
Contact Localization for Robot Arms in Motion without Torque Sensing

Jacky Liang1, Oliver Kroemer1

Abstract— Detecting and localizing contacts is essential for
robot manipulators to perform contact-rich tasks in unstruc-
tured environments. While robot skins can localize contacts on
the surface of robot arms, these sensors are not yet robust
or easily accessible. As such, prior works have explored using
proprioceptive observations, such as joint velocities and torques,
to perform contact localization. Many past approaches assume
the robot is static during contact incident, a single contact
is made at a time, or having access to accurate dynamics
models and joint torque sensing. In this work, we relax these
assumptions and propose using Domain Randomization to train
a neural network to localize contacts of robot arms in motion
without joint torque observations. Our method uses a novel
cylindrical projection encoding of the robot arm surface, which
allows the network to use convolution layers to process input
features and transposed convolution layers to predict contacts.
The trained network achieves a contact detection accuracy of
91.5% and a mean contact localization error of 3.0cm. We
further demonstrate an application of the contact localization
model in an obstacle mapping task, evaluated in both simulation
and the real world.

I. INTRODUCTION

For robot manipulators to robustly operate in unstructured
environments, safely interact with humans, and perform
contact-rich tasks, they must be able to sense the contacts
they make with the external environment. Indeed, works
in tactile sensing have seen many uses in robot manipula-
tion [1], including object localization [2], [3], [4], shape com-
pletion [5], [6], [7], and active environment exploration [8],
[9], [10]. For robot skins, recent developments demonstrate
promising applications in contact estimation [11], [12],
whole-body manipulation [13], compliant control [14], [15],
safe human-robot interactions [16], [17], object classifica-
tion [18], [19], [20], and manipulation in dense clutter [21].

However, while robot skins is an area under active re-
search and development [22], robust and affordable skins
that work across a wide variety of robot form factors remain
inaccessible. By contrast, proprioceptive sensing that gives
joint angles and velocities, and sometimes estimated torques,
are available in most commercial manipulator arms. As
such, prior works have explored using proprioceptive sensors
to localize contacts, with proposed methods ranging from
model-based optimization [23], [24], [25], [26] to model-free
learning [27], [28], [29].

Many past works take the perspective of localizing con-
tacts on a static robot arm - the arm is initially set still,
then one or more point contacts are established, pushing in
the direction normal to the robot mesh. A typical additional
assumption is that the point contact stays in the same position
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Fig. 1: A learned neural network contact localization model predicts
contact points, visualized in red, on the Franka robot. The model
is trained in simulation via Domain Randomization, and it does
not require torque observations. To aid sample complexity and
localization performance, the network uses transposed convolution
layers to predict contact distance fields in the cylindrical projection
space of the mesh surface.

on the robot arm, even if the arm moves as a result of
the contact. While this approach is useful in the context of
“passive” contact incidence, where the the obstacles “come”
to the robot, we argue it is less realistic in the context of
“active” contact incidence, where the robot “goes” to the
obstacle, whether for exploration or manipulation.

In this paper, we train a neural network to localize contacts
on the surface of a robot arm that is in motion and interacting
with obstacles. The neural network is trained with data col-
lected in simulation, where ground truth contact information
can be obtained. When a robot is in collision with an external
obstacle, its proprioceptive responses vary depending on
the dynamics model and inertial parameters of the robot.
Because there are mismatches in simulated and real dynamics
(sim-to-real gap), we use Domain Randomization [30] to
generate data across a distribution of robot dynamics models.

Furthermore, because of the sim-to-real gap, our network
does not rely on torque observations to perform contact
localization. This relaxes the requirement of having accurate
force-torque sensing, and it follows from the observation
made in [26], that contact points with static obstacles must
have zero velocities in the direction of the surface normal.
While the algorithm in [26] solves for potential contact
locations with joint velocities, our approach uses velocity
observations as features to a neural network.

In addition, we use a novel representation to encode both
features and contact localization predictions. This representa-
tion projects points on the surface of robot links to cylindrical



coordinates, allowing us to represent features and contact
points as images. With this encoding, the model can use
convolution layers to efficiently process features of points on
link surfaces, such as point-wise link velocities. We also pro-
pose using transposed convolution layers to predict images of
contact points, represented as distance fields, on the surface
of a robot link. This is unlike previous works [27], [28],
[29], which directly classified the contact state of each of
these points. Both transposed convolution and classification-
based variants are evaluated, and we demonstrate an ap-
plication of the learned contact localization networks in an
obstacle-mapping experiment, conducted in both simulation
and the real world. See video and supplementary materials
at https://sites.google.com/view/ct-loc

II. RELATED WORKS

Prior works have studied combining a robot’s propriocep-
tive observations and dynamics model to infer the robot’s
contact state. The authors of [23] proposed the Contact
Particle Filter (CPF), a model-based optimization method
that filters for external contacts on a humanoid robot by
observing its joint torque residuals - the difference between
measured and expected joint torques. The algorithm approxi-
mates solving contact locations as a quadratic program (QP).
For the CPF’s observation model, the contact likelihood
is proportional to the error of the QP’s solution. For its
dynamics model, it assumes that contacts occur at fixed
points on and relative to the robot surface - this means the
contact point follows the robot link’s movements. While the
CPF is efficient and achieves good error rate (0.4s per filter
step for 3 concurrent contacts, 2cm localization error), it
assumes access to an accurate dynamics model of the robot.

Later works approached contact localization via torque
residual observations from a data-driven perspective. In [31]
the authors devise a real-time collision detection and local-
ization algorithm for a humanoid robot by training a Support
Vector Machine (SVM). A one-class SVM was used for
detection, and multi-class SVM for localization. The work
assumes one contact at a time, and the SVMs were trained on
real-world data. While the detection model was trained with
data where the robot arm is moving, the localization model
assumed static robot configuration - the robot is not moving
when the contact occurs. Furthermore, the localization model
predicts only coarse labels - 7 classes for the entire arm
of the humanoid. Additional contact detection works that
focused on locomotion robots improved performance of
contact detection, but not localization [32], [33].

In [27] the authors improved the resolution of data-driven
contact localization by training machine learning models
(Random Forests and Multi-layer Perceptrons) to classify
the contact state of 661 pre-specified points on a 7-DoF
Jaco arm’s surface. The work assumes single contacts, that
contacts are perpendicular to the robot’s surface normals, and
that there are no contact torques. The features of the model
consist of a sliding window of joint positions, velocities,
accelerations, torques, and linear accelerations, and data was
generated in simulation. The best-performing model achieved

Fig. 2: Visualization of randomly sampled obstacle environments
used for generating contact interaction data.

a mean localization error of 4cm with 14% False Negative
Rate (FNR) (not detecting a contact when there is one), and
its inference frequency is higher than 200Hz, which is much
faster than the optimization-based baseline. Like [31], the
models also make the static configuration assumption, where
the training data consists of 20 static arm configurations.
The authors’ follow-up work [25] proposed a particle filter
approach that constrained particles of contact locations to the
surface of the robot arm. This method achieved comparable
performance to those in the earlier work, but it had the added
capability of handling multiple contacts.

In [28] the authors propose a similar a data-driven ap-
proach to classify contacts on pre-specified points on a robot
arm surface. Training data were generated in simulation, and
like [27], this work also assumes one contact at a time, static
robot configuration, and access to joint torque observations.
The follow-up work [29] improved model performance by
training with both simulation and real-world data, achiev-
ing 6.4cm mean localization error. In addition to detecting
contacts, the algorithm in [34] can also classify between
expected and unexpected contacts. However, the algorithm
only gave coarse localization labels - one for the upper arm
and one for the lower arm.

Recent works have also explored estimating external con-
tacts without access to joint torque sensors. The authors
of [24] propose a model-based algorithm that only needs
end-effector force sensors and IMUs placed on the robot. The
work also assumes a single contact, but the humanoid robot is
moving during contact incident. In [26], the authors leverage
joint velocity measurements to localize contacts. While the
method achieves sub-centimeter localization error, it also
assumes single contacts and was applied to a robot with
planar kinematics - the links only moved in 2D. Our work
is related to [24], [26] in that we do not assume access to
joint torque readings. Like [27], [28], our approach predicts
dense contact locations on the surface of 7-DoF robot arms,
but our method also allows for predicting multiple contacts
and predicting contacts while the robot is in motion.

III. METHOD

We define the contact localization problem as follows:
given a sequence of T observations o1:T sampled at a
frequency f , detect whether or not each link l ∈ [1, . . . , L]
of the robot arm is in contact with an obstacle at time T , and
if it is, also predict the contact locations cli ∈ Sl. Here, cli
denotes the ith predicted contact point of link l, which lies on
the link’s 3D surface manifold Sl, and L is the total number



Fig. 3: Mesh simplification and cylindrical projection pipeline for link 5 on the Panda robot. A: Visual mesh provided by Franka Emika.
B: Projection mesh with lower triangle count, more uniform vertex, and more equilateral triangles obtained via TetWild. C: Collision
mesh obtained by decimating the projection mesh. D: Manually specifying waypoints for a tube (yellow lines and circles) to fit around
the projection mesh (blue vertices). E: Projecting vertices onto the tube. Here the colors visualize the coordinates along the tube. Greener
means the vertex is toward one end of the tube, and black the other. F: Normalized cylindrical projection coordinates in the range of
[0, 1]. The horizontal U -axis denotes the coordinate along the tube, and vertical V -axis denotes the angular coordinate along the tube’s
circumference. Each dot is a vertex, and the color of the dot indicates its normal direction. Edges are mesh triangle edges. Blue shaded
region denotes the concave hull used to define valid projection interpolation region.

of robot links for which contact localization is performed.
We use bl ∈ {0, 1} to denote the binary contact state of each
link. We assume the obstacles with which the robot makes
contact are stiff, rigid, and stationary.

A neural network is trained to make this prediction.
Training data is collected in simulation with a distribution of
robot dynamics models. There are three important differences
between our approach and previous works which also used
machine learning to localize contacts for robot arms. First,
our data is generated by having the robot arm interact with
obstacles, instead of directly applying contact forces on the
arm. This is important, because it leads to more realistic
sequences of robot movements under contact - contact points
often slide along the robot arm as it pushes against an
obstacle. Second, we do not use torque observations and do
not assume access to precise robot dynamics models, which
makes our method more general and applicable to robots
without accurate force/torque sensing. Third, we propose a
novel cylindrical projection mapping to represent the robot
link surface manifold, which can be used to encode both
features and contact localization outputs.

A. Data Generation

We generate the training data by having a robot arm exe-
cute exploration trajectories in environments with randomly
generated obstacles. The robot we use is the 7-DoF Franka
Emika Panda arms. We collect features from and make
predictions for the last 7 links on the Franka arm, excluding
the first two base links, as they seldom come into contact
with external obstacles. Obstacles in the scene consists of
two sets of 3 beams, 2 vertical and 1 across, which are placed
in front of the robot. We randomize the pose of beams, with
the across beams attached to the vertical beams. This results
in a diverse set of training environments (Figure 2).

There are two types of exploration trajectories the robot
executes. The first we call random exploration, in which the
robot randomly samples a sequence of delta end-effector
pose targets and follows through each waypoint with ran-
domly sampled time horizons. The second we call informed
exploration, in which we predefine a sequence of waypoints
that are likely to bring the robot in contact with obstacles

in the scene, and the robot follows through each one with
small amounts of added noise. Our training dataset contains
data from both the random and informed exploration policies,
with a 10 : 1 ratio respectively. Details about trajectory
generation can be found in the Appendix.

To go to each waypoint, the robot uses min-jerk interpo-
lation and end-effector Cartesian-space impedance control,
which converts errors in Cartesian space to torque commands
via a spring-damper system. The simulation uses the Franka
dynamics model from [35], which was fitted on a real Franka
robot; this allows realistic impedance control behavior in
simulation. We randomize the inertial parameters of the
Franka dynamics model (mass, center of mass, and moment
of inertia for each robot link) as well as the gains of the
impedance controller for each trajectory.

We collect the following observations: joint angle ve-
locities q̇t ∈ R7, linear velocities of each link vlt ∈ R3,
angular velocities of each link ωl

t ∈ R3, difference between
the current and target joint angles δqt ∈ R7, difference
between the current and target link poses δplt ∈ SE(3),
difference between the current and “collision-free” joint
angles and joint angle velocities ∆q ∈ R7,∆q̇t ∈ R7, and
the difference between the current and “collision-free” link
poses and velocities ∆plt ∈ SE(3),∆vlt ∈ R3,∆ωt ∈ R3.
We assume the robot can directly measure its joint angles and
joint velocities, from which link velocities can be computed.
The “collision-free” observations are obtained by running the
simulation from the previous step in a separate simulation
that has no obstacles. If the robot is not near an obstacle,
then ∆pt, ∆vt, and ∆ωt are all zero vectors. Otherwise,
some of these values might be non-zero, and they indicate
how much the observed trajectory deviates from the expected
trajectory if no obstacles were present. The target link poses
are obtained by running forward kinematics on the desired
joints qd = q + J>pe, where q ∈ R7 are the current joint
angles, J is the analytical Jacobian, and pe ∈ SE(3) is the
end-effector pose error used by the impedance controller.
We do not use positional observations, like joint angles or
end-effector poses. Avoiding them for training the network
ensures that it is not overfitting to the locations of obstacles
from the training data.



Fig. 4: Example visualization of features interpolated on the cylindrical projection (left 4) and contact distance field (right most) for link
5 on the Panda arm. For the feature images, blue means negative values, green means 0, and red means positive values. For the contact
distance field, blue means 0, and red means the maximum possible distance on the image. Note the wrap around in the vertical axis of
the contact distance field - this is because the vertical axis corresponds to the angular coordinates of the cylindrical projection. For the
feature images, pixels outside the valid interpolation region have been zeroed out (see blue shaded region in panel E of Figure 3).

All training data is generated with Nvidia Isaac Gym 1, a
GPU accelerated robotics simulator [36]. We set the simu-
lator dt = 0.01s, and each trajectory runs for 500 simulator
steps, which corresponds to 5s. We collect an observation
every 4 simulator steps (so the observations are collected at
a frequency of f = 25Hz), so each trajectory contains 125
observations. In total we collect 2800 simulated trajectories.
The collected trajectories are cleaned by removing all con-
tacts that are less than 1N in magnitude and last less than
0.1s. This resulted in a dataset with about 2% of the samples
having positive contacts.

B. Link Mesh Processing

See panels A, B, and C in Figure 3 for the mesh simpli-
fication pipeline. There are three sets of meshes used. The
first are the visual meshes obtained from the official Franka
repository 2. These are used for rendering and visualization
only. The second set are the projection meshes, which are
used for cylindrical projections, have lower resolution than
the visual meshes. They also have vertices that are more
spatially uniform and triangles that are more equilateral.
We produce projection meshes by running TetWild [37] on
the visual meshes. Each projection mesh has about 2000
triangles. The third set are the collision meshes, which
are used by the simulation to perform collision checking.
Having even lower resolution than the projection meshes,
they are produced by running mesh decimation functions
from libigl [38] and MeshLab [39] on the projection meshes.
Each collision mesh has about 1000 triangles.

C. Cylindrical Projections

See panels D, E, and F in Figure 3 for the cylindrical
projection pipeline. In our approach, obtaining the cylindrical
projection representation of a mesh surface means obtaining
a mapping from each vertex on the projection mesh to
a normalized 2D cylindrical coordinate system. First, we
manually specify a linear-interpolated spline with keypoints
that roughly follow the geometry of a link mesh. This is
only done once per robot link and takes about 5 minutes.
Then, we form a tube along the spline and project vertices
on the link to the surface of this tube. This step can be

1https://developer.nvidia.com/isaac-gym
2https://github.com/frankaemika/franka_ros

thought of as contracting a “sleeve” around a robot link.
After this step, each mesh vertex is assigned two coordinates:
s and φ, where s denotes the location of the mesh vertex
along the spline, and φ denote the angle of vertex along
the tube circumference. Lastly, these (s, φ) coordinates are
normalized into (u, v) coordinates, where we map s ∈
[smin, smax] → u ∈ [0, 1] and φ ∈ [0, 2π] → v ∈ [0, 1].
To map from a mesh vertex to the cylindrical coordinates,
we simply read off its precomputed (u, v) values. To map
from a point in the UV space back to a mesh vertex, we use
the mesh vertex whose cylindrical coordinates are the closest
to the query point in UV space.

We use the cylindrical projection for two purposes -
encoding contact distance fields which our trained neural
network tries to predict, and encoding link surface features
which the neural network uses for prediction. See Figure 4
for examples of both. To generate the contact distance fields
for training, we first find the UV coordinates of the mesh
vertices that are in contact, and then generate a distance
field image, where the value of each pixel is the distance
to the closest contact point in UV space. We use 32 × 32
as the image resolution, and it spans the entire UV space
of [0, 1]× [0, 1]. Importantly, distance in the V -axis “wraps
around” as it corresponds to angles on a cylinder. This
representation is desirable, because it easily allows encoding
multiple contact points, and it provides a smooth and dense
supervision signal for training - even points that are not in
contact have useful information about the neighboring points
that are. The latter is especially important in reducing sample
complexity and improving network performance.

There are 5 types of features encoded with the cylindrical
projections: 1) difference between the current and target link
poses δplt, 2) link velocities vlt, ω

l
t, 3) difference between

the current and collision-free link poses ∆plt, 4) difference
between the current and collision-free link velocities ∆vlt,
∆ωl

t, and 5) a mask that represents valid feature interpolation
regions in the cylindrical projections.

First, we compute the vertex-wise versions of each of these
features. For 1) and 3), this is done by taking the L2 norm
of the appropriate vertex locations on the mesh surfaces,
transformed by the link poses. For 2) and 4), this is done
by converting linear and angular link velocities into linear
vertex velocities: vlt + di ⊗ ωl

t, where di is the difference



Fig. 5: Contact Localization Neural Network Architecture. The figure visualizes the case for 3 robot links (denoted by the elements that
are repeated thrice) and an observation window of 2 timesteps (denote by the 2 repeated light yellow groups on the left). In practice
we observe features and make predictions for 7 robot links across a window of 5 timesteps. Conv means convolution layers, FC means
fully-connected, and T-conv means transposed convolutions. Note that for the inputs to the convolution layers, each square represents
feature maps for one robot link, which by itself contains 5 channels.

between the ith vertex location and the link’s center of mass,
⊗ denote the cross product, and angular velocities ω are
expressed with the center of mass as the rotation origin.
For the four of these features, the vertex-wise variants are
vectors in R3. Second, we take the dot product between the
vertex-wise features and each vertex’s normal. Doing this
reduces the dimension of vertex-wise features from 3 to 1,
and it also ensures that they are represented relative to the
robot arm’s current frame, and not the world frame. Third,
we form a feature image by placing scalar feature values
of each vertex onto the corresponding UV coordinates and
performing linear interpolation via Delaunay triangles to fill
in the rest of the image. Like the distance field images,
these feature images are also 32 × 32. Lastly, because not
all regions in the UV space correspond to valid vertices on
the mesh, we form a mask of valid interpolation regions
and zero-out the pixels that are not in the mask. This mask
is also given to the network as an additional channel in the
input observations. We use alpha shapes 3 to produce concave
hulls around the projected mesh vertices and use them as the
masks. See the blue shaded region in panel F of Figure 3 for
an illustration of the valid interpolation area.

D. Neural Network Model

See Figure 5 for a visualization of the network archi-
tecture. The contact localization model takes in a window
of 5 past observations and predicts the contact state of all
robot links at the latest time step in the window. There are
3 main modules in the network: a feature extractor, link-
specific feature processors, and contact prediction heads.
The feature extractor has 2 components - a convolutional
encoder that processes all the feature images (Figure 4)
and a fully-connected submodule to process the non-image
observations. Non-image observations include joint velocities
and the difference between the robot’s joint angles and those
of the robot in the “collision-free” simulation. The feature
extractor independently processes observations from all links
and across all timesteps in the window, concatenating the
results into a latent vector. There are 7 link-specific feature
processors that extract embeddings for each link from the
shared latent vector. Lastly, the contact prediction heads take

3https://github.com/bellockk/alphashape

each link-specific embedding and make the appropriate pre-
dictions. There are two prediction heads: a fully-connected
submodule that detects whether or not a link is in contact
bl and a transposed convolution decoder that predicts the
contact distance fields to localize detected contacts.

Both the feature extractor and the contact prediction heads
are shared across all links, and only the intermediate feature
processors are link-specific. This weight sharing introduces
an inductive bias that enables efficient network training.

The loss function is a weighted combination of a mean
squared error loss for the contact distance field and a binary
cross-entropy loss for contact detections. Because the dataset
is heavily imbalanced (only 2% positive contacts), the binary
cross-entropy loss weighs positive to negative samples with
a 50 : 1 ratio. 85% of the generated trajectories are used in
the training set, with the remaining as the validation set.

To convert the model predictions into contact locations,
we first check to see if the contact probability of each arm
is over a threshold. If it is, then we extract contact points
from the predicted contact distance fields. The value of each
pixel in the distance field corresponds to the distance to the
nearest contact point in pixel-space, so localizing contacts
means finding pixels with zero or near-zero values. Here, we
include all pixels below a threshold as the predicted contact
points, then we map those pixel coordinates back to points
on the mesh surface as the predicted contact locations.

IV. EXPERIMENTS
We performed two experiments to evaluate our proposed

approach. The first compares the performance of the model
that uses transposed convolution to predict contact distance
fields (CDF) with that of a model which directly classifies
(CLS) dense contact locations. The second demonstrates
applying the trained networks to an obstacle mapping task.
CLS has the same inputs and architecture as CDF, except
its output heads, which are replaced with one that directly
performs multi-label multi-class classification. This allows
CLS to predict multiple contacts at the same time. Each class
is a vertex of the projection meshes. Similar classifiers are
used by multiple prior works, but our model classifies a total
of 4077 contact points, which is more fine-grained than the
661 points used by [27] and the 20 by [29]; both works also
use joint torque features, which our model does not.



Contact Detection Contact Localization
ACC FNR FPR AMCD-GT AMCD-P

CLS 94.6% 31.9% 4.4% 0.4 (1.7) 5.5 (4.6)
CDF 91.9% 10.5% 7.8% 3.6 (3.8) 2.3 (3.4)
CLS-RF 94.1% 62.8% 4.0% 0.7 (2.0) 3.8 (3.9)
CDF-RF 78.6% 11.42% 21.3% 4.9 (4.4) 2.8 (3.6)

TABLE I: Contact detection and localization results with reduced-feature
ablations. AMCD units are in cm. Parentheses refer to standard deviation.

A. Contact Localization

Two sets of metrics are used to compare contact prediction
performance - one for detecting and one for localizing con-
tacts. For contact detection, we report the accuracy (ACC),
the false negative rate (FNR), and the false positive rate
(FPR). Positive means there is a contact. For evaluating
contact localizations, we compute the Average Minimum
Contact Distance (AMCD). Denote a set of ground-truth
contact locations on a link expressed in Cartesian space as
[cl1, . . . , c

l
N ] and the set of predicted contact locations on the

same link as [ĉl1, . . . , ĉ
l
M ]. There are two variants of AMCD,

computed as follows: AMCD-GT = 1
N

∑N
n=1 minm ‖cln −

ĉlm‖2. AMCD-P = 1
M

∑M
n=1 minn ‖ĉlm − cln‖2. A low

AMCD-GT means that most ground truth contacts have
predicted contacts that are nearby; a low AMCD-P means
that most predicted contacts are near ground truth contacts.
AMCD metrics can only be computed for time steps when
there are true positives. Both AMCD and the contact detec-
tion metrics need to be viewed together to evaluate model
performance. We also perform an ablation study by removing
the image-based features from both CLS and CDF, resulting
in models with reduced features, CLS-RF and CDF-RF.

See Table I for results computed for a validation dataset
in simulation. Although CLS has higher ACC and and
lower FPR, its FNR is 3× that of CDF. For localization,
CLS has a low AMCD-GT of 0.4cm, meaning ground truth
contacts points mostly have predicted contact points nearby.
However, it has a much higher AMCD-P of 5.5cm, meaning
many of its predicted contact points are far away from
ground truth contact points. By contrast, CDF has similar
performance for both AMCD-GT and AMCD-P, achieving
3.6cm and 2.3cm respectively. Because CDF uses transposed
convolution layers to predict a distance field, its predicted
contacts tend to form clusters, so its errors are more spatially
correlated. Taking the average of the two AMCDs, both CLS
and CDF achieve a mean AMCD of 3.0cm. While the AMCD
degradation of CLS-RF and CDF-RF are apparent but not
significant, their contact detection metrics significantly dete-
riorate — CLS-RF has double the FNR as CLS, and CDF-RF
has almost triple the FPR as CDF.

B. Obstacle Mapping

We apply the contact prediction models in an obstacle
mapping task in both simulation and real world. Obstacles
are modeled with voxel grids with 2cm resolution. Voxel
values correspond to the probability that a voxel is occupied.
All voxels have initial values of 1

K , where K is the average
number of occupied voxels in the training environments. To
map obstacles, the robot performs a predefined but noisy

Simulation Real World
CLS CDF CLS CDF

ACC 95.4% 95.8% 96.3% 95.9%
FNR 70.3% 70.7% 70.5% 56.3%
FPR 3.1% 2.5% 0.6% 1.2%
NLL 0.26 (0.54) 0.20 (0.24) 0.29 (0.06) 0.27 (0.06)
AMVD-GT 11.6 (9.4) 10.5 (8.7) 6.5 (3.5) 4.6 (1.9)
AMVD-P 6.3 (5.9) 6.1 (5.2) 1.8 (1.7) 1.7 (1.3)

TABLE II: Voxel Mapping Results. AMVD units are in cm. Parentheses
refer to standard deviation.

Fig. 6: Mapped Obstacles in Simulation and Real World. The gray
voxels in “swept” are volumes where the robot had explored. For
all figures, blue are ground truth occupied voxels, red the ones
predicted to be occupied, and green predicted to be free.

exploration trajectory. Contact predictions are used to update
the voxels with a Bayesian filter, which treats the probability
of occupancy for each voxel to be independent from each
other. We evaluate the negative log-likelihood (NLL), ACC,
FNR, and FPR of the voxels in the volume swept by the
robot. We also evaluate a variant of AMCD - the Average
Minimum Voxel Distance (AMVD), which computes dis-
tances among predicted and ground-truth occupied voxels.
Note these metrics are not about the contact locations on
the robot arm, for which we do not have real-world ground
truth labels. Rather, they are for the voxel occupancies
of obstacles, which we manually measured in real-world
experiments. Simulation results are aggregated over 200
noisy exploration trajectories on randomly generated obstacle
environments not in the training set. Real world results use
10 on one obstacle configuration, also not in the training set.
We control the Franka in the real world with [40].

See Table II for quantitative results and Figure 6 for a
visualization of the mapped voxels. CLS and CDF achieve
comparable performances in both simulation and the real
world. The high voxel FNR is due to the small number
of true positives in the volume swept by the robot. Voxel
visualizations show that CDF has less false negative voxels,
but slightly more false positive voxels, than CLS. This is in
line with the contact detection results in Table I.

V. CONCLUSION

We train a neural network to detect and localize contacts
on the surface of a 7-DoF robot arm. This is done while
the robot is moving and without joint torque sensing, relax-
ing assumptions made in prior works. A novel cylindrical
projection scheme is used to encode features and contact
points on mesh surfaces. The network is trained with domain
randomized data in simulation, and we demonstrate its use in
an obstacle mapping task in both simulation and real world.
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APPENDIX I
DATA COLLECTION

A. Franka Links

Fig. 7: Franka Link Names and Coordinate Axes. We collect
observations and make predictions for the last 7 links on the Franka
arm, from link2 to hand finger, inclusively. Franka grippers are
closed, and we combine it with the rest of the hand to form the
one hand finger link mesh.

See Figure 7 for the Franka links our trained contact sens-
ing models operate on, and see Figure 8 for visualizations
of cylindrical projections for all 7 links.

B. Obstacle Placement

We generate two sets of random obstacles in the scene.
Each set contains 3 bars with square cross sections of width
4cm. Out of the 3 bars, 2 are vertical, and 1 is horizontal and
attached to the vertical bars. For the vertical bars, we sample
an X position uniformly in the range of [13, 60]cm in front
of the robot. For the Z-axis, one vertical bar samples from
[15, 30]cm, and the other [−15,−30]cm, placing the two bars
at both sides of the robot. Once the positions of the vertical
bars are determined, we sample two Y coordinates from the
range [20, 50]cm. These values are then used as the points
on the vertical bars at which we attach the horizontal bar.

C. Exploration Policies

For each trajectory, we first sample an initial joint angle
configuration within the range [q0 − ∆q, q0 + ∆q], with q0
being the home configuration seen in Figure 7, and ∆q =
[0, 0, 0, 5◦, 5◦, 10◦, 20◦]. For informed exploration, the robot
executes a rectangle-shaped trajectory near where obstacles
are typically generated. Waypoints along the rectangle are
perturbed with uniformly sampled noise in [−3, 3]cm. For
random exploration, while the trajectory remains under the
time horizon of 500 steps, we sample new delta goal end-
effector poses for the robot to reach. For the translation
component of the delta pose, we sample the direction and
magnitude separately. Direction is sampled from a discrete
distribution with the following probabilities:

+X : 0.15,+Y : 0.3,+Z : 0.1

−X : 0.05,−Y : 0.3,−Z : 0.1

Magnitude is sampled uniformly from the range [10, 20]cm.
For the rotation component of the delta pose, we uniformly
sample delta euler angles with the range [0◦, 20◦]. Finally,
we uniformly sample a time horizon in the range [20, 40]
steps, during which the delta pose command is completed
with min-jerk interpolation.

D. Domain Randomization

In addition to randomizing obstacle placements, we also
randomize the inertial parameters of the robot and the gains
for the impedance control. For the inertial parameters, we
uniformly sample a mass offset in the range of [−0.5, 0.5]kg
and and center-of-mass offset in [−1, 1]cm, which are added
to the base values obtained in [35].

For the impedance gains, we uniformly sample transla-
tion gains KT in the range [200, 2000] and rotation gains
KR in the range [3, 6]. To use these values, let K =
diag([KT ,KT ,KT ,KR,KR,KR]) be the 6 × 6 diagonal
gains matrix and J be the 6 × 7 analytical Jacobian for
the robot end-effector that encodes rotations as euler angles.
Then, given a delta pose pd, the commanded torque is
τ = J>(−Kpd − DJq̇), where D is the damping term
D = 2

√
K, and q̇ is the joint velocity vector. For simplic-

ity, we have left out the terms that correspond to gravity
compensation and Coriolis forces.

E. Data Statistics

Out of the 2800 unique trajectories generated, 2400 were
used in the training set. Each trajectory contains 25 non-
overlapping observation windows of 7 links, bringing the to-
tal amount of training data samples to 2400×5×7 = 420000.
Out of these, 8358 samples have at least one positive contact,
so there are 1.99% positive contacts in the training dataset. In
addition, 2209 samples have more than one positive contacts,
so there are 0.53% of samples with multiple contacts.

APPENDIX II
NEURAL NETWORK MODEL

Here we detail the neural network architecture From
Figure 5, the Fully-Connected (FC) module of the feature
extractor is a multilayer perceptron (MLP) with 3 hidden
layers of sizes [128, 128, 64]. The convolution layers chan-
nels [5, 16, 32, 32], each with kernel size 5 and a stride of 2.
Each link-specific feature processor is an MLP with hidden
layers [128, 128, 64]. The contact distance field decoder has
transposed convolution layers with channels [64, 32, 32, 1],
kernel sizes [5, 6, 6], and strides of 2. The contact detection
module is an MLP with hidden layers [32, 32]. We use Leaky-
ReLU as the nonlinearities. Network is implemented with
PyTorch Lightning [41], using the Adam optimizer with a
batch size of 256 and an initial learning rate 1e− 3.

APPENDIX III
CONTACT PREDICTIONS

See Figure 9 for contact detection visualizations with
both CLS and CDF, and Figure 10 for contact localization
predictions in the cylindrical projection coordinates.



Fig. 8: Cylindrical Projections for All Links. Cylindrical coordinates are normalized in the range of [0, 1]. The horizontal U -axis denotes
the coordinate along the tube, and vertical V -axis denotes the angular coordinate along the tube’s circumference. Each dot is a vertex,
and the color of the dot indicates its normal direction. Edges are mesh triangle edges. Blue shaded region denotes the concave hull used
to define valid projection interpolation region.

Fig. 9: Contact Detection Visualizations on Test Data. Each column is the execution of one trajectory. The top row have plots corresponding
to predictions made by CLS, and the bottom CDF. In each plot, link-wise ground truth and predicted binary contact detections are visualized,
with purple representing negative contacts, and yellow positive contacts. The X-axis represents prediction time segments, so each unit
corresponds to 5 observations, one made every 4 simulation steps. In general, CLS has more FNs, and CDF has more FPs, which is
consistent with results in Table I.



Fig. 10: Contact Localization Visualizations on Test Data. We visualize two sets (top 3 and bottom 3 rows) of examples of predicted
contact localizations in cylindrical coordinates. Blue points are projection mesh vertices; red points are contact locations. Each column is
a positive sample for a link. For each set, the top row are ground truth contact points, middle are predicted by CLS, and bottom by CDF.
Due to its use of distance fields, CDF’s predicted contacts tend to be less scattered than those of CLS.


