sec. 4.4. In simulation, we have access

to the ground truth state of the cloth particles, which is not available in the real

world. Our error metric is the average particle position error between the achieved

and goal cloth configuration. We report the performance for each method on the full

set of goals, including the one-step and multi-step goals (see Fig. 4.1a and Fig. 4.2a).
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4.3.2 Results

Table 4.1 contains our simulation results for all methods. We report average particle

distance error (in mm) for one-step goals only, multi-step goals only, and over both

one-step and multi-step goals. Our results show that our method, FabricFlowNet,

outperforms the original Fabric-VSF baseline and both the single-arm and dual-arm

versions of Lee et al. . Lee et al. achieves better performance than Fabric-VSF

with original paper settings. More information and additional results for variants of

baselines can be found in sections 4.3.3 and 4.3.4.

Table 4.1: Average Particle Distance Error (mm) on Cloth Folding in Simulation

Method One Step (40) Multi Step (6) All (46)

Fabric-VSF orig. [18] 24.958 51.128 38.043
Lee et al., 1-Arm [22] 20.509 27.846 21.802
Lee et al., 2-Arm 39.515 51.974 41.140
FabricFlowNet (Ours) 7.211 22.926 9.261

4.3.3 Fabric-VSF Variants

Additional results for the different Fabric-VSF variants are summarized in Table 4.2.

We note that the variant using single arm actions, corner biasing for data collection,

and large action size performs the best out of all variants. This variant outperforms

FFN on overall error and one-step error, but performs slightly worse than FFN on

multi-step error (See Fig. 4.1c and Fig. 4.2c for qualitative results). However, we note

that Fabric-VSF was trained on 5x more data than FFN. Additionally, Fabric-VSF

takes much longer to run at inference time, requiring ∼7 minutes of CEM iterations

to compute a single action compared to ∼0.007 seconds for a forward pass through

FFN. 7 minutes of CEM planning time is impractical for real-world folding. We
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also demonstrate in the following section that FFN generalizes to other cloth shapes

better than Fabric-VSF.

Analyzing the performance between different Fabric-VSF variants, we note that

adding corner biasing for data collection improves performance in most cases. For

single arm actions, using large actions instead of small actions always leads to better

performance; however, this is not true for the dual arm variants. Interestingly, we

find that using dual arms tends to result in worse performance compared with using

a single arm. The reason for this could be that during CEM planning, dual-arm

variants double the action dimension, which increases complexity for CEM and makes

it difficult to find optimal actions.

Table 4.2: Avg. Particle Distance Error for Fabric-VSF Variants

Baseline 1-Step (40) Multi Step (6) All (46) Inf. Time

Fabric-VSF, 1-Arm, No CB, Sm. Action 12.922 46.051 17.243 ∼420s
Fabric-VSF, 1-Arm, No CB, Lg. Action 8.969 41.125 13.163 ∼420s
Fabric-VSF, 1-Arm, CB, Sm. Action 14.091 38.676 17.298 ∼420s
Fabric-VSF, 1-Arm, CB, Lg. Action 5.981 23.713 8.294 ∼420s
Fabric-VSF, 2-Arm, No CB, Sm. Action 24.595 50.264 27.943 ∼420s
Fabric-VSF, 2-Arm, No CB, Lg. Action 81.853 116.275 86.343 ∼420s
Fabric-VSF, 2-Arm, CB, Sm. Action 16.205 36.421 18.842 ∼420s
Fabric-VSF, 2-Arm, CB, Lg. Action 10.514 32.354 13.363 ∼420s

FFN (Ours) 7.211 22.926 9.261 ∼0.007s

CB: Corner Bias Sm. Action: Small Action Lg. Action: Large Action Inf. Time: Inference
Time

4.3.4 Lee et al. Variants

We trained variants of Lee et al. to compare single-arm vs. dual-arm performance,

amount of training data (300 samples as in the original paper vs. 8k samples), and

whether the original close images of the cloth (“Low Cam”) performed better than
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images of the cloth from further away (“High Cam”). We also provide results for

two variants of FFN trained on the same amount of data, one where actions are

sampled from the discrete action space (i.e., discretized action angles and lengths) in

Lee et al. [22] (“Discrete Actions”), and the other where actions are sampled using

our continuous action space described in Sec. 3.6 (“Cont. Actions”). Lee et al. [22] is

an inherently discrete approach and cannot be trained to output continuous actions,

nor can it be trained on data with actions outside of its discrete action space.

Table 4.3 shows results for Lee et al. variants and FFN trained on 300 training

examples, as in the original paper. Note that the values in the first row differ slightly

from those reported in the main body of the paper; this discrepancy was due to a

bug in the evaluation code and will be corrected in an updated version of the paper.

High Cam performs slightly better than Low Cam, and single-arm Lee et al. performs

better than the dual-arm variant. FFN trained on 300 examples performs similarly to

Lee et al., but increasing the amount of training data for both methods yields better

performance by FFN. FFN trained on data sampled with our continuous action space

performs better than training on data sampled with the discrete action space. Lee et

al. [22] has a discrete action space and can only be trained with data generated using

discrete actions.

Table 4.3: Avg. Particle Distance Error for Lee et al. and FFN on 300 Training
Examples

Baseline One Step (40) Multi Step (6) All (46)

Lee et al., 1-Arm, 300 Discrete Actions, Low Cam 20.595 27.642 21.514
Lee et al., 1-Arm, 300 Discrete Actions, High Cam 19.088 22.628 19.577
Lee et al., 2-Arm, 300 Discrete Actions, High Cam 39.515 51.974 41.140
FFN, 2-Arm, 300 Discrete Actions, High Cam 19.610 44.971 22.918
FFN, 2-Arm, 300 Cont. Actions, High Cam 14.821 34.833 17.431

Table 4.4 provides results for Lee et al. variants and FFN trained on ∼8k training
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examples. When FFN and Lee et al. are both trained on 8k examples, FFN out-

performs all Lee et al. variants. FFN performs better when trained on continuous

action data than with discrete action data, demonstrating that our continuous action

data sampling approach performs better than the discrete approach used by Lee et al.

FFN trained on 8k examples and continuous action data approaches the performance

of our best FFN method trained on 20k examples.

Table 4.4: Avg. Particle Distance Error for Lee et al. and FFN on 8k Training
Examples

Baseline One Step (40) Multi Step (6) All (46)

Lee et al., 1-Arm, 8k Discrete Actions, Low Cam 18.224 27.907 19.487
Lee et al., 2-Arm, 8k Discrete Actions, High Cam 33.839 51.426 36.133
FFN, 2-Arm, 8k Discrete Actions, High Cam 14.424 25.501 15.869
FFN, 2-Arm, 8k Cont. Actions, High Cam 7.650 24.663 9.870

FFN, 2-Arm, 20k Cont. Actions, High Cam (Ours) 7.211 22.926 9.261

4.3.5 Ablations

We run series of ablations to evaluate the importance of the components of our system;

results can be found in Table 4.5. Our ablations are designed to answer the following

questions:

What is the benefit of using flow as input? We modify PickNet to receive

depth images of the observation and goal as input to the network (“DepthIn”), as is

commonly done in previous work on goal-conditioned RL [22, 35]. In this ablation,

the PickNet needs to reason about the relationship between the observation and

the goal as well as about the action. In contrast, in our method the flow network

separately reasons about the relationship between the observation and the goal; the

PickNet receives the flow image as input and thus only needs to reason about the
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action. This separation leads to a 12.5% improvement.

What is the benefit of using flow to choose the place point? In this ablation,

we train a network to predict the place points directly (“PredictPlace”). This is in

contrast to our approach where we use the flow field, evaluated at the pick point f(pi),

to compute the place point qi for arm i. Our approach leads to improved performance

(28.1% improvement), showing the benefit to using flow as an action representation.

No flow: We combine the above two ablations and remove flow entirely, (“NoFlow”;

ours has 46.6% improvement). The above ablations all indicate the strong benefit of

using flow as both an input and action representation for cloth manipulation.

What is the benefit of biasing the data collection to grasping corners? For

our method we utilize prior knowledge about cloth folding tasks and bias the training

data to pick at corners of the cloth. In this ablation, we choose pick points randomly

with no bias (“NoCornerBias”, ours has 28.6% better performance).

Different architecture: We also compare our architecture for PickNet (See

Sec. 3.4) to an alternate, simpler architecture that takes as input the flow image If

and outputs two heatmaps corresponding to each of the pick points (“SinglePickNet”;

ours has 3.8% better performance).

Does the loss formulation in Eq. 3.1 improve performance? We compare our

method to an ablation where the first ground-truth heatmap is used to supervise Pick-

Net1 and similarly for the second, i.e. LPick = lBCE(H1, H2, H
∗
1 , H

∗
2 ). (“NoMinLoss”;

ours has 1.5% better performance).
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Table 4.5: Avg. Particle Distance Error for Ablations

Ablation One Step (40) Multi Step (6) All (46)

DepthIn 8.837 22.295 10.592
PredictPlace 10.949 25.764 12.881
NoFlow 15.873 27.181 17.348
NoCornerBias 11.113 25.365 12.972
SinglePickNet 7.402 24.451 9.627
NoMinLoss 7.348 23.067 9.400

FFN (Ours) 7.211 22.926 9.261

4.3.6 Generalization to different shape cloth

We evaluate FFN on generalization to different shaped cloths, namely a rectangular

cloth and t-shirt. For rectangular cloth we test on 5 folding goals including 3 one

step goals and 2 multi step goals (see Fig. 4.3a). Similarly, for t-shirt we report

performance on 2 one-step goals and 1 multi-step goal (see Fig. 4.4a). We also

compare to the best Fabric-VSF variant on generalization to a rectangular cloth.

FFN generalizes well to new shapes, as shown in Table 4.6. Fabric-VSF, on the other

hand, generalizes poorly, likely because it relies on planning with a learned visual

dynamics model. FFN outperforms Fabric-VSF by a large margin. Fig. 4.3 provides a

qualitative comparison. Fig. 4.4b shows qualitative results for generalization to t-shirt.

We also provide generalization results in the real world in the following section 4.4.

Table 4.6: Avg. Particle Distance error (mm) for different cloth shapes in simulation

Method Rectangle (n=5) T-shirt (n=3)

Fabric-VSF, 1-Arm, Corner Bias, Lg. Action 30.051 -
FFN (Ours) 11.196 25.067
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4.4 Real World Experiments

We evaluate FabricFlowNet in the real world and demonstrate that our approach

successfully manipulates cloth on a real robot system.

4.4.1 Experiment Setup.

Our robot system consists of two 7-DOF Franka Emika Panda arms and a single

wrist-mounted Intel RealSense D435 sensor (See Fig. 1.1). We plan pick and place

trajectories using MoveIt! [9]. We evaluate on real-world images a 30x30 cm cloth,

using 12 single-step and 6 multi-step goals (see Fig. 4.5) that form a representative

subset of our simulation test goals.

To transfer our method from simulation to the real world, we align the depth

between real and simulated images by subtracting the difference between the average

depth of the real support surface (i.e. the table) and the simulated surface. We

use color thresholding to obtain a cloth mask, and set non-cloth pixel values to 0.

To account for variations in initial cloth pose, we train our networks with random

translations (up to 5 pixels) and rotations (up to 5 degrees) of the input images. We

found that these simple techniques were sufficient to transfer the networks trained

entirely in simulation to the real world, since the simulated depth image matches

reasonably well to the real depth image.

4.4.2 Results

Fig. 4.5 provides qualitative real world results, showing that we successfully achieve

many of the goals. Our website contains videos of these trials (see link in the
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appendix). Our method transfers easily to the real world because we use only depth

images as input, which appear similar in both simulation and the real world, unlike

RGB images.

We compare FabricFlowNet to the NoFlow ablation from Sec. 4.3.5. Both methods

were trained with the same sim-to-real techniques described in the previous section.

While we do not have access to the true cloth position error in the real world,

the Intersection-over-Union (IoU) metric on the achieved cloth masks serves as a

reasonable proxy metric [22]. Table 4.7 provides mean IOU (mIOU) performance for

NoFlow and FFN on real cloth goals. The NoFlow ablation performs considerably

worse compared to FFN on real cloth folding. Qualitative results and the complete

set of real square cloth goals are in Fig. 4.5; the complete set of real rectangle and

T-shirt goals are in the main text. FFN achieves 0.857 mean IoU over the real test

goals, whereas NoFlow only achieves 0.523.

4.4.3 Generalization.

In addition to evaluating the folding policy on square cloth for various goal configu-

rations, we also test the generalization of our method to other shapes of cloth. We

evaluate the performance of FFN trained only on a square cloth on folding goals

for a rectangular cloth as well as a t-shirt. These fabrics are also thinner than the

square blue towel used in the real world experiments above. Fig. 4.6 shows that FFN

trained on a square yellow cloth in simulation is able to generalize to other cloth

shapes, textures, and colors (FFN only receives depth images as input). Table 4.7

also provides the mIoU for rectangle and t-shirt.
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Table 4.7: mIoU for Folding Square Towel, Rectangular Cloth, and T-shirt

Method One-Step Sq. (12) Multi-Step Sq. (5) All Sq. (17) Rect. (4) T-shirt (5)

NoFlow 0.561 0.447 0.523 - -
FFN (Ours) 0.897 0.775 0.857 0.891 0.816

Square cloth results are averaged over 3 runs. For the rectangular cloth and T-shirt,
the results are reported for a single run each.

33



CHAPTER 4. RESULTS

(a) One-step goals

(b) One-step FFN performance

(c) One-step Fabric-VSF performance

Figure 4.1: a) Set of one step goals we evaluate on. b) Configurations achieved by
FFN for each of the one-step goals. Arrows indicate the executed action. c) Cloth
configurations achieved by Fabric-VSF for the one-step goals.
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(a) Multi-step goals (b) Multi-step FFN perfor-
mance

(c) Multi-step VSF perfor-
mance

Figure 4.2: a) Multi-step goals, where each row contains all sub-goals for a given
multi-step goal. b) Cloth configurations achieved by FFN for the multi-step goals. c)
Cloth configurations achieved by Fabric-VSF for the multi-step goals.

(a) Rect. cloth
goals

(b) FFN achieved (c) Fabric-VSF
achieved

Figure 4.3: Qualitative performance of FFN vs. Fabric-VSF on rectangular cloth.
Fabric-VSF uses a lower camera height than FFN (45 cm vs. 65 cm), thus the cloth
looks slightly larger in Fabric-VSF images than those of FFN.
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(a) tshirt goals (b) qualitative results for tshirt

Figure 4.4: Qualitative results for generalization to different shape cloth. The method
is trained on square towel data and tested on different cloth goals

(top row) All real one-step goals (bottom row) Configurations achieved by FFN

(top row) All real multi-step goals
(bottom row) Configurations achieved by
FFN

Figure 4.5: Qualitative results for FFN on real world experiments. FFN only takes
depth images as input, allowing it to easily transfer to cloth of different colors.
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(a) White Rectangular Cloth

(b) Grey T-shirt

Figure 4.6: Generalization to new cloth shapes for FFN trained only on a square
cloth in simulation. FFN achieves single and multi-step goals for rectangular fabric
and a T-shirt.

37



CHAPTER 4. RESULTS

38



Chapter 5

Conclusions and Future Work

In this work we present FabricFlowNet, a method which utilizes flow to learn goal-

conditioned fabric folding. We leverage flow to represent the correspondence between

observations and goals as well as for an action representation. We demonstrate our

method for single and dual arm fabric folding. The method is trained entirely using

random data in simulation. Our results show that separating the correspondence

learning and the policy learning can improve performance on an extensive suite of

folding goals in simulated and real environments. Our experiments also demonstrate

generalization to different fabric shapes, textures, and colors.

FabricFlowNet can be extended in multiple ways. Currently we only allow a

single action per subgoal. However, if the policy makes a mistake, it will cause a

compounding effect and lead to poor performance for subsequent subgoals. Instead,

we can easily modify FFN so that we take iterative corrective actions on each subgoal.

The flow prediction could also act as a goal recognizer; if the flow between the current

observation and the goal is sufficiently small, then the goal has been successfully
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achieved. FFN can be further improved by extending it to deal with mismatch

between the observation and goals. In order to handle different size or shape cloth or

intracategory variations we could map the observation to some canonical form to find

correspondences. If we have a set of demonstrations/goals for different types of cloths

we need to figure out dynamically which is closest to the currently observed cloth.

Another area to explore is using scene flow instead of 2D optical flow. Similarly, we

can apply the general idea of FabricFlowNet to other tasks than cloth folding, such as

manipulation of deformable cloth bags. This involves manipulating multiple objects

which may or may not be deformable and moving them using a deformable container

like a bag. These are all potential directions we can explore as future work.
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Appendix A

Additional Details

A.1 Ablation implementation details

A.1.1 DepthIn

The architecture for this ablation is identical to our main method, except that it takes

depth images instead of flow images as input. We use a conditioned architecture with

two PickNets; PickNet1 receives the observation and goal depth images as input both

of size 200× 200. The place point is computed by querying the flow image similar to

our main method.

A.1.2 PredictPlace

We predict the place points similarly to the pick points by using an additional place

network. The place network architecture is identical to PickNet. The input is a flow

image and the output is the place point predictions.
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A.1.3 NoFlow

This ablation is a combination of DepthIn and PredictPlace, where PickNet and

PlaceNet both take observation and goal depth images as input.

A.1.4 NoCornerBias

This ablation is the same as our main method except for the training dataset. We use

a dataset that does not bias the data to pick corners (See Sec. 3.6). Instead, the pick

actions are always uniformly sampled over the visible cloth mask. We still constrain

the folding actions for both arms to be in the same direction and distance from their

respective pick points and point towards the center of the frame.

A.1.5 SinglePickNet

The architecture of PickNet is modified so that we only have one PickNet for both

arms instead of the conditioned architecture used in our main method. The PickNet

takes as input the flow image and outputs two heatmaps corresponding to the two

pick points.

A.1.6 NoMinLoss

The loss in Eq. 1 is replaced with the following:

LNoMin = BCE(H1, H
∗
1 ) + BCE(H2, H

∗
2 ) (A.1)
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Appendix B

Code and Demos

B.1 FabricFlowNet Github Repository

https://github.com/sujaymanb/FabricFlowNet

B.2 FabricFlowNet Website

https://sites.google.com/view/fabricflownet/home
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