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Abstract—Tactile sensing is a key sensor modality for robots
interacting with their surroundings. These sensors provide a rich
and diverse set of data signals that contain detailed information
collected from contacts between the robot and its environment.
The data is however not limited to individual contacts and can
be used to extract a wide range of information about the objects
in the environment as well as the actions of the robot during the
interactions.

In this paper, we provide an overview of tactile information
and its applications in robotics. We present a hierarchy consisting
of raw, contact, object, and action levels to structure the tactile
information, with higher-level information often building upon
lower-level information. We discuss different types of information
that can be extracted at each level of the hierarchy. The paper
also includes an overview of different types of robot applications
and the types of tactile information that they employ.

Finally we end the article with a discussion for future tactile
applications which are still beyond the current capabilities of
robots.

Index Terms—Tactile Sensing, Interactive Perception, Tac-
tile Exploration, Grasping, In-hand Manipulation, Whole Body
Manipulation, Locomotion, Tool Manipulation, Human Robot
Interaction, Non-prehensile Manipulation

I. INTRODUCTION

Touch is an important sensing modality for robots physically
interacting with their environment. Tactile sensing provides
robots with a rich set of diverse signals based on contacts
between the robot and its environment. These signals provide
the robot with information about the objects in its environment
as well its interactions with these objects, e.g., if an object be-
gins to slip or if the robot has achieved a sturdy foothold. This
information is crucial for performing a variety of tasks in a
robust and reliable manner, including dexterous manipulation,
locomotion, and human-robot interactions.

However, to use tactile sensing, robots firstly need to extract
the relevant information from the sensor signals. We present an
overview of the different types of tactile information that can
be extracted from tactile signals. This information ranges from
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Fig. 1. Perception-action loop for tactile information extraction and control.

low-level forces at individual contact points to feedback for
selecting complex actions based on previous interactions. We
propose structuring the information in a hierarchy consisting
of contact-, object-, and action-level information.

Higher-level information tends to build on the information
extracted from lower levels as illustrated in Fig. 1. While
the contact level contains information from individual contact
sites, the object level contains information regarding objects
as a whole, often acquired from multiple contacts. The action
level refers to information pertaining to the actions of the
robot used to interact with the environment, which often builds
upon contact- and object-level information. As a contact-based
sensing modality, actions are also important for extracting
useful information from the interactions. All three of these
levels build upon the sensor-level tactile signals. For each level
of the hierarchy, we describe the different types of information
that are commonly extracted at that level. We also explain how
robot applications employ tactile information from across the
different levels.

A number of previous tactile review papers focused on the
sensor hardware [1]-[4], and discussed specific application do-
mains, e.g., grasping and in-hand manipulation [5]-[7]. More
recently Luo et al. [8] showed progress on tactile perception
with regard to object properties. Akihiko and Christopher [9]
reviewed the progress on tactile manipulation and put the
highlight on the vision-based tactile sensors and its applica-
tions. In this paper, we propose a computational framework
to structure tactile perception and actions. We highlight the
different types of tactile information and propose a hierarchy
for structuring the information. We also explain how various
robot applications employ tactile information from across the
hierarchy.



IEEE TRANSACTIONS ON ROBOTICS JOURNAL

The paper is organized as follows. An overview of tactile
signals is introduced in Sec. II. We then explain in detail
tactile information at each level of the hierarchy in Sections
IIT through V. In Sec. VI, we briefly discuss analytical and
data-driven methods for computing the tactile information.
In Sec. VII, the applications are discussed with regard to
how tactile information is used in rich tactile-based tasks,
including tactile exploration, grasping, in-hand manipulation,
tool manipulation, locomotion, human robot interaction and
non-prehensile manipulation. We conclude the paper with a
discussion of open challenges and future research directions
for tactile perception and control.

II. SENSOR-LEVEL TACTILE SIGNALS

A robot with the sense of touch can acquire information
about its surroundings through physical interactions. The
sensors are located under the surface of artificial skin [10],
[11], [3], [12] and provide the robot with a wide range of
signals. In this section, we briefly discuss common types of
sensory signals that will form the basis of the computational
framework proposed in this paper. We also discuss tactile
sensor coverage—how sensors are distributed on the body and
how spatial resolution is often selected depending on the given
task and the sensor placement on the robot.

A. Normal and Tangential Force

The most common type of tactile signal is the contact force.
Although the tactile sensors are based on different physical
principles, the output (tactile image, voltage) from the raw
sensor measurements can be mapped to or ‘“calibrated” as
contact forces. Traditionally, the contact force is divided into
two components: normal force and shear or tangential force.
Normal force is the component orthogonally applied to the
contact surface, and tangential force is the component applied
across the surface, e.g., friction. Most tactile sensors are able
to measure normal force [13], [14]. Some sensors can however
directly measure the full 3D force [15]-[19]. The majority of
tactile sensors are composed of arrays of sensing elements [3],
[20]-[22], and each element in the array is known as a taxel.
Each taxel provides a local force estimate corresponding to its
activation. In addition to contact force, the contact torque may
also be estimated by the sensor array [23], [24].

B. Vibration

Mechanical vibrations are another fundamental type of
tactile signals that is often used to detect contact or slip
events between contact surfaces [25]-[28]. When we use a
hammer to strike a nail [29], we can feel the vibration via
the mechanoreceptors of our skin [30]. A robot can similarly
detect vibrations using a dynamic tactile sensor, in some
cases, acoustic sensor (microphones can be used to detect
vibration and thereby serve tactile sensing purposes). Vibration
signals from tactile sensors can be used to detect whether slip
occurs between the sensors and the directly contacted object or
between a grasped object and another object. This is possible
because the vibrations in the latter case propagate additionally

through the grasped object and the tactile patterns perceived by
the sensors in the two situations are therefore different [31]
[27]. Like the fast afferents in human skin, vibration-based
sensing is not as useful in static-contact situations, as motion
is required to induce vibrations [32].

C. Thermal

Thermal tactile sensing allows a robot to measure the
temperature of an object via touching [33], [34]. It mimics
the thermal sensing of humans, which are able to discrimi-
nate temperatures between 5° and 45° [35]. Thermal sensing
can also be combined with heating elements to allow the
robot to estimate the thermal conductivity of an object [22].
The differences in thermal conductivity can then be used to
distinguish between different object materials [36], [37]. For
example, metals transfer heat faster than most plastics and
rubbers. Determining the thermal state of the contacted object
is also very important to decide the next actions, e.g. a robot
can estimate the temperature of a cup to autonomously reason
whether it is safe for serving. In the teleoperation scenario,
thermal sensing can help the operator to better judge the types
of remote objects [38].

D. Pretouch Proximity

Pretouch is the ability to detect objects and their surfaces
before contacting with them. A pretouch sensor can provide a
robot with the relative geometrical relation to an object [39],
which is valuable for robot planners [40], [41] and controllers
[42], [43], [44]. With the distance, the robot can roughly
estimate the shape and position of the object before making
contact. Depending on the underlying technology, the pretouch
sensors may also provide additional information such as color
and optical flow [45]. Pretouch sensors can also provide the
robot with better predictions regarding when the contact will
be made and thus prevent the robot from making contact at
high speeds. A variety of technologies for pretouch sensors has
been developed, and they are based on capacity [46], magnetic
[47], cutaneous infrared [48], audio [49], and optical sensing
[50]. In this manner, pretouch sensing blurs the line between
different sensor modalities.

Fig. 2. A Shadow Dexterous Hand (left) that has been covered with a tactile
skin [51] (middle) in order to provide tactile information at several locations
(highlighted green regions on the right rendering).



IEEE TRANSACTIONS ON ROBOTICS JOURNAL

Three-axis
Accelerometer

Proximity
Sensors

Normal Force  Temperature LED
Sen:

Ports Micro Controller Voltage Regulator

Fig. 3. The NAO humanoid robot covered with a multimodal artificial robotic
skin that provides vibration, temperature, force and proximity information
[52].

E. Sensor Coverage

Besides the type of tactile signals, another important char-
acteristic of tactile sensing is the distribution of sensors
throughout the body of the robot. Body parts covered with
high spatial resolution tactile sensors can be used for contact
recognition and fine motor control, while parts with lower
resolution of sensing can be used for simple contact detection
and control. Most tactile skin designs for robots are inspired by
the human tactile perception system, in which neuroscientists
have found that the sensitive tactile receptors come in four
different types with different-sized receptive fields and are
unevenly distributed in the whole body [53]. For example,
hands have higher tactile spatial resolutions than other parts
to facilitate dexterous manipulation.

Many robot hands are equipped with tactile sensors, espe-
cially at the fingertips [24], [54], [55]. An example of a robot
hand with tactile sensors on the finger tips phalanges and
palm [51] can be seen in Fig. 2. High spatial and temporal
resolutions provide hands with rich tactile information for
performing complex tasks, e.g. exploring unknown objects,
tool use, and in-hand manipulation.

Tactile sensors can also be embedded in other robot body
parts, such as arms [56], [57], torso (Fig. 3), legs [58] and feet
[59]. Contact information on these parts are closely associated
with tasks involving whole-body encounters with obstacles,
human robot interaction and locomotion. The density of the
sensing elements is coarser on these parts because the sam-
pling and processing of large areas of taxels is challenging
from a hardware design and communication perspective [3].
The tactile sensors in load bearing parts of the body are
often designed in a more robust way to withstand the larger
forces needed to grasp heavy objects [60] and support the
weight of the robot [61] during walking tasks. Tactile sensors
are normally located on the surfaces of regularly shaped
links. However, flexible and stretchable sensors have been
developed to cover body parts with complex shapes and curved
surfaces, [62]-[64], as well as the joints of the robot [65].
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Fig. 4. Examples of different types of contact-level information that can be
extracted from the sensor-level tactile signals.

III. CONTACT-LEVEL INFORMATION

The basic function of tactile sensing is to provide a robot
with information about the contact sites, such as local geome-
tries, forces, material properties, and contact events (Fig. 4).
In this section, we discuss the type of contact information
and how the contact information is extracted from raw tactile
signals. This information forms the basic building blocks for
the object-level information (Sec.IV) and is widely used for
controlling the robot (Sec.V).

A. Contact Geometry

Tactile sensing is widely used to estimate the local geometry
of a contact area including the contact position, normal, and
curvature. Many tactile-related tasks rely on precise mea-
surements of the contact position and normal direction, e.g.,
to compute grasp stability and manipulability [66]. Given a
calibrated sensor array [67], the contact position in the tactile
sensor frame is computed as the pressure-weighted center of
the activated taxels and then mapped to the Cartesian frame
of the robot using its forward kinematics [68], [69]. Using the
same principle, the contact normal direction is estimated as
the pressure-weighted normal direction of the activated taxels.
The position and normal provide a first order approximation
of the local surface patch, with the normal direction defining
the tangent plane at the contact point.

Tactile sensors can also be used for estimating higher
surface derivatives at the contact point, e.g., the surface
curvature [70], [71]. Given a tactile sensor with high spatial
resolution, the contact surface curvature can be measured
based on the relative movement between the sensor and an
unknown object when sliding or rolling occurs [70]. For
sensors with lower resolutions, the contact surface can be
approximated with a second order polynomial equation [66],
[71]. The curvature at the contact point is approximated by
a local parameterized surface matrix that can be estimated
through active tactile exploration.
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Tactile image processing is another way to extract contact
geometry of a small region. Machine-learning [72], [73] and
traditional image based approaches [68], [74]-[76] are widely
used to estimate the position of contacts and identify salient
features such as edges, corners and small protrusions. For
example, a pronounced curvature on the surface of the object
will appear as a line in the tactile image. The slope of the line,
relative to the tactile sensor, can be estimated by the principal
component of the image blob [77]. The 3D direction of the
edge is then estimated by combining the slope of the line with
the forward kinematic model of the robot.

B. Force and Torque

Contact forces and/or torques are directly measured by
several tactile sensors [13], [21], [22], [45], [65], [72]. Some
sensors only provide the normal force while others also
provide tangential forces to give the full 3D force vector.
Estimating forces at contacts is important, as it is the transfer
of forces that allows the robot to physically interact with
objects in its environment. When employing a point contact
model, the contact force can be estimated from the contact
pressures of all activated taxels [21], [68] or from the overall
deformation of the sensor [45], [72].

Different approaches have been proposed for mapping raw
tactile pressure values to the contact forces and torques [78]—
[80]. One example is to model the mapping as a linear
function [81], [82]. The drawback of this approach is that
it does not work well for sensors that have strong hysteresis
or damping properties due to the skin material [2]. For such
skin materials, other advanced machine learning algorithms
are more suitable. For example, locally weighted projection
regression and artificial neural networks can be used to learn
the nonlinear relation [26], and Gaussian processes can be
used to compensate for the nonlinear hysteresis effects of sen-
sors [83]. Finite element methods have also been used to model
the nonlinear functions and learn the model parameters [78].

Several approaches have also been proposed for estimating
contact forces and torques without tactile array. Most of
these approaches rely on intrinsic tactile sensing, using motor
torques [84], [85], motor torques and joint values [86] or
hydraulic pressure values [87] to estimate contact forces and
torques.

C. Contact Events

Contact events refer to discrete changes in the contact state
between two objects, which include making, breaking, sliding
and rolling contacts. Contact events often correspond to sub-
goals and errors when interacting with the environment. For
example, breaking and making contact between a foot and the
ground is the goal of each step in a walking task, while a
sliding foothold is usually considered to be an error.

The transition between contact and no contact is a near-
instantaneous event that results in a discontinuous interaction
model. It is therefore important that the robot can detect the
events quickly and reliably. A common way to detect the
contact is to compare the measured tactile signals with a given
threshold [65], [88], which is estimated from previous contact

experiences. Another method is to use dynamic tactile sensors
[89], which compute the vibration features to distinguish
contact from no contact. Using this approach, it is possible
to detect the contacts not only between the skin of the robot
and the environment but also between a grasped object and
the environment [90].

In addition to transitions from no contact to contact, the
robot may also experience the change from a static contact
to a sliding contact. Many approaches assume no slip or
consider slip to be an error as it is difficult to control. Robust
detection of slip is therefore a crucial research topic. In
practice, gross sliding is usually preceded by an incipient
slip event, wherein only some low-pressure regions of the
contact patch begin to slide [89]-[92]. That is to say, the
outer regions on a fingertip begin slipping while the central
region, where more pressure is applied, does not slip [68],
[93]. Hence, detecting incipient slip is a key capability for
avoiding gross sliding from happening. Incipient slip can
be detected with high-frequency tactile feedback (normally
> 1kHz) using frequency-domain analysis approaches [88],
[89], [92], [94]. Other approaches include learning from data
and using image processing techniques, e.g., using a Hebbian
network [95], using optical flow from a fingertip camera [96],
or using random forests to predict slip from multi-modal
tactile information [97]. Robots can additionally differentiate
between different types of slip, e.g., determining whether the
gross sliding is rotational or translational [25], [26], [45], [76],
[98]. For such classification, neural networks are trained to
classify time-series tactile pressure data or visual features for
vision-based tactile sensors [26], [98].

D. Material Properties

The interactive nature of touch allows a robot to estimate
material properties of objects that may not be easily extracted
visually. Researchers have defined 15 different properties to
represent the surfaces of objects [99] using tactile information.
These properties can be reduced to 5 key dimensions, namely
stiffness, friction, surface texture thermal conductivity and
adhesion. Stiffness can be measured by the robot pressing
into the object with a specified contact force and measuring
the resulting displacement of the contact point [100]-[103].
Similarly the coefficient of static friction can be estimated by
measuring the normal and tangential forces when incipient slip
occurs [104], [105].

Texture information is useful for differentiating among
materials, as well as detecting blemishes or smooth surfaces.
To achieve good classification results, a robot will often
slide the tactile sensor across the surface and observe the
resulting vibrations and time series signals [106]. Classifiers,
such as kNN, ANNs, and SVMs, can then be trained to
classify the different textures [107]-[110]. Better classification
performance can be achieved by employing multiple sliding
motions with varying velocities and directions [111].

Thermal conductivity is another useful material property.
While the temperature of an object is estimated by a thermal
sensor, the thermal conductivity of the material is estimated
by the transfer rate of thermal energy [22], [112]. Given that
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Fig. 5. Several actions for which different types of object-level information
are necessary for the actions execution.

materials conduct heat at different rates, the detected transfer
rate can also be used to classify different materials [37], [113].

IV. OBJECT-LEVEL INFORMATION

Many tasks involve interacting with or manipulating un-
known objects. To perform these tasks reliably, the robot
needs to estimate the state and properties of the manipulated
objects. Tactile sensors can be used to acquire a wide range of
object-level information via raw sensor values or by combin-
ing contact-level information during interactions. Inspired by
human exploration actions for determining object properties
[32], we illustrate several common actions to extract object-
level information in Fig. 5.

A. Object Localization

A robot needs to accurately estimate the pose of an object
in order to precisely manipulate it to a desired location. Local-
izing an object using tactile feedback only is not a trivial task.
Approaches are commonly based on filtering theory [114]-
[118]. These approaches use the measured contact positions
and normal of the object as input, and probabilistic models of
the pose of the object are then updated over time to capture the
uncertainty of the estimation over multiple interactions [117].

In addition to accuracy, the efficiency of estimation is also
important especially for tactile exploration tasks. To this end,
optimization approaches can be used to select informative
actions and explore the most uncertain pose space [116],
[119]-[121]. It is often assumed that the object is static and
not affected by the exploration [114], [119], [120], [122].
Researchers have also proposed methods for tracking the pose
of an object while it is being moved [115], [123].

B. Shape

The shape of an object refers to its global geometry.
Shape information is often needed to plan interactions with
objects. For example, a robot with a two-fingered gripper
needs to find opposing surfaces of an object for grasping. The
shape can be reconstructed by measuring the positions and
normals of surface patches [124]. Employing tactile sensing

is especially useful for estimating the shape of an object in
visually occluded regions [125]-[127]. The tactile sensors can
thus play a complementary role to vision sensors for updating
the model of an object.

By touching the object at one single location, tactile sensors
only estimate the local shape of relatively small regions, so
multiple contacts are needed in order to obtain the global
shape [128]. This procedure is time consuming, and extensive
efforts have therefore focused on optimizing touch sequences
to reduce the uncertainty of the estimated shape and improve
the model as quickly as possible [129]-[132]. The shapes
are often represented by Gaussian processes to model the
uncertainty [131] or by fitting geometrical models to the tactile
point clouds [116].

C. Mass and Dynamics

While an object is grasped or manipulated, it acts as an
additional payload for the robot. The mass and CoM are
then required for the accurate dynamics model of the new
system composed by the robot arm and hand plus the grasped
object [66]. When grasping an object, the robot should place
its hand near the center of mass of the object to avoid large
torques. Conversely, the robot can estimate the center of
mass by slightly lifting the object and observing the torques.
Correctly estimating the mass and center of mass, allows the
robot to avoid improper contact force by using the estimated
information to adapt the grasp force.

The estimation of the mass and CoM of the object requires
an interactive control procedure. Different action strategies
and learning approaches have been proposed for estimating
them and also the inertial matrix of the object [121], [133]-
[137]. While grasping a heavy object, a robot can estimate the
mass parameters of the object based on the force and torque
measurements from the wrist [133], [138]. For light objects,
tactile estimates of the fingertip forces during simple lifting
actions can be used to localize the center of mass of unknown
objects [134], [135]. For an object that is too large to grasp,
a robot can estimate its mass parameters by tipping it and
stabilizing it in a different posture [136], [139].

D. Contents of Containers

The interactive nature of touch allows tactile sensing to
estimate properties of objects that would otherwise be latent.
In addition to the mass properties of an object, a robot may
also determine the contents of container objects. For example,
a robot may determine if a non-rigid container is full or empty,
as well as open or closed, by squeezing it and observing
the resulting tactile signals [140]. In addition to squeezing
actions, a robot can shake a container to estimate the amount of
material inside or the material properties of the contents [111],
[141], [142]. One example approach estimated the viscosity of
a liquid within a container by using a learned Gaussian process
model and selecting different shaking behaviors to actively
acquire the best estimate [141].
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Fig. 6. The large arrows at the top show a sequence of action executions.
In the lower part, horizontal baselines indicate the time window when the
tactile information is being extracted. The arrows indicate the time point
when the action is monitored and the action is performed or adapted. Action
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to select and set the parameters of the current action. Low-level control uses
the sensory data from each time step to select the next low-level control
input during the action execution. Action termination monitors the action at
each time step and either continues the action (red) or terminates it (blue) if
a specific contact even has been detected. Action outcome detection then
determine if the executed action was successful, or which type of error
occured, based on the tactile signals acquired during the action execution.
Action outcome verification uses an additional action to generate more tactile
signals to determining the outcome.

V. ACTION-LEVEL INFORMATION

For most applications, robots need to execute sequences
of actions to finish more complex tasks [143], e.g., grasping,
transporting, and releasing for pick-and-place tasks or execut-
ing a sequence of steps for walking tasks. Tactile sensing can
be used to compute action-level information for performing
and monitoring the complex tasks at all stages (see Fig. 6).
Action level information may be computed from contact-
level [26], [88], [97] and object-level [115], [123], [134], [135]
information as well as directly from tactile signals [27], [144]-
[147].

A. Action Selection and Initialization

Tactile data from previous actions and interactions can be
used to select the next action and initialize its parameters.
Robots can use previous actions to explore the objects and
extract object-level information, then use the updated object
model for initializing the current action [115], [116], [121],
[124], [148], [149].

The exploratory actions themselves are selected to acquire
additional information based on the current belief for the
properties of the object [120]. For example, when the robot
has acquired a partial 3D model of an object based on previous
tactile feedback, then the next grasp should be selected to ex-
plore locations where the model is still uncertain [127], [131].
Similarly, the robot may select other exploration parameters,
e.g. different normal forces and velocities for a series of finger
sliding movements, to better recognize an object [106].

Action selection is also used for recovering from failed
grasps and other actions. When a robot grasp attempt fails,

the robot can use the data from the failure to extract latent
object properties and adapt the grasp for the next attempt
accordingly [146], [150]. The resulting regrasping strategy
thus has a higher likelihood of succeeding by exploiting the
tactile information to select the next grasp.

B. Tactile Feedback for Low-level Control

Once a robot starts to execute an action, it can employ
continuous tactile feedback to control the interaction by com-
puting suitable motor commands [151]. For this computation,
contact-level information [26], [88], [97], object-level infor-
mation [115], [123], [134], [135] or raw tactile signals [27],
[152] are required.

Tactile servoing uses feedback from tactile features to
control the pose of the robot end-effector and maintain a
certain amount of pressure while interacting with objects with
various material properties [77], [82], [134], [153]-[155]. This
approach allows the robot to explore the unknown object,
actively extracting features of the object [156], [157] and cope
with the geometry and material uncertainties of the contacted
objects. It is also useful for tracing the edges of objects [77].
In servoing tasks, action and perception are tightly coupled as
the robot needs to continuously adapt its actions to the current
tactile signals.

In addition to continuous servoing control, the robot may
also compute actions to respond to certain contact-level events,
e.g., incipient slip. Reacting to these events requires quick
reflexes. In many cases, incipient slip detection triggers an
increase in the normal force exerted by the controller [25],
[92]. Rather than waiting for the slip event, the robot may
also learn to predict these events in advance based on tactile
sensing [26], [97].

C. Action Termination

Action termination allows a robot to determine if the current
action should be continued or terminated, such that the robot
can then switch to another action. Terminating an inappropriate
action early allows the robot to reduce the negative effects of
colliding with objects or similar errors. Early termination also
allows the robot to avoid errors when a goal is reached earlier
than expected.

To perform action termination, the robot continuously mon-
itors the tactile signals and learns a binary classifier. Given the
model classifier and the current tactile data, the robot can de-
termine if the action should be continued or terminated [158].
Another way to decide whether an action should be terminated
is to learn a model of the expected sensory signals [159]. The
robots then compare the predictive output of this model to the
actual sensor values during the action execution [155], [160].
The action is terminated if the deviation from the expected
model output exceeds a given threshold.

D. Action Outcome Detection

Actions are not guaranteed to always succeed, even when
robust tactile feedback is used in the control loop. Therefore, it
is important for the robot to determine that the goal is reached,
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and no error occurred during execution. Outcome detection can
be formulated as a classification problem where the classifier
has a binary output indicating if the action was successful or
not [161]. The robot may also attempt to determine the specific
type of error if one occurred. The outcome classification may
be achieved with a probabilistic approach that computes the
probability of a successful outcome [150]. For the input, the
robot may use the entire time series tactile signal from the
action execution. However, often only the final frame is used as
it tends to be highly informative for determining the outcome
[145], [162].

Outcome detection has been used for evaluating grasp
stability [145], [150], [161]-[164]. In this case, classifiers or
probabilistic models are used to determine if a grasp was
successful before attempting to lift the object. Rather than
continuing the planned sequence of actions, a detected failure
may trigger a regrasping action or a replanning strategy [150].
Outcome detection can thus serve a similar role to action
initialization, but for the subsequent action.

Outcome detection is also important for providing the robot
with additional information for future executions of the action.
The robot can use outcome detection as feedback for learning
actions from experience [144], [165]. Successful outcomes
give greater rewards and thus encourage similar action exe-
cutions in the future.

E. Action Outcome Verification

Many outcomes are ambiguous given only the observed
tactile signals during the action execution. A robot therefore
needs to use interactive perception to disambiguate these
situations. By applying an additional action, and observing
the resulting tactile signals, a robot can estimate more reliably
the outcome of the previous action. For example, a robot
may attempt to perturb a screw sideways to verify that it was
correctly inserted into a hole [166]. A robot may also attempt
to lift an object to verify that a grasp was successful [146].
Similar with direct outcome detection, the outcome verification
can be posed as a classification problem. However, the input
data is provided by the tactile signals from the following
actions. Outcome verification requires extra time and effort to
perform the subsequent action, and it may change the state as
a result, but it also provides useful information for determining
the action outcome.

VI. TACTILE COMPUTATION: ANALYTICAL AND
DATA-DRIVEN MODELS

Tactile computation approaches can generally be divided
into two groups—analytical or data-driven.

Analytical approaches exploit physics-based models to com-
pute tactile information [71], [89], [105], [117], [131], [138],
[82]. From the descriptions of tactile information in Sec III
through V, it is clear that many of the processed signals have
a clear physical meaning. Higher-level information, such as
object properties and action commands, are computed from
the raw tactile signals or from contact information by accumu-
lating interactions and using physical models. By utilizing the

principles of physics to create models of the environment, hu-
man operators can easily understand the perception procedure
of the robot and its decision-making processes. However, these
models normally rely on structured interactions and accurate
feedback signals. If precise information of the interactions is
not available and more complex tasks are being considered,
simplified assumptions about the interactions must be taken to
facilitate the design of the models.

Another approach is to employ data-driven methods to
compute and process the tactile information implicitly [79],
[150], [159], [167], [168]. These approaches learn mappings
from raw sensory signals, or lower-level features, to high-level
object properties and action commands. Supervised, unsuper-
vised, and even reinforcement learning methods can be used to
learn suitable features for a variety of tactile tasks. Hierarchical
representations, such as neural networks, are often used to
learn multiple levels of features. The learned intermediary
features are generally not interpretable by humans. Data-driven
methods generally do not require a precise model of the
interaction and they tend to avoid brittle assumptions. Flexible
representations allow the robot to adapt the learned model to
the specific task based directly on data. It is often easier to
provide data from contact-based interactions than to predefine
an accurate analytical model.

VII. APPLICATIONS OF TACTILE INFORMATION

Rich tactile information provides lots of possibilities for
performing tactile-relevant tasks, which include: tactile ex-
ploration, grasping, in-hand manipulation, locomotion, tool
manipulation, human robot interaction and non-prehensile ma-
nipulation. In this section, we summarize the relation between
tactile information, computation methods, and applications in
Table I. We describe how robots can compute and use contact-
, object-, and action- level information within these complex
task domains.

A. Tactile Exploration

Tactile exploration is an effective way to extract properties
of an unknown object through touch [116], [121], [156], [157].
Humans use many exploration procedures to obtain knowledge
about objects [32] — lateral motions, pressure, enclosure,
contour following, object part motion tests, and affordance
tests. Inspired by these findings, many tactile-based explo-
ration methods have been developed for robots to estimate
important parameters including contact-level information such
as local geometry [71] and material properties [106], as well as
object-level information such as shape [169], [170] and mass
information [134]. In addition to analytical approaches, some
researchers have proposed data-driven approaches to learning
the contact geometry and properties of objects [80] [172] using
large tactile datasets.

Another representative application of tactile sensing in ex-
ploration is tactile servoing control. This is mainly computing
the action level information to maintain the desired contact
pattern defined by contact level information considering single
[77], [153] or multiple contact areas [171]. In the example of
single contact [77], [153], a tactile planar array is assembled
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TABLE I

AN OVERVIEW OF EXAMPLES FOR TACTILE INFORMATION AND COMPUTATION APPROACHES IN APPLICATIONS

Applications

computation approach

Contact level

Object level

Action level

Grasping

data-driven

[184], [185]

[186]-[188]

. . analytical models [71], [106] [134], [169], [170] [77], [153], [171]
Tactile Exploration
data-driven [80], [127] [128], [132], [168], [172], [173] [170], [174]
. analytical models [175] [176], [177] [178]
Non-prehensile Manipulation
data-driven [27], [179] [102], [139], [180] [97], [181]
analytical models [901], [100] [98], [114], [120], [137] [182], [183]

[145]-[147], [189], [190]

In-hand Manipulation

analytical models

[191], [192]

[193]

[152], [194]-[198]

data-driven [167] [199], [200] [144], [201], [202]
analytical models [203] [204]
Tool Manipulation
data-driven [31], [45] [142], [154], [205] [155], [158], [206], [207]

Locomotion

analytical models

[104], [208]-[210]

[211], [212]

data-driven

[213]-[215]

[216]-[218]

. analytical models
Human Robot Interaction

data-driven

[65] [219]
[37], [223]-[225]

[220]-[222]

[226]-[230]

on the end-effector of the arm. The desired tactile pattern
is the specified contact position and force. The tactile array
explores the surface of the object by implementing sliding
and rolling actions. The goal of the action information is to
minimize the deviation of the tactile pattern. This approach
can also be used to control a robot hand for exploration [171].
This controller used multiple contact areas on the hand and
explored the surface of an unknown object to improve the
grasping capability of the robot.

B. Non-prehensile manipulation

Non-prehensile manipulation involves interacting with ob-
jects without explicit grasping. These types of manipulations
include pushing, poking, punching, hooking, pivoting, flipping,
throwing, squeezing, twirling and striking. Tactile sensing
in non-prehensile manipulation is often used to model the
contacts [27] and provide low-level feedback control [175],
[181] as well as monitor the action status and estimate object
properties [177], [178].

Different levels of tactile information are used for non-
prehensile manipulation. Researchers have proposed methods
for using contact-level slip information for pushing tasks
[27], in which the tactile classifier was represented by a
convolutional neural network. Contact-level information can
also be used to compute feedback information for opening
doors using a hook [175]. Another non-prehensile tactile
controller was learned [181] for rolling tasks. Object-level
information, e.g. center of mass, can be learned by pushing
objects and subsequently used for controllers to perform more
complex actions [177].

C. Grasping

Grasping is one of the most widely researched aspects of
robot manipulation [231], as it provides a robot with control
over the grasped objects and it is a common prerequisite
for tool usage. Similar to tactile exploration, tactile grasping
is an important method to extract object properties. Some
researchers extracted the contact level information [90], [100]
and object level information [98], [114], [120], [137] using
analytical methods, while others computed them with data
driven approaches [184]-[187].

Tactile sensing has also been used for analytical grasp
controllers [182], [183], and for data-driven grasp synthe-
sis, grasp outcome detection, and re-grasping [145], [146],
[190]. Analytical approaches rely on accurate contact position,
normal direction, and force estimates to compute a grasp
posture that maximizes the grasp quality metric [171], [232].
For data-driven approaches, the robot uses contact and object
information from previous grasps to predict grasp qualities and
compute regrasp postures [120], [145], [146], [190], [233].

Once the object has been grasped, tactile feedback can be
used to control the contact forces [234], [235] and detect
incipient slip [26], [90], [92]. By detecting or predicting
incipient slip using tactile data, the robot can automatically
increase its grip force to avoid gross slip without having to
explicitly estimate the object-finger friction coefficients [236].

D. In-hand Manipulation

In-hand manipulation involves using the dexterity of the
robot hand to change the state of a grasped object. For this
task, some work focused on the computation of contact and
object level information [191], [193], [167], [200], but the
majority of work was to study the tactile controllers to relocate
the grasped objects. The controllers have been performed with
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either multifingered robot hands [24], [194], [198], [237]-
[240] or grippers [241]-[243].

For local repositioning while maintaining contact, i.e., in-
grasp manipulation, the object is precisely grasped then moved
with the fingertips of the robot [194]. Tactile sensing is used
to estimate the contact and object information and actively
control the contacts between the fingers and the object [195],
[197]. Alternatively, tactile sensing can also be used to directly
learn a mapping from the contact sensor information to the
desired joint velocities of the robotic fingers [144], [201] using
data-driven approaches.

In order to move the object further [244], robots need
use finger gaiting to switch between different grasps while
maintaining the object in hand. To this end, the fingers need
tactile sensing to detect breaking and contacting with the
object to effectively walk the hand around the surface of
the object. For dexterous hands, researchers have proposed
using human-inspired finger gaiting strategies [196]. In order
to imitate the human, demonstrations of gaiting behaviors with
tactile signals can be acquired by fitting the human subject’s
hands with tactile finger caps [245].

E. Tool Manipulation

Tool usage is a core aspect of many manipulation tasks
[246]. A key aspect of employing tactile sensing in tool
manipulation is that the task contacts are between an object
and the held tool. The contacts are therefore not directly on
the tactile sensors, unless the tool is itself instrumented [203].

Tactile sensing can be used to detect contacts on tools,
localize tooltips and other important parts of the manipulated
tools [31], monitor the progress of tasks and detect manipu-
lation failures. Tactile feedback can also be used to estimate
and maintain the orientation and forces at the contact points
to perform compliant control tasks. Tactile sensing can also
be employed in a dual-arm setup to estimate the kinematic
parameters of a grasped tool [204].

Tactile sensing is used for controlling and using unknown
tools. The main challenge is that no kinematic or dynamic
manipulation model can be directly used to compute the
tactile action information for a given task. To this end, data
driven methods [154], [206], [207] become a valid approach
to compute the action commands implicitly. Tool tasks often
involve multiple stages of contact interactions. For example,
a peg may slide freely or become jammed during an insertion
task. Tactile sensing allows the robot to interactively detect
these different types of contact modes [158] and plan recovery
actions accordingly [166].

F. Locomotion

Tactile sensing is not only useful for manipulation tasks,
but also for locomotion. Ground vehicles and walking robots,
such as humanoids, quadruped, hexapod, and snake robots,
need to use contacts with the environment to move around.
Tactile sensing provides to them with estimates of the state
of the robot and the environment terrain [104], [247] during
locomotion. For example, wheeled robots can use tactile
sensing to monitor their contact with the ground [213]-[215].

Vibration signals from microphones or accelerometers in the
wheels can be used for determining the type of terrain.

Maintaining balance is a key part of both standing and
walking. To maintain balance, the robot needs to use tactile
sensing to estimate its contact locations for support [104], as
well as detect obstacles and other perturbations that may cause
it to lose balance [211]. The tactile sensing can also be used for
learning a tactile-motor mapping for standing [210]. Walking
requires deliberately planning and controlling gaits, which
consist of multiple phases [248]. The transitions between
phases are often triggered by contact events, such as the heel
contacts with the ground. Tactile sensing has also been used
to study where to place a foot [212]. By estimating the type
of terrain, a robot can generate appropriate gaits and switch
to a suitable leg controller.

G. Human Robot Interaction

In addition to interacting with inanimate objects and terrain,
robots also need to physically interact with humans. Human
robot interaction (HRI) applications span a wide range of
different tasks including intuitive programming [220], putting
on clothing [226], handing over objects [249], safe interaction
with collaborative robots [250], [251] and shaving [221].
During these tasks, the robot need to ensure that the interaction
forces are safe and adapt to the human’s body.

In the context of HRI, recent progress has explored inferring
the human’s latent state and intentions from sensory feedback
[252]-[254]. For example, during a handover, the robot can
employ vision and tactile feedback to determine when the
human has a suitable grip and is ready to accept the object
[227]. Similarly, when performing collaborative tasks such as
carrying large objects, the robot measures interactive forces
and torques through the force/torque sensor on the wrists for
performing the task and reacting accordingly [222].

In addition to performing tasks, human robot interaction can
also be used to teach robots new skills from demonstrations
[255]. In this manner, the robot can be directly guided by
a human using force controllers [256]. Physical interactive
corrections can also be used to refine robots skill executions
through touch [228]. For instance, dressing is a fundamental
task of everyday living and robots offer an opportunity to
assist people with motor impairments. In [219], [225], authors
present a method to track a person’s pose in real time using
capacitive proximity sensing. Using tactile information a robot
can adjust for errors in the estimated pose of a person and
physically follow the contours and movements of the person
while providing dressing assistance.

VIII. CONCLUSION AND FUTURE WORK

The sense of touch is important for robotic systems to per-
ceive physical properties of objects necessary for safe object
interaction and manipulation. It provides feedback for adapting
the executed actions of the robots. In this paper, we discussed
the main types of information that can be acquired using tactile
signals as well as different types of applications in which this
information can be used. We explained how tactile sensing
can be used to acquire data related to individual contacts,
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objects, and skills. These different types of information can be
extracted from the sensor signals using analytical techniques
or data-driven approaches. The proposed categorization of
tactile perception approaches is thus applicable to various task
domains.

Our review of tactile information focused on the different
types of estimation problems that robots must overcome, rather
than the specific types of methods used to address these
problems. In this manner, we provide a structure for this
research field that can be applied both to past work as well
as future research. Although we have made great strides as a
research community, none of the presented problems should
be considered as solved.

In addition to developments for the individual challenges
that we discussed, we also expect to see more approaches that
collect contact- and object- level information while performing
actions for a given task. Methods for contact- and object-
level information currently tend to employ purely exploratory
skills, e.g., stroking and prodding [156], [171] or basic manip-
ulations, e.g. simple grasping and lifting [114], [120], [135].
Similarly, action-level methods often assume that object and
contact information are already provided or it is fixed and
therefore does not need to be explicitly represented [122],
[131]. Future work on tactile sensing will also explore deeper
how analytical and data-driven approaches can be combined
more efficiently. Current methods often focus either on analyt-
ical [71], [89] or data driven approaches [150], [167], [201].
Combining these two approaches will allow robots to work
efficiently by exploiting their prior knowledge and adapting to
novel situations autonomously.
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