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Abstract

Accurately detecting activities in untrimmed videos is a challenging task
as systems need to handle variance in object scales, multiple viewpoints,
and multiple types of activities. Furthermore, in a real-world scenario,
activity detectors are often required to detect novel kinds of activities
when the need arises from end-users. To address these issues, we first
build an activity classifier on the known activities using detection-based
proposals. Then, we propose a retrieval-based solution that utilizes both
visual and textual queries for detecting novel types of activities.

For known activity classification, a sequence of object detection, optical
flow, and hierarchical clustering are run to obtain spatiotemporal propos-
als. Then, a multilabel loss is used for optimizing the TSM model. Our
trained action classifier demonstrates classification and scene generaliza-
tion capability by performing competitively on the public MEVA test set
and the Known Activity Leaderboards from ActEV Challenge.

For the vision-based retrieval, the penultimate features from the trained
TSM are extracted on both query and gallery proposals. The averaged
features from the query proposals are compared against the pool of gallery
proposals to select the top-ranked proposals as detected activity instances.
We also explore a language-based retrieval system that can utilize the
textual descriptions of the unseen activities. An image-text model called
CLIP is used to extract textual and visual features from the given examples.
The same retrieval technique from the vision-based approach is applied for
final predictions. Our proposed system ranked 1st place on the Surprise
Activity Leaderboard from ActEV Challenge. We hope that the proposed
system can help facilitate the successful deployment of activity detection
in the real world.
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Chapter 1

Introduction

April 15, 2013, on the day of the Annual Boston Marathon, Tsarnaev Brothers

detonated two homemade pressure-cooker bombs, killing three people and seriously

injuring hundreds. Because the site was crowded, it was very difficult to spot the

suspect. FBI agents watched several hundreds of hours of security footage near the

bombing to pinpoint any suspicious individuals. In the end, as shown in Figure 1.1

(a), FBI agents found two males entering the event with backpacks full but leaving

the event without their bags. Six months later, a 34-year-old male named Aaron

Alexis walked into the Washington Navy Base with his shotgun and massacred 12

people. Even if we had an automatic computer vision system that can detect guns, it

would not have been flagged as dangerous as the shooting occurred in a military base

where carrying a shotgun isn’t an abnormal situation.

These two disasters motivated the US government to develop a system that can

automatically understand human activities from static cameras. MEVA is a human

activity detection dataset from surveillance cameras.1 The dataset contains a total of

9,300 hours of continuous, untrimmed videos and annotations of 37 types of activities

on 144 hours videos [5]. As shown in Figure 1.2, MEVA was collected at a government

facility with more than 100 actors performing scripted activities. The data contains

many different realistic scenes including bus station, gym, cafeteria, park, and etc.

MEVA dataset is very challenging as it contains multiple actors, viewpoints,

and activities in a single frame. Hence, developing an automatic activity detection

1https://mevadata.org/
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CHAPTER 1. INTRODUCTION

(a) Tsarnaev Brothers entering
the Boston marathon site

(b) Aaron Alexis just before Washington
Navy Base mass shooting

Figure 1.1: Security camera footage of two incidents that happened in 2013.
Suspects of both incidents were spotted in the CCTV just before the disastrous
massacres.

system requires several state-of-the-art modules to work simultaneously to localize

the activities of interest. Furthermore, we are also required to detect novel activities

that were not seen during training using only a few examples when the need arises.

It is essential that our system can accept a new set of activities and still successfully

localize those activities. Therefore, we develop a retrieval-based system that utilizes

both the visual and textual examples of the given novel activities.

We lay our foundation in activity understanding by looking at various benchmarks

in Chapter 2. In Chapter 3, we explain the detailed pipeline of the proposal generation,

network architecture, and loss functions to train our activity classification network.

We further describe the methodology of retrieving cuboids that contain novel activities

by using exemplar video clips and corresponding textual descriptions in Chapter 4.

Finally, we introduce post-processing techniques on the retrieved cuboids to achieve

better performance on the evaluation metric. Chapter 5 introduces the empirical

observations of different methods of training the backbone. In addition, the qualitative

and quantitative results of our visual and textual retrieval systems are discussed.

Our system ranked 1st place in Pmiss and 2nd place in terms of nAUDC metric

on 2021 Unknown Facility Surprise Activity ActEV Sequestered Data Leaderboard

(SDL).2 The system completes all the required tasks in real-time and does not require

2https://actev.nist.gov/sdl#tab_activities
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CHAPTER 1. INTRODUCTION

Figure 1.2: Example scenes in the MEVA dataset. Approximately 100 actors
were hired to perform different types of activity at the Muscatatuck Urban Training
Center (MUTC) for three weeks resulting in a total of 9,300 hours of video. MEVA
dataset contains various viewpoints with 9 indoor and 13 outdoor scenes. Each video
is approximately 5 minutes long with several videos not having any relevant activity
for the entire duration of the video.

any additional finetuning on the set of novel activities. We hope that our system can

be deployed in a real-world scenario to help improve activity understanding in the

wild.

3
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Chapter 2

Related Work

2.1 Video Representation Learning

Video representation learning has been limited to building hand-crafted features to

encode motion information [42] before large video datasets like Kinetics [16] and

computational resources became widely available. Initial deep learning methods

tried to use both RGB and optical flow to embed temporal information through two

stream networks [3, 36, 43] but many subsequent architectures attempted adopting

different versions of 3D convolutions to better incorporate motion understanding

from only RGB input [40]. SlowFast [9] tried to better mimic the human brain’s way

of recognizing activities through implementing two pathways network that accepts

clips with different frame rates. TSM [18] is an efficient yet effective adaptation of

TSN [43] through shuffling 2D channel-wise features across time.

Motivated by the success of Transformer architecture in NLP [41], many works

looked into ways to replace attention with convolution completely in image recog-

nition [6]. More recently, researchers have built upon ViT which is an image-based

Transformer that splits images into 16x16 patches to serve as tokens [6] and have ap-

plied a similar network architecture for video representation learning [1, 2]. However,

these networks require much larger data and complex data augmentation in order

to achieve similar performance with the CNN counterpart. Hence, we have adopted

TSM [18] as our major video backbone network.

5
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2.2 Activity Detection

Similar to how advances in image recognition led to improvement in localization tasks

like object detection, advances in activity recognition, especially works on Kinetics [16]

helped advances in activity detection. There are different types of activity detection

datasets that have different objectives. UCF-101 [37] requires models to predict

both spatial and temporal boundaries of activities. Due to its small size, the dataset

quickly became saturated and the best performing model now achieves almost perfect

accuracy [11].

There are datasets that concentrate on localizing the temporal duration of activ-

ities [7, 15]. Videos from these datasets are long and often untrimmed so directly

building an end-to-end solution is not feasible. As a result, many works tried to build

extra layers on top of the precomputed features from action recognition backbones

to accurately detect the start and end timestamp of each activity [19, 20]. AVA [12]

focuses more on the spatial localization of actors and objects involved in movies and

most models on this benchmark directly apply models trained on Kinetics [9, 44]

with an object detection module like Faster RCNN [33].

VIRAT [30] and MEVA [5] are surveillance activity detection datasets that have

fixed camera viewpoints and long duration of videos. These datasets are very different

from the aforementioned datasets for three reasons: 1) Kinetics and UCF-101 are

crawled from web sources and are often artificially trimmed, 2) THUMOS14 and

ActivityNet have less than 5 activities happening in each clip while MEVA can have

more than 100 activities happening in a 5-minute clip, and 3) surveillance videos

only have limited number of available scenes so deep learning model quickly becomes

overfitted to the distribution of the training data. Therefore, works that tried to

solve this task employ various different modules rather than end-to-end solutions

[10, 22, 34]. Argus [22] uses the detect-and-track method to generate initial proposals

and filter them through a heuristic-based mechanism. Gabriella [34] applies action

segmentation module using I3D-based encoder-decoder structure to directly localize

objects that are performing actions of interest. TRI-I3D [10] uses object detection

and clustering to generate a large pool of proposals and feeds to the Flow I3D network

with an additional temporal regression layer at the end. Our work builds upon the

work of TRI-I3D for generating proposals but our focus was mainly on detecting

6
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novel activities using retrieval rather than detecting known activities from TRI-I3D

classification. As a result, we did not make use of the two linear layers in TRI-I3D:

softmax classification and temporal regression layers.

2.3 Vision-Language Learning

With the recent success of GPT-2 [31] in language modeling, learning visual and textual

representation jointly from a large dataset has gained a lot of attention and some works

tried to directly apply the Transformer-based model for joint learning [38]. However,

due to the difficulty of collecting annotated video-text data, multimodal models were

not able to scale nicely on small datasets like MSR-VTT [45]. HowTo100M [25]

is the first large video-text dataset that was collected using YouTube instructional

videos. Instead of annotating the texts manually, the dataset utilized automatically

generated captions as weak signals for learning joint embeddings. In particular,

MIL-NCE [26] investigates Multiple Instance Loss from noisy instructional videos

to update weights of video and text encoders jointly. Finally, CLIP was a first

attempt to apply Transformer to both the image and text encoders by training in

a self-supervised manner on a large web-crawled joint dataset. Directly applying

weights of CLIP on video retrieval tasks in a zero-shot manner has proven to be

successful [8, 23] and outperformed many targeted network architecture designs. We

follow this line of research and try to apply CLIP directly for retrieving unseen

activities from untrimmed videos.

7
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Chapter 3

Action Classification

In order to retrieve novel types of activities with only a few given exemplars, it is

essential to train the activity backbone network well so that the learned representation

outputs features that contain useful information. As a result, we implemented a

training pipeline that accepts a sequence of untrimmed videos as input and generates

activity detection results. Our pipeline which is shown in Figure 3.1 contains three

main modules: 1) proposal generation using objection detection and hierarchical

clustering (Section 3.1, 3.2, and 3.3), 2) optical flow and RGB frame extractions

(Section 3.4), and 3) Temporal Shift Module (TSM) Network and Binary Cross

Entropy Loss (BCE) for activity classification of the proposals (Section 3.5). Our

proposal generation module is from the baseline work [10]. The details of each module

will be discussed below.

Algorithm 1 Proposal Generation

1: procedure generate proposals(video, gt)
2: detections ← Mask RCNN(video)
3: props ← hierarchical clustering(detections)
4: final props ← assign activities(props, gt)
5: return final props
6: end procedure

9
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3.1 Object Detection

We first run an object detector called Mask-RCNN with Feature Pyramid Network

(FPN) [14] that was trained on MSCOCO dataset [21]. Mask-RCNN is an improved

version of two stage object detector, Faster-RCNN [33] with a separate instance

segmentation head and is one of the most widely used object detectors in the domain.

We experimented with more advanced networks such as Hybrid Task Cascade [4] but

considering the trade-off between speed and accuracy, we chose Mask-RCNN R101

as our detector. In addition, we ran the detector on every 30th frame to reduce the

computations and found that such sampling rate doesn’t hurt the overall performance

significantly. Finally, we only stored bounding boxes that were predicted as either

person or vehicle (COCO ids: car, truck, bus, train).1

3.2 Hierarchical Clustering

We believe that having high recall is more important than high precision as our main

goal is to detect given activities in a pool of videos. As a result, we use hierarchical,

agglomerative clustering [27] to generate clusters. We feed (x, y, t), 3-dimensional

features with x and y corresponding to the center coordinate of the bounding box and

1Implementation from https://github.com/roytseng-tw/Detectron.pytorch

Outputs
- No Activity
- Person Embraces Person
- Vehicle Drops Off Person
- ....

Action ClassificationProposal Generation

Object 
Detection

Optical Flow / RGB 
Frame Extraction

Hierarchical 
Clustering TSM BCE Loss

Untrimmed Training Videos

Figure 3.1: Overview of training our backbone representation. Given a series
of untrimmed videos, we first run object detection on frames using Mask-RCNN. Then,
hierarchical clustering is used to generate a pool of different proposals that sufficiently
overlap with the ground truth. Optical flow and RGB frames are concurrently
extracted and further pre-processed based on the generated cuboids. These inputs are
fed to the TSM model to output 38 different known activities including No Activity.
BCE loss is used to update the weights of the network.

10
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Algorithm 2 Temporal Jittering

1: procedure jitter proposals(prop, vid length)
2: anchor, frame stride, padding ← 45, 60, 450
3: start ← max(0, prop.start - padding)
4: end ← min(vid length, prop.end + padding)
5: Initialize new props
6: for t in range(start, end, frame stride) do
7: new p.start ← t - anchor + 1
8: new p.end ← t + anchor
9: Append new p to new props
10: end for
11: return new props
12: end procedure

t corresponding to the frame number of the detection. Then, the generated linkage

trees are dynamically split at different levels to create k resulting clusters. To reduce

the computational burden, if there are more than 44,000 detections in a single video,

we randomly sub-sample 44,000 person and vehicle detections. The output of the

stage is a list of cuboids which are represented as (xmin, ymin, xmax, ymax, tstart, tend).

3.3 Proposal Generation and Temporal Jittering

After clustering the detections, we can generate proposals necessary for training

activity classifier backbone. The overview of our proposal generation module is

demonstrated in Algorithm 1.

We split the proposals into multiple overlapping smaller chunks as shown in

Algorithm 2. The reasoning behind this step is closely related to the evaluation

protocol of Pmiss. By temporally jittering proposals with a lot of overlaps, we reduce

the probability of missing the ground truths (further details in Section 5.1.2). Given

a single proposal, we start generating proposals of 3 seconds (90 frames) length at

every 2 seconds resulting in smaller chunks that overlap at least 1 second.

The next step in this pipeline is assigning activity labels to jittered cluster

proposals by comparing with the ground truth annotations. As shown in Algorithm

3, we compute the spatial and temporal Intersection over Union (IoU) between the

proposals and ground truth cuboids. If spatial IoU is larger than 0.3 and temporal

11
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Algorithm 3 Activity Assignment for Generated Proposals

1: procedure assign activities(props, gt)
2: Initialize final props
3: spatial thres, pos thres, neg thres ← 0.3, 0.5, 0.15
4: for p in props do
5: p ← jitter proposal(p)
6: temp ious, acts ← iou(p, gt)
7: for temp iou, act in zip(temp ious, acts do
8: if temp iou ≥ pos thres then
9: p.act type ← act.act type

10: Append p to final props
11: else
12: p.act type ← 0
13: Append p to final props
14: end if
15: end for
16: end for
17: return final props
18: end procedure

IoU is larger than 0.5, we consider the proposal as true positive and assign the

corresponding activity label of the given ground truth activity. IoU calculation can

be generalized as following:

sIoU =
|Rxy ∩ Sxy|
|Rxy ∩ Sxy|

tIoU =
|Rt ∩ St|

min(|Rt|, |St|)

R refers to the reference or ground truth activity and S refers to the system

or proposal activity. For temporal IoU, we only consider the overlap divide by

the duration of either reference or system activity. Note that multiple different

ground truth cuboids can overlap with a single proposal which is quite common

in the MEVA dataset with activities such as person exits through structure and

person opens facility door that are happening at the almost same spatial and temporal

location.

12
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Figure 3.2: Architecture of TSM. TSM learns spatiotemporal information through
2D convolutions instead of conventional 3D convolutions by shuffling the features
from timestamps T-n to T+n. Due to the efficiency of shifting operation in GPUs,
TSM can achieve fast inference speed without experiencing a drop in performance.

3.4 Optical Flow and Frame Extraction

Now that we have spatial and temporal information of the generated cuboids, we need

to obtain the raw data necessary for pre-processing. In order to do so, we extract

RGB frames from the raw .avi MEVA videos using FFmpeg [39] with the highest

image quality possible.

In addition, we make use of GPU accelerated optical flow extraction from OpenCV

for fast computation. Specifically, TV-L1 method [46] was applied to every 4th frame

in the video and each frame was reduced to 75% of its resolution while maintaining

the original aspect ratio to improve the speed of computation. Note that either RGB

frame or optical flow extraction was run depending on the input modality of the

TSM model and multiple videos were processed concurrently to speed up the process.

Finally, for fast data loading, we store the pre-processd frames to RAM prior to

training by cropping the cuboids from the frame and resizing the cropped images to

(144, 144).

3.5 Activity Classifier

We use TSM [18] that is widely used for activity recognition. As shown in Figure

3.2, TSM is based on a TSN backbone that segments a video into non-overlapping

chunks [43]. For each chunk, 2D ResNet is run on every frame and the final prediction

is made using a majority vote. Although TSN is very efficient as it does not incorporate

13
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computationally heavy 3D convolutions that are common in activity recognition, it

is not good at handling temporal information essential for video recognition. TSM

is a novel architecture that can embed motion understanding into a 2D network

through shifting nearby feature maps mimicking temporal convolutions. Compared

to 3D convolution that requires much more parameters and FLOPs, the shifting

operation can be implemented efficiently in GPUs and does not require any additional

parameters. Hence, we initialize the weights from TSM ResNet50 pretrained on

Kinetics-400 dataset [16].

For training, we initially used standard categorical cross entropy loss with softmax

activation layer with f(si) = esi∑C+1
j=0 esj

where ti is the ground truth and si is the score

from the last linear layer of TSM.

CE = −
C+1∑
i=0

tilog(f(si))

However, we realized the limitations of using multi-class setting and switched to

using sum of multi-label binary cross entropy loss with sigmoid activation layer with

f(si) = 1
1+e−si

.

BCE = −
C+1∑
i=0

(tilog(f(si))− (1− ti)log(1− f(si)))

BCE Loss with sigmoid activation allows a single proposal to be assigned to

multiple different activities if spatial IoU and temporal IoU are above a certain

threshold. With a multiclass set-up, we only assigned one of the ground truth

activities so that each proposal only had one activity label.

For training, class balanced sampling is used so that 50% of instances in every batch

are negatives (No Activity) and each positive activity label appears approximately

uniformly. We train for 6 epochs using ADAM optimizer [17] with an initial learning

rate of 5e− 4. The batch size was set to 200 per GPU and 10 2080Ti NVIDIA GPUs

were used for training. We adopted PyTorch implementation of TSM.2

2Implementation from https://github.com/mit-han-lab/temporal-shift-module

14
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Chapter 4

Action Retrieval

Figure 4.1 illustrates the overall pipeline of our visual retrieval. The ActEV Unknown

Facility Surprise Activity (UF SA) Leaderboard provides several (exact number is

unknown) example clips that are spatially and temporally cropped and the correspond-

ing text descriptions of each novel activity that are not part of 37 known activities.

In addition, we are not given any information on what the set of novel activities are

as the submission system masks out the activity names to be meaningless like act51.

As a result, we believe that applying few-shot learning methods is not applicable as

we are not even sure of how many training instances we have for each activity. In

conclusion, we believe that providing a few exemplars and asking the system to look

for similar instances in the pool of untrimmed video is more practical in a real-world

scenario.

4.1 Visual Exemplar based Retrieval

Initially, we run the same proposal generation that we used for training our backbone

network on the example clips which are spatially and temporally trimmed to only

include the given novel activity. By running proposal generation on these clips, we

are augmenting the number of generated query proposals. In addition to generated

cluster proposals, we also include the ground truth cuboids in case the detection

missed the object of interest due to low resolution. Then, we pass the cuboids into

the TSM model that was trained on KF MEVA data and obtain its penultimate

15
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features with a vector size of (#ofcuboids, 2048). Since there are multiple proposals

in each clip and multiple clips for each activity, we average the features so that we

get a single feature vector denoted as the query descriptor, didQ for each activity.

Once we extract features for all the novel activities, we run a similar pipeline

for the test videos. Only difference is that we do not go through the ground truth

assignment stage as we do not have any ground truth annotations present for these

videos. The extracted features in this stage are denoted as the gallery descriptors, dG.

Finally, we run cosine similarity score between didQ and dG by computing
didQ ·dG
||didQ ||||dG||

for every activity id. We rank the gallery proposals based on the similarity score

and output the top 10,000 proposals as the given activity id. Finally, we run post-

processing steps which will be explained in Section 4.2. Details of retrieval can be

found in Algorithm 4.

Surprise Activity Example Clips
ex) Opens Facility Door

Untrimmed Test Videos

Query 
Descriptors

Gallery 
Descriptors

Action Retrieval

Cosine 
Similarity 

Score 

Post 
Processing

Proposal 
Generation

TSM 
Penultimate 

Features
Mean

Proposal 
Generation

TSM 
Penultimate 

Features

Figure 4.1: Overview of our visual retrieval system. Given several example
clips of the novel activity, we extract a query descriptor from the penultimate layer
of the TSM trained on the MEVA dataset. We also run the same pipeline that we
used for training on the pool of untrimmed test videos to get gallery descriptors
to calculate the cosine similarity scores with the query descriptor. The top 10,000
ranked proposals are selected and filtered through post-processing.
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Algorithm 4 Retrieval using Cosine Similarity

1: procedure run retrieval(dQ, dG, props, act ids)
2: Initialize final acts & final scores
3: k ← 10, 000
4: for id in act ids do
5: didQ ← mean(didQ)
6: sims ← cosine similarity(didQ , dG)
7: indices ← argsort(sims)
8: acts, scores ← props[indices], sims[indices]
9: acts.act type ← id
10: acts ← shorten activity(acts)
11: acts, scores ← 3d nms(acts, scores)
12: Append acts[:k] and scores[:k] to final acts and final scores
13: end for
14: return final acts and final scores
15: end procedure

4.2 Post-Processing

We apply two different post-processing methods before generating the final system

predictions. 1) We shorten each proposal to be 2 seconds long from the original 3

seconds chunks and 2) we run 3D Non-Maximum Suppression (NMS) [29] to prune

overlapping action proposals that were predicted as the same class. These steps can

help improve our performance by preventing our system from getting penalized on

TFA for duplicate and overlapping predictions (more details in Section 5.1.2).

4.3 Textual Exemplar based Retrieval

Although we can already build a great activity detector by only utilizing the visual

exemplars, we are not fully taking advantage of the information that is available

to us. By developing a system that can retrieve novel activities with only textual

descriptions, we can further improve the performance of our retrieval pipeline and

make our system more deployable to the real world. As shown in Figure 4.2, we employ

the similar overall pipeline for retrieval but instead make use of the state-of-the-art

multimodal model called Contrastive Language-Image Pretraining (CLIP) [32]. The
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Description: A person opening the door to a
facility. The only track required for this activity is a
person track.
Special Examples:
- A person holds the door open for an extended

period of time, possibly to allow other
individuals through, then the activity ends with
the person holding the door open.

....

Untrimmed Test Videos

Query 
Descriptors

Gallery 
Descriptors

Action Retrieval

Cosine 
Similarity 

Score 

Post 
Processing

CLIP Text 
Encoder

Proposal 
Generation

CLIP Image 
Encoder

Text Pre 
Processing

Surprise Activity Example Descriptions

Figure 4.2: Overview of our textual retrieval system. Instead of utilizing the
example clips of the novel activity, we use text descriptions that outline the specific
guidelines for annotating the activities. We tokenize the sentences and feed them to
CLIP text encoder to obtain a query descriptor. Gallery descriptors are generated by
running CLIP image encoder on every frame in cuboids.

Figure 4.3: Architecture of CLIP. CLIP is a multimodal architecture where a set
of images are encoded through ViT and the corresponding class names are encoded
through language Transformers. Both encoders are pretrained in self-supervised
manner on a very large image-text dataset crawled from the web. At test times,
cosine similarity between the output of the image encoder and that of the text encoder
is calculated for zero-shot predictions.
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details of the CLIP architecture are displayed in Figure 4.3. CLIP has an image

encoder that is based on either ViT [6] or ResNet [13] and a text encoder that is

based on GPT-2 [31]. CLIP was trained on a large web crawled dataset that contains

400 million pairs of images and texts in a self-supervised manner. Given a batch

of N image and text pairs, the task of CLIP during training is to correctly identify

N correct image-text pairs by maximizing the cosine similarity between the image

and the text embeddings and minimizing the cosine similarity of embeddings from

N2 −N incorrect pairs. CLIP shows amazing generalization ability by performing

well on various vision datasets including ImageNet and Kinetics through zero-shot

linear probing. As a result, we use CLIP for our text-based retrieval experiments.

We pre-process each sentence in the activity descriptions by tokenizing them

through lower-cased byte pair encoding (BPE) [35]. We pass the tokenized inputs to

CLIP text encoder and average them so that we get a single query descriptor didQ for

each activity. For test videos, we run CLIP image encoder on the generated proposals

to obtain the gallery descriptors dG.1 Since CLIP image encoder only accepts image

input, we pass every frame separately as image inputs and average the features across

all frames. We have found that ViT/B32 shows better performance than ResNet

image encoder and using all frames is better than subsampling the frames uniformly.

For action retrieval, cosine similarities between the text embedding and the averaged

image embeddings are computed.

1Implementation from https://github.com/openai/CLIP
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Chapter 5

Experiments

We explain the main dataset we used for our experiments and the evaluation metrics

used to evaluate the performances of the activity detector in Section 5.1. Then,

ablation studies of different settings to train the activity representation network

are provided in Section 5.2. Finally, we validate the accuracy and efficiency of our

(a) Annotation Example of person talks to person

(b) Annotation Example of vehicle drops off person

Figure 5.1: Example cuboid annotations of MEVA dataset. MEVA provides
both track-based and cuboid-based annotations. Bounding boxes and timestamps of
the actors and activities are provided. For our experiment, we only used cuboid-based
annotations.
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retrieval system by demonstrating the qualitative and quantitative results in Section

5.3.

5.1 MEVA

This section describes the characteristics of the MEVA dataset [5] which contains 328

hours of raw ground camera videos and 4.6 hours of aerial videos from drones. For

this report, we only consider ground-level videos. About 100 actors were instructed

to perform various types of activities based on scripts provided by NIST at MUTC

which is denoted as Known Facility (KF). There are about 20 different camera views

that include both indoor and outdoor scenes. In addition to raw videos, NIST has also

annotated 37 different known activity types (the list is shown in Appendix Figure 1)

for more than 2,500 videos. There are various types of activities that can be broadly

grouped as person-only, vehicle-only, person-person, and person-vehicle activities.

For our experiment, we selected 2,221 videos for train, 100 videos for validation, and

185 videos for the test set. Example annotations of MEVA are shown in Figure 5.1.

MEVA provides both geometric and temporal information with bounding boxes of

every object involved for every frame and start and end timestamps of each activity.

We can either use track-based annotation with a list bounding boxes of every frame

for the duration of the activity or cuboid-based annotation with a single bounding

box that combines all the bounding boxes but we chose to only use cuboid-based

annotation throughout our experiments as we are only evaluated on the temporal

accuracy and not on the spatial accuracy of the predictions.

5.1.1 Dataset Statistics

We analyze the MEVA dataset characteristics by looking at the annotations of

the training set. Figure 5.2 a) illustrates the distribution of classes based on their

occurrences in the annotation. It is clear that the MEVA dataset is heavily imbalanced

and follows long-tail distribution similar to public action detection datasets such as

AVA [12]. Activities like entering and exiting are very common while a rare activity

like person steals object occur only once in the entire annotations. Furthermore, we

have plotted the average lengths of each activity in Figure 5.2 b). We can also see
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(a) Activity class distribution (b) Activity frame length of each activity type

Figure 5.2: Statistics of the MEVA training set. a) We can see that the
data which contains 46,995 ground truth instances of 37 known activities is heavily
imbalanced and follows a long-tail distribution. b) There are 2,221 untrimmed 5
minutes videos in the training set. Static activities such as person texts on phone last
for about 30 seconds while atomic activities like person sits down happen within 2
seconds.

that there is a huge gap in terms of activity frame length among different activities.

For instance, person interacts with laptop on average lasts for 50.8 seconds while

person stands up lasts for less than 2 seconds. Such discrepancy in the duration

of activities demonstrates how challenging the MEVA dataset is. Standard action

recognition benchmark like Kinetics is composed of atomic activities that all last for

less than 10 seconds and the distribution across different activities is also uniform.

5.1.2 Evaluation

In this section, we explain the common evaluation metrics for the MEVA dataset

which is also used to evaluate performance on ActEV Challenge. The primary metric

used for ActEV is Normalized partial Area Under the DET Curve (nAUDC) which is

based on Detection Error Tradeoff curve (DET) commonly used for detection [24].

DET curve is preferred over Reciever Operating Characteristics curve (ROC) as the

resulting plots generally have a linear shape as shown in Figure 5.3. The nAUDC
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Figure 5.3: Example DET curve.nAUDC@0.2TFA is computed by calculating
the area displayed in orange.

can be computed as follows:

nAUDCa =
1

a

∫ a

x=0

Pmiss(x)dx, x = TFA

In order to understand the above equation, we need to introduce two concepts

which are Time-based False Alarm (TFA) and Probability of miss (Pmiss). Firstly,

TFA is calculated as following:

TFA =
1

NR

Nframes∑
i=1

max(0, S ′i −R′i)

NR means the duration of the video without the target activity occurring, S ′i is

the total count of system instances for frame i, and R′i is the total count of reference

instances for frame i. TFA penalizes for additional overlapping predictions and is

only affected by frames with more system instances than the reference instances. An

example of such case is shown in the last row of Figure 5.4 b). Pmiss is the fraction

of reference instance not detected by the given system and is calculated as Nmd(x)
Nti

where Nmd is the number of missing detection and Nti is the total number of reference

instances.

Before calculating Pmiss, the Hungarian algorithm to the Bipartite Graph Matching
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Target

Perfect

Short

Disjoint

Pmiss & TFA equal to 0

(a) Good Cases

Target

Missing

Combined

Overlapping

Pmiss & TFA larger than 0

(b) Bad Cases

Figure 5.4: Examples of different output types for evaluation. a) Cases where
Pmiss and TFA are both 0. b) Cases where Pmiss and TFA are larger than 0.

problem [28] is run to align the system and reference instances and each prediction

can only match up to one GT instance. One important thing is that the temporal

overlap between reference and system instance must be larger than 1 second. Perfect

Pmiss cases are illustrated in Figure 5.4 a). To achieve low Pmiss and TFA, predictions

can either be a single short prediction that overlaps with GT for at least 1 second or

multiple short disjoint predictions. Such a matching mechanism is the reason why we

have temporal jittering to produce multiple overlapping proposals for higher recall

and post-processing steps to shorten our predictions to be 2 seconds so that they

are disjoint. Lastly, submitted systems to ActEV Leaderboard must be within the

real-time constraint to be fully acceptable and the real-time speed is calculated as
SysT ime

V ideoDuration
. For all metrics introduced in this section, a lower score means better.

5.2 Known Activities Classification Results

5.2.1 Experiments on the Internal Set

This section introduces different ablation studies we have conducted to find the best

performing TSM network trained and validated on the internal set. Initially, we

tested two different input modalities which are Flow and RGB with two different

loss functions which are CE and BCE. For this experiment, we used the same

hyperparameters and ResNet50 backbone trained on Kinetics with the number of
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Table 5.1: Performance comparison of multiclass and multilabel trained models on
the internal test set.

Loss Modality nAUDC@0.2TFA ↓ Pmiss@0.04TFA ↓
Multiclass
CE

RGB 0.5204 0.5841
Flow 0.5137 0.6008

Multilabel
BCE

RGB 0.4049 0.5092
Flow 0.4014 0.4887

Table 5.2: Ablations of different backbone settings on the internal test set.

Modality # of Segments Architecture nAUDC@0.2TFA ↓ Pmiss@0.04TFA ↓
Flow 8 TSM-R50 0.4014 0.4887

RGB
8 TSM-R50 0.4049 0.5092
16 TSM-R50 0.4073 0.521
8 TSM-R101 0.4148 0.502

segments fixed to 8. As shown in Table 5.1, Flow TSM performed better than RGB

TSM in nAUDC but slightly worse in Pmiss for multiclass setting. Surprisingly,

switching the loss function to BCE resulted in a dramatic performance improvement

for both modalities by almost 10% in both nAUDC and Pmiss. This ablation study

demonstrates that assigning multiple ground truth activity labels to a single proposal

helps the model to learn a better representation of the activities. Multilabel Flow

TSM performed better than multilabel RGB TSM on both metrics. It is an interesting

observation as the Flow TSM trained on Kinetics performed far worse than RGB

TSM on the Kinetics test set with a Top-1 accuracy gap of 13.1%.

We conducted another ablation where we tested different architecture settings for

RGB TSM to reduce the gap between Flow and RGB as shown in Table 5.1. We

tested a larger backbone with ResNet101 and tried doubling the number of frames

fed to the network but only experienced minor improvement. We believe the main

reason why Flow performs better than RGB is the limited number of scenes in MEVA.

As a result, the RGB model often overfits to correlate a particular set of activities

with a particular scene. Furthermore, optical flow removes background semantics and

inherently conducts background subtraction which can help the model to not focus

on the scene semantics. In the end, we submitted TSM Flow and TSM RGB both
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Table 5.3: Performance on the KF KA Full Set as of 07/20/2021.

Systems nAUDC@0.2TFA ↓ Pmiss@0.02TFA ↓ RT (Relative Time) ↓

CMU-DIVA 0.1903 0.3823 0.415
UMD 0.2914 0.4636 0.373
UMD-Columbia 0.3055 0.4716 0.516
Ours (Flow) 0.3236 0.5297 0.464
Purdue 0.3378 0.5848 0.126
UCF 0.3386 0.4767 0.693
Ours (RGB) 0.3726 0.6101 0.243
IBM-Purdue 0.3799 0.6045 0.130
MINDS JHU 0.4834 0.6649 0.967
BUPT-MCPRL 0.7985 0.9281 0.123

with TSM-R50 and 8 frames as input.

5.2.2 Performance on ActEV KA Leaderboards

To test the generalization capability of our trained TSM, we made submissions of

our best trained TSM models to the Known Facility Known Activity (KF KA)

Leaderboard. The test videos come from the same set of camera views from MEVA

training data and approximately contain 108 hours long videos. The performance is

displayed in Table 5.3. We have placed 4th out of 9 teams that have participated in

the challenge as of 07/20/2021. We can see that our pipeline is competitive with only

3% gap between the second best performing system. The purpose of the submission

was to prove that our trained model is generalizable to unseen test videos for the set

of 37 known activities it was trained on.

In addition, we also made submissions to the Unknown Facility Known Activity

(UF KA) Leaderboard to test the generalization capability of TSM on unseen scenes.

UF KA includes 35 out of 37 known activities and contains 116 hours long videos. As

shown in Table 5.4, our system does not perform as well on UF KA compared to KF

KA as the model has never seen the scene semantics of UF. Furthermore, the gap

between Flow and RGB TSM is very large with more than %7 difference in nAUDC.

It can be hypothesized that the RGB model overfits to correlate activities with a

set of scenes in KF and has difficulties generalizing to unseen semantics. Adding
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Table 5.4: Performance on the UF KA Micro Set as of 07/20/2021.

Systems nAUDC@0.2TFA ↓ Pmiss@0.02TFA ↓ RT (Relative Time) ↓

CMU-DIVA 0.3723 0.5823 0.527
UCF 0.3893 0.5938 0.817
IBM-Purdue 0.3998 0.6105 0.701
UMD-Columbia 0.4198 0.6129 0.534
Visym Labs 0.4336 0.6254 1.041
UMD 0.4405 0.6292 0.616
Ours (Flow) 0.5142 0.7122 0.684
Purdue 0.5160 0.7523 0.234
Ours (RGB) 0.5828 0.7893 0.278
MINDS JHU 0.6560 0.7957 0.924

techniques like background subtraction may help boost the performance of the RGB

model in the future.

5.3 Surprise Activities Retrieval Results

5.3.1 Qualitative Analysis

Before making a submission to Unknown Facility Surprise Activity (UF SA) Leader-

board, we tested the power of our retrieval system by visualizing the top retrieved

cuboids from the simulated surprise activity set.1 NIST provides a simulated sur-

prise activity data using the 35 known activities (excluding person steals object and

person abandons package) to aid challenge participants to develop surprise activity

system. There are total of 60 test videos and 2-6 exemplar clips for every activity

along with text descriptions. For visualization purposes, we only demonstrate the

retrieval results on 32 test videos in which our proposal generation module produced

a total of 102,853 proposals.

Figure 5.5 shows the visualization results of our TSM retrieval system of four activ-

ities. On the left, frames from the query clips are displayed with blue bounding boxes

corresponding to the ground truth annotations and red bounding boxes corresponding

1https://gitlab.kitware.com/actev/actev-data-repo/-/tree/master/partitions/

ActEV-Eval-CLI-Validation-Set7
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Figure 5.5: Visualization of the query clips and the corresponding top-3
retrieved results from TSM Flow and RGB. We only display two exemplar
queries for visualization. Blue bounding boxes correspond to GT and red ones
are generated proposals. Gallery proposals were enlarged by 50% and rescaled for
visualization purposes (Best viewed in color).

to the generated proposals. Short and atomic activities like person opens facility door

are simple for both Flow and RGB TSM in which both networks correctly detected the

cuboids that contain people opening a door. However, when an activity requires more

motion understanding such as person embraces person and person picks up object,

RGB TSM is unable to retrieve correct cuboids in the top-3 ranked list while Flow

TSM successfully retrieves one correct cuboid. On the contrary, activities that are

more semantically distinctive such as person rides bicycle can be more easily retrieved

by RGB TSM. Hence, we can see the complementary nature of the two different input

modalities.

We also visualize retrieval results of our CLIP text-based retrieval system in

Figure 5.6 using ViT B/32 backbone. Considering that we only feed textual de-
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A person riding a “bicycle” (i.e., any one of 
the varieties of human powered vehicles 
where the person is still visible but their 
movement is modified). The two necessary 
tracks included in this activity are the person 
and the “bicycle” they are riding.

A physical interaction between two or more 
people in which their hands come together or 
one individual’s hand comes into contact 
with another person. Examples include 
handshakes, high-fives, and fist-bumps, and 
explicitly excludes fighting and embracing...

A person texting on a cell phone, including 
both using the phone with thumbs and 
fingers and video phone calls. The latter 
applies to any situation when the phone is in 
front of the person (as opposed to along the 
side of the head) and they are using it, 
including playing games, checking emails, 
taking pictures, etc...

A person opening the door to a facility. The 
only track required for this activity is a 
person track.
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Figure 5.6: Visualization of CLIP text encoder from activity descriptions
and corresponding top-3 retrieved results. CLIP was originally trained on a
large web dataset that mainly contains noun-based objects. As a result, activities
that contain distinctive objects like person rides bicycle, can be retrieved well even
with only textual descriptions. For activities that require motion understanding such
as hand interacts with person, CLIP is unable to retrieve correctly (Best viewed in
color).

scriptions to produce the query descriptors, our text-based system demonstrates

a promising result. Especially, CLIP is able to retrieve activities that contain dis-

tinctive objects such as phones or bicycles. For instance, CLIP text does better at

retrieving person rides bicycle than RGB TSM by getting all three predictions correct.
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Furthermore, although CLIP failed to understand the temporal characteristics of

hand interacts with person which includes actions like high-five or patting the back of

a person, it was able to identify cuboids that contain hand gestures. Since CLIP was

only trained on web crawled image-text pairs that include mostly objects, it is unable

to generalize to actions. Nevertheless, CLIP was never finetuned on the MEVA data

but it still shows promising results for several activities.

5.3.2 Performance on ActEV UF SA Leaderboard

Table 5.5: Performance on the UF SA as of 07/20/2021.

Dataset Systems nAUDC@0.2TFA ↓ Pmiss@0.02TFA ↓ RT ↓

Micro Set

UMD 0.6626 0.8666 0.518
UCF 0.6642 0.8876 0.256
Ours (Flow-S) 0.7030 0.8789 0.613
Ours (Flow) 0.7103 0.8825 0.658
Ours (RGB) 0.7248 0.9099 0.271
Ours (ViT/B32) 0.7855 0.9512 0.404

Full Set

UMD 0.6151 0.8428 0.511
Ours (Flow-S) 0.6162 0.8204 0.589
Ours (Flow) 0.6276 0.8345 0.589
UCF 0.6337 0.8557 0.273

Table 5.5 illustrates our submissions on the Unknown Facility Surprise Activity

(UF SA) Leaderboard. UF SA has two leaderboards: Micro Set and Full Set. Micro

Set is a subset of the Full Set that contains 116 hours of test videos to facilitate the

fast processing of submissions. UF SA videos were collected from different sites than

that of KF so the scene distribution is expected to vary from the MEVA training

data. There are 10 novel activities that are provided on the fly which are known

to be different from the 37 known activity types. On the Micro Set, we can see

that TSM Flow performs better than TSM RGB. TSM Flow-S stands for TSM Flow

with shortening activity post-processing which brings about 0.007 and 0.004 gain on

nAUDC and Pmiss respectively. As a result, we place second place next to the UMD

system on Pmiss. On the Full Set, our best performing system performs achieves

0.6162 in terms of nAUDC and only has about 0.0011 gap with the best performing
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UMD system. Furthermore, it is ranked first in terms of Pmiss metric and outperforms

the UMD system by 0.0224. This indicates the robustness of our vision-based retrieval

system on unseen data without needing to finetune the network.

We also made a submission using our language-based retrieval system with CLIP

ViT B/32 backbone. The submitted system has about 5 to 6% gap with our TSM

RGB model. However, considering that textual descriptions are given as the sole

source of information to the query descriptor, the result seems promising. In addition,

CLIP was never finetuned on video or MEVA dataset so it is making decent predictions

through ”zero-shot”. We believe that the use of different modalities to retrieve a

novel set of activities can help facilitate the deployment of activity detectors in the

wild.

32



Chapter 6

Conclusions

We propose visual-based and text-based retrieval systems that can successfully detect

novel activities of interest with only few examples. We first point out how challenging

the activity detection required by the MEVA dataset is and propose a comprehensive

framework that can localize activities from untrimmed videos through several modules.

Our pipeline includes object detection, hierarchical clustering, optical flow extraction,

TSM network, and post-processing modules that can run in real-time. Our system

achieves competitive results on both on Known Facility Known Activity and Unknown

Facility Surprise Activity Leaderboard.

We also demonstrates possibility of incorporating multimodal learning into activity

detection through visualizing the retrieval results on the simulated surprise activity

data and showing performance on UF SA Leaderboard. For our future work, we hope

to develop a joint retrieval system that can incorporate different modalities like RGB

and Flow for better performance. Furthermore, devising a method that can find the

correlations between activities and input modalities can help further improve the

performance by optimizing each activity retrieval with specific modality.
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Appendix

Dataset Information

Figure 1 illustrates the list of known activity names in MEVA. During training, we
add an activity named as No Activity which is treated as a background activity.

Figure 1: List of 37 Known Activities in MEVA.

Additional Results on ActEV UF Leaderboard

Figure 2 illustrates the per activity scores of the two submissions. Flow consistently
outperforms RGB on most of the known activities.

Furthermore, we display the DET curve of models submitted to the UF SA
Leaderboard in Figure 3. Our system consistently outperforms other two submissions
on both Pmiss in low TFA (0 0.05) and in high TFA (0.3 1.0)
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RGB
Flow

Figure 2: Per-activity performance of Flow and RGB on UF KA.

Figure 3: DET curve of systems submitted to UF SA Leaderboard. 24282 :
UCF, 25504 : UMD, and 25583 : Ours. It is clear that the DET curve of our system
is almost linear and outputs activity even in high TFA.
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