
Learning to Imitate, Adapt and

Communicate

Siddharth Agrawal

CMU-RI-TR-21-38

August 12th, 2021

The Robotics Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Thesis Committee:
Katia Sycara, chair

Jean Oh
Wenhao Luo

Carnegie Mellon University

Submitted in partial fulfillment of the requirements
for the degree of Masters in Robotics.

Copyright © 2021 Siddharth Agrawal. All rights reserved.

To my family.

iv

Abstract

For AI agents to co-exist with humans, they need to be able to learn
from us humans, adapt to any perceived changes in our behavior , and
communicate in a manner that is easily interpretable. In this work we
investigate the following 3 subproblems: Imitation Learning, Adaptation
in Human-Agent Teaming and Learning Interpretable Communication.
First, we study Generative Adversarial Imitation Learning, a state of the
art imitation learning approach. We discuss its limitations theoretically
as well as empirically. Particularly, we look at the reward bias issue
in GAIL and propose neutral rewards for overcoming the reward bias
problem. Next, we demonstrate how our method out-performs the existing
approaches. Then, we study the problem of adaptation in context of Team-
Space-Fortress, a 2 player game. We design an agent library, which tries
to capture the space of human policies, and create a set of similarity
metrics which could evaluate the similarity of human policies to policies
in the agent library. We leverage this similarity metric to adapt the
policy of the AI agent, partnered with a human, to improve overall team
performance. For efficient human-agent teaming it is also crucial that
agents communicate in a manner that is interpretable to humans. Humans
compose a finite vocabulary of words to communicate. Further, they also
communicate at a rate which another human could understand. Therefore,
for AI agents to be good partners to humans, they need to be able to learn
communication protocols that use discrete messages instead of continuous
vectors and they need to learn when to communicate and at a rate which
humans would be able to understand i.e the communication needs to
be sparse. In this work, we first identify the shortcomings of existing
approaches for learning communication sparse protocols using multi-agent
reinforcement learning. Then we propose a method capable of learning
communication protocols that are sparse and use discrete tokens.

v

vi

Acknowledgments

I would like to thank my advisor Prof. Katia Sycara for providing me the
opportunity to explore problems in the areas of my interest. Her technical
guidance has been extremely crucial for the progress I was able to make
in each of the research problem that I worked on over the course of 2
years. Her work ethic and enthusiasm for conducting research served as a
constant inspiration to me. I would like to thank Dana Hughues, Prof.
Michael Lewis and Prof. Julie Shah for providing crucial advice for my
research at various times during the 2 years.

I would also like to thank my collaborators, Rohit Jena, Tianwei Ni, Huao
Li, Mycal Tucker, Suhas Raja, Yikang Gui. I have learnt a lot from their
technical expertise over the course of 2 years. I also want to acknowledge
the contributions of Swaminathan Gurumurthy, Tejus Gupta, Vidhi Jain,
Ankur Deka with whom I have had really interesting discussions about the
areas of my interest and they have also been a great source of inspiration
for my research work. Finally, I am grateful to my family and friends for
always being there for me and believing in me.

vii

viii

Funding

This research was supported by ARL awards W911NF19-2-0146 and
W911-20-2-0081 and AFRL/AFOSR award FA9550-18-1-0251

ix

x

Contents

1 Addressing Reward Bias in Generative Adversarial Imitation Learn-
ing 1
1.1 Introduction . 1
1.2 Related Work . 2
1.3 Theory . 3

1.3.1 Generative Adversarial Imitation Learning 3
1.3.2 Survival Based and Task Based Environments 4
1.3.3 Reward bias in GAIL . 4
1.3.4 Discriminator Actor Critic . 7
1.3.5 Towards an unbiased reward function 8
1.3.6 Choice of Environment . 10

1.4 Experiments . 14
1.5 Results . 14

1.5.1 Effect of different reward functions on episode length 16
1.6 Conclusion . 18

2 Adaptative Agent Architecture for Human-Agent Teaming 19
2.1 Introduction . 19
2.2 Related Work . 22
2.3 Team Space Fortress . 23
2.4 Adaptive Agent Architecture . 24

2.4.1 Exemplar Policies Library . 25
2.4.2 Similarity Metrics . 29
2.4.3 Adaptive Agents . 32

2.5 Human-Agent Teaming Experiments 33
2.5.1 Experimental Design . 33
2.5.2 Results . 34
2.5.3 Trends in Performance and Similarity to Optimal Partner using

ASM metric . 36
2.5.4 Pilot experiment with adaptive agents 38

2.6 Conclusion and Future Work . 38

3 Learning Sparse Discrete Communication Protocols 41
3.1 Introduction . 41

xi

3.2 Theory . 42
3.2.1 IC3 Net . 42
3.2.2 Discrete Prototype Based Communication 45
3.2.3 IC3Net-Fixed-Proto . 46
3.2.4 IC3Net-Proto . 46
3.2.5 IC3NetG-Proto . 46
3.2.6 Environments . 46

3.3 Experiments . 47
3.4 Results . 48
3.5 Conclusions and Future Work . 50

4 Conclusions and Future Work 53

Bibliography 55

When this dissertation is viewed as a PDF, the page header is a link to this Table of Contents.

xii

List of Figures

1.1 Episode rewards for different environments and different GAIL reward
functions. The positive rewards show a survival bias because they do
not complete the task (leading to low reward). The negative rewards
show a termination bias, and in the simpler environments, the agent
learns to complete the task even without trajectories (D = 0.5) only
due to the reward bias. 5

1.2 Environments used in the work. The top-left and top-middle environ-
ments terminate only on reaching the goal (green). The other envi-
ronments can terminate through other conditions as well (mentioned
in the work). However, expert trajectories consist of goal-directed
behaviors only. 11

1.3 Comparison of performance of different GAIL variants. On-policy
DAC is slow in terms of converging to the optimal policy, possibly due
to unstable learning of the terminal state reward. In environments
with non-goal terminal states, DAC and GAIL with negative rewards
converge to suboptimal policies due to their respective biases. 13

1.4 Comparison of average episode length for different GAIL reward func-
tions. 17

2.1 Sample TSF game screen (line drawing version, original screen is in black back-

ground). Spaceships are labeled as shooter and bait. Entity at center is the rotating

fortress with the boarder around it as the shield. Activation region is the hexagon

area around players’ spaceships. Black arrow is a projectile emitted from the

shooter towards the fortress. All the entities are within the rectangle map borders. 24

2.2 The flowchart of the proposed adaptive agent architecture. The adaptation module

(in dotted boarder) takes the input of the trajectory at current timestamp, and

then assigns the adaptive agent with new policy at next timestamp. The adaption

procedure can be deployed in real-time (online). 25

2.3 TSF Environment . 27

2.4 Policy Representation Architecture 31

2.5 PCA of the policy representation of different bait agents 31

2.6 PCA of the policy representation of different shooter agents 32

xiii

2.7 Policy representations of each human baits (left) and shooters (right) in the static

agent dataset (after PCA dimension reduction). Each colored node in the figures

represents the average policy of a human player, while the size of which indicates

his average team performance. Red nodes are reference points of baseline agent

polices. 35
2.8 The log-probability curves of one human policy generated by CEM. Data is from

one specific 1-min trial of a human bait paired with agent S2. We segment the trial

into several episodes, each of which starts with the bait entering the activation

region and ends with the team killing the fortress. The curves with same color

represent the same agent policy for inference. 36
2.9 Performance of humans and simiarity to the most optimal partner . . 37
2.10 Performance of humans and simiarity to the most optimal partner . . 37
2.11 Human-agent team performance when humans paired with adaptive or static agent

policies. Error bars represent one standard error away from the mean. 39

3.1 IC3 Net Architecture[61]. On the (Left) we have an in depth view of
how the policy and the gating values are calculated. (Right) shows
the overall structure of IC3 Net. 42

3.2 Predator-Prey Environment . 47
3.3 (Left)Success Rate with IC3Net-Fixed for cooperative predator prey

(Right) Success Rate with IC3Net-Sparse in cooperative predator-prey 49
3.4 Communication rate with with IC3Net-Sparse in cooperative predator-

prey . 49
3.5 (Left)Success Rate with IC3Net-Fixed-Proto using 25 prototypes in

cooperative predator-prey (Right) Success Rate with IC3Net-Fixed-
Proto using 8 prototypes in cooperative predator-prey 49

3.6 (Left)Success Rate using IC3NetG with λ = 0.01, (Right) Communi-
cation Rate IC3NetGwith λ = 0.01 50

3.7 (Left)Success Rate using IC3NetG-Proto, (Right) Communication
Rate IC3NetG-Proto . 50

xiv

List of Tables

1.1 Success rate of all learnt policies across 3 seeds. For each seed, 80
trajectories were recorded and the mean and standard deviation is
calculated across all trajectories. 15

2.1 Self-play agent performance table P. Each row is for one bait agent named Bi in

L (i=1 to 9), and each column is for one shooter agent named Sj in L§ (j=1 to 7).

Each entry is computed by per-minute team performance (number of fortress kills)

of the corresponding pair. We segment the tables to group same type of agents,

and mark the “optimal” bait and shooter agents in bold. 30

xv

xvi

Chapter 1

Addressing Reward Bias in

Generative Adversarial Imitation

Learning

1.1 Introduction

Adversarial Imitation Learning(AIL) algorithms [27] [20] [31] [35] have been shown

to achieve state of the art performance on a variety of imitation learning tasks.

Performance of AIL algorithms have been primarily evaluated in two kinds of broad

settings. The first kind of setting can be characterised as survival based environments.

For example, environments in Mujoco like Hopper, Cheetah where the agent is

rewarded to survive in the environment by remaining in a set of good states and

penalized (by negative rewards or by termination) if it attains states other than these

good states. For example, in Hopper the agent gets good rewards for hopping forward

as fast as possible. If the agent gets into a set of ‘bad poses’ the episode is terminated.

The other setting can be characterised as “task” based environments where the agent

is rewarded to complete a task (reaching a goal state, interacting with an object in

the environment, dodging an obstacle) and so on. The episode terminates once the

agent completes the task. However, there is another important setting which hasn’t

drawn much attention in the Imitation Learning community. The episode may also

1

1. Addressing Reward Bias in Generative Adversarial Imitation Learning

terminate when the agent has failed to perform the task in a task based scenario.

For example, when the agent may alter the environment such that completing the

task becomes impossible, such as breaking a glass that the agent was supposed to

pick up. These are environments where the agent is rewarded to complete a task,

i.e to reach a certain state in the shortest amount of time after which the episode is

terminated, however, there are some additional bad terminal states, upon reaching

which the episode terminates and the agent doesn’t receive a reward. Most of the

community has worked on environments which are either purely survival based or

purely task based. However, to show that current reward functions are biased, we

need to use more complex environments. To that end, we use different environments

of the Gym-Minigrid[14] package and LunarLander. The environments have tasks

with single and multiple terminal states, which would be ideal to test if learning is

hindered by the inherent biases in the reward function itself.

Our experiments show that existing methods[27][31] often get stuck in a suboptimal

policy in task based environments with multiple terminal states. We provide a rough

theoretical sketch of the underlying issues in these methods. We also propose a reward

function which is able to achieve comparable results in task based environments with

single terminal state and performs significantly better than existing methods in task

based environments with multiple terminal states.

1.2 Related Work

Early works in Imitation Learning based on Inverse Reinforcement Learning [1] focus

on recovering a reward function from expert demonstrations which is optimised using

Reinforcement Learning. These methods are slow since they require solving the RL

objective in the inner loop. From a practical standpoint, the intermediate step of

recovering reward function is not really necessary when the goal is to only learn to

imitate the expert.

Recent works in Adversarial Imitation Learning [27] [20] [41] [29] [17] focus on

directly recovering the expert policy without the need for recovering the exact reward

function. These methods alleviate the problem of distributional shift faced by some

of the more traditional approaches like Behavior Cloning and its variants [63] [50]

[49] [15]. GAIL based methods are also very sample efficient than behavior cloning in

2

1. Addressing Reward Bias in Generative Adversarial Imitation Learning

terms of number of expert trajectories required to recover the expert policy. Although

AIL methods have had a fair amount of success in various environments, recent

work [31] has highlighted the implicit bias in the formulation of its reward function

which results in degradation of performance in certain environments. The work

in Discriminator-Actor-Critic [31] show how the reward function used in GAIL for

training the agent is biased which leads to degradation of performance in certain

environments. In GAIL, the agent focuses on how to maximize its rewards from the

discriminator, which may not necessarily translate to following the expert policy.

In task-based environments, the problem of implicit bias due to zero rewards for

terminal states encourages the agent to stay in the environment to collect more

positive rewards, hence ignoring the task. Their method worked on the survival based

agents, as well as on task-based robotic environments. However, there are no results

on the method’s performance in task based environments with multiple terminal

states. Our experiments show their formulation doesn’t work well in such task based

environments with multiple terminal states. To the best of our knowledge, [31] is the

only work which explicitly addresses reward bias and proposes a way to solve it.

1.3 Theory

1.3.1 Generative Adversarial Imitation Learning

We make use of the GAIL[27] framework to learn the expert policy. In the GAIL

framework, a discriminator(D) is trained to differentiate between transitions from

the expert and from the trained policy. The policy is trained using an on-policy RL

algorithm, with the reward function being the probability of the action being equal

to expert action in a given state. The GAIL objective can be written as:

max
π

min
D

[
Ea∼π(s)[log(D(s, a))] + Ea∼πE(s)[log(1−D(s, a))] + λH(π)

]
(1)

where π is the imitation learning policy, H(π) is the entropy of the policy, πE is

the expert policy and D(s, a) is the probability that the state-action pair is from the

expert trajectory output by the discriminator. GAIL does not aim to recover the

true reward function, but rather tries to match the state occupancy measure of the

3

1. Addressing Reward Bias in Generative Adversarial Imitation Learning

expert and the agent. However, this does not guarantee that the expert trajectories

are optimal with respect of the reward function output due to biases in the choice of

reward function.

1.3.2 Survival Based and Task Based Environments

In survival based tasks, the agent gets a reward for staying in a set of ”good states”

and the episode terminates when the agent goes to a ”bad state”. Within the good

states, different rewards may be provided to encourage the agent to stay within

certain good states more than others. Some examples of these kinds of environments

are the Mujoco environments like Hopper, Reacher etc.

In task-based environments, the agent gets a reward for successfully completing a

task, characterised by agent reaching a certain state in the environment. Additional

rewards may be given for completing ‘subtasks’ along the way. The agent may also

be penalized for simply existing in the environment. This makes the agent complete

the task as soon as possible to get maximum positive rewards from task completion

and minimum survival penalty.

Additional complexities might arise, if additionally the environment also has

some other terminal states, which don’t lead to completion of the task but lead to

the termination of the episode (the agent essentially dying). In our work, we use 4

environments of this kind and show how existing approaches[31] [27] don’t perform

optimally on these environments and how our method tackles the biases.

1.3.3 Reward bias in GAIL

To train the imitation policy in the GAIL method, two kinds of discriminator reward

are commonly used in literature [17], [27] :

1. Positive Reward: This reward is always positive and its value is − log(1 −
D(s, a))

2. Negative Reward: This reward is always negative and its value is log(D(s, a))

However, both the reward functions have implicit biases which may hinder learning.

They are explained in the following subsections.

4

1. Addressing Reward Bias in Generative Adversarial Imitation Learning

Figure 1.1: Episode rewards for different environments and different GAIL reward
functions. The positive rewards show a survival bias because they do not complete
the task (leading to low reward). The negative rewards show a termination bias,
and in the simpler environments, the agent learns to complete the task even without
trajectories (D = 0.5) only due to the reward bias.

5

1. Addressing Reward Bias in Generative Adversarial Imitation Learning

Survival bias in positive rewards

In a task-based environment, providing non-negative rewards at every step may lead

to survival bias and the agent may not complete the task and loop in the environment

to collect more rewards. To show that survival bias is indeed an issue, we consider

an ideal case. We consider an “oracle discriminator”, which gives a positive reward

R when the agent performs the expert action for a given state, and 0 otherwise. In

other words, the reward function of the discriminator is R(s, a) = R if a = πE(s)

and R(s, a) = 0 if a 6= πE(s). In practice, the discriminator reward is also bounded

to prevent numerical issues by using R(s, a) = − log(max(ε, 1−D(s, a))) which has

range
[
0, log(1

ε
)
]
. Now consider an expert trajectory of path length p. Since the

discriminator will give a positive reward R at each step in the expert trajectory, the

total discounted reward of the expert trajectory is:

RE = R + γR + . . . γ(p−1)R =
1− γp

1− γ
R (1.1)

Now consider a trajectory where the agent follows the expert trajectory for p − 1

steps, and then loops between an expert action and non-expert action to survive for

as long as possible. The total discounted reward for this trajectory is:

Rloop = R + γR + . . . γ(p−2)R + 0 + γ(p)R + 0 + γ(p+2)R . . . (1.2)

=
1− γ(p−1)

1− γ
R +

γp

1− γ2
R (1.3)

For the agent to prefer this trajectory over the expert trajectory, Rloop should be

greater than RE. This inequality will imply the following:

1− γ(p−1)

1− γ
R +

γp

1− γ2
R ≥ 1− γp

1− γ
R (1.4)

=⇒ γp

1 + γ
≥ γ(p−1)(1− γ) =⇒ γ ≥ 1− γ2 (1.5)

which is true for γ ≥ 0.6180. In practical scenarios, γ ≈ 1, and hence, the agent can

prefer to loop in the environment rather than following the expert trajectories. It

is therefore evident as to why positive rewards might be unsuitable for task based

6

1. Addressing Reward Bias in Generative Adversarial Imitation Learning

environments.

Termination bias in Negative Rewards

Positive reward functions are prone to survival bias, and the next obvious choice of a

reward function is R(s, a) = log(D(s, a)). This reward function is always negative

since D(s, a) ∈ [0, 1]. However, this reward function makes an agent prone to

termination bias. In termination bias, the agent tends to end the episode as soon

as possible to stop accruing more negative rewards. This may be beneficial for task

based environments where the agent wants to complete the task as soon as possible.

However, if there are faster ways to terminate an episode, the agent may be biased

to do that instead of completing the task. In our experiments, we show that GAIL

with the reward function R(s, a) = log(D(s, a)) fails to learn the task when there are

multiple termination conditions in the environment.

1.3.4 Discriminator Actor Critic

Both the survival and task based environments suffer from different problems but

for the same reason - the reward for the terminal state is implicitly set to 0 in all

these problems, which is why positive rewards become unsuitable for task based

environments and negative rewards become unsuitable for survival based environments.

To address the issue of implicit bias in the reward function of the GAIL, [31]

propose learning rewards for absorbing state explicitly. Consider a trajectory of T

time steps, let the reward for the terminal state i.e the Tth step be RT = R(sT , aT),

in the standard GAIL setting as in Equation 1. In DAC, a new reward function

for terminal state is defined RT = R(sT , aT) + Σ∞T+1γ
t−TR(sa, .) where R(sa, .) is

learnt. This learnt reward for the terminal state removes the bias towards avoiding

or transitioning to the terminal state. With this formulation, GAIL tries to match

the state occupancy of the expert and agent for the terminal state as well, hence

mitigating survivor bias. However, this modifies a finite-horizon environment into

an infinite-horizon environment, and does not consider the scenario where the agent

may terminate an episode in a multitude of different ways. There are a few other

problems as well that the work does not address:

1. Requires modifying the environment: In the original implementation

7

1. Addressing Reward Bias in Generative Adversarial Imitation Learning

of DAC, wrappers are provided to augment the environment with an extra

terminal state. However, this may not always be feasible as we may only have

an immutable API to the environment. This may also be a problem in real

environments.

2. Does not handle multiple terminal states: In a task-based environment

with multiple terminal states, the agent can terminate an episode in multiple

ways, out of which only some may correspond to task completion, and this

can hinder learning. If a large portion of the expected reward comes from

being in the terminal state, then the agent may not distinguish between expert

trajectories and other similar trajectories which terminate the episode, as long

as the state occupancy of the terminal states match for the agent and the

expert.

3. May be sample inefficient: In the original DAC work, the method is off-

policy but it is compared with other on-policy algorithms, which is unfair. We

suspected that DAC may be sample inefficient as compared to GAIL because

DAC also has to match the state occupancy of the terminal state in addition to

the existing states in the environment. For our experiments, we implement an

on-policy version of DAC and observe that the method indeed is less sample

efficient than GAIL.

1.3.5 Towards an unbiased reward function

We introduce the notation of ”neutral reward functions” to denote reward functions

that are real valued. For example, the reward function R(D) = log(D)−log(1−D) has

the range (−∞,∞) for D ∈ (0, 1) and is real-valued. Neutral reward functions can be

unbiased because they can penalize looping behavior with negative rewards, effectively

“cancelling” the positive reward that they acquired from previous loops (assuming that

the expert doesn’t loop itself). The reward function can also potentially overcome

‘termination bias’ because the agent can collect as many positive rewards as possible

by following the expert trajectories. To give an intuition of these claims, we show a

similar theoretical sketch as before.

Consider an oracle discriminator that gives reward R when the agent takes the

expert action a to a state s, and gives a negative reward −R otherwise (since the

8

1. Addressing Reward Bias in Generative Adversarial Imitation Learning

neutral reward function is a symmetric function R(s, a) = log(D(s, a)) − log(1 −
D(s, a))). To ensure the agent learns to perform the task, the discriminator should

assign the highest rewards to the expert trajectories. Consider an expert trajectory

of length p. Similar to the previous example, assume that each state has only one

expert action. The reward of the expert trajectory is:

RE = R + γR + . . . γ(p−1)R =
1− γp

1− γ
R (1.6)

The maximum reward for any other trajectory can be obtained by mimicking the

expert till timestep p−1 to get positive rewards and do a non-expert action (to prevent

the trajectory from becoming an expert trajectory). To recover from the negative

reward just incurred, the agent performs an expert action. After this, it cannot

perform an expert action again because that will complete the expert trajectory

and the episode will terminate. So, if it wants to loop it will perform a non-expert

action followed by an expert action and continue doing so. Hence the reward for this

trajectory loop is:

Rloop = R + γR + . . . γ(p−2)R− γ(p−1)R + γpR− γp+1R . . . (1.7)

=
1− γ(p−1)

1− γ
R− γ(p−1)

1 + γ
R (1.8)

For an agent to prefer surviving rather than completing the expert trajectory, we

need to have Rloop ≥ RE. This implies:

1− γ(p−1)

1− γ
R− γ(p−1)

1 + γ
R ≥ 1− γp

1− γ
R (1.9)

=⇒ γ(p−1) − γp

1− γ
≤ −γ

(p−1)

1 + γ
=⇒ 1 ≤ −1

1 + γ
(1.10)

Which is impossible for a discounting factor γ ∈ [0, 1]. Hence, Rloop will always be

lesser than RE for an oracle discriminator, and the agent will always prefer following

the expert trajectory.

A similar argument can be made for neutral rewards overcoming termination

bias. Consider the previous setup, but the agent tries to terminate the episode before

completing the task. The expert reward is already in Equation 1.6. To exhibit

9

1. Addressing Reward Bias in Generative Adversarial Imitation Learning

termination bias, the agent has to terminate the episode in at most p steps, and the

last action should be a non-expert action (if its an expert action, then the agent is

exactly imitating the expert). Hence, the maximum reward the agent can accrue is :

Rterm = R + γR + . . . γ(p−2)R− γ(p−1)R (1.11)

which is the same as RE for the first p− 1 terms but the last term is a negative term

whereas the last term of RE is a positive term. Since RE ≥ Rterm, the agent will

prefer the expert trajectory over some other shorter non-expert path. Hence, the

neutral reward overcomes termination bias.

Since the proof only requires that the reward function R(s, a) ∈ [−R,R] with no

constraints on R, we show the different choices of R(s, a) like R(s, a) = log(D(s, a))−
log(1 − D(s, a)), R(s, a) = D(s, a) − 0.5 should achieve similar results in terms of

mitigating reward bias.

1.3.6 Choice of Environment

To observe the limitations of the current methods used in adversarial imitation learning,

we propose to use task based environments. However, task based environments with

single terminal states will not be able to test the bias of the reward functions due

to termination conditions. Hence, we propose to use environments from the Gym

Minigrid package [14] with single and multiple termination conditions. Additionally,

we also use the LunarLander environment since it is also a task based environment

with multiple terminal states. LunarLander also provides a continuous state space

representation unlike Minigrid environments.

In Minigrid, we disable the Done action to examine the bias of the agent only

due to environmental termination conditions. To verify the effects of reward bias in a

single termination condition, we choose the Empty and DoorKey environments.

1. In the Empty environment, the agent starts at a random location in the grid

and the episode terminates when the agent steps on the goal location (in green).

2. In the DoorKey environment, the agent starts in a room and has to pick up a

key to open a locked door. The agent has to reach the goal on the other side of

the locked door.

10

1. Addressing Reward Bias in Generative Adversarial Imitation Learning

Figure 1.2: Environments used in the work. The top-left and top-middle environments
terminate only on reaching the goal (green). The other environments can terminate
through other conditions as well (mentioned in the work). However, expert trajectories
consist of goal-directed behaviors only.

11

1. Addressing Reward Bias in Generative Adversarial Imitation Learning

Both these environments have only one termination condition - the agent has to reach

the goal location. Methods like Discriminator-Actor-Critic [31] can learn a non-zero

reward for the terminal condition which overcomes the survival bias of the positive

reward function. GAIL with a negative reward can also learn to solve these tasks

since they want to accumulate the maximum reward which would require termination

of the episode as soon as possible.

However, both of these methods can suffer from the same problem - multiple

termination conditions. The negative reward will have a bias towards trajectories

that terminate early to accumulate fewer negative rewards. The DAC baseline will

not differentiate between different termination conditions (termination due to goal

completion v/s termination due to other conditions) since the terminal state can

potentially provide a large cumulative reward. To test this, we use three other

environments within Gym Minigrid and the LunarLandar environment.

1. RedBlueDoors : In this environment, the task is to open a red door, followed by

opening the blue door. The episode terminates when the blue door is opened

regardless of whether the red door was opened or not.

2. GoToDoor : This environment is similar to the RedBlueDoors environment but

there are 4 doors of different colors, and the episode terminates when any door

is opened. However, the task is considered to be completed only if the red door

is opened.

3. DistShiftv0 : In this environment, the agent has to cross a room with lava near

the walls of the room (refer to Figure 1.2. The task is to reach the goal location

and avoid the lava. The episode ends when the agent touches the lava or goal.

4. LunarLandar : In this environment, the agent has to place a lander on the

landing pad. The episode finishes if the lander crashes or comes to rest, and the

agent gets a positive reward if it lands correctly, in addition to small positive

rewards for ground contact. The agent gets negative rewards for crashing or

firing the main engine.

These environments have termination conditions which will affect the variants of

GAIL depending on the reward bias that they may have. We hypothesize that the

inability of DAC to differentiate between terminal states would lead to suboptimal

performance in each of these environments.

12

1. Addressing Reward Bias in Generative Adversarial Imitation Learning

Figure 1.3: Comparison of performance of different GAIL variants. On-policy DAC is
slow in terms of converging to the optimal policy, possibly due to unstable learning of
the terminal state reward. In environments with non-goal terminal states, DAC and
GAIL with negative rewards converge to suboptimal policies due to their respective
biases.

13

1. Addressing Reward Bias in Generative Adversarial Imitation Learning

1.4 Experiments

Our expert is a trained PPO policy. We use 1000 rollouts from the expert policy to

train our imitation learning agents for all our experiments. Each rollout has ∼10

state-action pairs, so the total number of state action pairs are comparable to [13]

and [27]. The locations and colors of the objects are also perturbed across episodes,

so the agent has to generalize to the concept of objects rather than memorizing the

goal locations. For LunarLander, we use 100 expert trajectories. We use PPO [58] for

on-policy optimisation of the GAIL reward function for all experiments. In each case,

the policy network takes state as input and returns probability of an action given a

state. The policy network head is a 2-layered MLP with Leaky ReLU activations.

The value head is identical to the policy head. We average all our results across

3 random seeds. The objective of our first experiment is to exhibit the implicit

bias in the positive and negative reward functions. We compare the environment

rewards achieved by the agents and the success rate for the 6 environments that we

had mentioned earlier. For our second experiment, we compare the environment

rewards and success rate of (i) DAC [31] (ii) Positive Reward (iii) Negative Reward

(iv) Neutral Reward R(s, a) = log(D(s, a) − log(1 − D(s, a)) (v) Neutral Reward

R(s, a) = D(s, a)− 0.5 in the six environments.

1.5 Results

Figure 1.1 shows reward curves for positive and negative rewards with and without

learning the discriminator. The first two environments, Empty and Doorkey are

able to attain expert like performance with negative rewards, which was expected

as these are task based environments with single termination state. GAIL with

positive reward is not able to learn the expert policy due to its survival bias (first two

plots of the Figure 1.1). In case of Empty, the agent is able to learn the task even

without training the discriminator which shows that the negative reward function

has a termination bias strong enough for task based environments. Similarly, for the

DoorKey environment, GAIL with negative reward starts to learn the task better

than positive rewards even when the discriminator is not trained. However, in last

three plots of Figure 1.1, where environments with multiple terminal states are

14

1. Addressing Reward Bias in Generative Adversarial Imitation Learning

used, termination bias is not enough to learn the task. Positive rewards fall into

the survival bias and don’t learn the task. An interesting observation is that the

success rate of GoToDoor with negative reward and no trajectories is 0.25 as shown

in Figure 1.1. The termination bias makes the agent reach out to the nearest door to

end the episode, which has a 25% chance of being the red door. In Figure 1.3, we

-1cm
Empty DoorKey GoToDoor RedBlueDoors Distshift1 LunarLandar

R = − log(1−D) 0.03± 0.15 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 155.81± 63.92
R = − log(0.5) 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 −15087.98± 2657.88
R = log(D) 1.00 ± 0.00 1.00 ± 0.00 0.93± 0.24 0.83± 0.37 0.85± 0.35 239.93± 79.84
R = log(0.5) 1.00 ± 0.00 0.25 ± 0.43 0.38 ± 0.48 0.00 ± 0.00 0.65 ± 0.47 −449.43± 76.86
DAC 1.00 ± 0.00 0.83 ± 0.37 0.26 ± 0.44 0.70 ± 0.45 0.76 ± 0.42 156.20± 95.53
R = log(D)− log(1−D) 1.00 ± 0.00 1.00 ± 0.00 0.97 ± 0.15 0.96± 0.19 0.97± 0.15 256.20 ± 55.60
R = D − 0.5 1.00 ± 0.00 1.00 ± 0.00 0.95± 0.15 0.98 ± 0.14 0.99 ± 0.10 248.46± 73.18

Table 1.1: Success rate of all learnt policies across 3 seeds. For each seed, 80
trajectories were recorded and the mean and standard deviation is calculated across
all trajectories.

compare the performance of DAC, neutral rewards, negative and positive rewards.

The success rate of the different methods is also summarized in Table 2.1. For Empty

and DoorKey all methods except GAIL with positive rewards are able to learn the

task. However, DAC is slower than other GAIL methods, and we hypothesize this is

because DAC has to learn the reward for the terminal state as well. For the other

three environments, termination bias hinders learning with negative rewards and

DAC suffers in performance due to lack of distinction between terminal states. For

GoToDoor, DistShift and RedBlueDoors, DAC is not able to achieve high success rate

showing its limitations in task based scenarios with multiple terminal states. Success

rate of neutral reward is the highest and better than the negative reward showing

its robustness to termination bias. Similarly, for other the other two task based

environments with multiple terminal states, neutral reward significantly outperforms

both DAC and negative reward. GAIL with neutral rewards is able to outperform

all other methods, hence, is able to overcome both survival and termination bias. In

case of LunarLander, the positive reward leads to a score below 200, which is the

threshold for an episode to be considered “successful”. The negative reward function

mitigates this bias but still underperforms because it tries to complete the episode

faster to collect lesser negative rewards. Neutral reward functions mitigate both kinds

15

1. Addressing Reward Bias in Generative Adversarial Imitation Learning

of bias and result in optimal task reward by imitating the expert. Although the final

score is not very low for all methods, an analysis of the average episode length shows

that agents with positive reward functions deliberately lengthen the duration of the

task completion to collect more positive rewards. The agent with negative reward has

a slightly lower average episode length showing a tendency to complete the episode

quickly. We include this analysis in the Supplementary Material.

1.5.1 Effect of different reward functions on episode length

In Figure 1.3 we analysed the effect of different GAIL rewards on the agent’s ability

to learn the task. Here, we confirm the effects of our method by checking the average

episode lengths of the methods (in Figure 1.4). In all environments, GAIL with

positive rewards fails to learn the task, and the episode lengths always reach the

time-limit, therefore confirming that survival bias in GAIL is indeed a practical

problem. In environments like Empty and DoorKey, negative rewards are better since

there is a single termination condition corresponding to task completion. We see that

this method indeed performs better than GAIL with positive rewards. This reward

is closely followed by neutral rewards which also obtain a similar curve for average

episode length. However, in the other environments with multiple terminal conditions,

we can see a clear difference between negative and neutral rewards. The difference

is clearly visible in GoToDoor where there is a non-negligible gap between negative

and neutral rewards. Although the average episode length for negative rewards is

lower, the success rate is also lower, which confirms that negative rewards suffer from

a termination bias problem. Neutral rewards take slightly more time on average

to end an episode, but that is because they actually complete the task and do not

terminate an episode early. In LunarLander, the difference in final rewards does not

seem to be significantly different. However, the average episode lengths tell a different

story. In case of positive rewards, the average episode length goes upto 900 timesteps,

which is far more than the required timesteps taken to land the launcher. GAIL with

negative reward seems to have a lower episode length throughout training, which can

be attributed to its termination bias. However, neutral rewards have similar average

episode lengths at convergence, and perform better than GAIL with negative reward.

This shows that finishing an episode quickly does not necessarily translate to better

16

1. Addressing Reward Bias in Generative Adversarial Imitation Learning

Figure 1.4: Comparison of average episode length for different GAIL reward functions.

17

1. Addressing Reward Bias in Generative Adversarial Imitation Learning

task performance. GAIL with neutral rewards seem to balance this trade-off most

optimally across all our experiments.

1.6 Conclusion

In this work, we address the problem of reward bias in adversarial imitation learning.

We explore two types of reward biases - survival bias and termination bias, and how

different reward functions lead to these biases in the agent. Positive reward functions

encourage survival bias, and negative reward functions encourage termination bias,

and both these biases may hinder learning in a task-based environment. We show that

real-valued reward functions are unbiased and can learn to overcome both survival

and termination biases. Experiments show that this simple change of reward function

enables the agent to imitate the expert on tasks with single and multiple termination

conditions.

18

Chapter 2

Adaptative Agent Architecture for

Human-Agent Teaming

2.1 Introduction

Multi-agent systems have recently seen tremendous progress in teams of purely

artificial agents, especially in computer games [24, 46, 67]. However, many real-world

scenarios like autonomous driving [19, 52], assisted robots [4, 39], and Unmanned

Aerial System [16, 44] do not guarantee teams of homogeneous robots with shared

information - more often, it involves interaction with different kinds of humans who

may have varying and unknown intents and beliefs. Understanding these intents

and beliefs is crucial for robots to interact with humans effectively in this scenario.

Human-agent teaming (HAT) [11, 56], an emerging form of human-agent systems,

requires teamwork to be a set of interrelated reasoning, actions and behaviors of team

members that combine to fulfill team objectives [45, 54, 55]. In this work, we focus

on the setting of two-player human-agent teaming in a computer game, where the

agent should cooperate with the human in real-time to achieve a common goal on

one task. The human playing that role may be any person with any policy at any

time, and potentially not be an expert in the task at hand.

One of the fundamental challenges for an artificial agent to work with a human,

instead of simply another artificial agent, is that humans may have complex or

19

2. Adaptative Agent Architecture for Human-Agent Teaming

unpredictable behavioral patterns and intent [10, 23]. In particular, they may misuse

or disuse the multi-agent system based on their perception, attitude and trust towards

the system [47]. This difference becomes very critical in scenarios where an agent

interacts with a diverse population of human players, each of which might have

different intents, beliefs, and skills (ranging from novices to experts) [36]. To succeed,

cooperative agents must be able to infer human intent or policy to inform their action

accordingly.

Capabilities of adapting to humans are essential for a human-agent team to safely

deploy and collaborate in a real-time environment [9]. Real-time adaptation is critical

in practical deployments where robots are not operating unilaterally in a controlled

environment, such as urban driving environments for autonomous vehicles [19]. The

ability to respond to real-time observations improves an agent’s ability to perform in

the face of various kinds of team structures or situations. Accomplishing real-time

agent adaptation requires that agents are able to capture the semantics of the observed

human behavior, which is likely volatile and noisy, and then infer a best response

accordingly. The challenge of capturing human behavior is further increased since

the agent only observes a small snapshot of recent human actions, among players

with varying play styles or skill levels. Finally, we note that humans may adjust their

behavior in response to a changing agent policy, which can make stable adaptation

difficult to achieve [19, 26, 53]. Real-time environments like computer games also

require agents to perform both sufficiently fast estimation of the teammate’s policy, as

well as planning, while ensuring flexibility for unexpected strategic game states [68].

Past research on real-time adaptation in HAT can be divided into two forms of

adaptive agent training. In the first human-model-free form: the agent does not

build a model of human policy, but instead infers human types from the match

between current observations and an exemplar and then take corresponding best

actions. This setting is adopted by our approach and can be found in the psychology

literature [32, 33, 34]. The second form widely adopted in robotics research human-

model-based : first trains a model of the human to learn humans’ policies or intent,

then integrates the human model into the environment, and finally trains the agent

upon the integrated environment. This setting requires much more computational

resources than human-model-free form to learn the human model and deploy the agent

in real-time, and inevitably imposes heavy assumptions on human policies [19, 52, 70]

20

2. Adaptative Agent Architecture for Human-Agent Teaming

like: optimal in some unknown reward function, single-type or consistent among

different humans, and time-invariant for one human, etc. However these assumptions

deviate from real-world human policies, especially coming from a diverse population

in different skill levels and intent on a relatively hard task. On the contrary, human-

model-free setting imposes minimal assumptions on human policies and can be

deployed in real-time teaming efficiently.

In this work, we propose a human-model-free adaptive agent architecture based

on a pre-trained static agent library. The adaptive agent aims to perform well in

a nontrivial real-time strategic game, Team Space Fortress (TSF) [3]. TSF is a

two-player cooperative computer game where the players control spaceships to destroy

the fortress. TSF presents a promising arena to test intelligent agents in teams since

it involves heterogeneous team members (bait and shooter) with adversary (fortress),

and it has sparse rewards which makes model training even more difficult. TSF is

a nontrivial testbed to solve as it requires some real-time cooperation strategy for

the two players without communication and control skills for human players. Before

constructing exemplar policies, we first evaluate the nature of this testbed through

previous research in human-human teams. The results [40] show that different human-

human pairs demonstrate significantly diverse performance and the team performance

was affected by both individual level factors such as skill levels and team level factors

such as team synchronization and adaptation.

The diverse team performance and complicated team dynamics in human-human

teams inspired us to build a real-time adaptive agent to cooperate with any human

player in human-agent teams. The methodology of our real-time adaptive agent is

quite straightforward. First, we design a diverse policy library of rule-based and

reinforcement learning (RL) agents that can perform reasonably well in TSF when

paired with each other, i.e. agent-agent teams. We record the self-play performance

of each pair in advance. Second, we propose a novel similarity metric between any

human policy and each policy in the library from observed human behavior, namely

cross-entropy method (CEM) adapted from behavior cloning [6]. The adaptive agent

uses the similarity metric to find the most similar policy in the exemplar policies

library to the the current human trajectory. After this, the adaptive agent switches its

policy to the best complementary policy to the predicted human policy in real-time.

Using this adaptive strategy, it is expected to outperform any static policy from the

21

2. Adaptative Agent Architecture for Human-Agent Teaming

library. Our approach is directly built upon single-agent models, thus can generalize

to any off-the-shelf reinforcement learning/imitation learning algorithms.

We evaluated our approach online by having human players play against both

agents with exemplar static policy and adaptive policy. These players were sourced

through Amazon’s Mechanical Turk (MTurk)1 program and played TSF through

their internet browsers. Each human player was assigned one role in TSF and played

with all the selected agents for several trials, but was not told which agents they

were playing with and was rotated through random sequences of the agents to ensure

agent anonymity and reduce learning effect.

Based on the collected game data from these human-agent teams, we are interested

in the three key questions: (1)How are human players’ policies compared to agent

policies in our library? (2) Is our adaptive agent architecture capable of identifying

human policy and predicting team performance for human-agent teams? (3) Do our

adaptive agents perform better than static policy agents in human-agent teams? We

answer these questions in the experimental section.

2.2 Related Work

In the multi-agent system domain, researchers have been focusing on how autonomous

agents model other agents in order to better cooperate with each other in teams,

which is termed as human-model-based methods when applied to human-agent system

in the introduction of this work. Representative work includes ad-hoc teamwork that

the agent is able to use prior knowledge about other teammates to cooperate with

new unknown teammates [5, 8].

This is a reasonable number of work in human-robot interaction that attempts to

infer human intent from observed behaviors using inverse planing or inverse reinforce-

ment learning [7, 19, 48, 51, 52]. However, these work impose ideal assumptions on

human policy, e.g. optimal under some unknown reward, consistent through time,

and with unique type among humans, which does not hold in many complicated

real-world applications, where the human-agent systems are required to generalize to

various kinds of team scenarios.

1https://www.mturk.com/

22

https://www.mturk.com/

2. Adaptative Agent Architecture for Human-Agent Teaming

In human-agent teaming, past research [12, 18, 25, 37, 66] has established a variety

of protocols within small teams. However, these approaches often rely on some degree

of explicit communication on humans’ observation or intent.

The alternative setting of agent design in human-agent system is human-model-free,

rarely discussed in the robotics literature. Some psychology literature in this setting

learns to infer human intent from retrospective teammate reports, where software

analyzes historical observations of humans to inform behavior in the present [32, 33, 34].

These historical behaviors may fail to capture potential changes in teammate policies

a real-time environment and limit the ability of software to best adapt to a situation.

Our approach opens the door of human-model-free setting in human-agent sys-

tem for robotics literature, significantly different from previous human-model-based

methods. We make least assumptions on human, and use proposed architecture to

realize adaptation, which involves similarity metric to infer human policy. The least

assumptions and straightforward architecture enable our approach to deploy in a

real-time human-agent environment with various kinds of human players.

2.3 Team Space Fortress

We have adapted Space Fortress [43], a game which has been used extensively for

psychological research, for teams. Team Space Fortress (TSF) is a cooperative

computer game where two players control their spaceships to destroy a fortress in a

low friction 2D environment. The player can be either human or (artificial) agent,

thus there are three possible combinations in teams: human-human, human-agent,

and agent-agent.

A sample screen from the game is shown in Fig. 2.1. At the center of the stage

lies a rotating fortress. The fortress and two spaceships can all fire missiles towards

each other at a range. The first spaceship entering the hexagon area will be locked

and shot by the fortress. However, the fortress becomes vulnerable when it is firing.

Players die immediately whenever they hit any obstacles (e.g. boundaries, missiles,

the fortress). The game resets every time either fortress or both players are killed.

Once the fortress has been killed, both players must leave the activation region (outer

pink boundaries) before the fortress respawns.

The team performance is measured by the number of fortresses that players kill.

23

2. Adaptative Agent Architecture for Human-Agent Teaming

The action space is 3-dimensional discrete space, including TURN (turn left, right,

or no turn), THRUST (accelerate the speed or not), and FIRE (emit one missile or

not). The frame per second (FPS) is 30, thus in a 1-minute game, there are around

1800 frames.

In order to test a common instance of teamwork, players were instructed in a

common strategy and assigned roles of either bait or shooter. The bait tries to attract

the fortress’s attention by entering the inner hexagon where it is vulnerable to the

fortress. When the fortress attempts to shoot at the bait, its shield lifts making it

vulnerable. The other player in the role of shooter can now shoot at the fortress and

destroy it.

There are some difference in observations and actions between human players and

agent players. Human players observe the game screen (RGB image) at each frame,

then hit or release the keys on keyboard to take actions. Agent players instead observe

an array composed of the states (position, velocity, angle) of all the entities including

the fortress and two players, and communicate their actions directly through the

game engine.

Figure 2.1: Sample TSF game screen (line drawing version, original screen is in black background).
Spaceships are labeled as shooter and bait. Entity at center is the rotating fortress with the boarder
around it as the shield. Activation region is the hexagon area around players’ spaceships. Black
arrow is a projectile emitted from the shooter towards the fortress. All the entities are within the
rectangle map borders.

2.4 Adaptive Agent Architecture

In this section, we formulate our method for an adaptive agent architecture. First

we introduce the exemplar policies library pre-trained by reinforcement learning or

24

2. Adaptative Agent Architecture for Human-Agent Teaming

designed by rules for TSF. This library will be used as a standard baseline to identify

human policies. Next, we introduce the similarity metric adopted in the architecture

(i.e. cross-entropy metric) that measures the distance between human trajectory and

exemplar policies in the library. Finally, we define the adaptive agent architecture

given the estimated human policy according to the similarity metric.

Figure 2.2: The flowchart of the proposed adaptive agent architecture. The adaptation module
(in dotted boarder) takes the input of the trajectory at current timestamp, and then assigns the
adaptive agent with new policy at next timestamp. The adaption procedure can be deployed in
real-time (online).

2.4.1 Exemplar Policies Library

The exemplar policies library L = L∪L§ consists of two sets of policies in bait () and

shooter (§) roles, L and L§ respectively. Both bait policies and shooter policies are

trained using a combination of RL and rule based behavior.

These exemplar policies can be divided into several main types: baits can be

divided into three types (B1-B3, B4-B7, B8-B9) and shooters can be divided into

two types (S1-S3, S4-S7). Below are the technical details of each type.

Bait policy library L

To make these different bait policies diverse, we train them using different reward

functions, inspired from human-human experiments where there were multiple ways

to achieve good performance. The reward functions attempt to encode the desirable

behavior of a bait agent. The bait agent is then trained using an RL algorithm to

achieve an optimal behavior with respect to the given reward function. The bait

25

2. Adaptative Agent Architecture for Human-Agent Teaming

library L are composed of 9 bait policies. The goal for bait is to keep alive inside

the activation region to make the fortress vulnerable from behind so that the shooter

can grasp the opportunity to destroy the fortress from behind. In general, the bait

has two conflicting objectives which it tries to balance. If the bait is inside the

activation more time, it is more vulnerable and prone to getting killed by the fortress.

However, bait’s presence inside the activation region gives an opportunity for the

shooter to attack the fortress from behind. Different bait agents try to balance these

two conflicting objectives in different ways.

B1-B3 type policies are trained by A2C algorithm [30] to learn TURN action

and use rules on THRUST action. The reward function of TURN learning is binary,

encouraging the baits to stay inside the activation region. For the observation space

of the bait policy, we convert the original Cartesian coordinate system to a new

one, where the new origin is still at the fortress while the new positive Y-axis goes

through the bait, which is shown to ease the training in RL for TSF. Then, we use

the converted coordinates of bait position and two nearest missile positions to train

the agent. The intuition is that bait is sensitive to the nearest shells to keep itself

alive. The rule in THRUST action limits the maximum speed of the bait agents.

By tuning the threshold in speed, we have policy B1-B3. B4-B7 policies are trained

by RL in both TURN and THRUST actions. They share same reward function as

B1-B3 using the same transformation in coordinate system. By using different RL

algorithms from A2C [30], PPO [59], to TRPO [57], and different observation space

(whether to perceive the shooter’s position and velocity), we have policies B4-B7.

B8-B9 belong to the another set of policy using a different reward structure,

learning TURN and THRUST by PPO algorithm [59]. B8 and B9 are designed by

aggressive and defensive objectives, respectively. The reward structure used to train

these 2 agents is composed of three parts: (1) “border reward” to encourage the

agents to keep far away from the fortress, (2) “bearing reward” to encourage the

agents to align itself directly towards the fortress when inside the activation region,

(3) “death penalty” to discourage the agents from being killed by the fortress or

hitting the border. Border reward encourages risk-averse behavior, while bearing

reward risk-seeking behavior, and by controlling the coefficients among these three

parts, we have agents B8-B9.

26

2. Adaptative Agent Architecture for Human-Agent Teaming

Figure 2.3: TSF Environment

More details on B8 and B9

This bait agent was trained using PPO[60] algorithm. The reward function used to

train this bait is as follows.

The reward consists of three components.

• Wall Reward: Each wall applies a repulsive reward on the bait agent that is

proportional to e−d where d is the distance of the bait from the wall. So, for

the bait coordinates (x, y), the reward is:

rwall = e−(xwall1−x) + e−(xwall2−x) + e−(ywall3−y) + e−(ywall4−y)

This is the total wall reward for the 2 horizontal and the 2 vertical walls.

• Bearing Reward: The bait, when inside the activation region gets rewarded for

aligning itself directly towards the fortress.

rbearing = cos(θ)

Here θ is the angle between the fortress head and the bait.

• Environment rewards: These include negative rewards for getting killed after

hitting a wall, a shell or a the shield

27

2. Adaptative Agent Architecture for Human-Agent Teaming

So, the total reward is:

rbait = Krwall +K ′rbearing + λ(rhit−shell + rhit−shield + rhit−wall)

where K,K ′, λ is the weight.

Aggressive Bait - B8

For training this bait the wall repulsive reward(parameterised by K) was set high.

Also, the bearing rewards(parameterised by K’) was also set to a higher value and the

hit shell and hit shield penalities were kept to low so as to encourage risky behavior.

Defensive Bait - B9

For training this bait the wall repulsive reward(parameterised by K) was set lower.

Also, the bearing rewards(parameterised by K’) was also set to a lower value and the

hit shell and hit shield penalities were kept to high so as to discorage risky behavior.

Shooter policy library L§

The shooter policy library L§ are composed of 7 shooter policies, with 4 of them

mirror shooters that are purely rule-based, and 3 of them RL shooters that learn the

TURN action by RL.

The mirror shooters are based on the prior knowledge of TSF game that a good

shooter should have an opposite position against the Bait, which was observed in

many successful human-human teams. Thus the mirror shooter tries to keep at

opposite position to the current position of the bait (termed as target position) until

it finds itself having a good chance to fire to destroy the fortress. By controlling the

threshold of distance to the target position, we have agents S4-7.

The RL shooters’ reward function takes the same team strategy of opposite

positions, trained by DDQN [65] on TURN action. Specifically, the reward is designed

to encourage the shooter to keep close to the outside the activation region when bait

does not enter the region, and keep at the rear of the fortress when bait enters the

region. S1-3 are different in max speed.

28

2. Adaptative Agent Architecture for Human-Agent Teaming

Self-play performance

We evaluate the performance of each shooter-bait pairs in the exemplar policy library

by self-play in TSF environment, and record the results in self-play performance

table P in advance. The table P has rows with the number of bait policies in L
and columns with the number of shooter policies in L§, with each entry the average

performance of the bait-shooter pair. When applied to our policy library, table P is

showed in Table 2.1.

On average, teams that consist of two static agents show significantly better

performance (6.03) than human-human teams (2.60) reported in previous research [40].

This indicates that most of our agent pairs, including both RL-based and rule-based

agents, have a super-human performance in TSF which benefits from the design of

reward function and rules.

Similar to human-human teams, agent-agent teams also show complementary

policy pairs that work extremely well with each other. An example would be S4-S7

(mirror shooters) who yield a dominant performance when pairing with most of the

baits except for B8 and B9. While for specific bait policies such as B8 and B9, the

best teammate would be S2 or S3 (RL shooters) in stead of the more “optimal”

S4-S7. We could tell from the self-play table that the space of reasonable policies in

TSF game is indeed diverse, and there are more than one path towards good team

dynamics and team performance. This confirms again the necessity of introducing

real-time adaptive agents in human-agent teams. Thus we build the adaptive agent

framework based upon this self-play table in the next subsections.

2.4.2 Similarity Metrics

Cross-Entropy Metric

Now we introduce the cross-entropy metric (CEM) as the similarity metric used

in this architecture. Cross-entropy, well-known in information theory, can measure

the (negative) distance between two policies π1, π2:

CEM(π1, π2) = Es,a∼π1 log π2(a|s) (2.1)

29

2. Adaptative Agent Architecture for Human-Agent Teaming

S1 S2 S3 S4 S5 S6 S7

B1 5.1 5.7 5.0 5.1 4.9 4.5 3.9
B2 6.5 7.0 6.0 7.6 7.6 7.5 6.8
B3 5.9 6.7 5.8 8.0 8.1 8.2 7.9

B4 6.4 7.1 5.9 7.5 7.6 7.3 7.3
B5 6.3 7.1 6.2 6.8 6.8 6.4 6.2
B6 6.2 7.1 6.1 7.8 7.8 7.4 7.0
B7 6.2 7.0 6.2 7.8 7.8 8.0 7.8

B8 4.3 5.3 5.4 3.1 2.8 3.0 3.0
B9 4.9 5.7 5.5 2.3 2.1 2.1 1.8

Table 2.1: Self-play agent performance table P . Each row is for one bait agent named Bi in L (i=1
to 9), and each column is for one shooter agent named Sj in L§ (j=1 to 7). Each entry is computed
by per-minute team performance (number of fortress kills) of the corresponding pair. We segment
the tables to group same type of agents, and mark the “optimal” bait and shooter agents in bold.

where π1(·|s), π2(·|s) are action distributions given state s. This is actually the

training objective of behavior cloning [6] to expert policy π1, i.e., maxπ2 CEM(π1, π2),

which is to maximize the log-likelihood of expert actions in agent policy π2 given a

collection of expert state-actions. Thus the larger the CEM(π1, π2), the more similar

π1 is to π2.

If we know the policy π2, and are able to obtain state-action samples from π1,

then we can estimate cross-entropy CEM(π1, π2) by Monte Carlo sampling. That is

to say, under the assumption above, policy π1 can be unknown to us. In human-agent

teaming, human policy πH cannot be observed but the state-action pairs generated

by the human policy can be easily obtained, and agent policy πA is designed by us,

as programmers, thus known to us.

Therefore, we can leverage CEM as the similarity metric: given a sliding window

of frames that record the observed behavior of the human policy πH , we can estimate

the cross-entropy between a human policy πH and any known agent policy πA by the

following formula:

1

T

T∑
t=1

log πA(at|st), where (st, at)
T
t=1 ∼ πH (2.2)

where (st, at)
T
t=1 are the sequential state-action pairs from human policy, T is the

30

2. Adaptative Agent Architecture for Human-Agent Teaming

Figure 2.4: Policy Representation Architecture

Figure 2.5: PCA of the policy representation of different bait agents

window size, which is a hyperparameter to be tuned.

An LSTM based policy representation model is trained on the agent trajectories

from the agent library. The policy representation models are learnt separately for

bait and the shooter. The model is an LSTM autoencoder which takes in state-action

sequence of the agent as an input and learns a fixed lower dimensional embedding of

a trajectory. In this way, we are able to encode a trajectory of any given length using

these policy representation models. We store the embeddings for the trajectories

of the agents in the agent-agent library. To make the embeddings more robust we

also use an auxiliary task of agent classification. This model is able to separate out

trajectories from different agent policies as shown in Fig2.5, 2.6 Further, it is also

31

2. Adaptative Agent Architecture for Human-Agent Teaming

Figure 2.6: PCA of the policy representation of different shooter agents

possible to joint policy representation models of bait and shooter from this.

This model is then used to define Autoencoder Similarity Metric (ASM). ASM

uses an recurrent autoencoder trained to identify an agent given the historically

observed behavior from known agents in agent policy library introduced in Sec 2.4.1.

By translating observed behavior into the latent space of the autoencoder, the encoder

effectively generates an embedding from these observations. The embedding of the

human trajectory is then compared against embeddings of different agents in the

policy library. Since this model uses a recurrent network its too slow to be used

for real time adaptation. However, we still use it offline to see trends human policy

consistency.

2.4.3 Adaptive Agents

The prerequisite for the architecture is the exemplar policies library L introduced

in the Sec. 2.4.1 and the self-play table P of the library to translate human-agent

performance in the adaptation process.

Figure 2.2 shows the overall flowchart of our adaptive agent framework. When

the game starts and a new human player A starts to play as one pre-specified role

R1 ∈ {, §} in TSF, the adaptive agent framework will first randomly assign a policy

B from the library LR2 in teammate role R2 such that {R1, R2} = {, §}, and keep

track of the joint trajectories (state-action sequences) and record them into memory.

The adaptation process is as follows. As we maintain the latest human trajectories

of a pre-specified window size, and we first use the data to compute the similarity by

32

2. Adaptative Agent Architecture for Human-Agent Teaming

cross-entropy metric between the human trajectory and any of exemplar policies in

the library LR1 with same role. Then we figure out the most similar policy C ∈ LR1

to the human trajectory, and look up the performance table P to find the optimal

complementary policy D ∈ LR2 to the predicted human policy type C. Finally, we

assign the agent D as the complementary policy at next timestamp with the human

player.

The adaptation process on the exemplar policies selection is based on the following

assumption: if the human policy A with role R1 is similar to one exemplar policy

C ∈ LR1 within some threshold, then the human policy A will have similar team

performance with teammates as C, i.e., if C performs better with D ∈ LR2 than

E ∈ LR2 , so does A. This enables us to adapt the agent policy in real-time by the

recent data without modeling the human policy directly.

2.5 Human-Agent Teaming Experiments

In this section, we first introduce our experiment design for human-agent teaming,

then evaluate the human-agent performance when paired with static policy agents

(introduced in Sec. 2.4.1) and proposed adaptive agents (introduced in Sec. 2.4.3).

By analyzing the collected human-agent data, we aim to answer the following

motivated questions:

1. How are human players’ policies compared to agent policies in our library?

2. Is our adaptive agent architecture capable of identifying human policies and

predicting team performance for human-agent teams?

3. Do our adaptive agents perform better than static policy agents in human-agent

teams?

2.5.1 Experimental Design

We recruited participants from Amazon Mechanical Turk for our human-agent ex-

periments. They were paid USD 2 for participating in the 15-min online study.

Participants were randomly assigned a role of either shooter or bait and then teamed

with artificial agents in the corresponding role to play Team Space Fortress. Each

participant would need to complete five sessions of data collection with three 1-min

33

2. Adaptative Agent Architecture for Human-Agent Teaming

game trials in each session. Participants teamed with different agent variants between

sessions in a random sequence. The five variants were selected from our static agent

library L. When selecting these designated agents, we balanced the performance in

self-play table and the diversity by considering different training methods and reward

functions. Specifically, we select {B3, B6, B7, B8, B9} as tested static baits and

{S1, S2, S3, S4, S7} as tested static shooters. In the dataset of human and static

agent teams, we got 25 valid data points from human shooters and 29 valid data from

human baits.

2.5.2 Results

Policy space representation

To quantify the relationship between real human policies in the experiments and

agent policies in the library, we leveraged a similarity embedding by comparing the

distance between the collected human trajectories and agent policies using CEM

measurement (see Sec. 2.4.2). This provides us with a high-dimensional policy space

based on agent policies in our library. Specifically, CEM was employed to generate

the average log-probability of state-action pairs in a human trajectory coming from a

certain agent policy. We could then construct a similarity vector for each trajectory

with the dimensions equal to the number of policies in the library. The value in each

dimension represents the similarity distance from human trajectories to a certain

agent policy. Then, we applied a principal component analysis (PCA) based on the

log-probability dataset to project the high-dimensional policy space into a 2D plane

for a better visualization. The two primary components left explain more than 99%

of the variance.

Fig. 2.7 illustrates the human policies in static agent dataset. We could get

following qualitative insights from the illustration: 1) the learnt similarity embed-

ding separates different human policies well, 2) reinforcement learning policies are

homogeneous (red nodes in the bottom-left corner) while the rule-based policies are

a bit off (red nodes in the upper-left corner). 3) the distribution of human policies

correlates with their team performance in that players to the left tend to have better

team performance (colored nodes to the left are larger in size). Those findings align

with our expectations and validate the proposed adaptive agent architecture. In the

34

2. Adaptative Agent Architecture for Human-Agent Teaming

following analysis, we will quantify them based on the CEM measurement and the

similarity embedding.

Figure 2.7: Policy representations of each human baits (left) and shooters (right) in the static
agent dataset (after PCA dimension reduction). Each colored node in the figures represents the
average policy of a human player, while the size of which indicates his average team performance.
Red nodes are reference points of baseline agent polices.

Human policy identification

In the proposed adaptive agent architecture, our model infers human policy by

classifying it as the most similar policy in the library based on CEM measurement,

then assigns the agent with the corresponding complementary policy in the self-play

table. One way of verifying this method is to see if human-agent teams performed

better when the predicted human policy was closer to the complementary match in

the self-play table P. Assuming each human maintains a consistent policy over the

course of interaction when paired with a specific teammate with static policy, we

could then calculate, for each human-agent pair, the similarity between human policy

and the optimal agent policy for the agent that the human was playing with.

This “similarity to optimal” quantifies the degree to which a human player is similar

to the optimal policy given an agent teammate in our architecture. Correlation analysis

shows that “similarity to optimal” is positively correlated with team performance

in both bait (r = 0.636, p = .0002) and shooter (r = 0.834, p < .0001) groups. This

result indicates that the complementary policy pairs we found in agent-agent self-play

can be extended to human-agent teams, and our proposed architecture is able to

accurately identify human policy types and predict team performance.

Furthermore, our model could also infer human policies in real-time. This is to

say, even within the same team, humans might also take different sub-policies as

35

2. Adaptative Agent Architecture for Human-Agent Teaming

their mental model of the team state evolves over time [54]. We could take the log-

probabilities generated by CEM as time series data to capture the online adaptation

process of humans over the course of interaction at each timestamp.

Figure 2.8: The log-probability curves of one human policy generated by CEM. Data is from one
specific 1-min trial of a human bait paired with agent S2. We segment the trial into several episodes,
each of which starts with the bait entering the activation region and ends with the team killing the
fortress. The curves with same color represent the same agent policy for inference.

An example visualization is shown in Fig. 2.8 where curves represent the log-

probabilities of each agent policy over the course of interaction. We can tell from the

graph that in the segments of a specific trial, the human trajectories were inferred to

reflect different policies, although the average log-probability would still be in favor

of B8. Those findings motivate us to test an online adaptive agent using a sliding

time window to capture the human policy shifts in real-time.

2.5.3 Trends in Performance and Similarity to Optimal

Partner using ASM metric

We plot the performance and similarity to most optimal partner of human shooters

and human baits against different agents from our policy library. We try to see if

the performance of the team increases as the similarity to the best complimentary

policy increases. However, we don’t observe any consistent trends. For some agents

as shown in Fig2.9, we do observe that the performance and the similarity follow a

similiar trend. However, Fig2.10 it is not observed for all humans.

36

2. Adaptative Agent Architecture for Human-Agent Teaming

Figure 2.9: Performance of humans and simiarity to the most optimal partner

Figure 2.10: Performance of humans and simiarity to the most optimal partner

37

2. Adaptative Agent Architecture for Human-Agent Teaming

2.5.4 Pilot experiment with adaptive agents

In previous experiment and analysis, we validated our proposed architecture on

the static agent dataset. Finally, we conducted a pilot experiment to measure the

performance of adaptive agents in HATs by pairing them with human players.

In the adaptive agent experiment, adaptive agent uses the CEM similarity metric

(Sec. 2.4.2) to identify the policy most similar to the human behavior over a fixed

number of recent preceding game frames. The frames were tracked using a sliding

window, the size of which was adjusted during the hyperparameter tuning phase

of experimentation. To perform the adaptation procedure, in each frame, after

identifying the most similar agent to the human teammate, the agent referenced

the self-play table to select the policy that would best complement the teammate’s

estimated policy.

In this round of experiment, the five variants including three values of the window

size hyperparameter (T in Eq. 2.2) for the adaptive agent (150, 400, 800 frames)

and two best-performed static agent policy (representing the extreme condition of 0

window size where the adaptive agent becomes static). Besides that, all experimental

settings are the same as in static agent experiment. We got in total, 22 valid data

points from human shooters and 25 valid data from human baits.

Fig. 2.11 shows the average team performance of HATs when human players

were paired with either static or adaptive agents. We could see from the figure that

adaptive agents (marked in orange) have slightly better performance than static

agents (marked in yellow), although not statistically significant. In addition, adaptive

agents with longer time window (e.g. 800 frames) tend to have better performance

in HATs since they accumulate more evidence for human policy inference. However,

a larger sample size and and better hyper-parameter tuning might be necessary for

future research to confirm the advantage of adaptive agents in HATs.

2.6 Conclusion and Future Work

In this paper, we proposed a novel adaptive agent framework in human agent teaming

(HAT) based on the cross-entropy similarity measure and a pre-trained static policy

library. The framework was inspired by human teamwork research, which illustrates

38

2. Adaptative Agent Architecture for Human-Agent Teaming

Figure 2.11: Human-agent team performance when humans paired with adaptive or static agent
policies. Error bars represent one standard error away from the mean.

important characteristics of teamwork such as the existence of complementary policies,

influence of adaptive actions on team performance, and the dynamic human policies

in cooperation [38, 40]. Those findings motivate us to introduce an online adaptive

agents into HATs in order to maximize the team performance even when given

unknown human teammates. The proposed framework adopts a human-model-free

method to reduce the computational cost in real-time deployment and make the

pipeline more generalizable to diverse task settings and human constraints.

The specific task scenario studied in this paper, i.e. Team Space Fortress, is a

nontrivial cooperative game which requires sequential decision-making and real-time

cooperation with heterogeneous teammates. We evaluated the validity of proposed

adaptive agent framework by running human-agent experiments. Results show that

our adaptive agent architecture is able to identify human policies and predict team

performance accurately. We constructed a high-dimensional policy space based on

exemplar policies in a pre-trained library and leveraged it as a standard and reliable

way to categorize and pair human policies. The distance between human policy and

the optimal complementary for his/her teammate is shown to be positively correlated

with team performance, which confirms the validity of our proposed framework. In

additional, we found that human players showed diverse policies in HAT (1) when

paired with different teammates (2) over the course of interaction within the same

team. These findings point out that we cannot simply impose strong assumptions on

humans, e.g. optimality, consistency, and unimodality, prevalent in human-model-

39

2. Adaptative Agent Architecture for Human-Agent Teaming

based settings. Thus, we employed an online inference mechanism to identify the

human policy shifting during the course of interaction and adapt the agent policy in

real time.

As for future directions, we would like to enrich the static agent library by

introducing novel policies such as imitation learning agents that learn from human

demonstrations. A larger coverage in the policy space of exemplar policies library

could lead to a more accurate estimation of human policy and a better selection of

complementary policy.

40

Chapter 3

Learning Sparse Discrete

Communication Protocols

Recent work in Multi-Agent communication has shown great results in terms of

learning communication using agent-agent self play. However, most of these methods

learn continuous communication vectors which are exchanged between the agents

at a very high frequency. This kind of communication protocol is infeasible in a

human-agent team. Humans tend to communicate by composing a finite vocabulary of

words. Furthermore, humans also communicate at a frequency much lower than what

the agents use during self-play. In this work, we analyse existing work in the area of

Learning Sparse Communication protocols using MARL and identify failure cases and

propose some solutions to solve them. We also prototype networks to learn discrete

communication protocols and demonstrate that they are able to achieve performance

comparable to the continuous communication in a predator-prey scenario.

3.1 Introduction

In Multi-Agent scenarios[61], efficient communication is very crucial for completing

tasks successfully. In partially observable scenarios, communication enables agents

to share information about their observation to the other agents. Recent works[21,

61] have leveraged multi-agent reinforcement learning to learn communication in

cooperative[21], mixed[61] and competitive[61] scenarios. Most of the early work in this

41

3. Learning Sparse Discrete Communication Protocols

Figure 3.1: IC3 Net Architecture[61]. On the (Left) we have an in depth view of how
the policy and the gating values are calculated. (Right) shows the overall structure
of IC3 Net.

area focuses on learning continuous communication vectors which agents communicate

with each other at a very high frequency[62] This kind of communication protocol limits

the use of this learnt communication in cases an agent might need to communicate

with humans. Humans unlike agents can’t understand continuous communication

vectors. Further, humans can’t listen to or speak at such high frequencies which

the agents can. Some recent work[61] has focused on learning when to communicate

which does help address the issue of high frequency communication. In this work, we

analyse the efficiency of the IC3 Net method to learn sparse communication protocols

across different kinds of environments. We identify the failure cases of IC3 Net and

propose improvements and show how IC3 Net can be adapted to learn sparse and

discrete communication protocols.

3.2 Theory

3.2.1 IC3 Net

IC3 Net[61] stands for Individualised Controlled Continuous Communication Model.

The overall method is shown in the Fig 3.1. IC3Net[61] uses a recurrent policy and

42

3. Learning Sparse Discrete Communication Protocols

learns a gating function to determine whether to communicate or not. The gating

policy and the main policy are both trained using REINFORCE algorithm Lets

consider a multi-agent scenario with n agents. We consider an agent j. For the jth

agent, its policy is described by

ht+1
j , st+1

j = LSTM(e(otj) + ctj, h
t
j, s

t
j)

atj = π(htj)

e is the observation encoder network that encodes the observations. Here, ctj is

the aggregated communication vector that the agent j receives at time t. In addition

to the policy each agent also predicts its own gating value which detemines whether

or not the agent communicates at that particular time step. gt+1
j = f g(htj). The

communication vector agent j for the next time step is given by,

ct+1
j =

1

J − 1
C
∑
j′ 6=j

ht+1
j′ gt+1

j′

The same LSTM model is used for all agents, therefore agents share parameters.

Both the policy and the gating function is trained using REINFORCE[69]

In our experiments we use IC3 Net in 2 ways:

• IC3Net-Sparse: In this case, the gating function g is learnable. This uses

continuous communication vectors but could be sparse in time.

• IC3Net-Fixed: In this case, the gating function is not learnable and g = 1 is

fixed. This uses continuous communication vectors and is not sparse in time.

Limitations of IC3 Net

The method formulation and the evaluation metrics used in IC3Net has a number of

limitations:

• The sharing of the policy weights makes the method agnostic to the permutation

of the agents. However, this might hinder learning in cases where the agents

take very different roles within the environment.

43

3. Learning Sparse Discrete Communication Protocols

• Authors[61] report good results for competitive and mixed scenarios in the

paper i.e they were able to show that their method is able to learn policies

that achieved high rewards and were able to learn communication protocols

that were sparse. However, they don’t report such results for fully cooperative

scenarios.

• They report sparsity in the form of average sparsity during the episode. However,

for practical applications in human-agent teaming it is also crucial that the

there is significant time gap between 2 non zero communication vectors. So, its

important for us to analyse IC3 Net with respect to this metric as well.

• Even though IC3 Net was shown to perform well in several competitive and

mixed scenarios with regards to learning sparse communication protocols, the

method doesn’t really provide any theoretical guarantees. In some cases, agents

might need to work with a constrained communication budget. In such cases,

it might be desirable to have a method which is capable of learning policies

and communication protocols which can strictly adhere to the communication

budgeting constraints.

In this work, we particularly focus on the second point. First we, analyse the

performance of IC3 Net in fully cooperative settings. Then we identify failure cases

and propose some ways of improvement using an additional gating cost to learn sparse

communication protocols especially in cooperative settings.

IC3Net with Gating Cost - IC3NetG

Here we make a small modification in the original IC3Net formulation to try to make

it work in cooperative scenarios as well. In cases of cooperative environments, we

modify the reward function to penalise non zero communication. We feel this is

necessary as in case of cooperative setting, the environment reward doesn’t itself

provide any incentive for the agents to not communicate all the time. Therefore, we

train the agent policy on the following reward function.

rtj = rtenv + λgtj

Here λ is a hyperparameter. IC3G uses continuous communication vectors but

44

3. Learning Sparse Discrete Communication Protocols

could be sparse in time.

3.2.2 Discrete Prototype Based Communication

Tucker et. al[64] propose a method of learning learnable discrete tokens for commu-

nication using reinforcement learning. In this method, the agent’s communication

policy is a neural network with the penultimate layer using softmax function with

the Gumbel softmax trick[28] which is then multiplied by a learnable matrix T to

generate the final communication vector. More formally, the communication policy

of the agent is parameterised by neural net weights θ and the learnable matrix T and

the communication vector t generated given the agent observation o is given by,

π = fθ(o)

d = onehot(argmaxi(gi + log(πi))

t = d× Tz×c

In the above equations, z is the number of discrete tokens and c is the dimension

of the discrete token.

Tucker et. al[64] in their work demonstrate that prototype based learnt discrete

token show higher robustness to noisy communication channels, better human inter-

pretability and better zero shot generalisation. Due to these features, in this work

we use this method of learning discrete communication protocols. More specifically

we combine this method with with IC3 Net so as to learn communication protocols

which are sparse as well as discrete.

The modified IC3Net framework when using discrete prototypes for communication,

formally is given by,

ht+1
j , st+1

j = LSTM(e(otj) + ctj, h
t
j, s

t
j)

atj = π(htj)

dtj = Proto(htj)

45

3. Learning Sparse Discrete Communication Protocols

ct+1
j =

1

J − 1
C
∑
j′ 6=j

dt+1
j′ gt+1

j′

3.2.3 IC3Net-Fixed-Proto

In this method, we use IC3 Net-Fixed with discrete prototype based communication.

Therefore, in this case the communication would use discrete vectors for communica-

tion, however, since, g = 1 it won’t be sparse in time.

3.2.4 IC3Net-Proto

In this method, we use IC3 Net with discrete prototype based communication. There-

fore, in this case the communication would use discrete vectors for communication

and the could be sparse in time.

3.2.5 IC3NetG-Proto

In this method, we use both the gating cost as well as the discrete prototype based

communication with the aim of learning sparse-discrete communication protocols.

Therefore, in this case the communication would use discrete vectors for communica-

tion and the could be sparse in time.

3.2.6 Environments

Predator-Prey

We use the environment using by Singh et al[61] as shown in Fig3.2. This task consists

of n predators with limited vision trying to find a stationery prey. There are three

variants of this environment (1). Cooperative (2). Competitive (3). Mixed. Once the

agent reaches the prey it keeps getting a positive reward until the end of the episode.

The agents can different degree of vision which is a hyperparameter. There is no

loss or benefit from communicating in mixed scenario. In competitive setting, agents

get lower rewards if other agents reach the prey and in cooperative setting, reward

increases as more agents reach the prey. In all the settings, there is per step negative

reward r = −0.05 until the agent reaches the prey. In mixed setting, once the agent

46

3. Learning Sparse Discrete Communication Protocols

Figure 3.2: Predator-Prey Environment

reaches the prey, it gets a constant positive reward for each step r = 0.05 which is

independent of whether the other agents have reached the prey or not. In cooperative

setting, an agent will get positive reward once reaching the prey, and that reward is

given by, rcoop = rprey × n = 0.05× n, where n is the number of agents on the prey.

So, inherently, in cooperative setting, the agent has an incentive to help out other

agents. In competitive setting, the agent after reaching the prey gets a reward of

rcomp = 0.05
n

. For our experiments, we use maximum number of timesteps tmax = 20,

and a 5× 5 grid with 3 predators. Each predator can take one of the five actions at

each time step: up, down, left, right, stay. Predator, prey and all locations on grid

are considered unique classes in vocabulary and are represented as one-hot binary

vectors. Observation obs, at each point will be the sum of all one-hot binary vectors

of location, predators and prey present at that point. With vision of 1, observation

of each agent have dimension 32|obs|.

3.3 Experiments

Our experiments are aimed at answering the following questions:

• Is the IC3G-Sparse sufficient for learning sparse communication protocols

that also give good performance(high success rate for completing the task) in

cooperative predator-prey scenario?

• Does IC3NetG do better than IC3Net-Sparse in case of cooperative scenarios?

47

3. Learning Sparse Discrete Communication Protocols

• Does IC3Net-Proto-Fixed do as well(in terms of success rate) as IC3Net-Fixed?

• Is IC3NetG-Proto capable of learning sparse-discrete communication protocol

that can achieve high success rate?

We measure the success rate and communication rate in our experiments.

• Success Rate: For the case of predator prey, success is determined by whether

or not all the predators are able to reach the prey within the episode. So success

rate, determines the fraction of episodes which are successful.

• Communication Rate: For an episode with T timesteps, the communication

rate c, can be defined as,

c =
g1 + g2 + g3 + ..+ gT

T

where gi ∈ [0, 1] and gi is the value of the gating function at timestep i.

3.4 Results

In Fig3.3 we compare the success rates achieved by IC3Net-Fixed and IC3Net-Sparse.

With IC3Net-Fixed(g = 1), the agents learn to achieve close to a 100% success rate

at convergence. Whereas in the case of a IC3Net-Sparse we see in Fig3.3 how the

performance varies across random seeds. Thats also reflected in the communication

rate as depicted in 3.4. We observe that for seeds where learnable gating function

g → 1, we achieve success rates with IC3Net-Sparse comparable to IC3Net-Fixed

g = 1 case. The hidden dimension for the recurrent network is set to 64 in both the

cases. We also try the IC3Net-Fixed-Proto method to learn discrete communication

vectors for communication instead of continuous ones. We try out nprotos = 25 and

nprotos = 6. From Fig3.5 we observe that when using 25 prototypes we achieve success

rates close to 1 while for nprotos = 6 the success rates are slightly lower.

For the IC3NetG approach, we find out that the training is extremely sensitive to

the value of λ and it is very hard to tune. Here, we report results for λ, λ = 0.01,

where we were able to learn sparse communication protocols that also achieved good

success rates as show in Fig3.6. Further, we are able to learn a sparse communication

protocol across different seeds. In Fig3.7 we report our results with IC3NetG-Proto

48

3. Learning Sparse Discrete Communication Protocols

Figure 3.3: (Left)Success Rate with IC3Net-Fixed for cooperative predator prey
(Right) Success Rate with IC3Net-Sparse in cooperative predator-prey

Figure 3.4: Communication rate with with IC3Net-Sparse in cooperative predator-prey

Figure 3.5: (Left)Success Rate with IC3Net-Fixed-Proto using 25 prototypes in
cooperative predator-prey
(Right) Success Rate with IC3Net-Fixed-Proto using 8 prototypes in cooperative
predator-prey

49

3. Learning Sparse Discrete Communication Protocols

Figure 3.6: (Left)Success Rate using IC3NetG with λ = 0.01, (Right) Communica-
tion Rate IC3NetGwith λ = 0.01

Figure 3.7: (Left)Success Rate using IC3NetG-Proto, (Right) Communication Rate
IC3NetG-Proto

where we use 25 learnable discrete prototypes for communicate along with a gating

penalty to encourage sparse communication. In this case too, we achieve good success

rates and a sparse communication protocol.

3.5 Conclusions and Future Work

In this work, we attempt at solving 2 crucial problems for learning interpretable

communication: (1). Learning to communicate using discrete tokens (2). Learning

to communicate in a sparse manner. For discrete communication, we show how

IC3Net-Proto is able to achieve success rates comparable to IC3Net-Fixed showing

that we could work with a limited number of tokens and achieve similar performance

as when using continuous vectors for communication. For sparse communication,

50

3. Learning Sparse Discrete Communication Protocols

we showed how IC3Net in its original formulation is not sufficient to learn sparse

communication protocols in fully cooperative scenarios. Therefore, we proposed

IC3NetG which uses a gating penalty to limit communication. Although, we did

demonstrate desirable outcomes with a few values of λ, we experienced that it was

very difficult to tune the value of λ. For future work, we would like to come up with

methods which could automatically tune the value of λ. Further, we would also like

to take a more principled look at the problem of sparse communication by setting a

hard constraint on the communication budget.

51

3. Learning Sparse Discrete Communication Protocols

52

Chapter 4

Conclusions and Future Work

Conclusions

This thesis presented methods for robust Imitation Learning, Adaptation in Human-

Agent Teaming and Learning Sparse-Discrete Communication protocols using Multi-

Agent Reinforcement Learning. The ability to be able to imitate humans is very

essential for designing human like agents. Therefore, addressing the shortcomings of

Generative Adversarial Imitation Learning, a state of the art method for Imitation

Learning is very important. In this work, we show how our method of neutral rewards

overcame the reward bias problem of Generative Adversarial Imitation Learning. Our

work on Adaptation in Human-Agent Teaming demonstrates a method of designing

adaptative agents which can utilise an agent library to adapt to new human policies

during test time. We believe that this is of great significance for a variety of practical

applications. Our method is not restrictive in terms of what the policies in the agent

library are. So, an adaptative AI agents could leverage diverse imitation learning

policies too, to measure the similarity of new human policy during test to the imitation

learning policies which were learnt using past interactions. The similarity metric could

then be utilised in order to find the most optimal partner to the human policy from

the agent library. Our work on Learning Sparse-Discrete Communication protocols,

tries to achieve two very desirable properties for any interpretable communication

protocol: Sparsity and Discreteness. Overall, through this work we try to address

three very fundamental problems for designing smart AI agents: (1). The ability to

53

4. Conclusions and Future Work

imitate humans (2) The ability to adapt to perceived changes in human behavior (3).

The ability to communicate in a manner which is interpretable.

Future Work

It’s crucial to evaluate our method of using neutral rewards in Generative Adversarial

Imitation Learning on real tasks like manipulation and social navigation in future.

Further, one major issue in Generative Adversarial Imitation Learning under the

different formulations of the reward is that the agent doesn’t have the idea of the goal

state of the expert demonstration. So, we would also like to compare our proposed

method of using neutral rewards against goal conditioned GAIL methods. In our

work on adaptation we rely on an agent library for calculating the similarity metric

which are then used for real time adaptation. This agent library in our case consisted

of rule based as well RL trained agents which in turn use knowledge about the game.

To scale our approach to new scenarios with a larger number of agents we would like

to create this policy library purely from demonstrations and not using explicit domain

knowledge about the environment. Methods like INFO-GAIL[42] could help us learn

the imitation learning policy and also help capture the diversity in demonstrations

as the imitation learnt policy is conditioned both on state and a latent variable

which could potentially capture the diversity of human policies without requiring

environment specific information. In our work on learning sparse communication, a

more rigorous theoretical analysis is required particularly in cases where we might

have a fixed budget for communication. For this we could potentially use methods

from safe RL like CPO[2] and model the communication budget constraints as being

analogous to safety constraints in safe-RL. Further, we didn’t consider environments

with heterogeneous agents in our current work. It might be interesting to evaluate

whether in competitive scenarios with heterogeneous agents can we still just rely on

the environment reward to induce sparsity in the communication protocol. We would

also like to compare our method of learning sparse communication in cooperative

settings to some recent work by Goyal et Al[22] who learn sparse communication

protocols by using variational information bottleneck in the communication channel.

54

Bibliography

[1] Pieter Abbeel and Andrew Ng. Apprenticeship learning via inverse reinforce-
ment learning. Proceedings, Twenty-First International Conference on Machine
Learning, ICML 2004, 09 2004. 1.2

[2] Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy
optimization, 2017. 4

[3] Akshat Agarwal, Ryan Hope, and Katia Sycara. Challenges of context and time
in reinforcement learning: Introducing space fortress as a benchmark. arXiv
preprint arXiv:1809.02206, 2018. 2.1

[4] Siddharth Agrawal and Mary-Anne Williams. Robot authority and human
obedience: A study of human behaviour using a robot security guard. In
Proceedings of the companion of the 2017 ACM/IEEE international conference
on human-robot interaction, pages 57–58, 2017. 2.1

[5] Stefano V Albrecht and Peter Stone. Autonomous agents modelling other agents:
A comprehensive survey and open problems. Artificial Intelligence, 258:66–95,
2018. 2.2

[6] Michael Bain. A framework for behavioural cloning. In Machine Intelligence 15,
pages 103–129, 1995. 2.1, 2.4.2

[7] Andrea Bajcsy, Dylan P Losey, Marcia K O’Malley, and Anca D Dragan. Learning
from physical human corrections, one feature at a time. In Proceedings of the
2018 ACM/IEEE International Conference on Human-Robot Interaction, pages
141–149, 2018. 2.2

[8] Samuel Barrett and Peter Stone. Cooperating with unknown teammates in
complex domains: A robot soccer case study of ad hoc teamwork. In AAAI,
volume 15, pages 2010–2016. Citeseer, 2015. 2.2

[9] Jeffrey M Bradshaw, Paul Feltovich, and Matthew Johnson. Human-agent
interaction. 2011. 2.1

[10] Jessie YC Chen and Michael J Barnes. Supervisory control of multiple robots:
Effects of imperfect automation and individual differences. Human Factors,

55

Bibliography

54(2):157–174, 2012. 2.1

[11] Jessie YC Chen and Michael J Barnes. Human–agent teaming for multirobot
control: A review of human factors issues. IEEE Transactions on Human-Machine
Systems, 44(1):13–29, 2014. 2.1

[12] Jessie YC Chen, Shan G Lakhmani, Kimberly Stowers, Anthony R Selkowitz, Ju-
lia L Wright, and Michael Barnes. Situation awareness-based agent transparency
and human-autonomy teaming effectiveness. Theoretical issues in ergonomics
science, 19(3):259–282, 2018. 2.2

[13] Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems,
Chitwan Saharia, Thien Huu Nguyen, and Yoshua Bengio. BabyAI: First steps
towards grounded language learning with a human in the loop. In International
Conference on Learning Representations, 2019. 1.4

[14] Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. Minimalis-
tic gridworld environment for openai gym. https://github.com/maximecb/

gym-minigrid, 2018. 1.1, 1.3.6

[15] Hal Daumé, John Langford, and Daniel Marcu. Search-based structured predic-
tion. Machine learning, 75(3):297–325, 2009. 1.2

[16] Mustafa Demir, Nathan J McNeese, and Nancy J Cooke. Team synchrony
in human-autonomy teaming. In International Conference on Applied Human
Factors and Ergonomics, pages 303–312. Springer, 2017. 2.1

[17] Yiming Ding, Carlos Florensa, Pieter Abbeel, and Mariano Phielipp. Goal-
conditioned imitation learning. In Advances in Neural Information Processing
Systems, pages 15324–15335, 2019. 1.2, 1.3.3

[18] Xiaocong Fan, Michael McNeese, Bingjun Sun, Timothy Hanratty, Laurel Allen-
der, and John Yen. Human–agent collaboration for time-stressed multicontext
decision making. IEEE Transactions on Systems, Man, and Cybernetics-Part A:
Systems and Humans, 40(2):306–320, 2009. 2.2

[19] Jaime F Fisac, Eli Bronstein, Elis Stefansson, Dorsa Sadigh, S Shankar Sastry,
and Anca D Dragan. Hierarchical game-theoretic planning for autonomous
vehicles. In 2019 International Conference on Robotics and Automation (ICRA),
pages 9590–9596. IEEE, 2019. 2.1, 2.2

[20] Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adver-
sarial inverse reinforcement learning. arXiv preprint arXiv:1710.11248, 2017. 1.1,
1.2

[21] Anirudh Goyal, Yoshua Bengio, Matthew Botvinick, and Sergey Levine. The
variational bandwidth bottleneck: Stochastic evaluation on an information
budget, 2020. 3.1

56

https://github.com/maximecb/gym-minigrid
https://github.com/maximecb/gym-minigrid

Bibliography

[22] Anirudh Goyal, Yoshua Bengio, Matthew Botvinick, and Sergey Levine. The
variational bandwidth bottleneck: Stochastic evaluation on an information
budget, 2020. 4

[23] C Shawn Green and Daphne Bavelier. Enumeration versus multiple object
tracking: The case of action video game players. Cognition, 101(1):217–245,
2006. 2.1

[24] William H Guss, Cayden Codel, Katja Hofmann, Brandon Houghton, Noboru
Kuno, Stephanie Milani, Sharada Mohanty, Diego Perez Liebana, Ruslan
Salakhutdinov, Nicholay Topin, et al. The minerl competition on sample efficient
reinforcement learning using human priors. arXiv preprint arXiv:1904.10079,
2019. 2.1

[25] Maaike Harbers, Catholijn Jonker, and Birna Van Riemsdijk. Enhancing team
performance through effective communication. 2012. 2.2

[26] T Haynes and Sandip Sen. Co-adaptation in a team. International Journal of
Computational Intelligence and Organizations, 1(4):1–20, 1996. 2.1

[27] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In
D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors,
Advances in Neural Information Processing Systems 29, pages 4565–4573. Curran
Associates, Inc., 2016. 1.1, 1.2, 1.3.1, 1.3.2, 1.3.3, 1.4

[28] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with
gumbel-softmax, 2017. 3.2.2

[29] Wonseok Jeon, Seokin Seo, and Kee-Eung Kim. A bayesian approach to gen-
erative adversarial imitation learning. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural
Information Processing Systems 31, pages 7429–7439. Curran Associates, Inc.,
2018. 1.2

[30] Vijay R Konda and John N Tsitsiklis. Actor-critic algorithms. In Advances in
neural information processing systems, pages 1008–1014, 2000. 2.4.1

[31] Ilya Kostrikov, Kumar Krishna Agrawal, Debidatta Dwibedi, Sergey Levine, and
Jonathan Tompson. Discriminator-actor-critic: Addressing sample inefficiency
and reward bias in adversarial imitation learning. In International Conference
on Learning Representations, 2019. 1.1, 1.2, 1.3.2, 1.3.4, 1.3.6, 1.4

[32] Steve WJ Kozlowski and Georgia T Chao. Unpacking team process dynamics
and emergent phenomena: Challenges, conceptual advances, and innovative
methods. American Psychologist, 73(4):576, 2018. 2.1, 2.2

[33] Steve WJ Kozlowski, James A Grand, Samantha K Baard, and Marina Pearce.
Teams, teamwork, and team effectiveness: Implications for human systems

57

Bibliography

integration. 2015. 2.1, 2.2

[34] Steve WJ Kozlowski and Katherine J Klein. A multilevel approach to theory
and research in organizations: Contextual, temporal, and emergent processes.
2000. 2.1, 2.2

[35] Alex Kuefler, Jeremy Morton, Tim Wheeler, and Mykel Kochenderfer. Imitating
driver behavior with generative adversarial networks. In 2017 IEEE Intelligent
Vehicles Symposium (IV), pages 204–211. IEEE, 2017. 1.1

[36] Vitaly Kurin, Sebastian Nowozin, Katja Hofmann, Lucas Beyer, and Bastian
Leibe. The atari grand challenge dataset. arXiv preprint arXiv:1705.10998, 2017.
2.1

[37] Steven James Levine and Brian Charles Williams. Watching and acting together:
Concurrent plan recognition and adaptation for human-robot teams. Journal of
Artificial Intelligence Research, 63:281–359, 2018. 2.2

[38] Huao Li, Dana Hughes, Michael Lewis, and Katia Sycara. Individual adaptation
in teamwork. In Proceedings of the 42nd Annual Conference of the Cognitive
Science Society, page In Press, 2020. 2.6

[39] Huao Li, Stephanie Milani, Vigneshram Krishnamoorthy, Michael Lewis, and
Katia Sycara. Perceptions of domestic robots’ normative behavior across cultures.
In Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society,
pages 345–351, 2019. 2.1

[40] Huao Li, Tianwei Ni, Siddharth Agrawal, Dana Hughes, Michael Lewis, and
Katia Sycara. Team synchronization and individual contributions in coop-space
fortress. In Proceedings of the 64th Human Factors and Ergonomics Society
Annual Meeting, page In Press, 2020. 2.1, 2.4.1, 2.6

[41] Yunzhu Li, Jiaming Song, and Stefano Ermon. Infogail: Interpretable imita-
tion learning from visual demonstrations. In Advances in Neural Information
Processing Systems, pages 3812–3822, 2017. 1.2

[42] Yunzhu Li, Jiaming Song, and Stefano Ermon. Infogail: Interpretable imitation
learning from visual demonstrations, 2017. 4

[43] Amir Mané and Emanuel Donchin. The space fortress game. Acta psychologica,
71(1-3):17–22, 1989. 2.3

[44] Nathan J McNeese, Mustafa Demir, Nancy J Cooke, and Christopher Myers.
Teaming with a synthetic teammate: Insights into human-autonomy teaming.
Human factors, 60(2):262–273, 2018. 2.1

[45] Ben B Morgan Jr et al. Measurement of team behaviors in a navy environment.
final report. 1986. 2.1

[46] OpenAI, Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Prze-

58

Bibliography

myslaw Debiak, Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme,
Chris Hesse, Rafal Józefowicz, Scott Gray, Catherine Olsson, Jakub Pachocki,
Michael Petrov, Henrique Pondé de Oliveira Pinto, Jonathan Raiman, Tim
Salimans, Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya Sutskever, Jie
Tang, Filip Wolski, and Susan Zhang. Dota 2 with large scale deep reinforcement
learning. arXiv preprint arXiv:1912.06680, 2019. 2.1

[47] Raja Parasuraman and Victor Riley. Humans and automation: Use, misuse,
disuse, abuse. Human factors, 39(2):230–253, 1997. 2.1

[48] Sid Reddy, Anca Dragan, and Sergey Levine. Where do you think you’re
going?: Inferring beliefs about dynamics from behavior. In Advances in Neural
Information Processing Systems, pages 1454–1465, 2018. 2.2

[49] Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learning. In
Proceedings of the thirteenth international conference on artificial intelligence
and statistics, pages 661–668, 2010. 1.2

[50] Stephane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation
learning and structured prediction to no-regret online learning. In Geoffrey Gor-
don, David Dunson, and Miroslav Dud́ık, editors, Proceedings of the Fourteenth
International Conference on Artificial Intelligence and Statistics, volume 15 of
Proceedings of Machine Learning Research, pages 627–635, Fort Lauderdale, FL,
USA, 11–13 Apr 2011. PMLR. 1.2

[51] Dorsa Sadigh, Anca D Dragan, Shankar Sastry, and Sanjit A Seshia. Active
preference-based learning of reward functions. In Robotics: Science and Systems,
2017. 2.2

[52] Dorsa Sadigh, Nick Landolfi, Shankar S Sastry, Sanjit A Seshia, and Anca D
Dragan. Planning for cars that coordinate with people: leveraging effects on
human actions for planning and active information gathering over human internal
state. Autonomous Robots, 42(7):1405–1426, 2018. 2.1, 2.2

[53] Dorsa Sadigh, S Shankar Sastry, Sanjit A Seshia, and Anca Dragan. Information
gathering actions over human internal state. In 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 66–73. IEEE, 2016.
2.1

[54] Eduardo Salas, Nancy J Cooke, and Michael A Rosen. On teams, teamwork, and
team performance: Discoveries and developments. Human factors, 50(3):540–547,
2008. 2.1, 2.5.2

[55] Eduardo Salas, Dana E Sims, and C Shawn Burke. Is there a “big five” in
teamwork? Small group research, 36(5):555–599, 2005. 2.1

[56] Jean Scholtz. Theory and evaluation of human robot interactions. In 36th Annual
Hawaii International Conference on System Sciences, 2003. Proceedings of the,

59

Bibliography

pages 10–pp. IEEE, 2003. 2.1

[57] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp
Moritz. Trust region policy optimization. In International conference on machine
learning, pages 1889–1897, 2015. 2.4.1

[58] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms. CoRR, abs/1707.06347, 2017. 1.4

[59] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.
2.4.1

[60] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms. CoRR, abs/1707.06347, 2017. 2.4.1

[61] Amanpreet Singh, Tushar Jain, and Sainbayar Sukhbaatar. Learning when to
communicate at scale in multiagent cooperative and competitive tasks, 2018.
(document), 3.1, 3.1, 3.2.1, 3.2.1, 3.2.6

[62] Sainbayar Sukhbaatar, Arthur Szlam, and Rob Fergus. Learning multiagent
communication with backpropagation. CoRR, abs/1605.07736, 2016. 3.1

[63] Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from
observation. arXiv preprint arXiv:1805.01954, 2018. 1.2

[64] Mycal Tucker, Huao Li, Siddharth Agrawal, Dana Hughues, Katia P. Sycara,
Michael Lewis, and Julie Shah. Emergent discrete communication in semantic
spaces. NeurIPS 2021, Under Review. 3.2.2

[65] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning
with double q-learning. arXiv preprint arXiv:1509.06461, 2015. 2.4.1

[66] Emma M van Zoelen, Anita Cremers, Frank PM Dignum, Jurriaan van Diggelen,
and Marieke M Peeters. Learning to communicate proactively in human-agent
teaming. In International Conference on Practical Applications of Agents and
Multi-Agent Systems, pages 238–249. Springer, 2020. 2.2

[67] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew
Dudzik, Junyoung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko
Georgiev, et al. Grandmaster level in starcraft ii using multi-agent reinforcement
learning. Nature, 575(7782):350–354, 2019. 2.1

[68] Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha
Vezhnevets, Michelle Yeo, Alireza Makhzani, Heinrich Küttler, John Agapiou,
Julian Schrittwieser, et al. Starcraft ii: A new challenge for reinforcement
learning. arXiv preprint arXiv:1708.04782, 2017. 2.1

[69] Ronald J. Williams. Simple statistical gradient-following algorithms for con-
nectionist reinforcement learning. Mach. Learn., 8(3–4):229–256, May 1992.

60

Bibliography

3.2.1

[70] Mehrdad Zakershahrak, Akshay Sonawane, Ze Gong, and Yu Zhang. Interactive
plan explicability in human-robot teaming. In 2018 27th IEEE International
Symposium on Robot and Human Interactive Communication (RO-MAN), pages
1012–1017. IEEE, 2018. 2.1

61

	1 Addressing Reward Bias in Generative Adversarial Imitation Learning
	1.1 Introduction
	1.2 Related Work
	1.3 Theory
	1.3.1 Generative Adversarial Imitation Learning
	1.3.2 Survival Based and Task Based Environments
	1.3.3 Reward bias in GAIL
	1.3.4 Discriminator Actor Critic
	1.3.5 Towards an unbiased reward function
	1.3.6 Choice of Environment

	1.4 Experiments
	1.5 Results
	1.5.1 Effect of different reward functions on episode length

	1.6 Conclusion

	2 Adaptative Agent Architecture for Human-Agent Teaming
	2.1 Introduction
	2.2 Related Work
	2.3 Team Space Fortress
	2.4 Adaptive Agent Architecture
	2.4.1 Exemplar Policies Library
	2.4.2 Similarity Metrics
	2.4.3 Adaptive Agents

	2.5 Human-Agent Teaming Experiments
	2.5.1 Experimental Design
	2.5.2 Results
	2.5.3 Trends in Performance and Similarity to Optimal Partner using ASM metric
	2.5.4 Pilot experiment with adaptive agents

	2.6 Conclusion and Future Work

	3 Learning Sparse Discrete Communication Protocols
	3.1 Introduction
	3.2 Theory
	3.2.1 IC3 Net
	3.2.2 Discrete Prototype Based Communication
	3.2.3 IC3Net-Fixed-Proto
	3.2.4 IC3Net-Proto
	3.2.5 IC3NetG-Proto
	3.2.6 Environments

	3.3 Experiments
	3.4 Results
	3.5 Conclusions and Future Work

	4 Conclusions and Future Work
	Bibliography

