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Abstract
Needle-puncture procedures are often used to treat patients with traumatic

and life-threatening injuries. However, properly locating the safest needle in-
sertion location, such as the femoral region, in such high-tempo situations is
difficult and can lead to severe complications. The aim of this thesis is to ad-
dress this difficulty by developing an automatic robot-guided needle insertion
system. To close the loop, it requires an imaging modality so the ultrasound
modality was used due to its lack of radiation, low costs, and portability.

A major cause for the majority of complications related to needle-puncture
procedures is human judgment. In an attempt to minimize the amount of hu-
man input for such procedures, which may be clouded by emotions, this thesis
aims to fully automate the procedure. As deep neural networks are capable of
learning more complex, non-linear functions to approximate the data, and have
the potential to generalize well given sufficient data, this thesis leverages the
power of deep neural networks and computer vision. Because localization of
the proper anatomical landmarks is critical for percutaneous (needle-puncture)
procedures, this work focuses on the task of semantic segmentation - which
aims to classify each pixel of the images. However, ultrasound images present
their own set of challenges: (1) extremely noisy images, which often necessi-
tates trained medical professionals for interpretation, resulting in training data
being expensive to collect, and (2) immense variations across ultrasound scan-
ners, imaging settings, body types, and injury scenarios. I aim to address such
challenges in the four works included in this thesis.

In the first part of this thesis, I present a deeper introduction of the ultra-
sound imaging challenges we face as well as a short background of the imag-
ing modality. I then continue with work on studying how semantic segmenta-
tion networks can generalize across different populations of ultrasound images
using a technique known as transfer learning. The second work then more
directly addresses the high-costs of training data for ultrasound images. The
proposed method introduces novel temporal data augmentation strategies to in-
crease the size of training data, specifically for dealing with various ultrasound
scanning patterns. I evaluate our methods on multiple types of scanning pat-
terns and notice improvements with our simple stochastic augmentation meth-
ods. The following work focuses more on addressing the variations across
body and injury types when imaging them. This thesis introduces a novel spa-
tial non-uniform data augmentation method which is able to deform various
sections of the ultrasound images to mimic long-tailed scenarios.

The final portion of this thesis introduces an initial prototype for a robotic
system to automatically insert a needle into the femoral region of a patient.
This prototype only represents the first step in achieving our long-term goal;
the system introduced aims to determine the safest insertion point for the nee-
dle. I believe there is a significant amount more which can be built on top of
all these works described and plan to pursue such further in the future.
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Chapter 1

Introduction

Needle-puncture procedures are one method commonly used by clinicians to perform
life-saving and trauma-stabilizing interventions, such as providing intravenous medicine
and reducing aortic blood flow to reduce massive internal hemorrhaging. However, during
such traumatic situations, clinicians are often pressured for time or lethargic from a string
of medical cases, thereby increasing the likelihood of complications associated with the
procedures. Robot-guided catheter insertion is one method which can be used to avoid any
mistakes while still delivering a similar quality of medical care to the patient. To be able
to automatically determine the proper needle insertion location, though, a suitable medical
imaging modality is necessary. Although there are several available options, this work
uses ultrasound (US) imaging due to its portability, safety, and low-costs. Throughout this
work, ultrasound imaging is used for robot-guided needle insertion procedures within the
femoral region, which allows insertion of larger arterial and venous catheters than any other
location.

Identifying landmarks in the femoral area is crucial for US-based robot-guided catheter
insertion, however the variability of particular US scanner and settings used, per-patient dif-
ferences, and unique situations can lead to a variety of potential issues. The ultrasound im-
age presentations may vary when imaged with different scanners, on different patient body
types, in various injury scenarios, and with different ultrasound scanning rates. Along with
this, the inherent noisiness of ultrasound images leads to an often-small amount of labeled
training data as they often require medical expertise to label, making them very expensive
to collect. As such, the wide variety in presentation and dearth of training data often caused
the performance of past deep learning-based approaches to be narrowly limited to the train-
ing data distribution. These limitations, however, can be (at least partially) alleviated by
various methods such as transfer learning and data augmentation.

The first part of this thesis studies the problem of generalizing across different ultra-
sound imaging scenarios through the lens of transfer learning, a machine learning method
in which the weights of a prior trained model are reused for a new task. By reusing pre-
viously trained models, we can leverage some of the more general learned features for our
new task without requiring the additional data to relearn them. We note that the often severe
lack of ultrasound image training data can be circumvented by fine-tuning all or part of the
model, yet the effects of fine-tuning are seldom discussed. This work studies the US-based
segmentation of multiple classes through transfer learning by fine-tuning different contigu-
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ous blocks within the model, and evaluating on a gamut of US data from different scanners
and settings. The work proposes a simple method for estimating which fine-tuning method
results in higher generalization on unseen datasets and observe statistically significant dif-
ferences between the fine-tuning methods while working towards domain generalization.

The second part of this thesis focuses on addressing the lack of data in ultrasound imag-
ing when dealing with generalizing across different ultrasound scanning patterns - in the
temporal sense. The method proposed aims to improve temporal generalization using tem-
poral data augmentation. Traditional image data augmentation methods consist of simple
spatial transformations such as crops, rotations, and translations. However, such methods
do not address the temporal features in the often erratic vessel pulsations and ultrasound
scanning methods during emergency scenarios. This section aims to explicitly improve
the model’s robustness and generalization to various scanning patterns, which can each
be viewed as a separate temporal domain, and propose several novel stochastic temporal
augmentation strategies to address the variability in scanning by including otherwise out-
of-(temporal)-domain samples within the augmentation. The work contains experiments
with various novel spatial-temporal data augmentation approaches, which instill temporal
shifts into sequences that originally did not contain them. The proposed methods performed
better than current methods on 7/8 trials on an unseen, out-of-domain dataset collected with
erratic scanning and on an unseen, original-domain dataset.

The third part of this thesis addresses the lack of ultrasound imaging data from the
perspective of the various injury scenarios and body types which are present in real-world
imaging scenarios. The work aims to improve spatial generalization with a novel method
for data augmentation. Overall, data augmentation remains to be a simple and inexpensive
method for generalizing across unseen domains. Current data augmentation methods for ul-
trasound imaging involve simple image transformations - rotations, flips, skews, and blurs -
but are not able to adapt to the current state of the deep learning model. This work presents
the first online adaptive data augmentation method that is able to generate synthetic train-
ing data on-the-fly, enabling the model to adapt to countless spatial deformations. The pro-
posed method leverages prior work on uncertainty quantification to understand the model’s
weaknesses at any given stage. The method is also able to then “spot-augment” subsets of
regions within the ultrasound image, all in a real-time manner. The work also shows that
the proposed method is able to perform significantly better in out-of-training distributions,
when compared against models trained on the same dataset.

The final part of this thesis introduces an initial prototype of a robot-guided catheter
insertion system by presenting the first known robotic system that creates accurate maps
of many anatomic structures in the femoral region using ultrasound information. This map
comes in the form of a three-dimensional point cloud where points are properly labeled,
e.g., veins, ligaments, arteries, etc. A multi-class, multi-instance Bayesian 3D convolu-
tional neural network (CNN) is used to segment and identify the anatomic structures from
2D time series ultrasound data. The 2D results are then combined with each other and the
kinematics of the robot that is moving the ultrasound probe to create a 3D point cloud.
This 3D point cloud is then analyzed, based on standard-clinical-practice heuristic rules, to
determine an ideal point, in 3D space, to puncture with the needle. In particular, the algo-
rithm determines for the desired point in either the common femoral artery or vein. Once
the patient is within the robotic workspace, the steps from ultrasound scanning to needle
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insertion planning can be completed with minimal human intervention and are designed to
be robust to various situations - such as changes due to ultrasound imaging settings and
anatomical variations.

1.1 Background Information
The use of ultrasound imaging for medicine dates back more than 50 years [2]. Ultra-

sound imaging has since then evolved tremendously and is often lauded for its portability,
safety, and low-costs, which are the reasons for why it was chosen. However, ultrasound
imaging does bring with it a major challenges: noisy images with substantial differences
across ultrasound scanners and imaging settings.

The primary differences in ultrasound scanners and imaging settings in the works in this
thesis can be largely attributed to the ultrasound frequency, depth of imaging, and per-depth
gain values. Ultrasound scanners produce images by emitting sound waves from an acous-
tic transducer inside a hand-held probe into the patient’s body. (The terms “transducer” and
“probe” are often used interchangeably.) The number of vibration cycles within a second
for the emitted waves is known as the ultrasound frequency; this can vary by ultrasound
probe, typically ranging from 2 - 30 MHz. The depth value is a setting which can be ad-
justed on the ultrasound scanner and measures how far below the patient’s skin the scanner
can image; it is also inversely related to the ultrasound frequency, since higher frequencies
(which resolve more detail) are more rapidly attenuated by tissue. The ultrasound gain
values include both an overall amplification of ultrasound waves as well as depth-specific
additional amplification, essentially giving the image a brighter or darker look overall and
at various depths[2]; when a single gain setting is discussed, it may be inferred to refer to
the overall gain.

In relation to the rest of this thesis, I would like to emphasize that the width of the
ultrasound image produced corresponds to the width of the linear ultrasound probe or to
the angle (and depth) of the curvilinear or phased-array ultrasound probe, and the height
of the ultrasound image corresponds to the depth of the ultrasound waves. (This work uses
a linear probe.) Such ultrasound images are often collected in continuous scans around
the patient’s body. Each ultrasound scan can contain hundreds of ultrasound frames. I
note that, in some of the works which follow, I treat the ultrasound frames as individual
images when input to the networks and in other cases we pass as input small sequences of
ultrasound images, thereby exhibiting some temporal features. Images 1.1 and 1.2 below
illustrate this concept further.

1.2 Datasets
The works in this thesis used datasets which attempted to obtain training samples from

a diverse subset of the real-world distribution of vascular and emergency ultrasound imag-
ing. In total, this thesis includes 6 datasets, with each dataset containing multiple video
sequences. Data was acquired from a phantom, a preexisting de-identified human subject
[3], and live-pig subjects. The phantom that was used in this work was the CAE Blue Phan-
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Figure 1.1: Ultrasound scan depiction across human hip-and-thigh (femoral) region. US
refers to the ultrasound probe, and ti refers to the different timestamps, in order.

Figure 1.2: Ultrasound image axes, shown for a linear-probe image.
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tom femoral vascular access lower torso ultrasound training model (BPF1500-HP). In the
human subjects, the arteries and veins in the palmar arch of the hand were imaged.
Scanners: Three different ultrasound scanners were used for imaging the phantom, pig,
and human subjects: (1) Fukuda Denshi portable (i.e. Point of Care Ultrasound, POCUS)
scanner with a 5-12 MHz linear transducer, (2) Diasus High-Frequency Ultrasound (HFUS)
scanner (Dynamic Imaging, UK) with a 10-22 MHz linear transducer, and (3) a VisualSon-
ics Vevo 2100 Ultra High Frequency Ultrasound (UHFUS) scanner with a 50MHz linear
transducer. The images include diverse scan parameters and settings (e.g. gain values)
and anatomical variations. Datasets representing this diversity of imaging settings include:
human-single50, from the UHFUS machine, phantom1-multi22, from the HFUS machine,
and phantom1-multi12, from the lower frequency Fukuda Denshi machine. The numer-
ical suffix for each dataset name represents the ultrasound frequency with which it was
collected.
Phantom-Based Categories: Three categories of imaged sequences were acquired from
the phantom: (1) phantom1-multi12, (2) phantom1-multi22, and (3) phantom2-multi12.
The prefix “phantom1” represents image sequences collected from the left side of the phan-
tom. On the other hand, the prefix “phantom2” represents data collected from the right
side of the phantom, which was manufactured differently to provide diversity for human
training, and as such contains different anatomy (muscles, liver, etc.) and other artifacts
unknown to an AI model trained only on the left side, resulting in a more complex dataset.
Each of these datasets consisted of the following classes: arteries, veins, ligaments, and
nerves.
Scanning-Pattern-Based Categories While most of the datasets were collected with a
smooth, uniform scanning pattern, I also collected a single dataset, sudden-changes, which
involved extensive probe motions, such as fast, irregular, and erratic probe motion, and
out-of-plane deformation. The dataset sudden-changes still contains the same classes: ar-
teries, veins, ligaments, and nerves. As a result of the erratic probe motion, potentially
confounding motion-related imaging artifacts were also present in sudden-changes.
Human Subject-Based Category: The arteries and veins in the palmar arch of the hand
[4] were imaged using the UHFUS (50 MHz) scanner, and a wide range of overall and
per-depth gain values were used (40-70 dB). Each sequence consisted of only one artery or
vein, and the same expert labeled the vessel in each frame (herein assumed to be an artery
for training purposes). I refer to this UHFUS human category as human-single50.
Live Pig-Based Category: The femoral arteries and veins of a live pig were imaged using
the Fukuda Denshi portable scanner with a 5-12 MHz transducer. Arteries and veins were
separately labeled as such. I refer to this category as pig-multi12.
Substantial Noise and Artifacts: Of the 5 datasets, human-single50 consists of the most
amount of noise and speckle as a result of its high frequency, then closely followed by
phantom1-multi22 for the same reason. phantom2-multi12, on the other hand, contains
more artifacts as a result of the extra anatomic structures located at that position on the
phantom.
Data Quantity: The phantom1-multi12 category consisted of 12 sequences, each contain-
ing 50 frames totalling 600 frames. The phantom1-multi22 category consisted of 18 se-
quences, each containing 31 frames totalling 558 frames. The phantom2-multi12 category
consisted of 3 sequences, with each sequence containing 50 frames totalling 150 frames.
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For the human-single50 category, 10 sequences were obtained in total from the left and
right hands of 4 subjects [3], with each sequence containing 50 frames totalling 500 frames.
Lastly, the pig-multi12 category consisted of 3 sequences, with each sequence containing 40
frames totalling 120 frames. All classes (arteries, veins, ligaments and nerves) were present
in (at least some frames of) every sequence in phantom1-multi-12, phantom1-multi22, and
phantom2-multi12. Only a single vessel class (of either artery or vein) was present in
human-single50 whereas both artery and vein classes were present in pig-multi12. Each
frame was annotated by a single expert, from a diverse pool of experts used across these
datasets.
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Chapter 2

A Study of Domain Generalization on
Ultrasound-based Multi-Class
Segmentation of Arteries, Veins,
Ligaments, and Nerves Using Transfer
Learning

Chapter 2 is adapted from the publication:
Edward Chen, Tejas Sudharshan Mathai, Vinit Sarode, Howie Choset, and John Gale-
otti, “A Study of Domain Generalization on Ultrasound-based Multi-Class Segmentation
of Arteries, Veins, Ligaments, and Nerves Using Transfer Learning,” NeurIPS Machine
Learning for Health Workshop (ML4H), 2020
Edward Chen’s contributions as the first author of the publication include: conducting
initial literature review, developing the algorithm and experiments, conducting the exper-
iments, analyzing the data, writing the manuscripts and responding to reviewers with re-
visions. Tejas Sudharshan Mathai and Vinit Sarode assisted with providing experimental
suggestions and running actual experiments. Howie Choset and John Galeotti are the su-
pervising faculty advisors.

2.1 Introduction
In the case of major internal hemorrhaging, real-time ultrasound (US) imaging can

guide the robotic insertion of a vascular catheter for Resuscitative Endovascular Balloon
Occlusion of the Aorta (REBOA) via the femoral artery to prevent the patient from bleeding
to death. Automatically segmenting femoral area landmarks will be crucial to the optimal
catheter placement in time-sensitive situations. To this end, the developed technology has
to be robust to variations in anatomy, scanner settings, external artifacts (in traumatic injury
scenarios), probe positioning, etc. However, medical imaging datasets are often limited in
quantity and span a restricted distribution over the data space [5]. Deep learning models
trained on such data perform poorly when tested on data from different anatomic areas or
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scanner settings [6], thereby limiting their real-world usage. For instance, [7] illustrate the
first-attempt success rate for ultrasound-guided needle insertions dropping by ∼30% on
datasets of different anatomy and settings, leaving room for serious consequences to the
patient [8].

The present standard for improving robustness in the medical domain is to use an ex-
isting architecture trained on natural images, such as ImageNet [9, 10], and then fine-tune
on the medical images [11, 12]. However, little work has been done to illuminate the gen-
eralization ability of models to medical images using transfer learning, and to understand
segmentation models commonly used in medical robotics [13], such as the U-Net [14].
Raghu, et. al. [11] performed an in-depth study of transfer learning for classification of
medical images, albeit starting from natural images. Amiri, et. al. [15] studied UNet-based
fine-tuning, but on a single domain.

We aim to expand the current understanding of domain generalization and provide ac-
tionable insights for enhanced robustness within the context of ultrasound-based multi-
class segmentation using transfer learning. Here, we consider the practical case where the
data is gathered in a sequential manner, specifically when the previously trained data is
unavailable due to privacy restrictions [16]. In reality, deep learning models for medical
devices will also often have been trained on some subset of medical imaging domains, for
which labelled data was available. We further design the experiments in a way to more ex-
plicitly control for certain training domains, attempting to generalize training across more
of the real-world space of unexpected images.

From our experiments, we reveal the following insights: (1) As consecutive blocks on
both the encoder and decoder side are individually fine-tuned, the out-of-training-domain
(OOTD) performance generally increases. The OOTD data are different from the pre-
training data (pt-data) and fine-tuning data (ft-data). (2) Having a smaller number of classes
in the pt-data may hamper the final performance on the ft-data, but not of that for the OOTD
data, and (3) There is a statistically significant difference between fine-tuning the encoder
and decoder in terms of performance on OOTD data. We then take into account such obser-
vations and propose selecting the ft-data performance as a proxy for OOTD performance
when selecting the best fine-tuning method to use.
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2.2 Materials And Methods
For our datasets, we use the same ones as described in Section 1.2.
Scanners: 3 different ultrasound scanners with diverse scan settings (e.g. gain values) were
used: (1) a portable scanner, (2) a high-frequency ultrasound (HFUS) scanner, and (3) an
ultra high-frequency ultrasound (UHFUS) scanner. More details in 1.2.
Human Data: The UHFUS scanner imaged arteries and veins in human subjects [4], and
a single class label was assigned to them by an expert. We refer to this data as human-
single50 (h50).
Phantom Data: 3 categories of sequences were acquired from a phantom: (1) phantom1-
multi12 (ph1-12), (2) phantom1-multi22 (ph1-22), and (3) phantom2-multi12 (ph2-12).
The prefix “phantom1” represents image sequences collected from the left side of the phan-
tom, while prefix “phantom2” represents data collected from the right side of the phantom,
which also contained different anatomy (muscles, liver, etc.). 4 classes were labelled in
each phantom dataset: arteries, veins, ligaments, and nerves.
Pig Data: Data was gathered from a living pig using the portable scanner, and the arteries
and veins were labelled as 2 classes. We refer to this as pig-multi12 (p12). Each numerical
suffix represents the frequency with which it was collected with. More details in 1.2.

Figure 2.1: Sample images of (from the left): h50, ph1-12, ph1-22, ph2-12, p12

Transfer Learning: We evaluated segmentation performance on a U-Net model consist-
ing of 5 encoder blocks (including the bottleneck layer as the 5th encoder) and 4 decoder
blocks. We first transferred previously learned weights and then fine-tuned different mod-
els that spanned various contiguous blocks of the architecture. The encoder blocks were
numbered from 1 to 5, starting from the input layer and ending with the bottleneck layer.
The numbering for the encoder side is cumulative, e.g. “Encoder 5” refers to all 5 of the
blocks leading up to the bottleneck layer. The decoder blocks were numbered from 4 (just
after the bottleneck) to 1 for the output layer. “Decoder 1” in this case refers to the 4 blocks
of the decoder up to the output layer. Figure 2.2 illustrates this naming convention.
Training Details: For each of the encoder and decoder transfer learning scenarios, we
set batch normalization to use the overall training data’s statistics, as opposed to batch
statistics, as that is often what is used in practice.
Each of the training datasets consisted of close to 600 training images each. Each of the
datasets, including pig-multi12 (p12) and phantom2-multi12 (ph2-12), contains 150 images
for testing. Similar to [3], we trained the multi-class segmentation models by resizing
each ultrasound B-scan to 256x256 pixels. Traditional (spatial) data augmentations were
done by random flipping, rotating, blurring, and translating the training set, such that each
experimental run’s training set was increased to ∼ 12,000 images. All experiments were
conducted using TensorFlow [17], training with the Adam optimizer [18] on cross-entropy
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loss with a batch size of 16, learning rate of 0.0001 for pre-training, and learning rate of
0.000001 for fine-tuning. Final pixel-level probabilities were classified using softmax, and
the results were evaluated using the Dice Similarity Coefficient (DSC).

Figure 2.2: Our U-Net naming convention

2.3 Experiments And Results
Discussion: For all 4 of the experiments, we noted a general trend: (1) as a larger number
of the encoder/decoder blocks are fine-tuned, the model performed equally well or better
on data from both its ft-data domain and OOTD data. We visualize this pattern in Figures
2.3 and 2.4. We describe significance testing details later. We note that the one exception to
this is the decoder branch of experiment 2 (Figure 2.4), which leads to our next observation:
(2) for models in experiment 2, we noticed that it was “difficult” for the batch normaliza-
tion statistics to converge during the fine-tuning process. We believe this to be due to the
fewer number of classes in the pt-data domain, leading to a more restrictive feature rep-
resentation. On the contrary, the opposite is true for experiment 1, which has contiguous
block-wise performances close to, and even surpassing, that of the full-model fine-tuning
procedure. We attempt to further understand this class count-related effect together with
another observation later in this section.

We additionally notice that (3) fine-tuning contiguous encoder blocks produced better
OOTD performance than those with decoder blocks, which can also be seen in Tables 2.3
and 2.4 (2.3.1). This may be because fine-tuning blocks on the encoder side leads to a
more diverse latent feature representation while retaining the localization information on
the decoder side. We conducted Wilcoxon tests on the paired encoder-decoder differences
for each of the 4 experiments. All had statistically significant greater OOTD performance
from the encoder branch, except experiment 1, which may have had the decoder benefit
from the greater number of classes in pt-data.

Considering the above, we propose to use each fine-tuning method’s ft-data perfor-
mance as a representation of its OOTD score. Our proposed method is to select the contiguous-
block-wise fine-tuned model with the highest ft-data score. Note that the full-model fine-
tuning always produced worse OOTD scores in our case. We can use such a method to pre-
dict a fine-tuned model that might have the best domain generalization capabilities while
simultaneously selecting a fine-tuned model that performs well in its direct target task. We
compare the OOTD performance of our method’s model choices with that of the traditional
full-model fine-tuning method in Table 2.5.
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Figure 2.3: Best-fit lines showing positive relationship between longer encoder subse-
quences and OOTD scores for each of the 4 experiments

Figure 2.4: Best-fit lines showing positive relationship between longer decoder subse-
quences and OOTD scores, except for case 2 which may be affected by class count

In all cases, our method surpasses the OOTD performance with the full-model fine-
tuning method by a large margin; the same occurs against those of decoder-only meth-
ods, which are also commonly used. Of note are experiments 2 and 3, where the chosen
method’s ft-data performance is lower than that of the full-model method - despite a higher
OOTD score. We observe in both of these cases that the ft-data is objectively and quan-
titatively more difficult than the pt-data (which may also explain (2) above). To quantify
their difficulties, we use the autoencoder reconstruction error [19]. We summarize that our
proposed method results in the near-optimal OOTD performance in 4/4 of the cases. Based
on this result, we suggest that our use of an autoencoder might be an effective general
approach to address a priori the trade-off between ft-data and OOTD performance.

2.3.1 Encoder vs. Decoder OOTD Paired-Difference Statistical Signif-
icance Testing

To ensure that similar feature representational power is represented across a pair in
our statistical hypothesis tests, we paired matching numbers of blocks, e.g. “encoder 1”
with “decoder 4,” “encoder 2” (i.e. encoder blocks 1-2) with “decoder 3” (i.e. decoder
blocks 4-3), and so on. To ensure equal sample sizes, we ignore encoder block 5, the
bottleneck block of the U-Net architecture. H0 : µencoder = µdecoder. H1 : µencoder ≥
µdecoder. To evaluate for statistical significance, we use the Wilcoxon Test to compare
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the differences in the OOTD scores between the matching contiguous-block pairs for each
experiment. We use a significance level of α = 0.05. We calculated the following p-
values for experiments 1, 2, 3, and 4, respectively: .1182, .0010, .0010, .0011. Fine-tuning
the encoder subsequences resulted in a greater out-of-domain generalization performance
on all experiments except for experiment 1. We note that this may be due to the greater
number of classes in the pt-data enabling the decoder to learn more generalized feature
representations, although more experimentation will be needed.

2.3.2 Contiguous Encoder/Decoder Blocks vs. OOTD Scores Linear
Relationship Statistical Significance Testing

To evaluate the statistical significance of the linear relationship between an increasing
number of encoder blocks and the OOTD scores, we use the coefficient p-value after fitting
an ordinary least squares (OLS) regression line to each of the experiments’ samples. For
example, for experiment 1, we would first fit an OLS line to the averaged OOTD scores
in Table 2.3 and then test using the coefficient p-value. We found statistically significant
linear relationships across all experiments except for the encoders of experiment 4, which
had a relatively constant relationship. Experiment 2 on the decoder side was a statistically
significant negative linear relationship, which is discussed in Section ??. Tables 2.1 and
2.2 show our results. H0 : β1 = 0. H1 : β1 6= 0.

2.3.3 Autoencoder Reconstruction Experiment Details
It was noted in [19] that statistically similar data produced lower autoencoder recon-

struction errors; data with additional noise/outliers often resulted in higher errors. Using
that observation, we train a convolutional autoencoder model on each of the datasets sepa-
rately and note down the average training loss to quantify the difficulty of each of the three
training datasets, h50, ph1-12, and ph1-22. Our convolutional autoencoder consists of 3
convolution-max-pool blocks on the encoder side and 3 convolution-upsampling blocks on
the decoder side. Each convolution layer had 3x3-dimension kernels followed by ReLU
activation. The final layer consisted of 1 channel, for each of the ultrasound images. The
convolutional autoencoder was trained for 5 epochs with a batch size of 16, learning rate
of .001, and cross entropy loss. We trained the autoencoder on each dataset 5 times and
noted down the reconstruction errors as follows: h50 (11.379 ± .002), ph1-12 (12.347
± .001), and ph1-22 (12.782 ± .001). We further performed Wilcoxon statistical signifi-
cance tests for the following cases: (1) H0 : µh50 = µph1−12. H1 : µh50 ≤ µph1−12. (2)
H0 : µph1−12 = µph1−22. H1 : µph1−12 ≤ µph1−22 and calculated the p-values: .0253 and
.0258, respectively. This follows along with our observations noted in Section ??; because
the ft-data was more challenging, the model may have needed additional blocks for a better
latent representation. Related patent pending.
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Table 2.1: Encoder-side vs. OOTD Scores Linearity Statistical Significance Results. Sta-
tistical significance at α = 0.05 bolded.

No. P-Value 95% Confidence Interval
1 .008 (.001, .007)
2 .001 (.009, .015)
3 .017 (.008, .055)
4 .158 (-.002, .013)

Table 2.2: Decoder-side vs. OOTD Linearity Results. Note that experiment 2 has a negative
linear relationship.

No. P-Value 95% Confidence Interval
1 .001 (.050, .092)
2 .011 (-.066, -.013)
3 .001 (.020, .022)
4 .007 (.007, .031)

Table 2.3: Transfer Learning Experimental Results using Dice Coefficient metric (averaged
over 3 runs) comparing across changes in anatomy and imaging settings. Encoder 1 (e-1)
means that only the first block in the encoder is used for fine-tuning, encoder 2 (e-2) means
2 blocks in the encoder are used, decoder 4 (d-4) refers to only the first block on the decoder
side, and so on. OOTD is the arithmetic average of the Dice metric on the unseen datasets.

No. Model pt-data ft-data Method h50 ph1-12 ph1-22 ph2-12 p12 OOTD
1 1 ph1-12 h50 e-1 .499 ± .0003 — .578 ± .0010 .610 ± .0030 .531 ± .0023 .583 ± .0206
1 2 ph1-12 h50 e-2 .848 ± .0013 — .614 ± .0001 .592 ± .0113 .596 ± .0001 .600 ± .0116
1 3 ph1-12 h50 e-3 .814 ± .0010 — .615 ± .0001 .577 ± .0002 .595 ± .0001 .596 ± .0150
1 4 ph1-12 h50 e-4 .913 ± .0164 — .614 ± .0001 .596 ± .0051 .597 ± .0009 .602 ± .0086
1 5 ph1-12 h50 e-5 .906 ± .0001 — .614 ± .0001 .582 ± .0001 .609 ± .0005 .602 ± .0128
1 6 ph1-12 h50 d-4 .520 ± .0307 — .383 ± .0333 .626 ± .0083 .275 ± .0175 .428 ± .1485
1 7 ph1-12 h50 d-3 .759 ± .0016 — .582 ± .0021 .687 ± .0032 .401 ± .0065 .557 ± .1184
1 8 ph1-12 h50 d-2 .723 ± .0036 — .599 ± .0031 .690 ± .0020 .392 ± .0063 .560 ± .1247
1 9 ph1-12 h50 d-1 .959 ± .0009 — .597 ± .0014 .719 ± .0014 .651 ± .0016 .656 ± .0498
1 10 ph1-12 h50 Full .957 ± .0010 — .546 ± .0001 .657 ± .0001 .632 ± .0003 .612 ± .0383
2 11 h50 ph1-12 e-1 — .589 ± .0033 .536 ± .0001 .625 ± .0010 .596 ± .0001 .585 ± .0372
2 12 h50 ph1-12 e-2 — .491 ± .0003 .545 ± .0001 .577 ± .0002 .623 ± .0001 .582 ± .0319
2 13 h50 ph1-12 e-3 — .608 ± .0001 .552 ± .0016 .653 ± .0005 .600 ± .0004 .602 ± .0408
2 14 h50 ph1-12 e-4 — .629 ± 0001 .604 ± .0002 .667 ± .0001 .595 ± .0002 .622 ± .0317
2 15 h50 ph1-12 e-5 — .656 ± .0006 .605 ± .0034 .673 ± .0001 .596 ± .0001 .625 ± .0346
2 16 h50 ph1-12 d-4 — .483 ± .0003 .497 ± .0001 .564 ± .0002 .629 ± .0001 .563 ± .0540
2 17 h50 ph1-12 d-3 — .507 ± .0001 .494 ± .0002 .571 ± .0015 .611 ± .0002 .559 ± .0484
2 18 h50 ph1-12 d-2 — .508 ± .0003 .491 ± .0014 .557 ± .0005 .601 ± .0001 .550 ± .0452
2 19 h50 ph1-12 d-1 — .845 ± .0113 .482 ± .0004 .554 ± .0024 .267 ± .0003 .435 ± .1217
2 20 h50 ph1-12 Full — .919 ± .0002 .366 ± .0017 .417 ± .0041 .201 ± .0011 .328 ± .0919
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Table 2.4: Transfer Learning Experimental Results using Dice Coefficient metric (averaged
over 3 runs) comparing across imaging settings. Encoder 1 (e-1) means that only the first
block in the encoder is used for fine-tuning, encoder 2 (e-2) means 2 blocks in the encoder
are used, decoder 4 (d-4) refers to only the first block on the decoder side, and so on. OOTD
is the arithmetic average of the Dice metric on the unseen datasets.

No. Model pt-data ft-data Method h50 ph1-12 ph1-22 ph2-12 p12 OOTD
3 21 ph1-12 ph1-22 e-1 .456 ± .0032 — .561 ± .561 .627 ± .0004 .325 ± .0016 .469 ± .1239
3 22 ph1-12 ph1-22 e-2 .769 ± .0013 — .612 ± .0015 .662 ± .0019 .419 ± .0016 .617 ± .1467
3 23 ph1-12 ph1-22 e-3 .794 ± .0003 — .773 ± .0009 .647 ± .0005 .410 ± .0050 .617 ± .1582
3 24 ph1-12 ph1-22 e-4 .700 ± .0025 — .838 ± .0032 .594 ± .0168 .595 ± .0040 .630 ± .0511
3 25 ph1-12 ph1-22 e-5 .729 ± .0042 — .852 ± .0040 .601 ± .0059 .531 ± .0064 .620 ± .0820
3 26 ph1-12 ph1-22 d-4 .179 ± .0007 — .753 ± .0045 .375 ± .0004 .200 ± .0008 .251 ± .0878
3 27 ph1-12 ph1-22 d-3 .201 ± .0001 — .840 ± .0029 .403 ± .0006 .218 ± .0001 .274 ± .0916
3 28 ph1-12 ph1-22 d-2 .218 ± .0004 — .849 ± .0058 .419 ± .0038 .238 ± .0002 .292 ± .0904
3 29 ph1-12 ph1-22 d-1 .256 ± .0015 — .851 ± .0029 .464 ± .0006 .221 ± .0002 .314 ± .1075
3 30 ph1-12 ph1-22 Full .481 ± .0151 — .923 ± .0001 .471 ± .0025 .227 ± .0009 .393 ± .1175
4 31 ph1-22 ph1-12 e-1 .597 ± .0004 .684 ± .0002 — .539 ± .0018 .375 ± .0023 .504 ± .0943
4 32 ph1-22 ph1-12 e-2 .664 ± .0005 .708 ± .0006 — .592 ± .0515 .344 ± .0001 .533 ± .1541
4 33 ph1-22 ph1-12 e-3 .650 ± .0042 .823 ± .0002 — .595 ± .0026 .315 ± .0015 .520 ± .1466
4 34 ph1-22 ph1-12 e-4 .545 ± .0009 .936 ± .0034 — .642 ± .0013 .326 ± .0024 .505 ± .1605
4 35 ph1-22 ph1-12 e-5 .555 ± .0071 .969 ± .0001 — .732 ± .0019 .338 ± .0047 .541 ± .1702
4 36 ph1-22 ph1-12 d-4 .193 ± .0001 .740 ± .0038 — .579 ± .0002 .234 ± .0002 .335 ± .1729
4 37 ph1-22 ph1-12 d-3 .233 ± .0005 .816 ± .0019 — .498 ± .0017 .204 ± .0005 .312 ± .1320
4 38 ph1-22 ph1-12 d-2 .269 ± .0005 .826 ± .0002 — .604 ± .0011 .216 ± .0001 .363 ± .1716
4 39 ph1-22 ph1-12 d-1 .329 ± .0002 .965 ± .0001 — .543 ± .0022 .241 ± .0011 .371 ± .1275
4 40 ph1-22 ph1-12 Full .370 ± .0024 .958 ± .0001 — .634 ± .0002 .203 ± .0009 .403 ± .1776

Table 2.5: Proposed Method for Enhanced Generalization using OOTD Scores

No. Ours (Method) Full
1 .656 ± .0498 (d-1) .612 ± .0383
2 .625 ± .0346 (e-5) .328 ± .0919
3 .620 ± .0820 (e-5) .393 ± .1175
4 .541 ± .1702 (e-5) .403 ± .1776
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Chapter 3

Stochastic Temporal Data Augmentation
for Adaptation to Out-of-Distribution
Temporal Features

Chapter 3 is adapted from the manuscript:
Edward Chen, Tejas Sudharshan Mathai, Howie Choset, and John Galeotti, “Stochastic
Temporal Data Augmentation for Adaption to Out-of-Distribution Temporal Features”
Edward Chen’s contributions to the manuscript include: conducting initial literature re-
view, developing the algorithm and experiments, conducting the experiments, analyzing
the data, writing the manuscripts and responding to reviewers with revisions. Tejas Sud-
harshan Mathai assisted with providing experimental suggestions. Howie Choset and John
Galeotti are the supervising faculty advisors.

3.1 Introduction
Ultrasound (US) is a portable, cost-effective, and radiation-free [20] imaging modality,

in contrast to other modalities, such as CT and MRI. Emergency treatment for traumatic
injuries often involves catheter placement, e.g. for dialysis, extracorporeal membrane oxy-
genation (ECMO), or resuscitative endovascular balloon occlusion of the Aorta (REBOA)
for hemorrhage control. The latter two rely on real-time US imaging to identify anatomical
landmarks for femoral vascular access. [21].

Prior work in this space has focused on localizing and segmenting femoral region land-
marks [22–24]. However, they are often unable to generalize to out-of-training-distribution
data, thereby significantly increasing the risk of complications in emergency field scenarios
[25]. In an attempt to address the generalization issue, prior approaches [26, 27] have in-
troduced various image augmentation methods to be uniformly and spatially applied across
the US images, with the goal to train the model across additional variances in the data. Al-
though such methods work well with consistent changes across the spatial features in US
images, they fail to adequately account for the inherent temporal nature of US.

In emergency scenarios, responders may scan patients with rapidly pulsating vessels
in an erratic fashion. It is critical that models generalize well across such unpredictable
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sequences. But in practice, with the challenges of obtaining labelled US data, especially to
different scanning rates and pulsating conditions, it is often the case that a dataset contains
very few temporal shifts. Several temporal data augmentation methods do exist in literature
[28–31]. Window warping [29], in particular, proposes to address the temporal shifts in data
by dropping a constant number of data points within each data sequence, thereby expanding
to wider temporal horizons. However, window warping and other methods fail to address
rapid and/or unpredictable changing shifts in US imaging while searching for anatomical
landmarks in emergency scenarios.

Thus, a key motivation of this work is to address the stochastic nature in US scan-
ning during emergency field medicine. In this study, we detail several novel temporal data
augmentation techniques aimed at addressing such scenarios. Our temporal augmenta-
tion strategies address the changes in US scanning rates by stochastically dropping frames
within each sequence, assuming both independently and dependently related frames. A
major assumption, though, of such augmentation strategies is that the original training data
consists of long temporal horizons. We further attempt to address cases where that as-
sumption may not entirely hold true by using non-uniform spatial augmentations across
the temporal sequence, thus synthetically instilling motion into the data. In contrast to cur-
rent data augmentation procedures [29], we show that our approaches generalize better to
rapidly-changing US sequences.
Dataset Names. We note that, in this study, phantom1-multi12 is referred to as standard-
POCUS, phantom1-multi22 is referred to as higher-depth, and phantom2-multi12 is re-
ferred to as right-side.
Contributions. 1) To the best of our knowledge, we are the first to propose three temporal
augmentation strategies to address the stochasticity in US scanning with applications in
emergency medical operations. 2) We further address the case where there is a short time
horizon inherent within the training data. 3) We demonstrate the consistency of all of our
approaches through extensive validation on data acquired from different US scanners and
settings.
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3.2 Methods
When acquiring sequential frames for analysis, it is customary to move the probe with

consistent speed and direction. However, especially in emergency scenarios, the probe is
moved quickly and irregularly when searching for the right anatomy. To better train for
this type of movement, we synthetically augment the training data across spatial-temporal
differences in anatomy between ultrasound imaging frames using the 3 methods described
below. Ultrasound frame numbering begins at 0 and ends at t. The original and generated
sequences are denoted as orig and gen, respectively.
Strategy 1 - Stochastic Frame-Independent Augmentation

This temporal augmentation method assigns a probability value, drawn from a Uniform
distribution, to each ultrasound frame. The threshold value on the probabilities, pt, is set as
a manually tuned parameter and is used to determine the frames needed to be kept for the
generated sequence, up to the input sequence length.

gen = {orig[i] ∀ i if p(orig[i]) > pt} (3.1)

Strategy 2 - Stochastic Frame-Dependent Augmentation
At each iteration i starting at frame index k, generate a random number fi+1 between 1

and frange. The next iteration i+ 1 starts at index k+ fi+1 and selects frame k+ fi+1 to be
added into the generated sequence. Once k + fi+1 exceeds the number of original frames,
the algorithm completes. The algorithm is depicted in Algorithm 1.

Algorithm 1 Stochastic Frame-Dependent Augmentation
t← total number of frames
frange ← size of frame range to select from
orig ← original sequence of frames
gen← []
i← −1
while i < t do
framepick ← random(1,frange + 1)
i = i+ framepick
if i > t then
break

else
gen← append(orig[i])

end if
end while

Strategy 3 - Spatially-Shifted Temporal Augmentation
An underlying assumption that the previous two strategies, along with others [29], make

is that the original ultrasound sequence consists of noticeable temporal movement. How-
ever, in some real-world cases, the movement of the ultrasound transducer or vessel pul-
sations may be hardly noticable, nearly reducing down to still images. Rather than again
going through an extensive data collection and labelling process, we outline our proposed
algorithm below.
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For each image sequence of length τ , we randomly generate the magnitude of the tem-
poral shift for the sequence ∆ to be within the values σlower and σupper, which we designate
as hyperparameters. We then split [0, ∆] into τ equally-sized time blocks and generate a
random integer between each of those blocks. This results in τ pseudo-randomly generated
integers, δ, which represent the spatial shift magnitude of each image in the sequence. We
additionally randomize each sequence of δ to be either entirely positive or negative. These
integers are currently used for three different variations of this strategy: 1) shift the height
of each image i in the original sequence by δi, 2) shift the width of each image i by δi, and
3) randomly shift 1) or 2) for each sequence.

Algorithm 2 Spatially-Shifted Temporal Augmentation
t← total number of frames
orig ← original sequence of frames
gen← []
∆← random(σlower, σupper)

β ← [0,
∆

τ
,
2∆

τ
, ...,∆]

α← random([-1, 1])
i← 1
while i < t do
δi ← random(βi−1, βi)
geni ← shift(origi, α ∗ δi)

end while
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3.3 Experiments

We attempted to model a subset of real-world distribution of ultrasound imaging data
which is relevant to us, especially in emergency medical scenarios. All data was acquired
from a physically realistic CAE Blue Phantom femoral vascular access lower torso ultra-
sound training model (BPF1500-HP). For imaging the phantom, we used a Fukuda Denshi
portable (i.e. Point of Care Ultrasound, POCUS) scanner with a 5-12 MHz transducer
imaging a maximum depth of 5cm and 10cm respectively. Phantom-Based Categories:
Four categories of imaged sequences were acquired from the phantom: (1) standard-
POCUS, (2) higher-depth, (3) sudden-changes, and (4) right-side. Scanned Anatomies:
Only 1 of the phantom-based categories was collected from the right side of the phan-
tom, which contained different anatomy (muscles, liver etc.) as well as other artifacts
unknown to the model. We refer to this as the right-side dataset, as opposed to all the
others which are from the left side. Sporadic Motion: Extensive probe motions were only
used when acquiring sequences in the sudden-changes category, such as fast, irregular and
erratic probe motion, and out-of-plane deformation. Imaging Settings: The remaining 2
categories represent different imaging settings: Sequences in standard-POCUS were ac-
quired at a depth of 5cm in contrast to the sequences in higher-depth, which were acquired
at a depth of 10cm (also POCUS). Data Quantity: The standard-POCUS category con-
sisted of 12 sequences, each containing 50 frames totalling 600 frames. The higher-depth,
sudden-changes, and right-side categories consisted of 3 sequences each, with each se-
quence containing 50 frames totalling 150 frames. All classes (arteries, veins, ligaments
and nerves) were present in (at least some frames of) every sequence in every category, and
each sequence was annotated by a single expert.
Network Architecture. The deep learning model we use is a 3D U-Net [32] model consist-
ing of 4 encoder blocks (including the bottleneck layer as the 4th encoder) and 3 decoder
blocks. Each encoder block consists of 2 pairs of 3D convolutional layers followed by
batch normalization and ReLu activation, with a downsampling layer as the last layer of
the block. Each decoder block consists of an upsampling layer followed by 2 pairs of
convolution layers, batch normalization, and ReLu activation as described in the encoder
block. Each convolutional layer consisted of 3x3x3 kernel dimensions. A diagram of the
model is shown in Figure 3.2.
Training Details. The model was trained on standard-POCUS. Each input sequence of
images consisted of 8 ultrasound frames, all resized to 256x256 pixels. Due to memory
limitations, we used a batch size of 8. Each original dataset was augmented using simple
spatial image transformations: horizontal and vertical flips, gamma adjustment, Gaussian

Figure 3.1: Sample images from all of the data categories used in this study. Starting
from left: standard-POCUS, sudden-changes, right-side, higher-depth. Color Key: Red:
Artery, Green: Ligament, Blue: Vein, Yellow: Nerve.
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Figure 3.2: 3D U-Net architecture. The encoder blocks (blue) consists of the input layer
followed by the 2 pairs of convolutional layer, batch normalization, and ReLu activation.
The decoder blocks (red) consists of the same structure. The down and up arrows represent
downsampling and upsampling layers.

noise addition, Gaussian blurring, Bilateral blurring, cropping, affine transformations, and
shear transformations. The validation set for each experiment was about 10% the size of
the original training set. The loss function used was cross entropy loss and model was
trained using the Adam optimizer [33]. We set the learning rate to 10−4 and each of the
networks were trained until the loss did not improve for 6 epochs - using early stopping.
The network with the lowest validation loss was then used for evaluation on the testing set.
Baseline Comparisons. We validated our proposed temporal augmentation strategies,
strategy-1, strategy-2, and strategy-3 against both the traditional spatial augmentation meth-
ods, spatial-only and another temporal strategy, window-warp [29]. We additionally com-
pared against a variation of all of our strategies together; we first randomly selected be-
tween temporal strategy 1 and 2, then randomly selected between height and width shift in
temporal strategy 3, and we refer to this as strategy-rand. The results are shown in Tables
4.1, 3.2, and 3.3. Each of the comparisons were run 2 times.
Ablation Studies. For each of the baselines and our strategies, we performed ablation
studies across the single parameter for each of them. For window-warp, we only kept every
k frame in the sequence where k ∈ [2, 5]. For strategy-1, we varied pt ∈ [0.1, 0.9]. For
strategy-2, we varied frange ∈ [2, 5]. For strategy-3, we kept σlower as 1 and varied σupper
∈ [30, 120]. We additionally varied across each of those combinations for strategy-rand.
Metrics. We evaluated our experiments using the following metrics: 1) region similarity
and 2) contour accuracy. Region similarity measures the similarity of the inner spatial
region for each contour between the label and predicted image, whereas contour accuracy
measures directly the boundaries of each contour. We calculate the methods as described
in [34], where region similarity is the intersection-over-union and contour accuracy is the
F-measure over the precision and recall of the contour points between the predicted image
and ground-truth.
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Table 3.1: Region similarity comparing the best across all ablations, on a dataset in the same
domain, standard-POCUS, and a dataset with temporal shifts, sudden-changes. Bolded
values represent our methods which surpassed the results from the baselines.

Approach standard-POCUS sudden-changes

spatial-only .528± .003 .545± .005

window-warp .563± .002 .534± .009

strategy-1 .564 ± .003 .550 ± .007
strategy-2 .639 ± .011 .534± .010

strategy-3 .584 ± .008 .592 ± .009
strategy-rand .638 ± .010 .553 ± .012

Table 3.2: Contour accuracy comparing the best across all ablations, on a dataset in
the same domain, standard-POCUS, and a dataset with temporal shifts, sudden-changes.
Bolded values represent our methods which surpassed the results from the baselines.

Approach standard-POCUS sudden-changes

spatial-only .320± .001 .377± .002

window-warp .388± .002 .357± .003

strategy-1 .362 ± .004 .390 ± .002
strategy-2 .457 ± .007 .381 ± .004
strategy-3 .412 ± .005 .440 ± .006

strategy-rand .432 ± .006 .379 ± .004

Table 3.3: Region similarity comparing the best across all ablations, on datasets outside of
training domain. Bolded values represent our methods which surpassed the results from
the baselines.

Approach right-side higher-depth

spatial-only .445± .012 .352± .011

window-warp .428± .013 .366± .012

strategy-1 .523 ± .010 .363 ± .009
strategy-2 .457 ± .009 .436 ± .014
strategy-3 .579 ± .018 .443 ± .015

strategy-rand .484 ± .012 .379 ± .010

3.4 Results and Discussion

From Tables 4.1, 3.2, and 3.3, we noted that our methods outperformed traditional
spatial-only augmentation method [35] and the window-warp temporal augmentation method
[29], in most cases. Since all of the experiments were trained on standard-POCUS dataset,
it was critical that our approach did not hurt the performance on data within that same do-
main. From Table 4.1, all of our methods surpass both baseline methods, which supports
that. In our experiments evaluating against instances with more unpredictable scanning
sequences (right column of Table 4.1), all of our methods surpassed the baselines except
for strategy-2, which performed similarly to the window-warp approach. We attribute this
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to the potential influence of a dependence relation between frames generated by strategy-2,
due to the subsequent selected frames being dependent on the prior one. In this case, such
a relationship seemed to not have been able to capture the more unpredictable nature in
sudden-changes. A similar pattern is reflected in Table 3.2.

When measured using the contour accuracy metric in Table 3.2, our methods performed
significantly better on standard-POCUS. Although not the direct intended purpose, we at-
tribute this finding to the additional stochasticity in the training data helping the model
learn more generalized features pertaining to its training domain. Similar results on the
relationship between stochasticity and generalizability can be seen in Table 4.1 and in ex-
isting literature [36–38]. We further note that all of our methods surpassed all baselines on
sudden-changes across both metrics we used.

To check the consistency of our methods’ results across out-of-training domain datasets
of different anatomical variations and imaging settings, we evaluated them against right-
side and higher-depth in Table 3.3. We note that our methods outperformed traditional
spatial augmentations in all of our experiments, by a large margin. Furthermore, all but one
of our methods consistently outperformed window-warp as well. We attribute the slightly
lower results from strategy-1 to the lack of frame dependence reflected in the method. The
more consistent and stable scanning methodology used when acquiring standard-POCUS
and higher-depth presents additional structure in the collected ultrasound frames which
could not have been instilled by strategy-1 due to its inherent randomness. We note that
right-side, although collected with a similar structured ultrasound scanning process, con-
tains more variety in anatomy and hence may decrease the relationship between frames. A
similar result is also reflected with strategy-1 in the left column of Table 3.2.

From our ablation studies, we noted some interesting observations. For strategy-1, a
pt value of [0.1, 0.2] was too low, either significantly slowing down training or halting it
completely. A pt value closer to 0.5 produced the highest results. For strategy-2, a higher
value of frange, resulting in a longer time horizon, produced the highest results in our
experiments. For strategy-3, σupper values closer to 60 pixels resulted in better performance.
Similar patterns were noted when tweaking the same parameters, while keeping the others
frozen, for strategy-rand. We would like to note that these numerical values may be specific
to the features in our datasets and that more experiments will need to be conducted to
confirm that.
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3.5 Conclusion and Future Work
To the best of our knowledge, we have presented the first three temporal augmenta-

tion strategies targeted for medical emergency scenarios with ultrasound imaging. Our
results show that, across all of our presented experiments, our novel stochastic methods
outperformed the baselines 21 out of 24 times. In the future, we plan to experiment with
additional variants of temporal augmentation strategies in addition to making it adaptive to
the model training phase.
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Chapter 4

Uncertainty-based Adaptive Data
Augmentation for Ultrasound
Anatomical Variations

Chapter 4 is adapted from the publication:
Edward Chen, Howie Choset, and John Galeotti, “Uncertainty-based Adaptive Data Aug-
mentation for Ultrasound Anatomical Variations,” IEEE International Symposium on Biomed-
ical Imaging (ISBI), 2021 (Oral)
Edward Chen’s contributions to the manuscript include: conducting initial literature re-
view, developing the algorithm and experiments, conducting the experiments, analyzing the
data, writing the manuscripts and responding to reviewers with revisions. Howie Choset
and John Galeotti are the supervising faculty advisors.

4.1 Introduction
In the case of high-tempo, traumatic scenarios on the battlefield, real-time ultrasound

(US) imaging serves as an enabler for countless possible robotic interventions. Having
the ability to automatically segment anatomical landmarks in the body, such as arteries,
veins, ligaments, and veins, for percutaneous procedures remains to be a difficult task when
considering the countless domains across body types, potential traumatic injury scenarios,
and imaging artifacts. Collecting data spanning all, or many, of the cases is tremendously
time-consuming and expensive. A key motivation of this work is to propose a method
for enhancing deep learning models’ generalization capabilities by generating synthetic
data which is transformed in a manner designed to account for various body types, injury
scenarios, and imaging features.

A great amount of the focus in the medical imaging community has been towards engi-
neering improved deep learning architectures, with the goal of learning improved features
[39–41]. On the other hand, the data augmentation is a relatively simple and commonly
used method for generating synthetic data to account for invariances in the data [42]. Un-
fortunately, many data augmentation procedures currently rely on domain expertise and
manual tuning to be effective [43–45]. Under the manually designed image augmentations,
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the generated synthetic data may produce countless simple images which limit the model’s
ability to learn generalized features [43, 44]. In addition, many of the commonly used med-
ical imaging data augmentation strategies still remains to be basic transformations such as
flipping, rotating, shifting, and blurring. Although advanced data augmentation strategies
do exist for natural images [43–46], many of them are designed for cases which aren’t as
relevant for medical images. Our goal is to research a learning-based data augmentation
method which can adaptively generate augmented images for learning invariances across
various anatomical shapes and imaging artifacts.

In this study, we propose a novel data augmentation technique for ultrasound images.
Specifically, the method is designed to adaptively train a semantic segmentation network
such that it’s able to generalize to different anatomical variations, artifacts, and potentially
backgrounds. We first employ a Bayesian temporal-based segmentation network which is
able to output both the segmentation and epistemic uncertainty [47–49] maps. The epis-
temic uncertainty maps, which we use to obtain knowledge of the model’s spatial weak-
nesses, are then passed into an augmentation module. Inspired by [50], the augmentation
module then initializes a set of fiducial points across the training image and uses an agent
feedforward neural network, with the uncerainty maps as input, to create a final moving
state for the fiducial points. Similar to [45], we use a similarity transformation based on the
moving least squares transformation method [50]. The constructed images are designed to
“spot-augment” the images in such a way that they challenge the models precisely where
they already have learned good features for, and display less uncertainty. We train the
agent neural network based on how much it’s able to challenge the base segmentation net-
work, which is measured by the loss on the augmented images. All of these steps are
embedded within a unified real-time training framework, shown in Figure 5.2. Our primary
contributions are: (1) incorporating the epistemic uncertainty map outputs from a Bayesian
segmentation network for “spot-augmenting” areas where the model is currently strong, (2)
an adaptive training pipeline which also incorporates the spatial relationship nuances be-
tween ultrasound imaging anatomical landmarks, and (3) experiments illustrating how the
method is able to better enable medical segmentation networks to generalize across various
vessel shapes and imaging features.
Dataset Names. We note that, in this study, phantom1-multi12 is referred to as standard-
POCUS and phantom1-multi22 is referred to as higher-depth.
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Figure 4.1: Flow diagram of the overall uncertainty-based augmentation pipeline. The un-
certainty maps from the segmentation network get passed into the agent neural network,
which then generates the control points for deforming the image in the augmentation mod-
ule. Those are then fed back into the training process.

4.2 Methods

4.2.1 Semantic Segmentation Neural Network
Our final task is multi-class, multi-instance segmentation of arteries, veins, ligaments,

and nerves in ultrasound images. The deep learning network architecture we use is a
dropout-based Bayesian formulation [47, 49] of the 3D U-Net encoder-decoder architec-
ture [32]. The network consists of four convolutional blocks on the encoder side, with
matching pairs on the decoder side. Each block consists of an input layer followed by 2
pairs of the following: convolutional layer, batch normalization, and ReLU. Within each
block, we empirically determined to place a single dropout layer before the output layer,
as opposed to other possible variations [51]. The model outputs two values (represented
below), for both the predicted mean, µ̂, the segmentation map, and predicted variance, σ̂2,
which we use for the epistemic uncertainty map:

[µ̂, σ̂2] = f Ŵ (x) (4.1)

where f is the Bayesian 3D U-Net, in this case, parameterised by model weights Ŵ . The
epistemic uncertainty maps are obtained using test-time stochastic forward passes, also
referred to as Monte Carlo dropout [49]:

1

T

T∑
t=1

(µ̂t − µ̄)
⊗

2 (4.2)

where T is the total number of Monte Carlo samples and µ̄ =
∑T

t=1

µ̂t
T

. Despite not
actively using the logits variance output for computing the aleatoric uncertainty, which
is the statistical uncertainty inherent in the data, empirical trials and [49] both illustrated
that having the variance output was still necessary. Without the logits variance output, we
empirically found that the epistemic uncertainty tended to overcompensate for that fact and
obtained poor performance.
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4.2.2 Augmentation Module
The augmentation module is responsible for generating the synthetic images for further

training. It does so by using a variation of the moving least squares deformation method
[50, 52] which first generates a set of control points p around the border of the overall
image as well as of the individual anatomical classes. The immediate next step is then to
also generate a set of deformed control points q. The points q govern the image deformation
using the best affine transformation lv(x) which minimizes the following [50] :∑

i

wi|lv(pi)− qi|2 (4.3)

where wi represents the set of deformation weights, which are dependent on the point of
evaluation v [50].

To generate the set of points q, we use a convolutional neural network, which we refer
to as the augmentation agent neural network, which takes as input the epistemic uncertainty
map and outputs a set of directions to shift the original points p. We output the directions
rather than individual shift magnitudes because we found it empirically simpler to train and
to avoid potential negative image augmentations. Currently, we only use straight top-down
and left-right directional shifts but this can be expanded into additional degrees of freedom
as well.

We then apply points p and q to the original training images in the batch to output
a new batch with transformed versions of the images. The moving least squares image
deformation method is notoriously known to take a long time to compute [52]. To enable
it for real-time capabilities in our method, we rearrange the mathematical relationships in
such a way that we can pre-compute most of the expensive matrix multiplications prior
to the training process. We first represent lv(x) as an affine transformation with a linear
transformation matrix, M , and a translation value, T . According to the proof in [50], we
can solve for T by rearranging the relationship as such:

T = q∗ − p∗M (4.4)

where q∗ and p∗ are the weighted centroids used for the linear moving least squares defor-
mation, represented as such:

p∗ =

∑
iwipi∑
iwi

(4.5)

q∗ =

∑
iwiqi∑
iwi

(4.6)

We re-formulate the above relationships by splitting our initial and final control points, p
and q, respectively into a set for the border of the ultrasound image, pB and qB, and another
set for the anatomical classes within, pi and qi. The reason we have a set of dedicated
control points for the border is to prevent the sides of the image from folding in, creating
holes in the image. We show an example of a proper deformation in Figure 4.2. Further-
more, since the borders of the images stay constant throughout the training process, we can
re-arrange the equation for q∗ as such:
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q∗ =

∑
iwiqi + wBqB∑
iwi + wB

(4.7)

where p∗ would follow a similar structure. We further pre-compute the values of wi, repre-
sented as:

wi =
1

|pi − v|2α
(4.8)

Additional values for computing the affine transformation represented in [50], which do not
depend on each individual image, are also pre-computed. Finally, to customize the speed
of the image deformations, we set as hyperparameters the count of the control points pi and
pB.

Augmentation Agent Neural Network

The augmentation network is a simple, custom 3D convolutional neural network which
consists of 5 convolutional blocks. The first 3 convolutional blocks each consist of, se-
quentially, a 3D convolutional layer, a batch normalization layer, ReLu activation, and then
a max pooling layer. The last 2 convolutional blocks do not have the max pooling layer.
The final convolutional block outputs to a fully connected layer which then outputs a set of
points classifying whether to go up or down for each control point.

To train the augmentation agent neural network, we generate a random set of points,
signalling up or down for the deformations. We then compute the moving least squares
image deformations [50] for both the agent-generated and randomly-generated points and
compute the segmentation loss for both sets. If the agent-generated points resulted in a
lower segmentation loss, we assume the randomly-generated points as more difficult and
assign those as the label for training this network. If the randomly-generated points resulted
in a lower loss, however, we assign the opposite direction of the agent-generated points as
the label similar to [45]. The rest of the training process is completed as normal. A diagram
detailing the entire pipeline is shown in Figure 5.2.
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4.3 Experiments and Results

4.3.1 Data

The data was acquired from a CAE Blue Phantom femoral vascular access lower torso
ultrasound training model. To collect the data, we used the Fukuda Denshi portable (i.e.
Point of Care Ultrasound, POCUS) scanner with a 5-12 MHz transducer imaging a max-
imum depth of 5cm and 10cm, respectively. The main dataset, which we refer to as
standard-POCUS, used for training consisted of 12 sequences, each containing 50 frames
totalling 600 frames. The other dataset, which we refer to as higher-depth, consisted of 3
sequences, with each sequence containing 50 frames totalling 150 frames. It was collected
using a higher depth, which deformed the anatomy. All classes (arteries, veins, ligaments
and nerves) were present in (at least some frames of) every sequence in every category, and
each sequence was annotated by a single expert.

4.3.2 Training Details

Due to the memory restrictions presented by our precomputation details, we only train
with a batch size of 1, with 8 images within each sequence. Each of the images are re-
sized to 256x256 pixels. Also a consequence of the memory-hungry characteristic of our
method, we do not perform initial significant offline data augmentations to the training set.
For training, we used the aforementioned Bayesian temporal segmentation network with
a stochastic version of the cross entropy loss, similar to [49]. To compute the uncertainty
maps, use 10 Monte Carlo samples [49]. We set the learning rate to 10−3 and trained the
network until the validation loss did not improve for 5 epochs. Lastly, the validation set
consisted of about 10% of the original training dataset.

4.3.3 Experiments

We compare our proposed pipeline against the same Bayesian temporal segmentation
network across 2 cases: 1) without any spatial data augmentations, so using the same ini-
tial training set as our pipeline (non-aug), and 2) using a full set of spatial augmentations
(full-spatial-aug). The full set of spatial augmentations consisted of horizontal and vertical
flips, gamma adjustment, Gaussian noise addition, Gaussian blurring, Bilateral blurring,
cropping, affine transformations, and shear transformations. In terms of the control points,
we use 128 and 2 points for the border and class, respectively. To limit the up/down direc-
tions, we use 20, 40, 80, 40 pixels as the maximum shifts for the arteries, veins, ligaments,
and nerves, respectively. All of the experiments are evaluated against standard-POCUS
and higher-depth across 2 trials. The results are shown in Table 4.1.

4.3.4 Metrics

To evaluate our experiments, we computed the following metric - region similarity.
Region similarity measures how similar the ground-truth label and predicted images are in
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terms of their inner contour regions. We calculate region similarity as how it is used in [53],
using the intersection-over-union between the ground-truth label and predicted image.

Approach standard-POCUS higher-depth

non-aug .534 ± .010 .238 ± .004
full-spatial-aug .564 ± .012 .453 ± .009

Ours .571 ± .019 .419 ± .013

Table 4.1: Region similarity metric comparing the best-performing methods, across the 2
datasets. The bolded values represent our methods which surpassed the baseline results.

31



4.4 Discussion
Based on the results presented in Table 4.1, our pipeline is able to enhance the gen-

eralization performance of segmentation models due to the diversity of images which it
generates. We would like to emphasize that the performance of our method in Table 4.1
only uses the original training set, without any prior spatial augmentations - which is a 28x
difference. Even with the lack of augmentation, the method is able to approach the out-
of-domain generalization abilities of the fully augmented version, reflected by the score on
higher-depth. Some samples of the image deformations are shown in Figure 4.2. In terms
of computation time, the pipeline is able to completely generate the augmented batch of
images in, on average, 10.576 seconds. To completely perform the moving least squares
image deformation [50], it takes, on average, 5.201 seconds - which we have to compute
twice for both the images and the labels. Those times are all based on the 128 border con-
trol points we use, which affects it the most. We noticed that switching it to 256 border
points nearly doubles the computation time, hence why we reduced to 128. We reduced the
number of class control points to 2, for each present class, for the same reason. The reason
for the greater number of border points is because we empirically noticed that reducing
the number of border points too much created visible holes near the borders and made the
images look unrealistic.

The biggest limitation for this pipeline right now is the aforementioned computational
time and memory requirements. In order to pre-compute all of the matrices mentioned, it
takes roughly 260 MB of hard drive space for each image, hence our memory restrictions
during training it (not being able to use the full spatial augmentations). As with the compu-
tation time, this memory requirement also decreases in proportion to the number of border
points.

Another potential limitation is that this method may miss image deformations in ar-
eas of the image where the segmentation ground-truth label does not cover. As a result,
there may be cases where traditional, uniform, spatial augmentations will maintain better
generalization capabilities.
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4.5 Conclusion and Future Work
To the best of our knowledge, we have presented the first online, adaptive data aug-

mentation pipeline for adapting to different anatomical variations with ultrasound imaging.
According to our results, the pipeline is able to enhance the generalizability of the segmen-
tation network, but with a cost due to the memory and computational time. In the future,
we plan to improve upon this by expanding the degrees of freedom with which the pipeline
is able to modify the features in the ultrasound images. We also plan to improve the com-
putational memory and time requirements of this overall pipeline, in order to make it more
feasible for consistent training.

(b) Image Before Deformation (c) Image After Deformation

(b) Label Before Deformation (c) Label After Deformation

Figure 4.2: Example ultrasound image undergoing the image deformation. The top im-
ages visualize the original and new images, whereas the bottom images visualize the same
images’ labels.

33



34



Chapter 5

Multi-Class Bayesian Segmentation of
Robotically Acquired Ultrasound
Enabling 3D Site Selection along
Femoral Vessels for Planning Safer
Needle Insertion

Chapter 5 is adapted from the manuscript:
Edward Chen, Abhimanyu, Vinit Sarode, Howie Choset, and John Galeotti, “Multi-Class
Bayesian Segmentation of Robotically Acquired Ultrasound Enabling 3D Site Selection
along Femoral Vessels for Planning Safer Needle Insertion”
Edward Chen’s contributions to the manuscript include: conducting initial literature re-
view, developing the segmentation and optimal needle insertion algorithm and experiments,
conducting the experiments, analyzing the data, writing the manuscripts and responding to
reviewers with revisions. Abhimanyu’s contributions include developing the scanning and
3D reconstruction algorithms, conducting the corresponding experiments, analyzing the
data, and writing the corresponding sections. Vinit Sarode’s contributions include helping
to run experiments for all of the components. Howie Choset and John Galeotti are the
supervising faculty advisors.

5.1 Introduction
Percutaneous, or needle-puncture, procedures are often used for a wide variety of

anatomical targets within the body and are typically associated with performing safe and
minimally-invasive surgeries. Common applications include central vascular access for
resuscitation, arterial pressure monitoring, emergency dialysis catheter placement as well
as rarer, more invasive, endovascular interventions, extracorporeal membrane oxygenation
(ECMO), and resuscitative endovascular balloon occlusion (REBOA) [54, 55]. In many of
those cases, placement of a needle in the proper location is essential to a positive outcome.

Previous literature on endovascular intervention supported that percutaneous femoral
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Figure 5.1: Portable robotic system designed for ultrasound-guided needle site selection.
The image on the left displays a sample set-up of the pipeline. The image on the right
displays the final 3D visualization with the optimal insertion point (white) for the left side
of a torso phantom. Color Key: Artery - Red, Vein - Blue, Ligament - Green, Nerve -
Yellow.

Figure 5.2: Flow diagram of the overall automatic pipeline. The robot system first collects
ultrasound images from its scanning process, sends them to the deep learning model for
segmentation, retrieves the segmentation coordinates for 3D model generation, and then
outputs suggested locations for needle insertion based on safety standards.

arterial access is associated with serious complications [56]. Especially with older pa-
tients, complications related to insertion, such as hematomas (2-8%) and pseudoaneurysms
(1-2%), are becoming more common with the growing number of procedures done in the
femoral area [57]. The risk of such complications are further increased when dealing with
high-tempo, stressful situations or less experienced medical clinicians. Furthermore, in-
accurate judgement of mental 3D models or ultrasound images often result in multiple
punctures, taking more time in critical scenarios. Severe medical issues also arise as a re-
sult of needle insertion in other location sites, such as transradial artery and liver access
[58]. Automated approaches using robotics can reduce these risks significantly [59].

Portability is key in emergency medical scenarios. Computer vision coupled with the
ultrasound imaging modality plays a critical role in the flexibility of medical robotics. Ul-
trasound is small, low-cost, and field-portable, unlike other imaging techniques such as
magnetic resonance imaging (MRI), computed tomography (CT), or X-ray. As a result, the
entire robot has the potential of being easily transported to different locations for serving
emergency medical purposes.

In this study, we present a fully automatic pipeline for robotic control for vascular nee-
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dle insertion planning in the femoral region as a major step towards real-world deployment
during medical emergencies, outlined in Figure 5.2. The femoral region is used as it allows
for rapid administration of medications, critical for emergency situations [60]. A sample
set-up and result is shown in Figure 5.1. The robot uses a Bayesian deep learning-based
multi-class 3D CNN segmentation network for building a 3D visualization of the tissue in
the femoral region, which our needle insertion planning algorithm then uses to determine
the safest location for insertion such that the risk of complications will be lowered. For
further elucidation of the algorithm results, we also generate 3D heatmap visualizations
depicting the needle insertion safety levels, along with uncertainty-based pruning of noisy
segmentations. The robot is able to collect ultrasound images on both smooth and curved
surfaces while being able to segment arteries, veins, ligaments, and nerves simultaneously.
This entire pipeline is able to be performed with zero human intervention, decreasing the
expertise required to safely perform a variety of life-saving transcutaneous interventions
[61]. As a result, we introduce the following contributions:

1. a novel algorithm for standardizing an optimally safe location for vascular femoral-
region needle insertion by using a 3D visualization generated from deep learning-
based multi-class segmentations

2. an automatic robotic pipeline capable of scanning curved surfaces with ultrasound,
performing multi-class imaging, 3D anatomic visualization, and the above insertion
planning algorithm all within a Bayesian framework

The rest of the paper is structured as such: the following section discusses related work.
Section III describes each of the individual components in depth: robotic scanning, multi-
class segmentation, 3D visualization, and needle insertion planning. Section IV provides
results we obtained over repeated trials with multiple different test subjects across vari-
ous imaging settings and ultrasound scanners. We then conclude with an overview of our
methods along with potential avenues for future work.
Dataset Names. We note that, in this study, phantom1-multi12 is referred to as torso-left
and phantom2-multi12 is referred to as torso-right.
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5.2 Related work
There currently is a wide variety of existing literature which discusses robotic systems

for needle insertion tasks [59, 62–67]. We can broadly categorize the approaches by their
choice of imaging modality and anatomical landmark localization method. Specifically for
the femoral region, most of the existing work targets non-ultrasound based imaging modal-
ities, such as flouroscopy and X-ray [62, 63], both of which expose the patient to ionizing
radiation. Ultrasound, which lacks ionizing radiation, is safe for continuous imaging and is
also more portable, making it a better choice for our intended use case of emergency scenar-
ios. Despite its lightweight benefits, ultrasound does have the disadvantage of containing
more noise in the images compared to those from other modalities. We deal with such
characteristics by training a deep learning model based on the 3D U-Net [68, 69], within a
Bayesian framework [70, 71], from various augmented images - helping it to automatically
learn discriminative features from the images.

Other existing works for localizing the anatomical landmarks rely on more conventional
methods such as brute force searches and radii measurements for vessel segmentation [63–
65, 72, 73]. The non-deep learning based approaches used in such works rely on either an
offline initial setup for registration of an a priori anatomic model to the images or a brute
force search for the image processing algorithm [63–65, 72, 73]. [73] deals with segment-
ing nerves in ultrasound images for regional anesthesia, but only does so for the single class,
nerves. [59] is one of the more recent works which employ deep learning-based methods
for vessel segmentation in a semi-automatic robotic pipeline using dual imaging modalities,
near-infrared and ultrasound, for vascular access in the arm region. Our proposed method
for determining regional anatomical landmarks for needle insertion uses a Bayesian deep
learning-based ultrasound vessel segmentation network that also segments arteries, veins,
and ligaments, with no human intervention, and is also able to maintain some generalizabil-
ity across ultrasound settings. In addition, our proposed method combines the multi-class
Bayesian segmentation method in a novel way with our optimal needle insertion planning
algorithm.

Some existing approaches for determining the optimally safe insertion location for nee-
dles use a geometrical model [65]. Other algorithms don’t take into account the location
of the inguinal ligament or require manual user input to obtain the anatomical landmarks
[59, 64, 66]. In the prior works using a geometric model, the optimal insertion site is de-
termined directly based on a single image rather than with a 3D visualization or sequence
of frames across the insertion area. For the femoral region, it is critical to not just use a
single image but to have some anatomical model of the area such that the physical relation-
ship of the global anatomical landmarks can be considered [67]. Considering the location
of both the inguinal ligament and vessel bifurcation is important for preventing additional
complications, such as increased risk of retroperitoneal hematoma or hemorrhage [74, 75].

The success of the aforementioned approaches in needle insertion lend themselves to
the advantages of automating the needle insertion process. However, these prior methods
have limitations resulting from their various imaging modalities, classical approaches for
segmentation, and global anatomical landmark choices. As such, these existing robots have
deficiencies that preclude their portable use for real-world emergencies. Our proposed
robotic pipeline overcomes some of the deficiencies by essentially learning to segment

38



all relevant anatomical landmarks within the femoral region in a way that could be more
easily transferred to other imaging settings or human anatomical variations. To the best
of our knowledge, our proposed method is also the first work on a fully automatic robotic
system from the scanning phase up to determining the optimal needle insertion site.
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5.3 Methods

5.3.1 Experimental Setup

We use the Universal Robot UR3e model for ultrasound scanning. The ultrasound
scanning is evaluated with a Fukuda Denshi portable point-of-care ultrasound scanner
(POCUS), using a 5-12 MHz 2D transducer. The experiments and data were gathered from
a CAE Blue Phantom anthropomorphic gel model, blue-gel, both the left and right sides
of a CAE Blue Phantom lower torso ultrasound training model BPF1500-HP (which each
contain different anatomical variations), torso-left and torso-right, and a live pig, live-pig.
The IACUC-approved experiment on the live pig was done in a controlled lab setting under
the supervision of clinicians. The deep learning pipeline for multi-class segmentation was
built using TensorFlow [76] and Python. Our optimal needle insertion planning algorithm
was implemented in Python, and Robot Operating System (ROS) [77] was used to combine
all of the components together. The current robotic setup is not yet suitable for real-world
emergency situations, requiring substantial future work to address issues of size, sterility,
safety/FDA certification, etc.

5.3.2 Robot Controller

Consistent force is necessary for acoustic coupling, patient comfort, and avoidance of
excess pressure distorting tissue. Without it, the segmentation performance may be dis-
rupted.
Force Regulation: In our system, the robot is driven by velocity commands. To maintain a
constant force, a velocity is applied along the direction of the ultrasound probe [78] (coor-
dinate system shown in Figure 5.2). The applied velocity (which is along the y-direction),
vy, is proportional to the difference between desired force, fd, and the actual force mea-
surement, f , from the sensor, as shown:

vy = −Kf ∗ (f−fd) (5.1)

where Kf is the force controller gain.
Position Control: We control the position of the robot by manually defining the start
and end points of the scanning motion in ROS. The start and end positions are chosen to
maximize the anatomical landmark coverage during scanning. The velocity values, vx,z,
are computed with the following feedback control law [79]:

vx,z = −Kx,z(px,z−p∗x,z) (5.2)

where Kx,z is the feedback controller gain for motion in the x- and z-directions, and px,z
and p∗x,z are the current and goal locations, respectively, in the xz-plane (which is normal
to the ultrasound probe). The end effector velocity is then converted to the target joint
velocity, which in turn is sent to the UR3e robot.
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5.3.3 Multi-Class Segmentation of Arteries, Veins, Ligaments, and Nerves

The deep learning model we use is a Bayesian formulation of the 3D U-Net encoder-
decoder architecture, inspired by [69, 70]. We use a sequence of 8 two-dimensional ul-
trasound images as input to the model, where the temporal aspect is treated as the third
dimension. Due to memory limits, the encoder side of the network consists of four encoder
blocks, with each block consisting of 3D convolution, batch normalization, and ReLu lay-
ers as described in [69]. The decoder side of the network consists of the encoder-paired
decoder blocks [69]. We formulate this 3D U-Net into a Bayesian version [70] by placing
a distribution over its weights with a single dropout layer at the output of each encoder
and decoder block, which we empirically found to produce the best results. The model
then consists of two outputs, one for the predictive mean, µ̂, and another for the predictive
variance, σ̂2, as represented in [70]:

[µ̂, σ̂2] = f Ŵ (x) (5.3)

where f is the Bayesian 3D U-Net, in this case, parameterised by model weights Ŵ . The
model is trained using the stochastic cross entropy loss formulated in [70]. Epistemic uncer-
tainty maps, which represent the model uncertainty, are obtained using test-time stochastic
forward passes, also referred to as Monte Carlo dropout [70]:

1

T

T∑
t=1

(µ̂t − µ̄)
⊗

2 (5.4)

where T is the total number of Monte Carlo samples and µ̄ =
∑T

t=1

µ̂t
T

. Despite not

actively using the logits variance output, σ̂2, for computing the aleatoric uncertainty, statis-
tical uncertainty inherent in the data, empirical trials and [70] both illustrated that having
the variance output was still necessary. Without the logits variance output, we found that
the epistemic uncertainty tended to overcompensate for that fact and obtained poor perfor-
mance.

To further account for variability in ultrasound imaging, data augmentation in the form
of rotations, translations, flips (up-down and left-right), zooms (in and out), filtering, and
blurring was applied to the data prior to training the model.

For training of the model, we used the Adam optimizer [80], a learning rate value of
0.0001, a sequence length of 8 frames, and a batch size of 8. We use 256x256 for the image
dimensions. For obtaining the epistemic uncertainty maps, we use T = 2 Monte Carlo
samples, due to time constraints. A diagram is shown in Figure 5.3.

5.3.4 3D Visualization of Multi-Class Segmentation

Upon obtaining the segmentation and uncertainty maps from the deep learning model,
we generate a 3D point cloud visualization of the anatomical landmarks in the scanned
region, with noisy segmentations filtered out. To filter out false-positive segmentation re-
sults, we propose the following: (1) calculate the average uncertainty values, υi, within
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Figure 5.3: Diagram of our Bayesian 3D U-Net model. The blocks represent 3D convo-
lutions + Batch Normalization + ReLu, the dotted lines represent dropout, and the final
outputs represent the predictive mean and variance.

every segmentation contour, and (2) filter υi by class, c, and calculate uncertainty thresh-
olds, τc, with:

τc = υ̂c + σ̂c ∗ δ (5.5)

where υ̂c and σ̂c are the average and standard deviation, respectively, of υi taken for class c,
and δ is a manually tuned parameter representing the number of standard deviations away
from the mean to filter out. In practice, we found that the PERT statistical distribution [81]
provided the best approximation to the uncertainty values υi.

To obtain the coordinates for plotting with respect to robot’s fixed base frame, roPim/px,
we apply transformations from the segmented ultrasound image as follows:

roPim/px = roTtr ∗ trTim/mm ∗ im/mmSim/px ∗ pim/px (5.6)

where pim/px is the segmented region in the image, im/mmSim/px is the scaling factor to
convert from pixel to millimeter (mm) units, trTim/mm is the transformation matrix to put
the mm units into respect with the ultrasound transducer’s frame, and roTtr is the trans-
formation relation applied to place the points from the ultrasound transducer’s frame into
the robot’s fixed base frame. trTim/mm is obtained from the manual calibration procedure
described in [82] and roTtr is obtained from the tf ROS package.

The color encoding scheme used in the 3D visualization is as follows: artery - red,
vein - blue, ligament - green, nerve - yellow. Examples of our 3D generated models are
shown in Figures 5.1, 5.8, 5.10, and 5.11.

5.3.5 Optimal Needle Insertion Planning Algorithm
We use the femoral artery as the target vessel in this case, but it can be easily extended

to the femoral vein or even other tissues. A diagram of the anatomy is displayed in Figure
5.4. The ideal site for femoral arterial puncture is generally accepted to be over the femoral
head, below the inguinal ligament, and above the femoral arterial bifurcation [83, 84]. More
specifically, recent medical literature has pointed more towards inserting 75% of the way
down from the top of the femoral head, hence being closer to the arterial bifurcation (where
the inguinal ligament and arterial bifurcation are 33% and 100% from the top of the femoral
head, respectively) [85]. Even in cases where doctors are aware of the arterial bifurcation
point through ultrasound imaging, they tend to go at least 1 cm cranially [86]. These
practices are reflected in our algorithm. To further account for noise in the segmentation
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Figure 5.4: Diagram of ideal femoral arterial puncture site [1]. The 3 cm range shown
in the figure indicates ideal region for needle insertion into femoral artery. Used Creative
Commons Attribution Non-Commercial License.

outputs, we filter out segmentation predictions for class c which have pixel-areas smaller
than φc pixels. In practice, we used 100, 300, and 1000 for φartery, φvein, and φligament,
respectively, for the algorithm below:
(1) Detect the femoral arterial bifurcation point. We implement this by checking for a
gap at least of size g between contours from the artery class. We then assume the location
with the smallest gap as the point of bifurcation and refer to this as point α. To account for
noise in the segmentation results, we check that at least γ% of the contours caudal to that
point also contain a count of at least 2. We empirically determined the values of 3 and 95
for g and γ, respectively.
(2) Detect the caudal end of the inguinal ligament. If a ligament was detected in the
scan, we determine the closest point on the ligament to point α. If the ligament was not
scanned/detected, we account for 2 scenarios: (a) the femoral artery follows a straight path,
and (b) there exists a gradual curve in the femoral artery, referring to where the artery is
crossing under the ligament. For (a), we currently assume the ligament’s location to be
immediately off the cranial edge of the scan. For (b), we iterate over each arterial contour
at index i and calculate the angles between vectors u and v, with opposing endpoints at
i− k and i+ k, respectively, using the following: cos θ = 〈uk, vk〉/|uk||vk|. An illustration
is depicted in Figure 5.11. We then assume the location at index i with the smallest angle θ
as the ligament landmark, which we will refer to as point λ. We account for noise similar
to the previous step, except by checking for a count of 1.
(3) Determine a safe region in between the two anatomical landmarks. We do this
by shifting α and λ towards each other by δα% and δλ%, respectively. We denote these
shifted safe boundaries as αs and λs, respectively. We do this (1) to account for noise in the
deep learning segmentation outputs and (2) to incorporate common medical practices as
mentioned above. We used 15 for the value of δα and δλ, accounting for the 1 cm minimum
distance to the arterial bifurcation given an average common femoral artery (CFA) segment
length of ∼7 cm [87].
(4) Calculate the percentage of overlap between the femoral vein and artery at all
points. We do this by calculating the percentage of overlapping pixels when viewing the
contours from a posterior angle. We refer to this as Vo.
(5) Compute scores and determine optimal insertion location. We use the following
relations:
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Figure 5.5: Examples of the variety in images for which we validated our methods on, with
the labels overlaid on top. From left to right: blue-gel, torso-left, torso-right, live-pig. Each
row shows the 3 different imaging settings with which we varied for each subject, except
for live-pig. Color Key: Arteries - Red, Veins - Blue, Ligaments - Green, Nerves - Yellow.

Ph(ζ) =

{
σα

1+‖ζ−α‖2 + σλ
1+‖ζ−λ‖2 , if ζ ∈ [λs, αs]

∞, otherwise

Ts = Ph + Vo (5.7)

where Ph is the Proximity Hazard Score to account for distance from α and λ, ζ is the
3D coordinate for the center of an arterial segmentation contour, σα and σλ are values for
weighing the importance of sufficient distance from α and λ, respectively. We reflect the
aforementioned insertion percentiles commonly used in practice with σα and σλ. Arterial
contours not within the safe region or of an area smaller than φartery are assigned a maxi-
mum score. The Total Site Score, Ts, is then obtained by adding Vo and Ph together, taking
into account overflow and underflow. To select the final insertion location, we select the
artery corresponding to the lowest value of Ts. If there are multiple of such values, we take
the largest-sized artery cross-section.

To enhance clinical viability and explainability, we also generate a second 3D visualiza-
tion illustrating a heatmap of Ts. We do this using the same steps described in the previous
section, except with the following color encoding scheme: non-artery/vein structures and
regions with values of∞ are colored with RGB value (128,128,128), which is grey, and ar-
teries are shaded with RGB values of (255,η,η) where η = min(Ts−min(Ts) ∗ 255, 255).
As a result, regions with higher values of Ts appear white, whereas lower values appear
bright red. The algorithm was implemented using vectorized NumPy Python library meth-
ods.
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5.3.6 Fully Automatic Pipeline
1. Hybrid force-position controller obtains force/positional feedback from ROS, then

used to calculate target joint velocity sent to the UR3e arm.

2. Raw images from the ultrasound scanner are passed to segmentation model via ROS.
Segmented regions’ coordinates then obtained for 3D visualization.

3. Segmented regions’ coordinates and robot kinematic data, from ROS, are then synced
together using ApproximateTimeSynchronizer class provided by ROS. The transfor-
mations described in Equation 5.6 are then applied to pixel coordinates before pub-
lishing them to Rviz using the PointCloud format.

4. Upon completion of ultrasound scanning, the global coordinates of the 3D point
cloud visualization are sent to the optimal insertion planning algorithm described
in section 5.3.5. Outputs from the algorithm regarding the arterial bifurcation and
ligament landmarks and insertion scores are then published to Rviz for display.

All of the above steps are completed with zero human intervention. A diagram of the
system is displayed in Figure 5.2.
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Figure 5.6: Boxplots displaying the mean and standard deviation of the force response
values with the force constraint on (left) and off (right). This illustrates the stability of our
contact force due to the force constraint.

5.4 Analysis and Results

5.4.1 Robot Controller
We evaluate the performance of our robotic scanning procedure from two different

angles: the consistency of the contact force used for scanning and the stability of the ultra-
sound image outputs.
Stability of Contact Force. Multiple scans were performed across the blue-gel and torso-
left phantoms with the only varying factor being whether the force constraint was turned
on or off. The starting desired force in the direction of the probe was 1.5 Newtons (N) for
both the on/off variations of the force constraint, except the 1.5 N constraint was removed
as soon as scanning started for the latter case. To illustrate the stability of our contact force,
we noted the standard deviation values of the applied force for blue-gel: σ = 0.113, 0.303
and for torso-left: σ = 0.080, 0.748 all for force constraint on and off, respectively. For
torso-left, we noted that, without force constraint, the force continuously rises due to the
probe not being able to track the curved torso-left surface profile. Figure 5.6 shows the
mean and standard deviation values of the aforementioned trials, outlining the consistency
of our scanning force methodology.
Stability of Ultrasound Images. To quantify the stability across ultrasound image se-
quences, we use the normalized cross-correlation (NCC) method [88]. Due to the multiple
anatomical classes in the phantoms, the traditional NCC decision to use only the first image
in the sequence as the template results in artificially low values. To address that, we use
an adaptive form of NCC where image i − δgap was used as the template, where i is the
current image and δgap is a parameter for the number of frames in the gap. We decided to
take the average NCC metric over δgap ∈ [10, 30], to account for potential image variations
within the last second of scanning. For the upper bound of the metric, we evaluated the
condition where the robotic arm is locked in a fixed location with constant force. For the
lower bound, we evaluated the scenario where the robotic arm force constraint is turned off
and is repeatedly making jittery contact with the surface. The experimental results across
3 scans for blue-gel, torso-left and torso-right are shown in Figure 5.7. In 9/9 of the tri-
als, our NCC metric remained closer to the upper bound. We further note that, in all our
experiments, we did not notice any vessel deformation or transducer slippage due to our
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Figure 5.7: Our adaptive NCC score for different ultrasound scanning scenarios. For all of
our trials, the stability of the scanned ultrasound images approached the upper bound of a
smooth scan.

controller implementation. The force applied is typical for the ultrasound domain [79, 89].
Exploring effects of scanning on human tissue is an interesting path for future work.

5.4.2 Multi-Class Segmentation
To validate the robustness of our multi-class segmentation network, we evaluate its

performance on blue-gel, torso-left, torso-right, and on the live-pig datasets, all of which
(except for live-pig which was just with ima) are compared across 3 varying imaging set-
tings: (ima) depth of 5 cm and gain value of 15 units, (imb) depth of 10 cm and gain value
of 15 units, and (imc) a depth of 10 cm with a gain value of 10 units. Each of the phan-
tom datasets contained a train/valid/test split of 320/128/256 images, whereas the live-pig
dataset contained a split of 640/320/320 images. The images were split into sequential
groups of 8 frames each. After applying data augmentation to the training images, as also
described in [90], each set of images increased by a factor of ∼ 20. The outputs from the
final layers were converted to color encoded masks using a threshold value of 0.50. The
erosion morphological operation is used to convert the dense segmentation mask into just
the border of the circle. Samples of the images are shown in Figure 5.5.

For baseline comparisons, we evaluated the results against those of a vanilla 3D U-
Net, which we refer to as 3DU , [69] and a different variation of the Bayesian 3D U-Net
similar to that in [71], which we refer to as B3DUk. The metrics we used are region
similarity, J , contour accuracy, F , and temporal stability, T [81]. We evaluate the spatial
region and contour segmentation performance of estimated segmentation, S and ground-
truth mask, G, using region similarity and contour accuracy, and the stability and jitteriness
across the temporal domain using temporal stability. We calculate the metrics as described
in [91], where region similarity is the intersection-over-union between S and G, contour
accuracy is the F-measure over the precision and recall of the contour points between S and
G, and temporal stability is the resulting mean cost per matched point from the Dynamic
Time Warping problem [91, 92]. The multi-class segmentation model performances are
described in Table 5.1. As can be seen, our model always obtained the most accurate
boundary contours and our model often significantly outperformed the other state-of-the-
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Figure 5.8: 3D visualization of blue-gel. The optimal insertion point is the white dot,
whereas the ligament and arterial bifurcation points are the grey dots. The image on the
bottom illustrates a heatmap of the Total Site Scores for the needle planning algorithm
(unsafe to safe goes from gray to red).

Figure 5.9: Segmentation results on images collected with different imaging settings and
anatomy. Left to right: blue-gel, torso-left, torso-right, live-pig.

art networks for this sequential medical imaging segmentation task. Sample segmentation
outputs are shown in Figure 5.9.

5.4.3 Optimal Needle Insertion Planning
To test for robustness, 9 trials of 3D visualization and the optimal needle insertion

algorithm were repeated across blue-gel, torso-left, and torso-right, with each one from
imaging settings ima, imb, and imc - described in section 5.4.2. We also completed 8
trials for different sequences of live-pig, which is most similar to reality. We assumed a
venous insertion in torso-left and torso-right due to anatomical differences in the phantoms,
whereas blue-gel and live-pig remained as arterial insertions. For live-pig, we did have to
tune k, the gap of arterial contours for the endpoints of −→u and −→v (Figure 5.11), within the
range of 1 and 5.

To evaluate the clinical viability of our proposed insertion planning algorithm, we asked
3 doctors to judge the accuracy of the results. We initially only showed the doctors the
naked 3D visualizations, without any insertion points shown, and asked them to make
unbiased judgments of safe regions for arterial/venous insertion along with their respective
vessel bifurcation and ligament points. We then presented to them the 3D visualizations
and heatmaps, with optimal insertion, bifurcation, and ligament points shown, and asked
for them to confirm their correctness. On blue-gel, torso-left, and torso-right, our algorithm
determined the proper anatomical landmarks and insertion points 9/9 times. On live-pig,
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Figure 5.10: 3D visualization of torso-right. Optimal insertion point is the white dot,
whereas the ligament and arterial bifurcation points are the grey dots. The image on the
bottom illustrates a heatmap of the Total Site Scores for the needle planning algorithm
(unsafe to safe goes from gray to red).

Figure 5.11: 3D visualization of live-pig. The top image shows the method we use for
detecting the ligament. The optimal insertion point is the white dot, whereas the ligament
and arterial bifurcation points are the grey dots. The image on the bottom illustrates a
heatmap of the Total Site Scores for the needle planning algorithm (unsafe to safe goes
from gray to red).
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Table 5.1: Evaluation with region similarity (J), contour accuracy (F ), and temporal sta-
bility (T ). Arrows indicate optimal direction for avg ± std across ima, imb, imc (ima for
live-pig).
.

Model J ↑ F ↑ T ↓
blue-gel

3DU .775 ± .035 .291 ± .050 .085 ± .083
B3DUk .785 ± .015 .316 ± .064 .122 ± .113
Ours .834 ± .008 .516 ± .008 .098 ± .078

torso-left
3DU .663 ± .014 .442 ± .025 .169 ± .060
B3DUk .793 ± .107 .656 ± .140 .131 ± .052
Ours .788 ± .114 .662 ± .140 .124 ± .033

torso-right
3DU .706 ± .076 .402 ± .007 .139 ± .023
B3DUk .807 ± .041 .571 ± .032 .192 ± .033
Ours .816 ± .057 .657 ± .013 .151 ± .045

live-pig
3DU .497 ± .081 .294 ± .011 .092 ± .043
B3DUk .667 ± .061 .482 ± .057 .065 ± .024
Ours .814 ± .065 .681 ± .055 .061 ± .012

our algorithm correctly determined the ligament 8/8 times, the arterial bifurcation 7/8 times,
and a safe insertion point 6/8 times. The 2 sequences without a safe insertion point were
instead deemed slightly too close to the arterial bifurcation. Overall, our algorithm detected
the proper arterial bifurcation and ligament landmarks 31/32 times, while detecting a safe
insertion point 15/17 times. For additional validation, we also displayed plots illustrating
the range and general distribution of proximity hazard scores, overlap scores, and total
site scores. Computationally, just the insertion planning algorithm takes ˜0.0500 seconds
to complete, averaged over 10 runs. Overall, a single-direction scan on the entire robotic
system takes about 18-19 seconds on the lower torso phantom, with the 3D visualization
running in parallel. Figures 5.1, 5.8, 5.10, and 5.11 illustrate our results.
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5.5 Conclusion and Future Work
We present a novel fully automatic robotic system for planning safer needle insertion

into the femoral vessels based on 3D visualizations built from validated scanning and multi-
class segmentation, all within a Bayesian framework. Through the use of the model, arter-
ies/veins and ligaments can be accurately used as anatomical landmarks for guiding needle
insertion. This frees up the medical clinician from the cognitive burden of determining
them manually and remembering where they are within the 3D space of the patient, all
during tense emergency scenarios. With the 3D visualization and novel needle insertion
algorithm, the user is also able to gain clearly explainable results for understanding. All
of this is completed with no human intervention and can be easily portable and generaliz-
able to other locations and anatomies, as shown by our extensive validation across several
different anatomical variations and imaging settings - resulting in safe insertion locations
88% of the time. As a result, this is the first work to potentially significantly decrease
the amount of medical training necessary for performing emergency medical deep-vessel
insertion operations.

In the future, we aim to increase the portability of our robotic systems and add new
capabilities for physical insertion of the needle. We also plan to develop for scanning
highly curved surfaces with continuously changing surface normals, along with increase
the segmentation and needle insertion algorithm’s robustness to other datasets.
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Chapter 6

Conclusion

This thesis explored research problems involving the primary challenges of ultrasound
images, which are often intertwined with each other: (1) their immense variability across
scanners, imaging settings, scanning patterns, and body types, and (2) the high costs associ-
ated with obtaining training data. Chapter 2 aimed to study these challenges in-depth from
the perspective of transfer learning, a method often used when training data for the target
task is lacking. Traditional transfer learning strategies often fine-tune the entire network
with a smaller set of training data, with the goal being to leverage a prior set of weights for
enhanced downstream performance and generalizability. However, in chapter 2, we studied
different variations of the fine-tuning strategy, applied to various contiguous subsequences
of the U-Net model architecture. The work further evaluated such fine-tuning strategies
on multiple unseen test datasets as a test for their average out-of-training-domain perfor-
mance. Upon the studies, we proposed to use the fine-tune data domain’s performance as
a proxy for the strategy’s out-of-training-domain generalizability score, allowing empirical
determination of which specific blocks should and should not be fine tuned to maximize ex-
pected generalization. We find that this results in significantly enhanced transfer learning
generalization when compared to previous methods.

Chapters 3 and 4 focused on addressing the issues of data variability and shortage using
a method known as data augmentation, where the goal is to generate synthetic copies of the
data to enlarge the training set. Chapter 3 explicitly focused on generalizing across various
ultrasound scanning patterns - so in the temporal sense. To do so, we introduced three dif-
ferent stochastic temporal augmentation strategies, each of which used stochasticity to cre-
ate time-varying ultrasound frame sequences from the original set of data. Chapter 4 more
directly addressed the spatial variability across body types, injury scenarios, and imaging
artifacts. In doing so, we introduced an uncertainty-based, online adaptive data augmenta-
tion method which produces non-uniform spatial distortions within each ultrasound image.
By using epistemic uncertainty maps to understand the current model strengths, we were
able to show that such an augmentation can greatly help the generalizability of the down-
stream segmentation model.

Chapter 5 introduced an initial prototype for an automatic robotic system for needle
insertion, demonstrating how accurate semantic segmentation of ultrasound images can re-
sult in proper determination of the optimal needle insertion location. We introduced how
we set up the overall robotic pipeline, consisting of automated ultrasound scanning, ultra-
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sound segmentation, 3D model reconstruction, and then optimal needle insertion location
determination. We evaluated our system on both phantom and live-pig data and noticed the
majority of the optimal needle insertion locations being determined properly.

In the future, I hope to extend each of the above works further. Although fairly simple,
I believe transfer learning provides great potential for leveraging prior large sets of data for
enhanced generalizability in small-data scenarios. In the future, I believe it may be useful
to further study how generalization and transfer learning varies across ultrasound data, or
to potentially combine it with other methods such as meta-learning.

While a large portion of similar research is focused on finding enhanced model archi-
tectures, I also believe there should be a great amount of focus on the data itself. Although
I have introduced a couple data augmentation methods to combat generalization above, I
still believe there is significant work in this area. Much work can be done to reduce com-
putational and memory requirements of online data augmentation methods or to further
understand how they are affecting generalization. Harmful data augmentations are also
possible, so it would be very useful to systematically be able to check for that and under-
stand how it affects the model out-of-training-domain performance. Overall, I believe there
is immense potential in enhancing the generalizability of ultrasound AI methods and am
excited for the future it allows.
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