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Abstract

Monocular object detection and tracking have improved drastically in
recent years, but rely on a key assumption: that objects are visible to
the camera. Many offline tracking approaches reason about occluded
objects post-hoc, by linking together tracklets after the object re-appears,
making use of reidentification (ReID). However, online tracking in embod-
ied robotic agents (such as a self-driving vehicle) fundamentally requires
object permanence, which is the ability to reason about occluded objects
before they re-appear. In this work, we re-purpose tracking benchmarks
and propose new metrics for the task of detecting invisible objects, fo-
cusing on the illustrative case of people. We demonstrate that current
detection and tracking systems perform dramatically worse on this task.
We introduce two key innovations to recover much of this performance
drop. We treat occluded object detection in temporal sequences as a short-
term forecasting challenge, bringing to bear tools from dynamic sequence
prediction. Second, we build dynamic models that explicitly reason in 3D
from monocular videos without calibration, using observations produced
by monocular depth estimators. To our knowledge, ours is the first work
to demonstrate the effectiveness of monocular depth estimation for the
task of tracking and detecting occluded objects. Our approach strongly
improves by 11.4% over the baseline in ablations and by 5.0% over the
state-of-the-art in F1 score.

As will be described, our approach is dependent on good amodal detectors
and plausible monocular depth estimates. In this regard, we explore two
directions of future work. First, we note that no video dataset exists
that focuses explicitly on amodal object annotations across their tracks,
although this is a more reasonable object detection task as objects do not
cease to exist where their visual footprint ends. We propose TAO-Amodal,
an extension of our older work, TAO. Second, we note that a seemingly
harmful protocol in depth estimation inference is to downsample input.
This leads to loss of high-frequency details in images, and important
objects like people and vehicles in high-resolution images. We probe a
few hypotheses in this direction.
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Chapter 1

Introduction

Object detection has seen immense progress, albeit under a seemingly harmless

assumption: that objects are visible to the camera in the image. However, objects

that are fully occluded (and thus, invisible) continue to exist and move in the world.

Indeed, object permanence is a fundamental visual cue exhibited by infants in as early

as 3 months [3, 26]. Practical autonomous systems must similarly reason about objects

under such occlusions to ensure safe operation (Figure 1.1). Interestingly, existing

work on object detection and tracking tends to de-emphasize this capability, either

choosing to completely ignore highly-occluded instances for evaluation [17, 40, 52, 60],

or simply downweighting them because they occur so rarely that they fail to materially

affect overall performance [43]. One reason that invisible-object detection may have

been under-emphasized in the tracking community is that for offline analysis, one

can post-hoc reason about the presence of an occluded object by relinking detections

after it reappears. This approach has spawned the large subfield of reidentification

(ReID). However, in an online setting (such as an autonomous vehicle that must make

decisions given the available sensor information), intelligent agents must be able to

instantaneously reason about occluded objects before they re-appear.

1.1 Problem formulation

We begin by introducing benchmarks and metrics for evaluating the task of detecting

and tracking invisible people. To do so, we repurpose existing tracking benchmarks

1



1. Introduction

t = 0 t = 10 t = 15 t = 20

Figure 1.1: We visualize an online tracking scenario from Argoverse [10] that requires
tracking a pedestrian through a complete occlusion. Such applications cannot wait for
objects to re-appear (, as re-identification approaches do): autonomous agents must
properly react during the occlusion. We treat online detection of occluded people as
a short-term forecasting challenge.

and introduce metrics for evaluating this task that appropriately reward detection of

occluded people. To ensure benchmarks are online, we forbid algorithms from accessing

future frames when reporting object states for the current frame. Although this task

requires reasoning about object trajectories, it can be evaluated as both a detection and

a tracking problem. For the latter, we introduce extensions to tracking metrics later

in the thesis. When analyzing our metrics, it becomes readily apparent that human

annotation of ground-truth occluded objects is challenging. We provide pilot human

vision experiments in experiments chapter that show annotators are still consistent,

but exhibit larger variation in labeling the pixel position of occluded instances. This

suggests that algorithms for occluded object detection should report distributions

over object locations rather than precise discrete (bounding box) locations. Inspired

by metrics for evaluating multimodal distributions in the forecasting literature [10],

we explore probabilistic algorithms that make k predictions which are evaluated by

Top-k accuracy.

1.2 Analysis

Perhaps not surprisingly, our first observation is that performance of state-of-the-art

detectors and trackers plummets on occluded people, from 68.5% to 28.4%; it is far

easier to detect visible objects than invisible ones! This underscores the need for the

community to focus on this underexplored problem.

2



1. Introduction

We introduce two simple but key innovations for addressing this task, which

improve performance from 28.4% to 39.8%. (a) We recast the problem of online

tracking of occluded objects as a short-term forecasting challenge. We explore state-

of-the-art deep forecasting networks, but find that classic linear dynamics models

(Kalman filters) perform quite well. (b) Because modeling occlusions is of central

importance, we cast the problem as one of 3D tracking given 2D image measurements.

1.3 Novelty

While there exists considerable classic work on 3D tracking from 2D [8, 11, 50, 54],

much focuses on 3D modeling of tracked objects. Instead, we find that the 3D

structure of scene occluders is important for understanding where tracked objects

can “hide”. Typically such dense 3D understanding requires calibrated multiview

sensors [15, 55]. Instead, we show that recent advances in uncalibrated monocular

depth estimation provide “good enough” estimates of relative depth that still enable

dense freespace reasoning.

This is crucial because monocular depth has the potential to be far more scal-

able [57]. To our knowledge, ours is the first work to use uncalibrated depth estimates

for multi-object tracking and detection of occluded objects.

1.4 Overview

After reviewing related work, we present our core algorithmic contributions, includ-

ing straightforward but crucial extensions to classic linear dynamics models to (a)

incorporate putative depth observations from a monocular network and (b) forecast

object state even during occlusions. We conclude with extensive evaluations on three

datasets [13, 43, 56] repurposed for detecting occluded objects.

3
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Chapter 2

Related Work

2.1 Amodal object detection

Amodal object detection aims to segment the full extent of objects that may be

partially (but not fully) occluded. [67] introduces this task with a dataset labeled by

multiple annotators, which is later expanded by [68]. More recently, [48] introduces

a larger dataset of amodal annotations on the KITTI [21] dataset. Approaches in

this setting largely rely on training variants of standard detectors ([24]) on amodal

annotations generated synthetically from modal datasets [14, 37, 62, 65]. As this

line of work addresses detection from a single image, it requires objects to be at

least partially visible. By contrast, we target fully occluded people, which cannot be

recovered from a single frame.

2.2 Multi-object tracking

Multi-object tracking requires tracking across partial and full occlusions. Approaches

for this task address occlusions post-hoc in an offline manner, using appearance-based

re-identification models to identify occluded objects after they become visible. These

appearance-based models can be incorporated into tracking approaches, as part of

a graph optimization problem [4, 47, 64] or online linking [5, 58]. In this work, we

point out that some approaches internally maintain online estimates of the position of

5



2. Related Work

occluded people [5, 7, 58], but explicitly choose not to report these internal predictions,

as they tend to be noisy and, thus, are penalized heavily by current benchmarks. We

provide two simple extensions to these internal predictions that significantly improve

detection of occluded people while preserving accuracy on visible people. [22] tracks

occluded objects using contextual ‘supporters’, but requires a user to initialize a

single object to track in uncluttered scenes; by contrast, we simultaneously detect

and track people in large crowds.

Other work shares our motivation of tracking in 3D but relies on additional

depth sensors [20] or stereo setups [9, 29]. Finally, many surveillance-based tracking

systems explicity reason about object occupancy and occlusion, but require calibrated

cameras to compute ground plane coordinates [1, 19, 28, 31, 32]. By contrast, our

work emphasizes detection of occluded people in uncalibrated, monocular videos. To

do so, we use monocular depth estimators via technical innovations that address

noise in predicted depth estimates. Our method generalizes to arbitrary videos, since

estimating monocular depth is far more scalable than retrieving additional sensor

information for any video.

2.3 Forecasting

Forecasting approaches predict pedestrian trajectories in future, unobserved frames.

These approaches leverage social cues from nearby pedestrians or semantic scene

information to better model person trajectories [33, 35, 42, 46, 53, 61]. Recently,

data-driven approaches have also been proposed for learning social cues [2, 51]. We

note that detection of fully occluded people can be formulated as forecasting the

trajectory of a visible person in future frames, where the positions of the occluded

person are unobserved, but the rest of the frame can be observed. Our approach

uses a constant-velocity model to forecast trajectories, equipped with depth cues

from the observed frames, to improve detection of occluded people. In Section 4.7,

we show that while this approach can use a more powerful forecasting model, the

constant-velocity approximation is sufficient in our setting.

6



Chapter 3

Method

We build an online approach for detecting invisible people starting with a simple

tracker, using estimated trajectories of visible people to forecast their location during

occlusions. We describe our tracking mechanism, building upon [59]. While such

trackers internally forecast the location of occluded people for improved tracking,

these forecasts tend to be noisy and cannot directly localize occluded people. To

address this, we incorporate depth cues from a monocular depth estimator to reason

about occlusions in 3D.

3.1 Background

To detect people during occlusions, we build on a simple online tracker [59] that

estimates the trajectories of visible people. We briefly describe aspects relevant to

our approach, but refer the reader to [59] for a more detailed explanation. In the

first frame, this tracker instantiates a track for each detected person. The tracker

adds each track to its “active” set, representing people that have been seen so far.

Each track maintains a Kalman Filter whose state space encodes the position (x, y),

aspect ratio (a), height (h), and corresponding velocities (ẋ, ẏ, ȧ, ḣ) of the person.The

filter’s process model assumes a constant velocity model with gaussian noise (i.e.,

xt = xt−1 + ˙xt−1 + εx). At each successive frame, the tracker first runs the predict

step of the filter, using the process model to forecast the location of the track in

the new frame. Next, each detection in the current frame is matched to this set of

7



3. Method

active tracks based on appearance features, and distance to the tracks’ forecasted

location (as estimated by the filter). A new track is created for all detections that

are unmatched. If a track is matched to a detection, the detection is used as a new

observation to update the track’s filter, and the detection is reported as part of the

track. Importantly, if a track does not match to any detection, its forecasted box is

not reported. When a track is not matched to a detection for more than Nage frames,

it is deleted.

3.2 Short-term forecasting across occlusions

Although this tracker internally forecasts the positions of all tracks at each step, its

estimates are used only to improve the association of tracks to detections, and are not

reported externally. However, these internally forecasted track locations are crucial

as they may correspond to an occluded person. We show that naively reporting these

track locations leads to significant recall of occluded people, but the noise in these

estimates results in poor precision. Further, these noisy estimates lead to a small

decrease in overall accuracy, as standard benchmarks largely focus on visible people.

We improve these estimates by augmenting them with 3D information. Specifically,

we use a monocular depth estimator [38] to get per pixel depth estimates of the scene.

We then augment our Kalman Filter state space with the inverse depth. Inverse

depth is a commonly used representation predicted by depth estimators [34, 38] due

to important benefits, including the ability to represent points at infinity and ability

to model uncertainty in pixel disparity space (commonly used for stereo-based depth

estimation [44]). Our state space thus additionally includes 1/z variable.

3.3 Tracking in 3D camera coordinates using 2D

image coordinates

Equipped with depth estimates, we formulate tracking with a constant velocity model

in 3D using 2D measurements. Unlike prior work which assumes linear dynamics in

(projected) 2D image measurements, our dynamics model operates in 3D using depth

cues, resulting in far more realistic person trajectories. We derive our uncalibrated

8
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Figure 3.1: (a) Frame t− 1 has active tracks {1, 2, 3, 4}, each with an internal state
of its 2D position, size, velocity, and depth (see text). (b) We forecast tracks in
3D for frame t. (c) Tracks are matched to observed detections at t using spatial
and appearance cues. Matched tracks are considered visible (1, 3). Tracks which
don’t match to a visible detection (2, 4) may be occluded, or simply incorrectly
forecasted. (d) To resolve this ambiguity, we leverage depth cues from a monocular
depth estimator, to compute (e) the freespace horizon. The region between the camera
and the horizon must be freespace, while the area beyond it is unobserved, and so may
contain occluded objects. Tracks lying beyond the freespace horizon are reported as
occluded (2). Tracks within freespace (4) should have been visible, but did not match
to any visible detections. Hence, we assume these tracks are incorrectly forecasted,
and we delete them.

tracker by demonstrating that the unknown camera focal length f can be folded into

a motion noise parameter that can be easily tuned on a training set. Hence our final

method runs without calibration on arbitrary videos.

Let us model objects as cylinders with centroids (Xt, Yt, Zt), height H and aspect

ratio At. We model object height as constant, but allow for varying aspect ratios

because people are non-rigid. We can then compute image-measured bounding boxes

with centroid (xt, yt) and dimensions (ht, at) as follows:

xt = f
Xt

Zt
, yt = f

Yt
Zt
, ht = f

H

Zt
, at = At (3.1)

We extend the commonly used constant velocity model with Gaussian noise from

2D [7, 58] to 3D:

Xt = Xt−1 + Ẋt−1 + εX , εX ∼ N (0, σX), (3.2)

where similar equations hold for Yt, Zt and At. Let the observed (inverse) depth

from a depth estimator associated with an object be 1/zt. Since image measurements

9



3. Method

are given by perspective projection of real world coordinates, we have the following

equations (assuming Gaussian image noise):

xt = f
Xt

Zt
+ εx, εx ∼ N (0, σx) (3.3)

1

zt
=

1

Zt
+ εz, εz ∼ N (0, σz) (3.4)

with similar equations for yt, ht, and at. Note that inverse depth naturally assumes

a large uncertainty in far away regions, and a small uncertainty in nearby regions.

Defining a 3D state space leads us to a modified formulation, written as(
f
Xt

Zt
, f
Yt
Zt
,

1

Zt
, At, f

H

Zt
, f
Ẋt

Zt
, f
Ẏt
Zt
, Ȧt

)
(3.5)

We can therefore rewrite Equation (3.2) as:

f
Xt

Zt
≈ f

Xt

Zt−1
= f

Xt−1

Zt−1
+ f

Ẋt−1

Zt−1
+ f

εX
Zt−1

(3.6)

xt ≈ xt−1 + ẋt−1 + f
εX
Zt−1

(3.7)

where the approximation holds if depths are smooth over time (Zt ≈ Zt−1). Technically,

the above is no longer a linear dynamics model since the noise depends on the state.

But the equation suggests that one can approximately apply a Kalman filter on 2D

image measurements augmented with a temporal noise model that is scaled by the

estimated inverse-depth of the object. Intuitively, this suggests that one should enforce

smoother tracks for objects far away. Our approach thus scales the process noise

(εX) for far away objects, leading to more accurate predictions. Algorithmically,

[59] by default scales process and observation noise covariances according to the

person’s height; our approach instead multiplies the process covariance by the person’s

estimated depth, computed by aggregating past monocular depth observations and

state estimates over time.

Assumptions. Because we do not assume calibrated cameras, we do not know

f . Rather, we make use of training videos provided in standard tracking benchmarks

and simply tune scaled variances σ′X = fσX directly on the training set. We make
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two additional assumptions: that people move with constant velocity in 3D, and that

depth estimates are smooth over time. Although these do not always hold in real

world scenarios, we empirically find that our method generalizes to diverse scenarios.

Filtering estimates lying in freespace. Equipping our state space with depth

information allows us to forecast 3D trajectories. Meanwhile, applying a monocular

depth estimator allows us to determine regions in 3D space that are occluded to the

camera without requiring calibration. Specifically, if our approach forecasts a person

at a point Pf = (xf , yf , zf), we can determine whether Pf should be visible to the

camera by estimating whether Pf lies in the freespace [15] between the camera and

its nearest occluder. In the filter stage in Figure 3.1, we visualize one slice of the

“freespace horizon”: points beyond this horizon are occluded, while points between

the camera and the horizon should be visible.

Concretely, let zo be the (observed) depth of the horizon at (xf , yf). If the

forecasted depth (zf) lies closer to the camera than the horizon depth (zo), as with

person “4” in Figure 3.1 (e), then the person must be in the freespace between the

camera and its closest object, and therefore visible. If we do not detect this person,

then we assume the forecast is an error, and either suppress the forecasted box for

the current frame (in the case of small errors, when zf < αsuppzo) or delete the track

entirely (for large errors, when zf < αdeletezo). A key advantage of this approach

is the ability to reason about occlusions arising not only from interactions between

tracked people, but also from natural occluders such as trees or cars. Section 4.7

shows that this modification is critical for improving the precision of our trajectory

forecasts.

Camera motion. Camera motion is challenging, as our approach assumes linear

dynamics for trajectories. To address this, we follow prior work (e.g., [5]) in estimating

a non-linear pixel warp W between neighboring frames which maps pixel coordinates

(xt−1, yt−1) in one frame to the next (xt, yt). This warp is then used to align boxes

forecasted using frames up to t− 1 with frame t. Note that this alignment assumes

the motion of dynamic objects is small relative to the scene motion, allowing for the

use of an image registration algorithm [16]. Despite the simplicity of this modification,

we show that it helps considerably for the moving camera sequences. In Algorithm 1,

we present the pseudocode of our approach for detecting occluded people. Execution

starts from the MAIN() function.

11
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Algorithm 1 Invisible People Kalman Tracker

1: Detections D in current frame, fi ∈ F , the set of all frames
2: Set of active tracks, T = {t1, . . . , tk} s.t. tj ∈ {Toccluded, Tvisible}

3: procedure update()
4: X, Y1, Y2, Z = MATCH()

5: Update the tracks with the KF Update step for all pairs in X
6: Initialise new tracks for Z
7: Increase age of all tracks in Y1
8: Add Y2 to Toccluded
9: end procedure

10: procedure match()(X, Y1, Y2, Z)
11: Compare forecasted depth, zf with horizon depth, zo
12: if zf < αsuppzo then
13: keep track in Tvisible but don’t output
14: else
15: trigger occluded state logic by adding track to Toccluded
16: end if
17: Bipartite-match detections to tracks with last-known appearance
18: Match unclaimed visible tracks to unclaimed detections using IoU
19: Let X be matched tracks and detection
20: Let Y be unclaimed tracks
21: Let Z be unclaimed detections
22: Separate Y into visible (Y1) and occluded (Y2) tracks
23: for all tracks in Y2 do
24: if zf < αdeletezo then
25: delete track
26: end if
27: end for
28: return X,Y1,Y2,Z
29: end procedure

30: procedure predict()
31: Find warp marix W between current and past frame
32: for all active tracks do
33: Warp the mean of current tracker state with the warp matrix
34: Assume a Constant Velocity Model

12
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35: If track is occluded, assume no velocity for a and h
36: Else, assume constant velocity for a and h
37: Assume scaled process noise for all variables (e.g., f εX

Z
for x)

38: Carry out the KF Predict step to get a new state from warped state
39: end for
40: end procedure

41: procedure main()
42: for every incoming frame do
43: predict new states for all tracks using PREDICT()

44: update all tracks with detections from the current frame using UPDATE()

45: output all active tracks that are either currently occluded or visible
46: end for
47: end procedure

We now proceed to an empirical analysis of the task and prior methods, showing

the benefits of each component of our proposed approach.
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Chapter 4

Experimental Results

We first describe our proposed benchmarks, including the datasets and our proposed

metrics for evaluating the task of detecting occluded people. Next, we conduct

an oracle study in Section 4.5 to analyze how well existing approaches can detect

occluded people. We then compare our proposed approach to these state-of-the-art

approaches in multiple settings in Section 4.6. Finally, we analyze each component of

our approach with a detailed ablation study in Section 4.7.

4.1 Human Vision Experiment

We briefly described our human vision experiment to understand the challenges in

detecting occluded people, and to motivate our evaluation and probabilistic approach.

We provide further details here. We ask 10 in-house annotators to label fully occluded

people in the MOT-17 [43] training set. To focus annotation effort on occluded people,

we sampled track segments (1) containing at least 10 contiguous occluded frames,

preceded by (2) 10 frames where the person is visible (and at least one where the

person has > 70% visibility). Additionally, we avoid annotating small people (< 20

pixels on either side), and limit the number of total frames in a segment to 50.

Annotators labeled at 10 fps (every 3rd frame in a 30fps video) in a simulated

online setup. When an annotator is asked to label frame t, she has access to past

frames (before t), but not future frames > t. Once the annotator submits a label for t,

she is shown the next frame to label, and is no longer allowed to edit the annotation
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for frame t.

Overall, 10 people labeled a total of 113 tracks, 46 of which were unique. This

resulted in a total of 991 annotated boxes. Our key finding was that even for complete

occlusions (less than 10% visibility), annotators still agreed to a fair extent (60% IoU-

agreement), making the problem harder than localizing visible people, but still feasible

for humans. To account for these observations, we evaluate with our invisible-people

detection metric at an IoU of 0.5.

4.2 Datasets

Evaluating our approach is challenging, as most datasets do not annotate occluded

objects. The MOT-17 [43], MOT-20 [13] and PANDA [56] datasets are key exceptions

which label both visible and occluded people, along with a visibility field indicating

what portion of the person is visible to the camera. We find that a majority of the

annotations in these datasets (over 85% in each dataset) are people that are at least

partially visible, leading standard evaluations on these datasets to underemphasize

occluded people. To address this, we separately evaluate accuracy on the subset of

fully occluded people (indicated by < 10% visibility). MOT-17 contains 7 sequences

with publicly available groundtruth, and 7 test sequences with held-out groundtruth.

We evaluate on these 14 sequences. MOT-20 contains 8 sequences, of which 4 have

held-out groundtruth. PANDA officially releases a high-resolution 2FPS groundtruth

for its 10 train and 5 test sequences. Because tracking and forecasting is challenging

at such low frame rates, we reached out to the authors who provided a high-frame

rate (30FPS), low-resolution groundtruth for 9 train videos. We report results on

MOT-20 and PANDA train set without tuning our pipeline on any of the videos in

these datasets. From visual inspection, we found that visibility labels in PANDA tend

to be noisy, and so we define objects with up to 33% visibility as occluded. We carry

out the analysis including oracle and ablation study on MOT-17 train and report

the final results on MOT-17 test, MOT-20 and PANDA datasets. In all, these three

datasets target a diverse set of application scenarios – static surveillance cameras,

car-mounted cameras, and hand-held cameras.
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4.2.1 PANDA and MOT-20

We first discuss the quality of visibility labels in PANDA followed by the criteria we

follow for disabling the depth and freespace reasoning in our method for a subset of

videos in PANDA [56] and MOT-20 [13].

Figure 4.1: ‘Heavy occlusion’ or 33% visibility labels in PANDA are closer to the
< 10% visibility labels in the MOT-17 and MOT-20 datasets. For this reason, we set
the visibility threshold in the PANDA dataset to 33%.

PANDA classifies the visibility of people into 4 discrete classes – ‘without occlusion’,

‘partial occlusion’, ‘heavy occlusion’ and ‘disappearing’. According to the dataset

authors, these correspond to 100%, 66%, 33% and 0% visibility labels on a continuous

0-100 scale. On qualitative inspection, we find that most 33% visible people in

PANDA are fully-occluded (by our definition of < 10% visibility). Though the

17



4. Experimental Results

<0.1 0.1-0.4 0.4-0.7 0.7-1.0
Visibility

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e 

Io
U

Human annotator agreement

Figure 4.2: We visualize bounding boxes labeled by multiple (4) in-house annotators
(left). During small occlusions, annotators strongly agree. During large occlusions
(less than 10% visible, last frame), annotators still agree to a fair extent (average IoU
overlap of 60%, right), but require temporal video context. We use these to justify
our Top-k evaluation and motivate our probabilistic tracking approach.

visibility annotation protocol is not detailed in the paper, we hypothesize that this

anomaly exists because only those people are marked with 0% visibility which strictly

have 0 visible pixels. Some examples are shown in Figure 4.1. Owing to this, we set

the threshold of calling a person invisible in the PANDA dataset as 33% visibility.

Some sequences in PANDA and MOT-20 are top-down view videos where oc-

clusions are unlikely to occur. In such sequences, we revert to using the standard

DeepSORT tracker. For MOT-20, we disable our method on two sequences captured

from a camera mounted at a high height based on visual inspection. For the PANDA

dataset, which specifies the building floor on which the camera is mounted, we use

DeepSORT for cameras mounted on or above the 8th floor. We note that this decision

can be easily made in the real world by practitioners based on the height of the

camera.

4.3 Metrics

As most benchmarks consist primarily of visible people, existing metrics which

measure performance across all people underemphasize the accuracy of detecting

occluded people. We propose detection and tracking metrics which evaluate accuracy

on occluded people, as indicated by visibility < 10% and on all (visible and invisible)
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Table 4.1: Oracle ablations on MOT-17 train reporting Top-5 F1, Top-1 F1 and IDF1
for occluded and all people, using Faster R-CNN detections. ‘Occl strat’ stands for
Occlusion Strategy. We report the Top-5 mean and standard deviation for 3 runs.

Detections Tracks Occl Strat Online?
Top-5 Top-1 F1

Occl F1 Occl Prec Occl Rec All F1 Occl All

Groundtruth (vis.) Groundtruth Interpolate 7 87.3 ±0.1 83.8 ±0.2 91.1 ±0.1 98.0 ±0.0 79.8 96.8
Faster R-CNN Groundtruth Interpolate 7 46.4 ±0.1 65.5 ±0.1 35.9 ±0.1 70.5 ±0.0 34.4 68.1

Groundtruth (vis.) DeepSORT Interpolate 7 53.3 ±0.2 86.7 ±0.1 38.5 ±0.2 92.3 ±0.0 44.4 92.0
Faster R-CNN DeepSORT Interpolate 7 32.2 ±0.0 60.8 ±0.2 21.9 ±0.0 69.9 ±0.0 23.2 68.4

Faster R-CNN DeepSORT Forecast 3 29.8 ±0.2 29.5 ±0.4 30.2 ±0.1 69.4 ±0.0 20.9 66.5

Table 4.2: Supplementary oracle ablations on MOT-17 train.

Detections Tracks Occl Strat Online?
IDF1

Occl All

Groundtruth (vis.) Groundtruth Interpolate 7 77.8 96.7
Faster R-CNN Groundtruth Interpolate 7 20.5 67.4

Groundtruth (vis.) DeepSORT Interpolate 7 21.3 81.0
Faster R-CNN DeepSORT Interpolate 7 6.4 53.3

Faster R-CNN DeepSORT Forecast 3 7.6 53.3

people. Since localizing fully-occluded people involves higher positional uncertainty

than visible people, we allow algorithms to predict k potential locations for each

person.

4.3.1 Top-k F1

We start by modifying the standard detection evaluation protocol [17, 40]. For every

person, we allow methods to report k predictions, P = {p1, p2, . . . , pk}. We match

these predictions to all groundtruth boxes based on intersection-over-union (IoU).

We define the overlap between a groundtruth g and P as the maximum overlap

with the predictions pi in P — , IoU(g, P ) = maxiIoU(g, pi). We use this overlap

definition and perform standard matching between predictions and groundtruth, with

a minimum overlap threshold of αIoU .

When evaluating accuracy across all people, matched groundtruth boxes are true

positives (TP), all unmatched groundtruth are false negatives (FNs, or misses), and
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unmatched detections are false positives (FP). When evaluating accuracy on occluded

people, only matched occluded groundtruth boxes count as TPs, only unmatched

occluded groundtruth boxes count as FNs, and all unmatched detections count as

FPs. Intuitively, when evaluating metrics for occluded people, we do not penalize

a detector for correctly detecting a visible person, but we do penalize it for false

positives that do not match any visible or occluded person.

We now describe how the k-vector of predictions is obtained: in addition to a state

mean (first sample), our probabilistic method maintains covariances for x and z state

variables which result in a 2D gaussian. Since these gaussians may extend incorrectly

into freespace, we perform rejection sampling to accumulate k-1 predictions which

respect freespace constraints. This gives us P . For baseline methods that are not

probabilistic or do not have access to a depth map, we artificially simulate this

distribution by tuning two scale factors that control the size of gaussians as a function

of a bounding box’s height. We tune these scale factors on MOT-17 train and use

them throughout experiments.

4.3.2 Top-1 F1

When k = 1, this metric is simply the standard F1 metric. We additionally report

this Top-1 F1 for occluded and all people. We do not use the standard ‘average

precision’ (AP) metric as most detectors and trackers on the MOT and PANDA

datasets do not report confidences.

4.3.3 IDF1

To evaluate tracking, we report the standard IDF1 metric and also modify it for

evaluating occluded people. Specifically, we divide the groundtruth tracks into visible

and occluded segments, and perform matching only on the occluded segments. Once

the tracks are matched, we compute IDTP as the number of matched occluded boxes,

IDFP as the number of unmatched occluded or visible predictions, and IDFN as

the number of unmatched occluded groundtruth boxes. We similarly modify MOTA

later.

To guide evaluation, we conduct a human vision experiment with 10 in-house

annotators who annotated 991 boxes in 59 tracks with occlusion phases. Figure 4.2
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shows that annotators have lower consistency when labeling occluded people than

visible people. To address this ambiguity in localizing occluded people, we choose a

low αIoU = 0.5 and k = 5 in our experiments.

4.4 Implementation details

We empirically set parameters in our approach on MOT-17 train with Faster R-CNN

[49] detections. The optimal thresholds for filtering forecasts on the train set are

αdelete = 0.88, αsupp = 1.061. During occlusion we treat a person as a point, freezing its

aspect ratio and height. We fix Nage to 30. Further details of our method, parameters

and their tuning protocol, including improvements by tuning Nage have also been

covered. We tune on MOT-17 train and apply these tuned parameters on MOT-17

test, MOT-20, and PANDA. We find that our method and its hyperparameters tuned

on the train set generalize well to the test set. We use [38] for monocular depth

estimates, which has been shown to work well in the wild. While these estimates can

be noisy, we qualitatively find that the relative depth orderings used in our approach

are fairly robust.

4.5 Oracle Study

4.5.1 What is the impact of visible detection on occluded

detection?

We first evaluate an offline approach which uses groundtruth detections and tracks for

visible people to (linearly) interpolate detections for occluded people in Table 4.2. As

this method perfectly localizes visible people, and most people in this benchmark are

visible, it achieves a high overall Top-5 F1 of 98.0 (Table 4.2, row 1). Additionally,

despite using simple linear interpolation, this oracle also achieves a high Top-5 F1 of

87.3 for invisible people. This result indicates that although long-term forecasting

1Note that αsupp > 1 allows the forecasted depth to be closer to the camera than the observed
depth, accounting for potential noise in the depth estimator to reduce the number of forecasts that
are suppressed.
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of pedestrian trajectories may require higher-level reasoning [35, 42, 53], short-term

occlusions may be modeled with simple linear models.

Next, we evaluate the same approach with detections from a Faster R-CNN [49]

model in place of groundtruth (Table 4.2, row 2). This leads to a significant drop in

both overall and occluded accuracy, indicating that improvements in visible person

detection can improve detection for invisible people. Finally, although Occluded

Top-5 F1 drops, it is significantly above chance, suggesting that current detectors

equipped with appropriate trackers can detect invisible people.

4.5.2 What is the impact of tracking on occluded

detection?

So far, we have assumed oracle linking of detections, allowing for linear interpolation

of bounding boxes to detect people through occlusion. We now evaluate the impact

of using an online tracker, equipped with re-identification, on detecting occluded

people. Removing the oracle results in a drastic drop in accuracy: the Top-5 F1 score

for occluded people drops by over 30 points (87.3 to 53.3, Table 4.2 row 3) using

groundtruth detections, and 14 points with Faster R-CNN detections (46.4 to 32.2,

Table 4.2 row 4). Despite this significant drop in Occluded Top-5 F1, the overall

Top-5 F1 is significantly more stable (from 98.0 to 92.3 for groundtruth detections and

70.5 to 69.9 for Faster R-CNN), showing that overall person detection and tracking

underemphasizes the importance of detecting occluded people.

4.5.3 Can online approaches work?

These results indicate that in the offline setting, existing visible-person detection and

tracking approaches can detect invisible people via interpolation. We now evaluate a

simple online approach, which uses an off-the-shelf visible person detector (Faster R-

CNN), equipped with a tracker (DeepSORT) and linear (constant velocity) forecasting

for detecting invisible people (Table 4.2, row 5). Moving to an online setting results in

a similar Top-5 F1 score but significantly reduces the precision for occluded persons,

from 60.8 to 29.5. This is expected as even though linear forecasting recalls slightly

more number of boxes than offline interpolation (recall from 21.9 to 30.2), its naive
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Table 4.3: Detection and tracking results on MOT-17 [43], MOT-20 [13] and PANDA
[56] train. We evaluate on public detections provided with MOT-17 (DPM [18],
FRCNN [49], SDP [63]), two trackers that operate on public detections (Tracktor++
[5], MIFT [25]), and CenterTrack [66] which does not use public detections. We use
(public FRCNN, visible groundtruth) detections for (MOT-20, PANDA). Our method
improves on occluded people across all trackers.

Top-5 F1 Top-1 F1 IDF1

Occl All Occl All Occl All

M
O

T
-1

7

DPM 17.2 46.7 13.2 46.5 2.9 36.9
+ Ours 24.6 (+7.4) 49.3 (+2.6) 17.4 48.4 7.2 36.8
FRCNN 28.4 68.5 20.1 67.4 1.5 55.6
+ Ours 39.8 (+11.4) 70.5 (+2.0) 26.7 68.5 10.5 54.8
SDP 45.2 80.5 35.8 79.8 10.9 64.6
+ Ours 51.2 (+6.0) 80.8 (+0.3) 38.5 79.4 17.0 64.7
Tracktor++ 32.4 77.0 22.7 76.8 1.3 65.1
+ Ours 45.4 (+13.0) 77.2 (+0.2) 33.2 76.5 15.6 66.8
MIFT 37.8 75.9 29.9 75.1 9.4 61.7
+ Ours 44.9 (+7.1) 75.6 (-0.3) 33.8 74.3 16.5 62.6
CTrack 38.7 84.8 29.4 84.2 5.4 65.0
+ Ours 47.9 (+9.2) 84.4 (-0.4) 36.4 83.4 16.2 70.2

M
O
T
-2
0 FRCNN 42.5 71.2 27.5 70.7 2.9 42.2

+ Ours 46.1 (+3.6) 71.5 (+0.3) 28.6 70.9 5.0 42.0

P
A
N
D
A GT (visible) 45.5 90.6 30.5 90.5 2.5 70.2

+ Ours 49.5 (+4.0) 90.5 (-0.1) 34.1 90.3 4.6 62.1

nature results in many more false positives resulting in a much lower precision and

therefore, a similar F1 score. In Section 4.7, we present simple modifications to this

approach that recover much of this performance gap.

4.6 Comparison to Prior Work

Next, we apply our approach to the output of existing methods to evaluate its

improvement over prior work. Table 4.3 shows results on the MOT-17 train set,

showing our approach improves significantly in Occluded Top-5 F1 ranging from 6.0
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Top-5 F1 Top-1 F1 IDF1

Occl All Occl All Occl All

M
O

T
-1

7

Ours 43.4 76.8 31.4 75.6 14.7 58.7
MIFT [25] 38.4 77.3 29.7 76.7 10.4 56.4
UnsupTrack [30] 35.9 78.1 26.6 77.4 9.7 62.6
GNNMatch [45] 35.2 74.3 26.3 73.7 6.9 56.1
GSM Tracktor [41] 35.4 73.8 26.2 73.2 7.4 57.8
Tracktor++ [5] 33.3 73.3 24.8 73.0 5.2 55.1

M
O

T
-2

0 Ours 46.9 76.7 33.3 75.2 11.2 51.1
Tracktor++ [5] 44.2 76.0 34.2 75.3 10.2 48.8
UnsupTrack [30] 41.7 71.4 30.9 70.8 9.6 50.6
SORT20 [59] 38.5 65.2 27.3 63.6 8.8 45.1

Table 4.4: Results on MOT-17 and MOT-20 test set. The best, second-best and
third-best methods are highlighted.

to 13.0 points, while maintaining the overall F1. Detecting invisible people requires

reliable amodal detectors for visible people (ref. Section 4.5). For this reason, we

use visible groundtruth detections from PANDA, similar to the oracle experiments

in Section 4.5, as no public set of amodal detections come with PANDA (unlike

MOT-17 or MOT-20). Table 4.3 shows that our method improves the detection of

occluded people by 4.0% on PANDA using groundtruth visible detections and by

3.6% on MOT-20 using the Faster-RCNN public detections. We explicitly do not

tune our hyperparameters for these two datasets, showing that our method is robust

to changes in video data distribution. MOT-20 and PANDA contain a few sequences

with top-down views, where occlusions are rare. We disable our depth and occlusion

reasoning on such sequences.

As MOT-17 and MOT-20 test labels are held out, we worked with the MOTChal-

lenge authors to implement our metrics on the test server. Table 4.4 shows that

MIFT2[25] and Tracktor++ [5] achieve the highest Occluded Top-5 F1 amongst prior

online approaches on MOT-17 and MOT-20 test respectively. Applying our approach

on top of these methods improves results significantly by 5.0% to 43.4 F1 and by

2.7% to 46.9 F1, leading to a new state-of-the-art for occluded person detection on

2MIFT is referred to as ISE MOT17R on the MOT leaderboards
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Figure 4.3: Our probabilistic model reports a distribution over 3D location during
occlusions. We visualize (occluded, visible) detection with (outlined, filled-in) bound-
ing boxes (top). We provide “birds-eye-view” top-down visualizations of Gaussian
distributions over 3D object centroids with covariance ellipses (bottom). During
occlusion, variance grows roughly linearly with the number of consecutively-occluded
frames. We are also able to correctly predict depth of occluded people in the top down
view, e.g. in the second last frame, which would not be possible with single-frame
monocular depth estimates. During evaluation, we truncate the uncertainty using
our freespace estimates (not visualized).

MOT-17 and MOT-20 test.

Table 4.3 shows that our method consistently improves occluded F1. However, it

sometimes results in a drop in overall accuracy. We attribute this to the increased

number of false positives introduced while tackling the challenging task of detecting

invisible people. These false positives for invisible people are counted as false positives

for all people, whether visible or invisible. This causes existing metrics to penalize

methods for even trying to detect invisible people. In safety critical applications, where

worst-case accuracy may be more appropriate, our approach significantly improves

during complete occlusions by up to 13.0% on MOT-17, while mildly decreasing

average accuracy by 0.4%.

4.7 Ablation Study

We now study the impact of each component of our approach in Table 4.5, focusing on

the Occluded Top-5 F1 metric using Faster R-CNN detections on the MOT-17 train

set. First, we show that the DeepSORT tracker, upon which our approach is built,
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results in a 28.4 Occluded Top-5 F1. Reporting the internal, linear forecasts from

the tracker increases the score to 29.8, driven primarily by a 12.5% improvement in

recall. Compensating for camera motion provides another 2.4% improvement. Next,

leveraging depth cues to incorporate freespace constraints, as detailed in Section 3.3,

improves accuracy by 3.5%, driven primarily by a 14.6% jump in precision, indicating

that this component drastically reduces false positives. Finally, we add depth-aware

process noise to handle perspective transformations between 2D and 3D coordinates,

which leads to an improvement of 4.1%, resulting in a final score of 39.8. Only a 1.0%

improvement in F1 as compared to 4.1% with Top-5 F1 suggests that our uncertainty

estimates are significantly improved by the depth-aware process noise scaling. In all,

our approach leads to an improvement of 11.4% over the baseline. Figure 4.3 presents

a sample result from our approach, where the person in the green bounding box is

detected throughout two full occlusion phases, marked with an unfilled box. All of

our qualitative analysis, including 3D visualization of a scene from a 2D monocular

video, is available online at https://youtu.be/StEfnshXrCE.

One concern with our approach might be that the average depth inside a person’s

bounding box may contain pixels from the background or an occluder. To verify

the impact of this, we evaluate a variant where we use segmentation masks for all

the bounding boxes in MOT-17’s FRCNN public detections using MaskRCNN [24].

We initialize the z state variable in the model with the average depth inside this

mask. On doing so, the Top-1 occluded F1 increases from 26.7 to 27.3, indicating

that masks can help with estimating the person’s depth, but boxes are a reasonable

approximation.

4.7.1 Forecasting

We evaluate replacing our linear forecaster with state-of-the-art forecasters. We supply

these forecasters with a birds-eye-view representation of visible person trajectories.

As these forecasters forecast only the birds-eye-view (x, z) coordinates, we rely on

our approach’s estimates of the height, width, and y coordinate. We evaluate two

trajectory forecasting approaches for crowded scenes, Social GAN (SGAN) [23] and

STGAT [27]. SGAN and STGAT result in Occluded Top-5 F1 scores of 36.0 and

36.4 respectively. While this improves over the baseline at 28.4, it underperforms our
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4. Experimental Results

Table 4.5: MOT-17 train ablations. Each row adds a component to the row above.
‘Dep. noise’ is depth-aware noise.

Top-5 Top-1 F1

Occl F1 Occl Prec Occl Rec All F1 Occl All

DeepSORT 28.4 ±0.1 71.9 ±0.2 17.7 ±0.1 68.5 ±0.0 20.1 67.4
+ Forecast 29.8 ±0.2 29.5 ±0.4 30.2 ±0.1 69.4 ±0.0 20.9 66.5
+ Egomotion 32.2 ±0.2 33.1 ±0.3 31.3 ±0.1 70.4 ±0.0 23.2 67.9
+ Freespace 35.7 ±0.0 47.7 ±0.1 28.6 ±0.0 70.4 ±0.0 25.7 68.4
+ Dep. noise 39.8 ±0.2 52.6 ±0.6 32.0 ±0.0 70.5 ±0.1 26.7 68.5

linear forecaster at 39.8. This suggests that simple linear models suffice for short,

frequent occlusions.

As described above, we use a constant velocity forecaster in our probabilistic

approach. We showed that replacing our our simple linear forecaster with more

sophisticated state-of-the-art forecasters that exploit social cues did not improve

performance. Here, we provide implementation details for these experiments, and

analyze different variants.

The approaches discussed, SGAN [23] and STGAT [27] are supplied the top-down

views from our algorithm. Both SGAN and STGAT forecast 20 samples and then

choose the closest trajectory to the groundtruth from these 20. This advantage is

not feasible for an online approach where groundtruth cannot be supplied to the

algorithm. To simulate the online setting, we sample the mean trajectory from these

approaches by requesting the trajectory corresponding to the zero noise vector. We

calculate an approximate average scale factor of 20.0 between the trajectory values

learnt by these models and the trajectory values available for input from our method,

which we use to scale down our input values. Additionally, each of these methods

has an 8- and 12-timestep forecasting model. We report the best of these models

for both approaches and report other models in Table 4.6. For STGAT, the 8- and

12-timestep models used are trained on the ETH [46] dataset and for SGAN, the 8-

and 12-timestep models are trained on the ZARA1 [36] dataset. Each of these models

is made to predict for 30-timesteps by supplying the last 8 forecasted timesteps

iteratively. The occlusion phase may not last 30 timesteps for all people. We therefore

use the information from our pipeline about the number of occluded timesteps and

27



4. Experimental Results

Top-5 F1 Top-1 F1 IDF1

Occl All Occl All Occl All

S
in

gl
e

SGAN-8 35.4±0.2 70.2±0.0 24.6 67.8 8.9 54.3
SGAN-12 35.0±0.1 70.1±0.0 24.2 67.7 8.7 54.2
STGAT-8 35.1±0.1 70.1±0.0 24.5 67.6 8.6 54.3
STGAT-12 35.6±0.2 70.3±0.0 24.7 67.9 9.1 54.4

M
u

lt
i

SGAN-8 36.0±0.2 70.3±0.0 24.8 67.9 9.2 54.4
SGAN-12 36.0±0.3 70.3±0.0 24.9 67.9 9.3 54.4
STGAT-8 36.2±0.3 70.3±0.0 24.5 67.8 8.8 54.3
STGAT-12 36.4±0.1 70.4±0.0 24.8 67.9 9.2 54.4

Table 4.6: MOT-17 train forecasting ablations with state-of-the-art social forecasting
models.

replace the x and z values from the output of our pipeline with SGAN and STGAT’s

forecasted x and z values.

In Table 4.6, we additionally report the performance of the methods when we

provide past trajectories of multiple people as input, allowing the method to leverage

social cues. For the Top-5 evaluation, we use the blind baseline described previously.

The conclusion remains that simple linear models suffice for short, frequent occlusions

as our approach always performs better than any of the social forecasting settings of

SGAN and STGAT.

4.7.2 Monocular Depth Estimators

Our method relies on an off-the-shelf monocular depth estimator to enable occlusion

reasoning in 3D. In general, we used the MegaDepth [38] estimator throughout our

experiments. Here, we evaluate whether recent advances in monocular depth estima-

tion provide more reliable relative depth estimates of people as used by our method.

Specifically, we replace the MegaDepth estimator with the MannequinChallenge [39]

and MIDAS [34] depth estimators in our method. We evaluate on MOT-17 using the

Faster-RCNN set of public detections, and set all hyperparameters in our pipeline to

their default values and disable the depth-aware noise scaling. This simple variant
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Top-5 F1 Top-1 F1 IDF1

Depth est. Occl All Occl All Occl All

MegaDepth [38] 35.4±0.2 69.8±0.0 26.7 68.4 9.5 53.3
Mannequin [39] 34.2±0.2 69.4±0.0 25.5 68.0 8.5 53.3
MIDAS [34] 34.4±0.1 69.5±0.0 26.5 68.2 9.1 53.8

Table 4.7: Comparison of different monocular depth estimators used in our pipeline.
More recent depth estimators do not seem to provide more reliable relative depth
orderings, which are used by our method.

of our pipeline allows us to evaluate the quality of depth estimates from each of the

three methods. Table 4.7 shows that the per frame depth estimator from Mannequin

Challenge [39] does worse than MegaDepth [38] by 1.2 Top-5 F1 for invisible people

and MIDAS [34] similarly does worse by 1.0 point. By the standard Top-1 F1 metric,

these estimators degrade accuracy by 1.2 and 0.2 points respectively. As this simple

variant of our pipeline is aimed at evaluating the relative depth orderings output from

the depth estimators, these results suggest that while these depth estimators have

become more accurate and generalizable over the years, the relative depth orderings

of objects has not significantly improved.

Since monocular depth estimators can take as input images of varying sizes,

we evaluate the effect of using higher resolution images as input to the estimator.

Using a higher resolution input can increase the size of smaller objects in the scene

(e.g., people far away), potentially allowing depth estimators to output more precise

depth estimates. We evaluate using higher resolutions as input with the MIDAS [34]

estimator in Table 4.8. By default, we resize images to a resolution of 512×384

pixels (‘1x’, the resolution MIDAS is trained with) from their original resolution of

1920×1080. We evaluate MIDAS [34] at 2× and 3× this default resolution and find in

that doing so improves the Top-5 F1 for invisible peopleby 3.1%. We note here that

this is not the case with the other two depth estimators [38, 39] whose performance

decreases or stagnates with higher resolutions (not shown).
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Top-5 F1 Top-1 F1 IDF1

Depth Res. Occl All Occl All Occl All

MIDAS 1x 34.4±0.1 69.5±0.0 26.5 68.2 9.1 53.8
MIDAS 2x 35.5±0.2 70.0±0.0 27.0 68.5 9.8 53.9
MIDAS 3x 37.5±0.2 69.9±0.0 27.0 68.2 10.8 53.9

Table 4.8: We evaluate a recent depth estimator, MIDAS [34], at varying input
resolutions. At higher resolutions (3x), the estimator improves Top-5 F1 by 3.1 points,
suggesting higher resolutions can improve depth estimates, likely by providing more
reliable relative depths for faraway pedestrians.

4.7.3 Boxes vs Masks

Our method estimates a person’s depth by taking the average of the depth estimates

within the person’s bounding box. However, these pixels may contain background

regions, leading to incorrect depth estimates. To address this, we evaluate a variant

which uses an off-the-shelf instance segmentation method to only compute the average

depth within a predicted person mask. To do this, we pass the Faster R-CNN public

detections from MOT-17 as proposals into the mask head of Mask R-CNN [24].

Occasionally, this instance segmentation method may fail to produce a reasonable

mask for a person. We design a simple strategy for detecting a common failure case:

if the output segmentation mask covers less than 25% of the bounding box (in cases

where the people are too small or out-of-distribution), we discard the predicted mask

and treat the full bounding box as the mask. We do not use masks for the forecasted

boxes of occluded people, as these boxes cover unknown occluders. In Table 4.9, we

find that masks modestly help our method, increasing Top-5 and Top-1 F1 by 0.6

and 0.8 points for occluded people. Interestingly, we also see an increase in overall F1

by the same amount.

4.7.4 Moving vs Stationary Camera Sequences

In the MOT-17 dataset, 3 camera sequences are stationary and 4 are captured from

a moving camera. We separately study the effect of using different components of

our pipeline on these sets of camera sequences. Table 4.10 shows that compensating
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Top-5 F1 Top-1 F1 IDF1

Occl All Occl All Occl All

Boxes 39.8 ±0.2 70.5 ±0.1 26.7 68.5 10.5 54.8
Masks 40.6±0.3 71.3±0.0 27.3 69.1 11.0 54.7

Table 4.9: Replacing boxes by masks for getting mean depth of a person only helps
by a small amount suggesting that boxes can reasonably replace masks.

Top-5 Top-1 F1 IDF1

Occl
F1

Occl
Prec

Occl
Rec

All
F1

Occl All Occl All

Moving sequences

DeepSORT 27.3 ±0.3 49.7 18.8 72.4 ±0.0 17.3 67.0 2.2 56.5
+ Forecast 21.3 ±0.1 15.4 34.6 68.4 ±0.1 13.3 63.6 5.6 50.2
+ Egomotion 25.8 ±0.0 19.4 38.7 71.3 ±0.0 17.1 66.9 8.7 53.2
+ Freespace 29.8 ±0.3 28.0 31.8 72.8 ±0.0 19.9 69.2 9.4 55.2
+ Dep. noise 34.3 ±0.1 32.8 35.9 73.3 ±0.1 20.2 69.4 9.8 55.9

Stationary sequences

DeepSORT 29.2 ±0.1 94.0 17.3 66.2 ±0.0 21.7 65.9 1.1 55.0
+ Forecast 39.1 ±0.4 62.2 28.5 70.2 ±0.0 28.7 68.6 10.1 55.4
+ Egomotion 38.0 ±0.1 60.2 27.8 69.8 ±0.0 28.5 68.5 9.6 55.3
+ Freespace 40.0 ±0.0 76.1 27.1 68.9 ±0.0 30.3 67.9 10.0 54.9
+ Dep. noise 43.6 ±0.3 78.7 30.2 68.8 ±0.0 31.4 67.9 11.2 54.1

Table 4.10: MOT-17 train ablations for moving stationary camera sequences.

for camera egomotion and filtering estimates lying in freespace helps the moving

camera sequences by 4.5% and 4.0% Occluded Top-5 F1 respectively while for the

stationary camera sequences, enforcing smoother tracks for faraway objects and

filtering freespace estimates helps by 3.6% and 2.0% F1 respectively.

4.8 Hyperparameter tuning

We describe a few parameters of our approach and how to tune them, in addition

to the ones described in the paper. The Nage parameter in our pipeline controls the
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Figure 4.4: Detecting occluded people is sensitive to the threshold used to declare
a detection-under-high-occlusion. We fix the number of Nage frames that a track is
allowed to be in an occluded state. By increasing Nage, we can tradeoff precision and
recall in invisible-people-detection which results in a “PR-curvelet”. The curvelets
represent the experiments in rows 1, 2 and 5 of ablation experiments table.

number of frames that an occluded track is forecasted for before it is deleted. We

show in Figure 4.4 that the DeepSORT baseline is largely invariant to this parameter,

as it does not report its internal forecasts. Reporting these estimates, whether directly

(corresponding to ‘DeepSORT+Forecast’) or with our approach (corresponding to

‘Our Pipeline’), highlights the impact of the parameter. This behaviour results in a

precision-recall ‘curvelet’ which shows that by increasing Nage, we can trade-off the

precision and recall for invisible people detection. The difficulty of this task can be

highlighted by the trend that increasing Nage hardly increases recall beyond a point

but instead decreases precision dramatically because of the introduction of many

false positive boxes in the scene. We use the number of frames as a surrogate for

uncertainty, as we find that this correlates well with the uncertainty estimated by the

Kalman Filter, as shown.

We use a hyperparameter fprocess to scale the process noise covariance. We

additionally scale the observation noise covariance by fobservation to account for the

removal of default scaling by height of [59]. In our algorithm, we use fprocess = 900
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and fobservation = 600.

4.9 IDF1-Occluded & MOTA-Occluded

We previously reported detection results using the probabilistic and standard F1

metrics. Here, we supplement these results with the IDF1 and MOTA (Multi-Object

Tracking Accuracy) tracking metrics [6]. To do this, we follow the strategy: We do

not penalize tracks that match to visible people, but we reward only tracks that

match to occluded people.

4.9.1 IDF1

To evaluate tracking, we report the standard IDF1 metric and also modify it for

evaluating occluded people. Specifically, we divide the groundtruth tracks into visible

and occluded segments, and perform matching only on the occluded segments. Once

the tracks are matched, we compute IDTP as the number of matched occluded boxes,

IDFP as the number of unmatched occluded or visible predictions, and IDFN as the

number of unmatched occluded groundtruth boxes. In Tables 4.2, 4.3, 4.4, 4.11, we

show that we improve the tracking of occluded people by a large margin (upto 14.3%)

while maintaining the overall tracking performance. The conclusions in all cases

remain the same as the detection metrics, except for the peculiar case of PANDA

where we see an 8.1% drop in the overall IDF1 metric. We attribute this to the small

size of people in PANDA and the top-down camera viewpoint which changes the

distribution of the depth estimates returned by the monocular depth estimator. By

tuning noise parameters to adapt to this new distribution, we can recover 6.9% of

this drop.

4.9.2 MOTA

In addition to reporting standard MOTA, we modify it for occluded tracks by counting

detections matched to occluded groundtruth as true positives (TP), unmatched

detections as false positives (FP), and unmatched groundtruth as false negatives (FN),

and only count ID-switches (IDS) for tracks corresponding to occluded groundtruth.
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IDF1 MOTA

Occl All Occl All

DeepSORT 1.5 55.6 -11.9 49.4
+ Forecast 7.6 53.3 -85.7 42.0
+ Egomotion 9.1 54.5 -72.1 44.6
+ Freespace 9.7 55.0 -35.2 48.1
+ Dep. noise 10.5 54.8 -31.5 48.5

Table 4.11: Analysis of IDF1- and MOTA-occluded for the MOT-17 train ablation
experiments. Note that MOTA is not useful for distinguishing trackers for difficult
tasks, as it leads to negative values (while an approach which reports no detections
would achieve MOTA of 0).

Perhaps surprisingly, we find in Table 4.11 that the MOTA metric is negative for all

ablations. To better understand this, we note that MOTA is a simple combination

of TP, FP, and identity switches (IDS), divided by the total number of groundtruth

boxes (GT):

MOTA = 1−
∑

t FPt + FNt + IDSt∑
t GTt

Thus, a method which simply reports no tracks will achieve a MOTA of 0 (as

FP = 0,FN = GT, IDS = 0), seemingly outperforming all approaches in Table 4.11.

This suggests MOTA penalizes methods for even trying to detect occluded people.

In general, if a tracker produces more false positives than true positives, MOTA

will always be negative! This indicates that MOTA is not an appropriate metric for

challenging tasks, such as detecting occluded people.

34



Chapter 5

Discussion

We propose the task of detecting fully-occluded objects from uncalibrated monocular

cameras in an online manner. Our experiments show that current detection and

tracking approaches struggle to find occluded people, dropping in accuracy from

68% to 28% F1. Our oracle experiments reveal that interpolating across tracklets

in an offline setting noticeably improves F1, but the task remains difficult because

underlying object detectors do not perform well during large occlusions. We propose

an online approach that forecasts the trajectories of occluded people, exploiting

depth estimates from a monocular depth estimator to better reason about potential

occlusions. Our approach can be applied to the output of existing detectors and

trackers, leading to significant accuracy gains of 11% over the baseline, and 5%

over state-of-the-art. We hope our problem definition and initial exploration of this

safety-critical task encourages others to do so as well.
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Chapter 6

Future Directions

6.1 Limitations

Our approach assumes a constant velocity assumption and is thus based on linear

dynamics. It can therefore not model non-linear motion of objects especially when

such a motion starts at the start of the occlusion phase. We show an example of this

failure case and others, such as those resulting from errors in groundtruth, in our

qualitative anaylsis video on YouTube.

It should be noted that the depth-based reasoning, in the current approach, is only

used as a post-processing step after the short-term forecasting. A better approach

would tie and integrate the two together so that depth can guide forecasting and vice-

versa. One way to do this would be to reweight the covariances in the Kalman Filter

with the truncated gaussians obtained after freespace horizon truncation, resulting in

a Particle Filter like approach. Forecasting and depth-reasoning could also be tied

together with explicit joint optimization.

Other than this, it might be useful to embrace the existence of metric depth

sensors such as LiDARs and modify the approach to operate in 3D world coordinates

rather than in the projective space with relative monocular depth maps.

Finally, our approach is based on classical tracking approaches like a smoothing

Kalman Filter. We point out that more recent learning based approaches like Track-

tor++ and CenterTrack could be explored for incorporating depth-based reasoning

for multi-object tracking.
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Figure 6.1: TAO-Amodal, an extension of TAO [12], is expected to be the largest
in-the-wild amodal object detection dataset that will label objects to their full extent
in both in-frame and out-of-frame complete and partial occlusions.

Next, I discuss two major components our pipeline is dependent on and the issues

that exist in both the fields.

6.2 Amodal Object Detection

First, our approach is dependent on good amodal detectors. In this regard, we explore

two directions of future work. First, we note that no video dataset exists that focuses

explicitly on amodal object annotations across their tracks, although this is a more

reasonable object detection task as objects do not cease to exist where their visual

footprint ends. We propose TAO-Amodal, an extension of our older work, TAO [12].

With TAO-Amodal, we hope to label arbitrary objects to their full-extent even in

complete occlusions that occur in-frame or out-of-frame. We are currently running a

pilot on all the 7 dataset subsets in TAO. Till now, about 30,000 amodal bounding

boxes have been labelled, out of which 6% of the boxes correspond to fully-visible

objects, 87% of the boxes correspond to partially-visible objects and 7% of the boxes
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Figure 6.2: Inference at a low-resolution of 384 x 384 from MIDAS [34] results in (b)
loss of all high-frequency details in the image, people in this case. When the input
resolution is increased by (c) 2x and (d) 4x, most of these details start appearing
while the overall geometry of the scene is harmed.

are new boxes (which did not exist in TAO before), corresponding to fully-occluded

objects. The latter results in a total of about 2,000 boxes for fully-occluded objects

and 93% of the time, our annotators were confident of their labelling location for

invisible objects after two rounds of quality control.

TAO-Amodal is expected to be the largest in-the-wild amodal object detection

dataset available for public use. A sample frame with amodal annotations is shown

in Figure 6.1.

6.3 High-resolution Monocular Depth Estimation

Second, our approach is also dependent on plausible depth estimates. We note that

a seemingly harmful protocol in depth estimation inference is to downsample input.
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This leads to loss of high-frequency details in images, and important objects like

people and vehicles in high-resolution images. An example of this is shown in Figure

6.2. When the input resolution is naively increased, the high-frequency details start

to appear but the overall geometry is harmed.

I explored a few test-time hypotheses in this direction, such as the quality of

depth being a function of the input resolution proportional to the depth value, but

the conclusion was that one must think more broadly about how to correctly design

depth estimators that are independent of input resolution; this may either require

sending in information about camera intrinsics, or require an architectural shift to

representing images implicitly as a set of rays originating from a camera center.
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