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Abstract

Subterranean exploration has been thrust into the spotlight by the re-
cent DARPA Subterranean Challenge. Teams are tasked with developing
a multi-agent system that can rapidly navigate through unknown un-
derground environments while sending back maps and other semantic
information. A system with such capabilities has a wide variety of applica-
tions from surveying and mapping mines to search and rescue operations.
Aerial platforms in particular have the ability to fly fast and discover large
parts of an environment despite their lower operational endurance. They
can also change altitude at will to explore narrow nooks in spaces that are
otherwise difficult to access. The work done in this thesis aims to leverage
these abilities to build a resilient autonomy pipeline that enables multiple
drones to coordinate an underground exploration mission with the click
of a button. Towards that end, we propose an integrated exploration and
coordination pipeline that is designed to generalize across a variety of
subterranean environments. An ensemble of planners has been built in
to tackle a large set of operating conditions ensuring the robot is never
still for too long. Coordination map sharing enables the aerial platforms
to minimize the overlap in explored volumes between them and other
robots on the team. An extensive set of field experiments show that the
approach works well in subterranean spaces such as caves, mines and
urban infrastructure. We conclude with a discussion on further work
planned for improving the system in the future.
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Chapter 1

Introduction

1.1 Motivation

Knowledge about subterranean spaces has significant value in a variety of domains.
From surveying and mapping of abandoned mines, to search and rescue applications
in places like caves and subway stations. Now that the human race is going back to
the Moon, there is new found cause to explore lunar lava tubes through the use of a
rover controlled from a basestation several hundred thousand miles away.

In June 2018, 12 boys went to explore the Tham Luang cave in Thailand’s Chiang
Rai province accompanied by their football coach. They got trapped deep inside the
cave underneath a mountain [8]. A massive search and rescue effort was mounted to
rescue them from the cave. Amongst one of many challenges faced by the rescuers
was an outdated and incomplete map of the cave. A French caving society had last
conducted a survey of the cave in the 1980s. Many of the deepest recesses inside
remained unmapped [1]. “It was reported that when the search began, estimates of
distances between key points were inaccurate and the location of landmarks uncertain,
clouding even the most basic assumptions” [1]. Figure 1.1 shows a hand drawn map
produced by one of the rescuers that had to be used during the operation.

In retrospect, one can now see the utility in having systems that can autonomously
map and identify objects of interest in such treacherous environments that pose so
much danger to both the rescuer and the rescuee. High resolution 3D imagery would

give an unprecedented level of situational awareness in such spaces that can only make
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the rescuers’ job easier and less risky. The map shown in Figure 1.2 is a creation of
the work done in this thesis. This was achieved using a fully autonomous drone that
flew the trajectory highlighted in yellow. This map has enough detail and resolution
for a rescue team to accurately assess the geometry of the environment and would be

a valuable tool in mounting a search and rescue operation.

Figure 1.1: A hand drawn map of the Tham Luang cave used by the rescue team.
Reproduced from [1].

Figure 1.2: Map built from an autonomous exploration flight at Laurel Caverns, PA

Another area where autonomous exploration and mapping can have an impact
is in mapping abandoned mines. In the United States it is believed that there are

several thousands of abandoned mines. There are so many in fact, that their number
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is unknown to even the Department of Surface Mines. In such a situation, with
continued infrastructure and mining development taking place both above and below
the earth’s surface, it becomes imperative to have a deeper understanding of these

historically unmapped voids [2][21].

DARPA Subterranean Challenge The DARPA Subterranean (SubT) Challenge
was started in 2018 as a three year long competition inviting global teams to develop
technologies that enable rapid mapping, navigation and search capabilities for mobile
agents in complex underground environments [11]. The competition is split into
two tracks - systems and virtual. Systems track teams are expected to develop and
demonstrate physical systems that can compete in live competitions in environments
representative of the three broad categories of subterranean voids. Teams are required
to deploy a team of robots that can only be operated by a single base station operator.
The circuit environment contains an array of objects of interest - artifacts such
as fire extinguishers, cellphones, backpacks, drills amongst others. These artifacts
need to be detected, correctly identified and triangulated within an error margin of
1.0m. The teams are scored on the number of correct detections over the course of a
timed run. Figure 1.3 (from [11]) shows the different environments and their relative
complexity in great detail. One of the key challenges here, which also happens to be
what the work done in this thesis is trying to solve, is to build an autonomy pipeline
that generalizes to all the three types of environments enabling rapid and efficient

exploration through a multi-agent team.

Team Explorer CMU and Oregon State University have a joint entry to the
systems track in the competition. Figure 2.4 shows the different systems that have
been built as part of this competition. All of them are custom built platforms except
the Spot quadruped robot that was acquired from Boston Dynamics. The work done
in this thesis will be focusing on the aerial platforms and their performance during
field deployments.

The problem this thesis is tackling lies at the intersection of robot perception and
planning. What’s the best way for a team of robots to explore an apriori unknown
environment in a manner that is fast, reliable and generalizes well?

The exploration behavior of our aerial platforms relies on the use of a frontier-
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Figure 1.3: Overview of environments in the Challenge. Credits - Timothy Chung,
DARPA [11]

based exploration paradigm to determine what areas to plan to. This information
is then fed into an ensemble of planners designed to handle a variety of operating
conditions. Additionally, we implemented a system of sharing coarse observed maps
and roadmaps between agents in the team that allows the UAVs to coordinate the
entire exploration effort between themselves and the ground platforms. The overall
objective is to plan and execute trajectories that maximize the chances of observing
artifacts within the field of view of the object detection cameras. The exploration
pipeline was developed to address challenges unique to aerial platforms in general.
These include a limited sensor field of view, exploiting the ability to move vertically,
computational constraints, and a relatively short operational endurance compared to

ground based platforms.

1.2 Background Literature

Robot exploration approaches can broadly be divided into two categories. The

first category belongs to the oldest and still popular approach based on computing
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frontiers. Frontier based exploration was first introduced in [31] which computed a 2D
boundary between known free cells and unknown cells in an occupancy map to figure
out what area to explore. Frontier cells that represent this boundary, are clustered,
and a collision free path is planned to these cluster centroids. This way the robot
continuously stretches this boundary between what is known and what isn’t as it
navigates its way to successive frontier clusters. In [23], randomly sampled viewpoints
near 3D frontiers are evaluated against a series of criteria based on visibility and
an information gain utility score. A collision free path is planned to the viewpoint
in a greedy fashion, and the robot moves from one viewpoint to another until a
termination criterion is met. [28] uses similar 3D frontiers to get candidate viewpoints
based on local surface normals projected into known free space. This approach was
shown to work for Autonomous Underwater Vehicles. This was further extended
in [29], wherein a multisensor input was considered for the task of 3D underwater
exploration. This work focuses on optical coverage while taking advantage of a longer
range multibeam sonar sensor to inform the exploration. Leading to two kinds of
viewpoints - range and camera viewpoints. This ensures coverage with both kinds
of sensors. [33] introduces the concept of surface frontiers that enable exploration
focused on covering surfaces as opposed to free space. This is something we have

made use of in our initial implementations.

Frontier based exploration has also been extended to multiple robots. [32] extended
their seminal work to multiple robots that share their local grid maps over the network.
This way each robot would know what has been explored globally and could plan
paths to as yet unexplored global frontiers. [5] follows a decision theoretic approach
to coordinate exploration efforts in a heterogeneous robot team. This is done by
computing the utility of unexplored areas and the cost to reach them. These two
metrics are then traded off by considering how many robots are headed to the area
in consideration. Leading to a maximization of the overall utility and minimization
of overlapping explored areas between robots. In the same spirit [13] proposes an
integrated multirobot mapping and exploration pipeline that uses a Bayesian decision
theoretic strategy. This is done by exchanging sensor data and estimating relative
positions between robots when they are within communications range. If position
estimates are within an error threshold, then the robots form an exploration cluster

and combine their maps to coordinate their actions. Otherwise, the robots focus on
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their own locally generated frontiers for exploration. [25] looks at the multi-agent
exploration problem from a semantic perspective by taking into account the type of
place that needs to be explored. The work makes use of a classifier to assign labels
to different locations in the environment, arguing that this added knowledge enables
the robot team to explore the environment more efficiently.

The second category of exploration algorithms are ones which optimize an infor-
mation theoretic objective function such as Shannon’s entropy or mutual information
[4, 16, 18, 19]. Cauchy-Schwarz Quadratic Mutual Information has been shown to
be a computationally efficient alternative to using Shannon Mutual Information as
a measure of uncertainty in the map [7]. This work introduces a control policy
based on maximizing CSQMI between the measurements received by the robot over
a time horizon and the map. Other works that make use of CSQMI as an informa-
tion theoretic measure to guide the robot to uncertain regions in the map include
6, 12, 14, 15, 26, 27].

We chose to opt for a frontier based approach rather than an information theoretic
approach as frontier-based approaches are generally more computationally efficient
while yielding similar exploration behavior. Our frontier definition extends the
standard definition of exploration frontiers [31] to also include information beyond
the boundary using observations from another sensor. Similar techniques have been
proposed for other multi-sensor exploration planners [3, 29]. Additionally, we focus
on frontiers of the surface rather than free space, since we believe it is more likely

that artifacts are on or near surfaces.

1.3 Contributions

While there is plenty of existing research to highlight the multitude of approaches
that can be taken to tackle a problem such as this. It is still an open question as to
how well they generalize across different kinds of environments, and how scalable they
are with respect to the number of robots. The work done in this thesis tries to tackle
that aspect. We have developed an integrated exploration and coordination pipeline
that has been shown to work across 3 distinctly different environments (tunnels,
caves and urban spaces) with large variations in topology and local terrain geometry.

An extensive set of field experiments have been conducted without changing any
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algorithmmic parameters between the environments, highlighting the generalizability
of the approach. The coordination aspect of the approach has been shown to work
with a heterogeneous multi-agent team in the same environments, and can scale

seamlessly to any number of robots.

1.4 Chapters Overview

The following Chapters are organized as follows. Chapter 2 talks about the system
architecture. Going into a little more detail about the overall autonomy pipeline
and some of the design decisions that were taken. It also describes the hardware
platform and the entire physical system consisting of ground and aerial platforms.
Chapter 3 will discuss the single robot exploration approach and provide the overall
high level algorithm driving the approach. Chapter 4 will then talk about the map
sharing approach that enables coordination between the robots. Chapter 5 will show
results from field experiments and simulation runs. Chapter 6 will impart concluding

remarks and discuss future work.
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Chapter 2

System Architecture and

Hardware Overview

2.1 Architecture Details and Rationale

An overview of our exploration and coordination software architecture is provided in
Fig. 2.1. The overall pipeline is discussed here along with the rationale behind its

intended design.

Map Building

Starting with the map building module, we used occupancy grid maps as the un-
derlying map representation because of its probabilistic modeling of occupancy and
ray-casting voxel updates that can be helpful in eliminating noise in degraded con-
ditions such as flying in dust. Additionally, the map representation needed to be
fast and computationally efficient owing to a compute constrained aerial platform
as well as scalable in order to accommodate extremely large environments such as
caves and tunnels. This is why we came up with a custom built occupancy grid
mapping solution (VDBMap) that uses an open source data structure optimized for
volumetric data (OpenVDB [22]). We found that our OpenVDB based solution gave
us on average constant time random access of voxel data as compared to logarithmic

time random access provided by a competing grid mapping pipeline called OctoMap
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Figure 2.1: Autonomy Architecture. Individual ROS Nodes are shown in blue boxes.
The maps they work with are shown in Yellow boxes.

[17] that is quite popular within the robotics community.

Custom built Occupancy Grid Maps using OpenVDB

This subsection sheds a little more light on the specifics behind the data structure used
as the basis of the map representation. OpenVDB [22] was conceived at DreamWorks
as an efficient solution for working with level set data that underpins a majority of
rendered animations in their movies.

It’s name comes from the fact that it is a Volumetric, Dynamic grid that is closely
related to B+ Trees. It allows for an unbounded 3D grid space that supports fast
(average O(1)) random access into the stored voxel data [34]. The data structure has
a fixed hierarchy consisting of a root node, and two layers of internal nodes, which
then terminate into leaf nodes. The leaf nodes are the nodes that actually encode

the individual voxels. Figure 2.2 gives a visual representation of the underlying B+
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Figure 2.2: A VDB Tree with one Root Node, two Internal Nodes and Leaf Nodes
[22].

Tree that forms the basis of this data structure. We’d like to direct the reader to [22]

in order to get a detailed analysis of this data structure.

Map Processing

Built on top of the core occupancy grid mapping representation are specific algorithms
such as frontier cluster extraction, viewpoint sampling and selection that process
information in the maps and provide actionable inputs to the planning module.
Since these algorithms work directly with the grid maps, they are also able to take
advantage of OpenVDB’s fast random access and sparse grid traversal methods. It
is also worth noting here that a few approximations were made within the module
handling frontier cluster extraction and viewpoint sampling. For instance, when
sampling for viewpoints, we uniformly sample poses facing a frontier cluster centroid.
We employ an approximating assumption here that if a robot faces a cluster centroid,
it is able to observe all frontiers within the cluster. This allowed us to avoid using
an explicit camera model to compute viewpoints, which helps us maintain a low
computational burden on the system. This does mean that tracking viewpoints does
not guarantee coverage in that small chunks of frontier clusters may be left unobserved.
It happens to be a worthwhile tradeoff to make in the interest of computational

efficiency.
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Planner Ensemble

In order to build a robust planning strategy, an ensemble of planners was created as
planning ensembles can better account for failure modes as well as different mission
objectives [10]. There are four planners that the robot can choose from, namely
the RRT-Connect planner, the Random Walk Planner, the Graph Planner and the
Roadmap Planner. At any time, the robot is running one of these planners and has

the ability to instantly switch to another planner if the required conditions are met.

The overall planning architecture was designed in hierarchical fashion in the
sense that the global planners that form the planner ensemble feed a lower level
local planner that generates local trajectories based on dynamically feasible motion
primitives. This separation between the two tiers of planners was done so that an
unforeseen failure in any of the global planners does not affect the local planner -

ensuring flight safety at all times.

The RRT-Connect planner is in charge of carrying out the primary exploration
mission that enables the drone to track viewpoints pointed towards previously unob-
served volume. More details on this in Chapter 3. We needed to handle the situation
in which the drone doesn’t make progress along the generated global plan which could
be due to a number of reasons such as getting stuck in dust or a narrow passage. In
such a case, the local planner finds it difficult to find valid trajectories to track the
global plan. The Random Walk Planner was conceived to handle such a situation.
By feeding the local planner with a randomly sampled goal, it gets the robot unstuck
from its current position, and then hands the control back to the primary exploration

planner to continue exploration.

Once the robot is at a point wherein it needs to return home with the remaining
battery life, it switches to the Graph Planner that plans a path back to the takeoff
location using a graph generated from previously visited poses. Lastly, we incorporated
a Roadmap Planner to enable the robots to find paths to each others’ unexplored
frontiers using a roadmap that is similar to the graph generated by the Graph Planner.
This was done because there are situations in which a robot has no local frontiers left
to explore due to them having already been observed by other robots. In which case,
we needed a way for the robot to find a way to visit frontiers of other robots in the

team. More details on this in Chapter 4.
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Now that the rationale behind the design choices made to construct the system
architecture is clear, we’ll have a quick overview of the hardware used and the different

robots that are going to be used in the final SubT Challenge Event.

2.2 Hardware Overview

Figure 2.3 shows the primary aerial robot used for the work in this thesis. It’s a
custom built platform that carries about a 1kg heavy perception payload. Table 2.1
lists out the key components of the payload that are used.

H Part Name Description H
Intel NUC Primary computer with a quad core Intel i7 8559U CPU
Velodyne VLP-16 16 Line Lidar with an FOV of 30 deg and 100 m range
IDS UI-3271 RGB Camera for object detection
Intel RealSense L515 | Short range lidars mounted upward and downward facing

Table 2.1: Payload Components on the UAV

Velodyne Puck Lidar

Intel Realsense Lidars
(x2)

IDS Imaging RGB
Camera

Intel NUC Computer

Figure 2.3: Aerial Platform Hardware

13
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2.2.1 Robot Team

While the work described in this thesis focuses on aerial deployment, it’s important
to get a sense of the entire physical system. We have two types of platforms - ground
and aerial. The ground platforms consist of wheeled robots as shown in Figures 2.4c,
2.4d, and quadrupeds as shown in Figure 2.4b. The aerial platform can be seen in
Figures 2.4a, 2.4c. The latter also shows the ability of the drones to take off from the
back of the UGVs. We have the ability to carry the drones on the back of the UGVs
deep into the environment (Figure 2.4d) and launch them autonomously or remotely
by the basestation operator. This allows the drone to leverage their ability to explore
at higher altitudes as compared to the ground platforms. Coordination map sharing
between the robots additionally enables behaviors that allow each platform to better
utilize its strengths during an exploration mission. For instance, the ground platforms,
having higher endurance, can focus on traveling far along the ground and covering
volume visible upto a limited height. During that time, they can launch drones in
spaces that are vertically expansive, allowing the drones to fly up and explore what
would not be observable by the ground vehicles. Having the twin exploration planners
in the planning ensemble enables the aerial vehicles to be used in a variety of ways.
As described before, they can be launched inside the environment from the UGVs
where they use the RRT-Connect planner to explore. They can also be launched from
a starting area, where they can quickly fly to areas that have not yet been explored
by the other robots by employing the Roadmap Planner. These use cases will become

more clear with the proceeding chapters.

14
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(d)
Figure 2.4: The Robot Team (Team Explorer - DARPA SubT Challenge)
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Chapter 3

Single Robot Exploration

As alluded to earlier, the overall approach to exploration can be split into two parts.
The first part solves the single robot exploration problem that enables each individual
agent within the multi-robot team to explore and cover the environment effectively.
This behavior leads into the second part that scales the approach to multiple agents
and attempts to bias their exploration regions away from one another.

The single robot exploration approach centers on creating viewpoints that face
clustered frontiers, picking a viewpoint based on a selection heuristic and then
generating a global plan to the selected viewpoint.

An overview of the exploration pipeline is provided in Algorithm 1. It broadly
follows the flow of the autonomy architecture diagram shown earlier in Figure 2.1.
Starting with the map building that uses dense registered point clouds to create
a global occupancy grid, we then move on to the map processing part involving
generating frontiers, and sampling viewpoints. Once a list of valid viewpoints has
been created, it is passed to the RRT-Connect based global planner that creates a

global plan for the local planner to follow.

3.1 Frontier Detection

Surface Frontiers Our goal in generating frontiers is to focus on exploring unknown
surfaces, and not free space. Which is why we diverge from the traditional definition

of frontiers [31] that places them in free space. Instead, in our initial implementation,

17
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we generated frontiers using occupied cells, similar to [33]. Figure 3.3 (reproduced
from [33]) illustrates this distinction. S} represents the observable surface from the
free space that the UAV can navigate through. .S}, is the surface already observed. 0.5
represents the surface frontiers, or the boundary between the surface that is observed
and the surface that has not yet been observed. Although this approach helps the
UAV focus its efforts towards observing surfaces, it is prone to noise. The frontiers are
generated based on thresholding counts of unknown, free and occupied voxels inside a
cube centered around each occupied voxel. This can produce several spurious frontiers
on the outer surfaces of walls for instance. In an indoor or subterranean setting, these
outer frontiers are not reachable and therefore need to be cleared. Which is achieved
through aggressive thresholding of the aforementioned cell type counts. But when we
reduce the false positive frontier voxels this way, we also create false negatives i.e.
frontiers in unexplored spaces also get cleared out. Figure 3.1 illustrates the issue.
One can see noisy frontier clusters that don’t get cleared out in areas that have been
observed by the drones cameras. This is because they lie on the outer surface of the
wall and hence cannot be marked as observed by the camera model. There is an
opening to a tunnel that we know exists since it shows up in the lidar map, but no
frontier clusters are generated there because the noise suppression is clearing them

out.

Frontier Generation based on subtracted maps Amongst several maps that
are being processed, there is a sensor observed map that tracks the volume observed
by the camera (Vegmera), and a lidar global map that maintains a global geometric
map of the volume observed by the longer range lidar sensor (Vj;ge-). We wanted
to leverage the fact that the lidar sensor has a longer range and incorporate that
into the frontier detection algorithm. This led to an improved technique that uses a

subtracted volume V; to generate frontiers.

‘/s = Widar - ‘/;amera (31)

The volume computed in 3.1 is what constitutes the frontier map. Once we get
the frontier map, we cluster the frontiers based on Euclidean distance, and compute

centroids for all the clusters. The improvement in the generated frontier clusters

18
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is evident in Figure 3.2. The noisy frontier clusters present in already observed
spaces get cleared out, and we get well placed spaced out frontier clusters in all the
unexplored tunnels.

Figure 3.4 shows the two maps that are generated during an exploration flight
inside a cave. The coverage done by the camera is tracked by the Sensor Observed
Map shown in green. As the drone explores, it clears out the volume that constitutes

the Frontier Map in pink.

No viewpoints for
this tunnel

global (lidar) map

Figure 3.1: [Regular Surface Frontiers] Solid white circles represent frontier clusters.
Yellow arrows depict sampled viewpoints facing the frontier clusters. The green map
shows the volume observed by the camera. Flight trajectory is shown in yellow. The
faint white map is the volume observed by the longer range Lidar sensor.

3.2 Viewpoint Sampling

The next step in the map processing pipeline is generating viewpoints. This is done
for each individual frontier cluster. One key assumption that is made here is that
having a clear line of sight from a viewpoint to a cluster centroid ensures that the

entire frontier is observed. This is a simplifying assumption that was made to lower
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viewpoints/irontiers/
spread out /

Figure 3.2: Frontiers generated from the subtracted map approach. Clusters in white,
viewpoints in yellow. Sensor observed map in green, and lidar observed map in white.

the computational load as compared to an approach in which an explicit 3D camera
frustum projection is used to compute cluster voxel visibility.

To generate a set of viewpoints for each cluster, we uniformly sample points that
lie on a cylinder centered on the cluster centroid. These points correspond to a
discrete set of directions extending from the cluster centroid. Figure 3.5 illustrates
this approach. The figure is top-down view of a slice of that cylinder. Sampled
viewpoints are evaluated for collisions within the global map, and checked for a
collision free path from the viewpoint to the centroid (visibility check). Ones that
meet both criteria are put into a list that is then sent to the RRT-Connect based

global planner to evaluate and select.

3.3 Viewpoint Selection

The next module in the pipeline prioritizes the viewpoints according to a scoring
function. Our proposed scoring function is a weighted sum of (1) the Euclidean
distance to the viewpoint, (2) a momentum reward, and (3) a penalty for observing

regions that have already been observed by other aerial robots. The momentum
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3. Single Robot Exploration

3S;

Figure 3.3: Computing surface frontiers. Credits [33]

reward favors selecting viewpoints that are in the current direction of movement
to discourage excessive back and forth motions that reduce the speed of the aerial
vehicle. A large penalty is given to any viewpoint that is within any of the shared
observed submaps received from other robots. Extensive simulation and hardware
testing was performed to empirically select appropriate weights for the three terms.
We have also investigated adding other heuristic terms, such as the frontier size,
heading reward and non-Euclidean distance measures, but we found the proposed

solution to be most effective for this task.

score = wid + wary, + wsr, (3.2)

Here, w; refer to the weights, d is the Euclidean distance to the viewpoint, 7, is
the momentum reward, r, is the reward/penalty for the viewpoint based on shared

coordination maps received from other robots.

3.4 Path Planning and Execution

Downstream from the viewpoint selection stage, a global plan is generated to each
viewpoint in order of their respective scores. This plan is computed using the RRT-

Connect algorithm first introduced in [20]. The path is composed of a sequence of 3D
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3. Single Robot Exploration

Sensor Observed Map

Figure 3.4: Sensor Observed Map (in green) and Frontier Map (in pink). Flight
trajectory in pink. Data generated from a flight at Laurel Caverns.

positions using an Euclidean distance metric. The yaw along the trajectory is not set
(reliant on the local planner to pick appropriately according to the state of the robot),
up until a certain distance before the viewpoint. At which point, the yaw is set to
the yaw of the viewpoint. The feasible path that is found is then sent to be executed
by the local planner until a switching condition is met. Switching can occur due to
multiple factors, when the frontier associated with the goal viewpoint is marked as
observed, a viewpoint with a significantly higher score appears, the drone is making

insufficient progress along the trajectory, or the viewpoint has been reached by the
UAV.

When it is found that the UAV is not making sufficient progress along the
trajectory, a backtracking or random walk behavior is briefly executed to resolve the
issue, then a new viewpoint is selected, switching back to the RRT-Connect planner.
This is handled by the Random Walk Planner within the ensemble.

The Return to home behavior needed at the end of the exploration phase is
handled by the Graph Planner. If the remaining battery life falls below a threshold
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Figure 3.5: Viewpoint Sampling

or if there are no frontier clusters left to explore, then the aerial vehicle plans a path
on a roadmap (consisting of keyposes visited by the robot) that takes it back to the
take-off location.

RRT-Connect was picked as the planning algorithm mainly because of its fast
convergence rates and low computational overhead. In this case, we are not too
concerned about suboptimal path lengths because the drone is usually flying into
unobserved spaces. Zigzag path trajectories that are suboptimal from an Euclidean

distance metric can lead to better exploration of unknown spaces.
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3. Single Robot Exploration

Algorithm 1 Overview of the aerial exploration and coordination pipeline. The
implementation executes many of the listed functions in parallel within separate ROS
nodes.

1: > Initialize Maps
2: global_map, observed_map, frontier map, shared_coarse_maps <— INITMAPS
3: > Update Plan at a Fixed Frequency
4: for each timestep do
5: > Receive Data
6: odometry, lidar < READSENSORS
7 shared_coarse_maps < RECEIVESHAREDMAPS
8: > Mapping
9: global_map < BuiLDOccUPANCYMAP(lidar, odometry, global_map)
10: observed_map <— RAYCASTING(global_map, odometry, observed_map)
11: frontier_map < EXTRACTFRONTIERS(observed_map, odometry)
12: > Frontier Generation and Viewpoint Sampling
13: clusters <— CLUSTERING( frontier_map)
14: viewpoints <— GENERATEVIEWPOINTS(clusters)
15: coordination_scores <— EVALUATEMAPS(viewpoints, clusters, shared_coarse_maps)
16: > Viewpoint Selection
17: sorted_viewpoints <— SCOREANDSORT (viewpoints, odometry, coordination_scores)
18: > Progress Monitor
19: request_new_path < CHECKPROGRESS(path, odometry)
20: if request_new_path then
21: > Path Planning
22: for each viewpoint € sorted_viewpoints do
23: path < B1I-RRT-CONNECT(odometry, viewpoint, global_map)
24: if PATHFOUND(path) then
25: break
26: > Publish Incremental Goals to Local Planner
27: waypoint < EXECUTEPATH(odometry, path)
28: PUBLISHWAYPOINT (waypoint)
29: > Share Coarse Sensor Observed Maps with Other Robots
30: outgoing_coarse_maps < GENERATECOARSEMAP (observed_map, frontier_map)
31: COMMUNICATESHAREDMAP (outgoing_coarse_maps)

24



Chapter 4

Multi-Robot Exploration

The coordination between robots is done by sharing two kinds of maps using a mesh
based wireless communications network (similar to [9]) that is laid out by the ground
robots as they traverse the environment. The robots themselves are also nodes in
the network and can directly communicate with each another if they happen to
be in communications range. Since the ground robots run a different autonomy
architecture, it was decided to keep the coordination one-sided when it came to
coordinating exploration between them and the drones. This way the ground robots
only send information to the drones and don’t act on the information they receive
from the aerial robots. The drones are free to act on the information they receive
irrespective of the kind of robot in the system. This reduced the overall system

complexity, keeping field testing and system deployments tractable.

The maps being shared are of two types. The first type of map is the coarse
sensor observed map that contains a coarse version of information stored in the sensor
observed maps. The second type are roadmaps that contain a history of keyposes
along the robot’s already traversed trajectory. The second type was developed to
counter the limitations imposed by the first approach. More details in the sections

below.
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4. Multi-Robot Exploration

4.1 Coarse Sensor Observed Maps

These maps are binary occupancy grids consisting of large voxels (grid resolution
2.0m) that encode two states - true indicates that the volume has been observed
by a robot, and false indicates that the volume is a frontier volume (i.e. has been
identified as geometry that exists but has not yet been observed by the camera).

Each robot creates its own local version of a coarse sensor observed map and
shares it with other robots over the network. The same robot receives these maps
shared by other robots and merges them into a global coarse map that is then used
to score frontier clusters and viewpoints. Figure 4.1 shows this in action. The map
visualized is that from UAV1 based on coarse maps it receives from UAV2. The
coarse maps UAV1 generates locally are shown in green and blue. Blue voxels denote
that the volume has been observed by UAV1’s camera, while the Green voxels denote
volume that consists of frontiers. The coarse maps received from UAV2 are shown as
Red voxels. More on how that information is used follows below.

Going back to the viewpoint selection Eq.3.2, the last term ry (viewpoint reward)
is based on these shared coarse maps. When frontier clusters are being generated,
they are evaluated for what kind of volume they lie in based on the information in the
global coarse map. Each viewpoint associated with a cluster gets that score. If the
cluster lies in volume that has already been observed by another robot, it is given the
lowest score. The next higher score is assigned for clusters that lie in volume that has
been marked as a frontier volume by other robots. The highest score goes to clusters
that lie in completely unknown volume in other robots’ sensor observed maps. Figure
4.1 shows the different frontier cluster scores as solid circles with distinct colors - Red,
Yellow and Green. Each cluster is represented by its centroid. Red colored centroids
mean that the cluster lies in volume that has already been observed by another robot.
Yellow colored centroids denote a cluster that lies in volume that also happens to be
frontier volume for the other robot. Green colored centroids denote volume that has
not been picked up by the other robots’ lidar - it is completely unknown.

This way of scoring clusters and their associated viewpoints allows for biasing
the robots’ exploration regions away from each other. This can be quite effective in
environments with a high branching factor near the starting/takeoff area because

it directs the robots down different directions from the very beginning. Figure 4.2
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4. Multi-Robot Exploration

Frontier Scores

Figure 4.1: UAV1 - Scoring local frontier clusters using Coarse Sensor Observed
Maps. A top view of a map built during an exploration run inside a limestone mine
at Brady’s Bend. Red voxels show incoming coarse maps from UAV2.

shows this approach in action. This is a coordinated exploration run that was carried
out with two UAVs in simultaneous flight. This experiment was performed inside the
mine at Brady’s Bend, PA. Each flight lasted approximately 8 minutes in duration.
In the left half of the figure, the green and faint blue voxels represent two voxel
states transmitted in the outgoing coarse submaps generated by UAV1 during its
exploration run. These submaps are shared over the network and are received by
UAV2 (depicted as red voxels in the right half of the figure). UAV2 is launched a
minute after UAV1 starts its exploration run. We can observe that UAV2 is able
to successfully explore regions that were not explored by UAV1 and avoid regions
previously explored by UAV1.

The solid green points that are seen in Figure 4.2 represent the frontier clusters
with the highest score - ones which lie in volume that is unknown by the other robot.
The Red points indicate frontier clusters that lie in volume that has already been
observed by the other robot. The clusters with the middle score are the ones that are
colored in yellow - they lie in volume that also happens to be a frontier volume in
the other robot’s observed map.

Algorithm 1 also includes the coarse sensor observed maps sharing and processing
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Coarse Map (Observed Volume)

Coarse Map (Frontier Volume)

y

Local Frontier Clusters (Score: Medium)

UAV?2 Flight Path

Local Frontier Clusters (Score: Max)

Figure 4.2: Simultaneous coordinated exploration by two drones at Brady’s Bend
Mine (Top View). Green voxels represent unexplored volume. Faint blue voxels
represent the volume observed by the robot’s cameras. Red voxels denote shared
coarse sensor observed maps received by the robot. Green points in the map reflect
unexplored frontier clusters. The explored map is visualized as white points. The
drone flight trajectory can be seen as a continuous line in yellow.

parts that factor into viewpoint scoring and selection as carried out in the RRT-

Connect global planning stage.

4.2 Roadmap Planner

Sharing information on what each robot has observed has can have limitations. For
instance, what happens if all the locally generated frontier clusters lie in volume that
has already been observed by other robots? If we were only sharing coarse observed
maps, it would lead to re-exploration of the same volume. In order to overcome this
limitation, we added roadmaps to supplement the coarse observed maps.

We define a roadmap as being a graph G whose vertices )V comprise of all the key
poses visited by the robot as it traverses the environment. The vertices are connected
by collision free edges £ along the traveled path and with neighboring vertices.

In addition to tracking key poses, the graph vertices also encode associating edges
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Frontier Clusters

Visibility Checked
Associations

Figure 4.3: Roadmap generated from UAV2 during a flight at Laurel Caverns, PA.
The vertices are marked with squares, and collision free edges making connections
between them. Frontier clusters are shown as solid green circles, and edges associating
clusters with roadmap vertices can be seen in green.

A with frontier clusters F. These associations are created after conducting a simple
line of sight collision check between a cluster and a vertex. The collision check uses a
reduced robot model cube dimension so that we can generate enough associations for
the clusters. Figure 4.3 shows a roadmap generated during a flight at Laurel Caverns,
PA. The graph is highlighted in orange, with vertex-frontier cluster associating edges

marked in green.

These roadmaps are then shared in a similar manner to the coarse observed maps
between robots over the network. At the receiving end, these shared roadmaps are
evaluated for connecting edges with the local roadmap within a threshold distance.
The edges that are added are called virtual edges, because they have been created
without any free space knowledge of the volume they lie in. Figure 4.4 illustrates
this concept. It shows two roadmaps generated from UGV2 and UAV2 during an
exploration run at Brady’s Bend Mine in PA. UAV2 is launched from the back of
UGV2, and on takeoff receives UGV2’s roadmap because they are in communications
range. Once the shared roadmap is received by UAV2, it generates the purple colored

virtual edges that allows the roadmap planner to plan over the combined roadmap of
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4. Multi-Robot Exploration

Virtual Edges

Figure 4.4: Roadmaps from UGV2 and UAV2 during a run at Brady’s Bend Mine, PA.
The vertices are marked as the squares, with collision free edges making connections
between them. Green reflects the roadmap for UGV2 and the orange roadmap belongs
to UAV2. Virtual edges are drawn between vertices from the two roadmaps - shown
in purple.

UAV2 and UGV2.

This way, if UAV2 encounters a situation in which it no longer has its own local
frontiers to explore, or if they have already been observed by other robots, then it

can plan over the combined roadmap to navigate to UGV2’s unexplored frontiers.

The roadmap planner’s algorithm pseudocode has been outlined in Algorithm 2.
It is always planning in the background, and waits for a signal that enables it to
publish the path. This published path is then used by the local planner to navigate

the robot to the next unexplored frontier cluster.

Figure 4.5 shows the Roadmap Planner in operation during two sequential drone
flights held at an urban location containing corridors with rooms. UAV1 takes off
first and flies down the corridor - effectively observing the entire main corridor. This
shows up as the red voxels within the Shared Coarse Sensor Observed Maps received
by UAV2 from UAV1. So when UAV2 takes off, it has no local frontiers to explore,
since they were already observed by UAV1. At this point, the Roadmap Planner gets
activated, and uses UAV1’s shared roadmap to plan a path to frontiers that were left

unexplored by UAV1. This path is shown in blue. Once the local planner executes
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this path and the drone reaches the green circle at the intersection of 4 corridors, the
Roadmap Planner at that point hands over control to the RRT-Connect Exploration
Planner to continue from thereon. The two green arrows reflect the two directions in
which UAV2 can fly to start exploring areas left unexplored by UAV1 (as shown by

the yellow voxels).

Roadmap Plan
Switch to RRT-Explore

[
| UAV1 Road

UAV?2 take off location ]
|

UAV1 frontiers

Figure 4.5: Top view of UAV2’s map at takeoff inside a corridor at an urban test
site. Roadmap in red is generated by UAV1 that flew first. Path generated by
the Roadmap Planner for UAV2 to follow is shown in blue. Shared Coarse Sensor
Observed Maps received by UAV2 from UAV1 are shown in Red and Yellow. Red
voxels denote observed volume, and yellow voxels denote frontier volume. The green
circle at the end of the path denotes the point at which the Roadmap Planner would
hand over control to the RRT-Connect exploration planner so that it can go explore
the frontiers lying to the left and the right of the intersection (denoted by the two
green arrows).
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Algorithm 2 Overview of the roadmap exploration planner. The implementation
runs in a single thread as part of one ROS Node.

1: > Initialize Maps

2: local roadmap, shared_roadmaps, virtual _edges <~ INITROADMAPDATABASE
3: > Update Plan at a Fixed Frequency

4: for each timestep do

5: > Receive Data
6: odometry, lidar _map < READSENSORS
7 shared_roadmaps < RECEIVESHAREDROADMAPS
8: frontier_clusters «<— RECEIVEFRONTIERCLUSTERS
9: global_map <— DESERIALIZEOCCGRIDFROMSHAREDMEMORY
10: > Update local roadmap and the virtual edge between local and shared
roadmaps
11: local roadmap < ADDNEW VERTEXINROADMAP(odometry, lidar_map)
12: virtual_edges < UPDATEVIRTUALEDGES(local_roadmap, shared_roadmaps)
13: > Path Planning
14: goal _cluster < CLOSESTCLUSTER(local _roadmap, shared_roadmaps, virtual_edges)
15: path < SHORTESTPATH(goal cluster)
16: > Command Callback to publish plan
17: request_new_path <— ROADMAPPUBLISHPATHCOMMANDCALLBACK
18: if request_new_path && path then
19: > Publish Path
20: PUBLISHPLANNEDPATH (path)

32



Chapter 5

Results

We have performed extensive testing of our aerial vehicle exploration and coordination
pipeline. Here we present a representative set of results from both simulated and

hardware experiments.

5.1 Simulation runs

Simulated experimental results are presented in Figure 5.1. These simulations were
performed within a custom procedurally-generated Gazebo world (Figure 5.1) that
consists of a random polyhedron-shaped surface and 20 artificial artifacts distributed
over the surface. These simulation worlds are a new variant of the random tunnel
worlds presented earlier in [24]. In these experiments, the aerial vehicle is assumed to
observe artifacts that are within the field of view of the artifact detection cameras
up to 5.0m away, and with an angle of incidence to the surface of less than 60°. We
compare the following exploration policy variants to evaluate our proposed method:

® Global 4D is our proposed method with 4D viewpoints and a heuristic viewpoint

selection policy as described above;

e (losest viewpoint is the same except with a closest-first viewpoint selection

policy that uses Euclidean distance only;

® Global 3D does not consider the orientation (yaw) of the viewpoint when

planning; and,
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(a) A partially-explored procedurally-
generated random 3D cave world with
artificial artifacts placed on the walls. The
yellow line shows a partial exploration

trajectory. White points illustrate the
global map observed by Lidar, while green
are predicted to have been observed by
the artifact detection cameras. The green
squares specify artifacts observed according
to the sensor model, while the red squares
have not yet been observed.

artifacts detected
(2}

—F— global 4D
—— closest viewpoint
global 3D

—<— local frontiers

0 200 400 600 800 1000
flight time (s)

(b) Simulation results showing the number of
artifacts detected by the comparison meth-
ods. Global 4D is our proposed method, and
the other three exploration policy variants
are described in the body text. Error bars
indicate standard error over 10 trials.

Figure 5.1: Comparison of different exploration strategies in simulation.

e Local frontiers only uses frontiers at the boundary of the sensor observed map.

Our results presented in Figure 5.1b compare these four exploration policy variants.
The highest performance was achieved when using our full method with the 4D
viewpoints and frontiers extracted from the frontier map. The comparison method
that defines frontiers only at the boundary of the observed map performed poorly
as this boundary is often noisy, resulting in regions being missed. The comparison
method that uses 3D viewpoints (i.e., does not specify the yaw) performed similar
to our method; however, it misses some of the harder to observe artifacts that are
hidden in the corners and are only in the camera field of view for a small range of
yaw values. The comparison method that does not use the momentum term of the
viewpoint selection heuristic performed almost as well as our full method in this
environment; however, we note that in other environments with more sharp corners
in the surfaces, the performance was often observed to be poorer when not using the

momentum term due to excessive back-and-forth motions slowing down the robot.
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5.2 Real World Tests

We carried out field tests of our systems at a number of locations similar to the
environments that are expected in the DARPA SubT Challenge. The following list

provides a brief description of the test sites.

¢ Brady’s Bend Underground Storage Facility: A now inactive limestone mine
in Armstrong County, Pennsylvania. It started being used as an underground
storage facility in the 1970s. This site is a good representation of the Megacav-
erns at Louisville, Kentucky, where the final SubT Challenge Circuit is being
held. It is the largest and most open environments of all the sites we have been

testing at.

e Hawkins Auditorium: Hawkins is a codename for an abandoned urban facility
consisting of several building in a fairly large complex. It is located within the
city of Pittsburgh. The auditorium is one of the larger open spaces at this site.

We used it to test the vertical exploration abilities of the UAVs.

¢ Hawkins Qualification Course: In one of the buildings at Hawkins, we created
a robot qualification course that consists of corridors and rooms with artifacts
placed inside them. We used it for regression testing and validation of our

systems.

e Laurel Caverns: The largest cave system in Pennsylvania by volume and area.
It consists of two sections, the upper section is a network of interconnecting
grid-like passages. The lower section consists of subterranean watercourses into

a dendritic system of passages [30].

e Tour-Ed Mine: A now unused coal mine, it was converted into a museum for
tours in 1970. It is located about 20 minutes from downtown Pittsburgh. This

mine has been a good practice ground for exploring tunnel like environments.

Single Robot Exploration Runs Figures 5.2, 5.3, 5.4 show maps and flight
trajectories from single robot exploration runs at Hawkins and Tour-Ed Mine. The
sensor observed map (in green) has been overlaid over the map built from registered
Lidar point clouds (in grey) to show coverage by the UAVs camera. Flight trajectory is

visible in solid yellow. One point to note here is that these flights have been conducted
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without changing parameters betwen environments. During the final DARPA SubT
Circuit Event, we expect to encounter all three types of environment geometries
during the same run, which means we won’t have the ability to change exploration
parameters with changes in the environment. In the Hawkins environment, we see
fairly reasonable exploration behavior. There are instances wherein the UAV exhibits
some back and forth behavior by making large changes in directions to cover a left out
volume. In bounded spaces such as these, having good coverage is desirable because
it means the robot will visit rooms as it flies through the corridor. This does come
at the cost of flying at a relatively lower speed because of large momentum shifts
required to do coverage. The flight through Tour-Ed Mine looks fairly straightforward
owing to the uniform nature of the main tunnel through which the UAV flies. The
robot flies a relatively straight trajectory down the tunnel before turning around to

return home.
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Figure 5.2: Hawkins Auditorium
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()
Figure 5.3: Hawkins Qualifying Circuit
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Figure 5.4: Tour-Ed Mine
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Coordinated Exploration Runs Figures 5.5, 5.6 show two flights with coordi-
nation enabled between all the robots. Fig. 5.5 shows UAV1’s maps. Coarse sensor
observed maps and roadmaps were shared by other aerial and ground platforms. Fig.
5.5a details the shared maps. The coarse observed maps are marked with yellow and
red voxels. Yellow voxels signify volume that is a frontier for the robot and red voxels
signify volume that has been fully observed. Roadmaps from all the different robots
are also visualized as graphs in distinct colors. Virtual edges are shown in purple.
UAVT1’s flight trajectory is marked out in solid yellow and shown in more detail in Fig.
5.5b. The observed volume is marked out in green and the lidar map is shown in grey.
The roadmap planner was never really triggered during this run because there were
plenty of globally unobserved frontiers for UAV1 during its flight. But one can see
the effect of the coarse observed maps. They prevent the drone from re-exploring the
main tunnel which had already been traversed by UGV1 and it proceeds to explore
the tunnel to the left. A similar effect is seen in UAV2’s flight in Fig. 5.6a. The
coarse observed maps prevent it from flying back into the main tunnel, and it chooses
to explore the tunnel to the right of the main tunnel.

Figures 5.7, 5.8 show two flights with coordination enabled between the drones at
Laurel Caverns. The coarse sensor observed maps are shown in Fig. 5.8a. In UAV2’s
exploration flight, one can see how much further down the cave it ends up flying

because the initial part of the cave had already been explored by UAV1I.

40



5. Results

(a) UAV1 Coordination Maps

(b) UAV1 Exploration Close up

Figure 5.5: Brady’s Bend Mine (UAV1)
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(a) UAV2 Coordination Maps

(b) UAV2 Exploration Close up

Figure 5.6: Brady’s Bend Mine (UAV?2)
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Figure 5.7: Laurel Caves (UAV1)
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Figure 5.8: Laurel Caves (UAV2)
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Quantitative Metrics Figure 5.9 shows the relative rates of exploration by one
UAV across all the five maps. Both figures show the monotonically increasing explored
volume as observed by the object detection cameras. The fact that volume explored
shows this increasing trend in (Figure 5.9b) and (Figure 5.9a) means that the robot is
exhibiting efficient exploration behavior both with respect to time and distance. It’s
no surprise that Brady’s Bend’s flight shows the steepest curves. It is the most open
and relatively larger space compared to the other environments. The auditorium at
Hawkins comes second based on the same argument. Hawkins qualification circuit
and the Tour-Ed Mine show the lowest exploration rates. This can be attributed to
the narrow passageways that the drone flies through in these environments. We’re
not able to fully utilize the entire camera field of view in narrow spaces, which leads

to relatively lower volumetric exploration rates.
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Figure 5.9: Volume explored during single robot exploration in different environments
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Conclusions

This thesis proposes an integrated exploration and coordination pipeline designed
to generalize across a variety of subterranean environments. It comprises of a single
robot exploration approach that leverages a longer range sensor to inform the search
for frontiers in 3D space. An ensemble of planners is employed to build a resilient
system designed to keep the robot in perpetual motion during the exploration phase
of the flight. The coordination aspect of the pipeline employs two kinds of maps, one
that tracks observed/unobserved volumes, and the second that keeps a skeletal graph
(roadmap) tracking globally unexplored frontiers. This ensures the robots minimize
the overlap in explored volumes when they have the ability to communicate with
each other.

Experiments conducted in simulation, and extensive field tests reflect efficient and
robust exploration behavior across environments. It is important to note that there
is no parameter tuning done between environments. Additionally, the experiments
also show the utility of sharing coordination maps between the agents. They end up
exploring different parts of the environment and avoid getting too close to each other.

Having said that, this approach isn’t without limitations. The visibility assumption
made while sampling viewpoints to each frontier cluster can mean that even though
the UAV tracks the viewpoints, there are no guarantees on coverage. The viewpoints
by the way they are sampled, can sometimes be close to surfaces, which reduces
exploration efficiency. The mapping part of the pipeline does not account for drift

or accommodate loop closure adjustments, so severe SLAM drift can pose problems.
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These points lead into the further work part of this Chapter, to discuss improvements

that can be made to make this system even better.

6.1 Further Work

1. Using a distance map to sample viewpoints. This would ensure the viewpoints

are always a threshold distance away from surfaces.

2. Using submaps within the mapping pipeline that would allow for adjustments

to each submap during a loop closure event, reducing the effects of SLAM drift.

3. Communications aware planning. A return to home behavior that takes into
account the last known good communications location. This way the return to
home path can be reduced since the robot does not have to fly all the way back
to the initial launch point. Which would allow for a longer exploration flight

time.

4. Post processing global plans to maximize information gain. Computing addi-
tional yaw angles for the robot to track when flying towards a viewpoint could

enhance the volume exploration rate during flight.
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