
Visual-Laser-Inertial SLAM
Using a Compact 3D Scanner for Confined Space

Daqian Cheng1, Haowen Shi1, Albert Xu2, Michael Schwerin1, Michelle Crivella3, Lu Li1 and Howie Choset1

Abstract— Three-dimensional reconstruction in confined
spaces is important for the manufacturing of aircraft wings,
inspection of narrow pipes, examination of turbine blades, etc.
It is also challenging because confined spaces tend to lack
a positioning infrastructure, and conventional sensors often
cannot detect objects in close range. Therefore, such tasks
require a sensor that is compact, operates in short-range, and
able to localize itself. In this paper, we introduce a miniature
and low-cost 3D scanning system including an active laser-
stripe triangulation hardware, integrated inertial sensors, and
a Simultaneous Localization and Mapping (SLAM) software
tailored for the sensor. The proposed system is capable of recon-
structing photo-realistic 3D point cloud in real-time in spite of
its compact monocular configuration. To achieve this capability,
we propose an approach to capture both color and geometry
using alternating shutter-speed on a single camera. A novel
SLAM method is proposed to accurately localize the sensor by
fusing laser, camera, and inertial measurements. Evaluation
of localization accuracy and comparison on reconstruction
performance against a significantly larger commercial off-the-
shelf sensor demonstrate the proposed system’s advantages in
real-world applications.

I. INTRODUCTION

Three-dimensional reconstruction is a fundamental prob-
lem in robotics and computer vision. Various sensor systems
with wide-ranging capabilities (e.g. range and resolution),
such as laser-stripe triangulators, RGB-D cameras, and Li-
DARs, and corresponding algorithms [1], [2], [3], [4] have
made accurate 3D scanning possible in many types of spaces
(e.g. indoor [5], [6], [7], outdoor [8], [4], [9], underwater
[10], [11], [12], etc), revolutionizing both civil and industrial
fields. These sensor hardware and software systems, in the
authors’ view, operate in wide-open spaces and are not well-
suited, by design, for confined space operation. In fact, few,
if any, systems for infrastructure-free 3D reconstruction have
been developed for confined space operation. Such systems
would be of great use for inspection applications, such as
turbine inspection, where a unit is usually disassembled just
to perform the inspection. The challenge in building such a
sensor comes from the confined space constraints: the sensor
must be 1) compact to fit into tight spaces; 2) able to operate
at short-range; 3) able to localize itself without positioning
infrastructure.
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Fig. 1. (a), (b) The proposed sensor hardware prototype; (c) hand-held
scanning with ground truthing experimental set up; (d) the reconstructed
colored point cloud of a keyboard, scanned without external infrastructures.

Current commercial off-the-shelf (COTS) sensors for 3D
reconstruction are either too large or dependent on external
positioning infrastructure (e.g. robotic manipulators, motion-
capture cameras, etc). Kinect (Microsoft, Redmond, WA,
USA) and RealSense (Intel, Santa Clara, CA, USA) are two
popular RGB-D cameras with self-localization capability, but
even the smallest model size is 90 × 25 × 25 mm with a
minimum sensing range of 105 mm. Highly accurate and
compact laser profilers such as optoNCDT (Micro-Epsilon,
Raleigh, NC, USA) require external positioning devices to
function. [13] introduced an ultra-compact 3D measurement
sensor but also lacked self-localization capability.

In this paper we propose a compact and low-cost 3D
scanning system including a hardware design and a tailored
SLAM framework for self-localization. Based on active
laser-stripe triangulation, the sensor consists of a monocular
color camera, a laser stripe projector, and an Inertial Mea-
surement Unit (IMU). The proposed sensor achieves a size
of 27 × 15 × 10 mm and a sensing range of 20-150 mm.
Fig. 1 shows the proposed sensor hardware as well as the
hand-held colored point cloud reconstruction of a keyboard.

Localization accuracy often determines reconstruction
quality since individual laser scans are registered using
localization. Monocular visual-inertial (VI) sensor setup is
considered the smallest sensor-suite to perform SLAM with
metric scale, and VI-SLAM methods have achieved promis-
ing results and are nowadays widely used in mobile robots,
smartphone applications, and VR & AR. However, sensor



motion in confined spaces is often much slower and IMU
measurements are much less excited, resulting in poor metric
scale estimation and localization accuracy. Therefore, we
proposed a SLAM method designed for active laser-stripe tri-
angulators by fusing visual, laser, and inertial measurements.
In [14] we briefly introduced the sensor design and high-level
frameworks but the SLAM method was not described; in this
paper, we improved our previous work and introduced a new
window-to-map tracking method which enables consistent
mapping under multi-pass scans. Experiments show higher
localization accuracy of the proposed SLAM method com-
pared to a state-of-the-art VI-SLAM method, demonstrate the
SLAM framework’s ability to maintain mapping consistency
under repeated re-scanning, and show the proposed sensor’s
superior reconstruction quality to a COTS RGB-D camera.
We summarize our main contributions as follows:

• A design of a compact and low-cost 3D scanner.
• An alternating-shutter approach to achieve colored 3D

reconstruction using a monocular sensor.
• A novel visual-laser-inertial SLAM (VLI-SLAM)

framework with 1) laser-based metric scale estimation
and 2) window-to-map tracking for consistent mapping.

II. RELATED WORKS

Active laser-stripe triangulation has been one of the main-
stream 3D scanning approaches for decades [15]. Usually
consisted of a camera and a laser-stripe projector, the sensor
detects the laser stripe and triangulates it into 3D space.
Thanks to the simple hardware design and inexpensive com-
ponents, laser-stripe triangulation is a popular choice for low-
cost 3D scanning systems such as the DAVID Laserscanner
[16]. Many high accuracy profilers such as Keyence Laser
Profiler (Keyence Corporation, Osaka, Japan) and metallic
surface scanners [17] also adopt laser-stripe triangulation due
to its high accuracy and relative insensitivity to illumination
compared to structured light. Although extensive work has
been dedicated to reconstructing 3D models [1], very few
have focused on localization using laser-stripe scanners to
enable infrastructure-free capability, and positioning devices
or localization aids [10] are often needed to register individ-
ual scans.

Structured light and time-of-flight are two core technolo-
gies behind today’s 3D scanners. Structured light scanners
project 2D patterns of light onto the scanned surface [18],
[19], [20], while time-of-flight sensors measure distance
using the travel time of light signals. Realsense and Kinect
are two popular and relatively low-cost 3D scanners and
are commonly referred to as RGB-D cameras since each
pixel provides color and depth. A number of RGB-D SLAM
algorithms with promising results have emerged in the past
decade, including volumetric [2], [6] and surfel-based [7],
[21] methods. However, compared to laser-stripe scanners, an
RGB-D point cloud frame is generally able to account for 6
degree-of-freedom (DoF) motion via point cloud alignment.
Therefore, these RGB-D SLAM methods cannot be directly
applied to laser-stripe triangulators.
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Fig. 2. Theory of operation: Laser depth is triangulated by projecting a
camera ray out from the camera origin and finding its intersection with the
laser plane.

The proposed SLAM method designed for laser-stripe
triangulators is most similar to monocular visual SLAM,
which has two main approaches: the feature-based approach
[22], [23] uses visual features of images to estimate camera
motion, while the direct approach [24], [25] directly uti-
lizes pixel intensities. However, monocular SLAM is only
able to recover the up-to-scale structure (camera motion
and map). To overcome this scale ambiguity, an Inertial
Measurement Unit (IMU) is often incorporated to recover
the metric scale [23], [26]. Since laser triangulation is able
to estimate the metric scale more accurately than an IMU,
our SLAM method fuses visual features, inertial, and laser
depth measurements to achieve high localization accuracy.

III. SENSOR SYSTEM DESIGN
A. Hardware & Sensor Model

The proposed scanner hardware consists of an RGB
CMOS camera, a MEMS-based 6-axis accelerometer &
gyroscope, and a laser-stripe projector. A single laser stripe
pattern is created by refracting a thin laser beam through a
cylindrical lens, and is projected to the region in side camera
field of view. The red laser stripe can be toggled on/off in
synchronization with our image shutter trigger to enable the
alternating-shutter technique described in Sec. III-B.

3D points on the laser stripe are recovered from 2D images
using triangulation. We model the projected laser stripe as a
plane Πl : n ·X + d = 0 in 3D space, which intersects with
the physical world. Depth of each image pixel observation
xi of the laser stripe is estimated using triangulation by
solving a ray-plane intersection problem illustrated in Fig.
2 and described in (1), where Xc

i denotes the triangulated
3D point and π−1c denotes the back projection function that
projects a pixel position onto the normalized image plane.

Xi =
−d

n · π−1c (xi)
π−1c (xi) (1)

We refer readers to our previous work [14] for the cali-
bration of geometric parameters π−1c and Πl.

B. Software Framework
Fig. 3 shows the software framework for processing sen-

sor data, localizing the sensor, and reconstructing a photo-
realistic 3D point cloud.
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Fig. 3. Software framework and data flow visualization.

A highlight of our software is a custom designed sensor
driver, which enables measuring two unique types of infor-
mation using a single camera sensor by alternating the shutter
between long and short exposure times. Thus, both bright
images Ile for camera motion estimation and dark images
Ise for laser depth triangulation can be captured at adjacent
sample frames. Additionally, the laser stripe projector is
synchronized with the camera shutter to switch off for Ile and
on for Ise. See Fig. 4 for a diagram detailing the interleaving
timing sequence. The purpose of this approach is to allow
the monocular camera to capture both color and geometric
information with minimal time gap, in order to reduce sensor
physical size that is critical for confined space requirements.
Optimized for 3D geometry acquisition, Ise’s are under-
exposed and exhibit a high laser-to-background contrast; Ile’s
are neutrally exposed, with no laser stripe, and are utilized
for SLAM and point cloud coloring.

IV. VISUAL-LASER-INERTIAL SLAM

The proposed SLAM method fuses visual feature mea-
surements, depth measurements from laser scan, and in-
ertial measurements to achieve high localization accuracy.
Each sensor plays a different role: visual features serve as
the main source of camera motion estimation; IMU helps
handle abrupt motion and estimate orientation thanks to
its observability of roll and pitch angles; the laser points
provide the metric scale for the visual odometry and help
maintain mapping consistency via point cloud alignment.
The proposed SLAM framework can be broken down to the
following components: 1) a front-end that pre-process raw
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Fig. 4. The camera shutter alternates between long and short exposure
”on” times, keeping frame duration constant for all frames. The laser’s state
toggles synchronously with the alternating exposure, producing a sequence
of images that provide both RGB and depth information.

sensor data into visual features, colored laser points, and
pre-integrated inertial data; 2) an initialization process boot-
straps the optimization problem structure, 3) an odometry
component estimates camera motion, 4) a mapping module
registers laser points into a point-based map representation,
and 5) a window-to-map tracking component aligns current
measurements to the map to correct odometry drift.

A. Front End

Visual: 1) Visual features are extracted and tracked in
each Ile image using KLT optical flow [27]: existing features
in the previous frame are tracked and new feature points
are extracted to maintain a minimum number of features.
2) We define features-on-laser Fl as the subset of feature
points F close to the laser scan; for these features, the laser
point cloud can help accurately estimate feature depths. A
feature fi is defined to be a feature-on-laser if any of its
observations is close to the laser stripe pixels in adjacent
Ise’s, and the observation frame with feature’s pixel position
being the closest to the laser stripe is defined as fi’s primary
observation frame c∗fi . For a feature fi 6∈ Fl, its c∗fi is the
first observation frame. 3) Keyframe selection: an Ile frame
becomes a keyframe if the average feature parallax from
the previous keyframe is sufficiently large or the number
of tracked features from the previous keyframe is too small.

Laser: For each Ise, we detect the laser stripe pixels using
the center-of-mass method [28] and triangulate these pixels
into 3D points as described in Sec. III-A. Color information
for each laser point is retrieved via projective data association
using several temporally adjacent keyframes. Given the pose
of this Ise (interpolated as described in Sec. IV-B) and the
keyframes, each laser point is transformed into the global
frame, then reprojected onto adjacent keyframes to find the
average color of the associated pixels.

IMU: Preintegration is a commonly used technique to
handle inertial integration efficiently by avoiding repeated
computation. We perform preintegration following [29], [23].

B. Initialization Process

We initialize the sliding window-based SLAM framework
by generating initial estimates of keyframe poses and feature
depths in the sliding window using the following procedures.
1) First find two keyframes in the sliding window with
enough parallax, such that the first frame is the primary
observation frame of several features-on-laser. 2) The up-
to-scale transformation between the two frames is estimated
using the eight-point algorithm [30] with an arbitrary scale
s0. 3) Depth d̂ of all the common feature points are estimated
by triangulation. 4) The correct scale ŝ is then estimated
using each feature-on-laser’s closest laser pixel’s depth d̄:
ŝ = (

∑K
i d̄i/d̂i)/K · s0. The two keyframes’ poses and

feature depths are then corrected using ŝ. 5) Given the
initialized structure of the two keyframes, poses of other
keyframes in the sliding window are estimated using the
perspective-n-point algorithm [31], and other feature points
in the sliding window are triangulated. 6) Finally, a bundle
adjustment optimizes all camera poses and feature depths
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Fig. 5. Illustration of the sliding window-based visual-laser-inertial
SLAM. The sliding window is consisted of several keyframe poses, features
observed by the keyframes, laser point cloud observed in the time span of
the sliding window, adjacent laser point cloud in previously built map (if
revisited), and inertial measurements.

in this sliding window, and poses of Ise’s are interpolated
between poses of adjacent keyframes in order to register
individual laser scans into a global point cloud.

Given an initialized camera motion trajectory and pre-
calibrated extrinsic transformation between camera and IMU,
we initialize the inertial-related variables including biases,
velocity and gravity using methods described in [23].

C. Sliding Window-Based SLAM Formulation

We propose a tightly-coupled visual-laser-inertial SLAM
(VLI-SLAM) formulation in a sliding-window of keyframes.
Nonlinear optimization is employed to solve for state vari-
ables X consisting of keyframe poses T, IMU states (linear
velocity and biases) and inverse feature depths λ in each
feature’s primary observation frame. A combination of four
types of residuals are minimized in the optimization problem:
visual feature depth residual given laser point cloud, visual
feature reprojection residual, inertial measurement residual,
and window-to-map tracking residual (described in Sec. IV-
D). An illustration of the proposed SLAM formulation is
shown in Fig. 5.

Features-on-Laser Depth Residual: Depths of Fl can be
accurately estimated using the depth prior from the registered
laser point cloud. The depth prior d̄i of a feature-on-laser
fi ∈ Fl is computed by first finding the 3D laser points
near the feature viewing ray from c∗fi using projective data
association [32], then fitting a 3D plane to these points and
intersecting the plane with the feature viewing ray to find d̄i.
Using these depth priors d̄, we introduce a residual for Fl

described in (2).

rl(X ) =
∑
fi∈Fl

∥∥∥∥ 1

λi
− d̄i

∥∥∥∥2 (2)

Feature Reprojection Residual: For each feature fi ∈ F ,
reprojection residuals defined in (3) are evaluated between
the primary frame c∗fi and every other observation frame
in the sliding window C. In (3), xj

i denotes the pixel
observation of the ith feature in the jth keyframe; πc(·)
denotes camera projection function and π−1c (·) denotes back
projection function; T ∈ SE(3) denotes a transformation
matrix.

rc(X ) =
∑
i∈F

∑
j∈C

∥∥∥∥πc(Tcj
w Tw

c∗fi

1

λi
π−1c (x∗i )

)
− xj

i

∥∥∥∥2 (3)

Inertial Measurement Residual: We follow the IMU
measurement residual definition in [29], [23] to help estimate
linear velocity, IMU biases, and camera poses; details are not
elaborated for brevity. Since the laser point cloud provides
metric scale information, IMU is not necessary for the
scanner to function but is still desirable for directly observing
roll and pitch angles and being able to handle abrupt motion.

D. Mapping & Window-to-Map Tracking

We use a point-based map representation similar to [21],
[7], where each map point contains the following attributes:
a position v ∈ R3, a normal n ∈ R3, an RGB color c ∈ R3,
and a weight w ∈ R. Laser point cloud frames are added to
the map after popped out of the sliding window. For each
laser point to add, if there exist a nearby map point p with
compatible color and normal, then the new point is merged
into p; if not, the new point is added to the map and its
normal is estimated using nearest neighbors algorithm [33].
The weight attribute is the number of times that a map point
is merged with a new point.

Accumulation of odometry drift will violate mapping
consistency when user revisit a scanned region to fill re-
construction holes or to obtain a denser point cloud [20].
To account for this issue, many RGB-D SLAM methods
have adopted a frame-to-map tracking approach instead of
a frame-to-frame one [2], [21], [7]. However, laser points in
a single frame are co-planar and geometrically insufficient
to account for 6 DoF motion. Therefore, we propose a
window-to-map tracking approach, where the registered laser
point cloud in the sliding window is aligned to the map.
Since odometry drift exists within the sliding window, a
nonrigid Iterative Closest Point problem is formulated where
laser points from the same Ise are treated as rigid, but
transformation between Ise’s are treated as nonrigid. This is
achieved by incorporating per-point point-to-plane residual
defined in (4) into the SLAM formulation. In (4), vi is a
laser point from an Ise in the sliding window, and ck and
ck+1 are the two temporally adjacent keyframes; f(·) denotes
a pose interpolation function to estimate the Ise pose using
its timestamp; vg

i , ng
i , and wi are attributes of the closest

map point to vi, which is searched for using KD-Tree.

ricp =
∑
i

wi

∥∥∥(vg
i − f

(
Tw

ck
,Tw

ck+1
, ti

)
vi

)
· ng

i

∥∥∥2 (4)

V. EXPERIMENTS

The sensor’s performance in hand-held 3D scanning is
evaluated with real-world scanning experiments. Targeting
localization and mapping benchmarking as main objectives,
we first evaluated the localization accuracy of the proposed
VLI-SLAM in Sec. IV against VINS-Mono, a state-of-the-art
visual-inertial SLAM method, using the same sensor hard-
ware [23], followed by a comparison of colored point cloud
reconstruction against a popular COTS RGB-D camera, Intel
RealSense D435. We also showcase the scanning of several
industrial and household objects in Fig. 8.

The experiments were conducted by hand-holding the
sensor to scan a keyboard. To mimic 3D scanning in confined



spaces, the sensor was held at ∼3 cm above the keyboard
facing downward, and the camera motion was kept slow to
decrease the IMU signal-to-noise ratio (SNR). Because the
laser stripe only covered three rows of keys at a time, we
scanned the keyboard using a back-and-forth zigzag motion
pattern consisting of six passes to incrementally cover the
scene, visualized in Fig. 6. The total trajectory length was
185.4 cm and the average speed was 1.40 cm/s. Fig. 1c shows
the experiment setup, where the sensor was mounted on a
3D-printed handle attached with motion capture markers for
localization ground truth.

The sensor outputs Ise and Ile images of VGA resolu-
tion at 60 frames per second (FPS) combined and inertial
measurements (linear acceleration and angular velocity) at
200 FPS. To achieve real-time SLAM, we used a sliding
window size of 8 keyframes and extracted 100 visual features
from each Ile. On the testing PC with AMD Ryzen 3700x
CPU, the average computation time was 29.8 milliseconds
per frame.

A. Odometry Accuracy Evaluation

We evaluated the proposed VLI-SLAM method against
VINS-Mono. A visual-inertial SLAM method is chosen as
benchmark because it is the best choice available given
the sensor suite. To evaluate the window-to-map tracking
component described in Sec. IV-D, we experimented with
two versions of the proposed SLAM method: one denoted
as VLI-Odom with the window-to-map tracking component
turned off, and the other as VLI-SLAM with it turned on.
The ground truth trajectory was obtained using the Vicon
motion capture system (Vicon Industries, Hauppauge, NY,
USA).

Fig. 6 shows the estimated trajectories in the top-
down view of VINS-Mono, VLI-Odom, VLI-SLAM against
ground truth, with absolute translational and rotational errors
analysis. In the error plots, the background colors divide the
time period into six segments corresponding to the six passes
in the zigzag trajectory, starting from the bottom-left. The
performance statistics comparison are listed in Table I, where
drift is defined as maximum error over trajectory length.

Based on this experiment, VINS-Mono showed signifi-
cantly larger translational drift compared to both VLI-Odom
and VLI-SLAM, mainly due to inaccurate scale estimation,
which was caused by high measurement noise of the low-
cost MEMS IMU and low signal-to-noise ratio from the

TABLE I
ABSOLUTE LOCALIZATION ERRORS AND DRIFT RATES

Error metric VINS-Mono VLI-Odom VLI-SLAM
t RMSE (cm) 5.1 0.39 0.32
t Max (cm) 8.6 0.86 0.60
t Drift (%) 4.6 0.46 0.32

r RMSE (rad) 0.022 0.014 0.023
r Max (rad) 0.030 0.033 0.035

r Drift (10−4 rad/cm) 1.6 1.8 1.9

t DriftAbs (%) 23.7 0.65 N/A
r DriftAbs (10−4 rad/cm) 4.3 3.1 N/A

Fig. 6. Trajectories in top-down view of the proposed SLAM methods,
VINS-Mono and ground truth and the associated translational and rotational
errors. The background color of error plots indicates different passes in the
zigzag trajectory. The top portion in the translational error plot is rescaled
to accomodate the large error of VINS-Mono.

slow sensor motion. VLI-SLAM demonstrated slightly better
translational accuracy than VLI-Odom thanks to the window-
to-map tracking component, which reduced drift by register-
ing current measurements with historic information. Since
this drift-correction is map-centric rather than localization-
centric, the mapping benefited more as described in Sec.
V-B. All three methods showed similar rotation estimation
performance.

One key performance metric for real-world 3D scanning
is the absolute drift. However, in this experiment, the drift
growth often alternated between positive and negative as the
sensor motion changed direction, thus the average drift is
smaller than the absolute drift. Therefore, we segmented the
trajectory into six passes. Within each pass, drift is zeroed
at the beginning to evaluate the absolute drift, which is
then averaged across the six passes. These translational and
rotational drifts are denoted as DriftAbs in Table I. Since the
window-to-map tracking would register the later passes to
the first one, VLI-SLAM is not evaluated for absolute drift.

B. 3D Reconstruction Evaluation

The proposed sensor was compared against Intel Re-
alSense D435 since it is one of the smallest low-cost and
infrastructure-free 3D scanner although still significantly
larger than the proposed sensor. RTAB-Map [3] was em-
ployed for SLAM using D435.



Fig. 7. Comparison of point cloud reconstruction. (a) is a photograph of the scanned scene. (d) and (g) are the photo-realistically and spatially colored
reconstruction results by RealSense. Reconstructed using the proposed sensor, (b) and (c) show results using VLI-Odom, and (e), (f) and (h) are with
VLI-SLAM. (i) and (j) are the sectional views of (g) and (h) respectively with the red dashed lines as the cutting planes.

The reconstructed point clouds were geometrically eval-
uated using a ground truth point cloud, which we obtained
using a UR5e robot manipulator (Universal Robots, Odense,
Danmark) to scan the keyboard with the proposed scanner.
The point-to-point and point-to-plane RMSEs are shown in
Table II, where the proposed sensor with VLI-SLAM showed
the smallest error.

To qualitatively compare both the reconstructed color
texture and geometrical shape, we present the photo-realistic
colored point clouds as well as spatially color-coded point
clouds in Fig. 7.

Based on the results, the proposed sensor system was able
to achieve 3D reconstruction results with finer texture details
as well as sharper geometries: comparing Fig. 7 (d) and (e),
our sensor delivered superior reconstruction details on letters
and patterns of the keycaps; geometric structures were also
sharper in (h) compared to (g) which is more evidently shown
in the sectional views (i) and (j). This confirmed the claim
that laser-stripe profilers are often able to achieve higher
reconstruction accuracy than structured-light based RGB-D
cameras. The window-to-map tracking component in VLI-
SLAM significantly improved mapping consistency under
back-and-forth scanning motions. Fig. 7 (c) and (f) show the
partial point cloud of (b) and (e) respectively in spatial color-
coding. In (c) the point clouds from different passes were
clearly separated from each other due to SLAM drift, and
in (f) the point clouds were tightly aligned. We observe that
although the window-to-map tracking only slightly reduces
localization error in Sec. V-A, the mapping quality was
drastically improved. This demonstrated the proposed VLI-
SLAM’s ability to maintain mapping consistency under back-

TABLE II
MAPPING RMSE STATISTICS

Error metric VLI-Odom VLI-SLAM RealSense
Point-to-point (mm) 1.2 0.97 2.3
Point-to-plane (mm) 0.93 0.76 2.0

and-forth coverage scanning, which is a common motion
pattern for both laser-stripe profilers and other 3D scanners.

To comprehensively demonstrate the system’s scanning
capability, we also include the hand-held reconstructions of
several other objects in Fig. 8.

VI. CONCLUSIONS

In this paper, a miniature 3D scanner for confined
spaces with close sensing range and infrastructure-free self-
localization is introduced. A framework including alternating
shutter data generation and a visual-laser-inertial SLAM
method are designed to achieve photo-realistic 3D recon-
struction using the monocular sensor. This framework can be
generalized to any camera-based laser triangulators. Exper-
imental evaluation on localization demonstrated our SLAM
method’s performance compared to a state-of-the-art visual-
inertial SLAM method, and the reconstruction results suggest
our sensor is able to capture finer details and sharper geomet-
ric shapes against a popular but larger COTS RGB-D camera.
To the best of the authors knowledge, the proposed sensor
and software framework is the most compact RGB-D photo-
realistic reconstruction system for hand-held infrastructure-
free 3D reconstruction, which provides a disruptive solution
for a wide range of 3D scanning applications where sensor
form factor and ultra short sensing range are critical.

Fig. 8. Reconstruction using the proposed system of (a) a face mask, (b)
a multimeter, (c) a industrial aerospace part, and (d) a toy car.
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