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Abstract

The growing number of action classes has posed a new
challenge for video understanding, making Zero-Shot Ac-
tion Recognition (ZSAR) a thriving direction. The ZSAR
task aims to recognize target (unseen) actions without train-
ing examples by leveraging semantic representations to
bridge seen and unseen actions. However, due to the com-
plexity and diversity of actions, it remains challenging to se-
mantically represent action classes and transfer knowledge
from seen data. In this work, we propose an ER-enhanced
ZSAR model inspired by an effective human memory tech-
nique Elaborative Rehearsal (ER), which involves elaborat-
ing a new concept and relating it to known concepts. Specif-
ically, we expand each action class as an Elaborative De-
scription (ED) sentence, which is more discriminative than
a class name and less costly than manual-defined attributes.
Besides directly aligning class semantics with videos, we
incorporate objects from the video as Elaborative Con-
cepts (EC) to improve video semantics and generalization
from seen actions to unseen actions. Our ER-enhanced
ZSAR model achieves state-of-the-art results on three exist-
ing benchmarks. Moreover, we propose a new ZSAR eval-
uation protocol on the Kinetics dataset to overcome lim-
itations of current benchmarks and demonstrate the first
case where ZSAR performance is comparable to few-shot
learning baselines on this more realistic setting. We will re-
lease our codes and collected EDs at https://github.
com/DeLightCMU/ElaborativeRehearsal.

1. Introduction
Supervised video action recognition (AR) has made

great progress in recent years, benefited from new mod-
els such as 3D convolutional neural networks [41, 11, 10]
and large-scale video datasets [6, 16]. These supervised
models require abundant training data for each action class.
However, desired action classes are continuously increasing
with the explosive growth of video applications on smart
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Figure 1: Attributes and word embeddings are insufficient to se-
mantically represent action classes. Our Elaborative Rehearsal ap-
proach defines actions by Elaborative Descriptions (EDs) and as-
sociates videos with Elaborative Concepts (ECs), which improve
video semantics and generalization video-action association for
ZSAR. (✩for videos, △ for seen actions, ◦ for unseen actions,
and □ for ECs)

phones, surveillance cameras and drones. It is prohibitively
expensive to collect annotated videos for each action class
to fuel the training needs of existing supervised models. In
order to alleviate such burden, Zero-Short Action Recogni-
tion (ZSAR) [49] has become a thriving research direction,
which aims at generalizing AR models to unseen actions
without using any labeled training data of unseen classes.

A common approach for ZSAR is to embed videos and
action classes into a joint semantic space [12, 48], so that the
associations between video and seen actions can be trans-
ferred to unseen actions. However, how to semantically rep-
resent action classes for above associations is a challenging
problem due to the complexity and diversity of actions. As
shown in Figure 1(a), early works employ manual-defined
attributes [29] to represent actions. Despite being a natural
methodology, it is hard and expensive to define a complete
set of atom attributes that generalizes to arbitrary actions.
To overcome difficulties in attribute definition, recent works
adopt word embeddings of action names [49, 4] as class se-
mantic representations. Though simple and effective, word
embeddings can be ambiguous. Words have different mean-
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ings in different context and some actions might not even
be interpreted literally according to their names such as the
“dumpster diving” action in Figure 1(b), which are confus-
ing to relating different action classes.

In addition to class semantic representations of actions,
it has been under-explored in existing ZSAR works on how
to learn powerful and generalizable video semantic repre-
sentations. Only until recently, deep features [19, 40] have
been used to overtake traditional hand-crafted features such
as fisher vectors of improved dense trajectory descriptors
[42, 49]. One line of work [21, 15] utilizes objects recog-
nized by deep image networks as video descriptors, which
assumes that object recognition in image domain are prior
knowledge for more advanced action recognition. The pre-
dicted objects are naturally embedded in the semantic space
and thus can be well generalized to recognize actions even
without any video example [21]. However, the video is
more than collections of objects, but contains specific re-
lationships among objects. Therefore, it is insufficient to
represent video contents purely using object semantics. An-
other direction of works [4], instead, directly employs state-
of-the-art video classification networks in ZSAR. Though
powerful enough to capture spatio-temporal information in
the video, they are prone to overfit on seen action classes
and transfer poorly to unseen ones.

In this work, we take inspiration from a well-established
human memory technique, namely Elaborative Rehearsal
(ER) [3], for ZSAR. When we learn a new item such as
“dumpster diving”, we first expand the phrase into a readily
comprehensible definition, and then relate the definition to
known information in our long-term memory, thereby fos-
tering retention of the item. In a similar manner, we pro-
pose an ER-enhanced model to generalize AR models for
new actions. Our approach advances ZSAR in three main
aspects under the common paradigm of joint semantic space
learning [12, 48]: (1) For the class semantic representa-
tion of actions, we construct Elaborative Descriptions (ED)
from class names to comprehensively define action classes
as shown in Figure 1(c), and embed the ED leveraging prior
knowledge from pre-trained language models. (2) For the
video semantic representation, we propose two encoding
network streams that jointly embed spatio-temporal dynam-
ics and objects in videos. We use a pre-trained image object
classification model [24] to generate the Elaborative Con-
cepts (EC) of objects. Since it is highly likely that some
common objects involved in seen and unseen classes, incor-
porating EC in video semantics improves the generalization
on unseen classes. (3) To further improve generalization
of video semantic representations, we propose an ER ob-
jective to enforce the model to rehearse video contents with
additional semantic knowledge from EC. The embedding of
EC shares the same embedding function as the ED of action
classes, which also implicitly makes our ZSAR model more

generalizable to diverse class semantic representation. Our
ER-enhanced ZSAR model achieves state-of-the-art perfor-
mance on the widely used benchmarks including Olympic
Sports [32], HMDB51 [25] and UCF101 [39] datasets.

Moreover, since existing benchmarks are relative small
and contain overlapped classes with other large-scale video
datasets, in order to benchmark progress of ZSAR ap-
proaches on a more realistic scenario, we further propose a
new ZSAR evaluation protocol based on a large-scale super-
vised action dataset Kinetics [6, 5]. In our Kinetics ZSAR
benchmark, we demonstrate the first case where ZSAR per-
formance is comparable to few-shot learning baselines un-
der clear split of seen and unseen action classes.

2. Related Work

Supervised Action Recognition. The rapid development
of deep learning [18] has vigorously promoted AR research.
Early deep models [23, 38, 43] adopt 2D convolutional neu-
ral networks (CNNs) in temporal domain. To more ef-
fectively encode temporal dynamics in videos, 3D CNNs
[40] are proposed but are computation and parameter heavy,
which require large-scale datasets to train. Therefore, dif-
ferent approaches have emerged to improve 3D CNNs. Car-
reira et al. [6] propose I3D network which inflates 2D CNN
to 3D CNN to learn spatio-temporal features. Tran et al.
[41] and Qiu et al. [36] decompose 3D convolution into 2D
spatial and 1D temporal convolutions. Wang et al. [45] in-
sert non-local blocks into 3D CNNs to capture long-range
dependencies. Feichtenhofer et al. [11] introduce slowfast
network with two pathways operating at different frame
rates, and further explores expansion of 2D CNNs along
space, time, width and depth in [10]. Lin et al. [28] propose
temporal shift module (TSM) to achieve temporal model-
ing at 2D computational costs and parameters. Despite
strong performance, these supervised models cannot recog-
nize new classes without training examples. In this work,
we generalize the AR models to recognize unseen actions.

Zero Shot Learning. Most ZSL works [1, 2, 12, 52, 47, 46]
focus on the image domain to recognize unseen objects. A
comprehensive survey can be found in [47]. Here we mainly
review joint semantic space based methods. ALE [1], DE-
VISE [12] and SJE [2] use bilinear compatibility function
to associate visual and class representations, with differ-
ent objectives for training. ESZSL [37] proposes an objec-
tive function with closed form solution for linear projection.
DEM [52] proposes to use visual space as embedding space
to address hubness problem in ZSL. Different from above
approaches, Wang et al. [46] predict classification weights
based on knowledge graphs of classes. Except using dif-
ferent features, the ZSL methods in image domain can be
applied for zero-shot action recognition.

Zero Shot Action Recognition. As the main focus of our



Class Name Elaborative Description (ED) ED Source

Action Class

cleaning gutters
cleaning gutters : make clean ; remove dirt , marks , or stains from . a shallow
trough fixed beneath the edge of a roof for carrying off rainwater . Wikipedia +

Dictionary +
Modificationclean and jerk

clean and jerk : a two - movement weightlifting exercise in which a weight is
raised above the head following an initial lift to shoulder level .

Object Concept chipboard
chipboard : a cheap hard material made from wood chips that are pressed together
and bound with synthetic resin

WordNet

Table 1: Examples of Elaborative Descriptions (ED) for action classes and object concepts.

work is to learn better video and action semantic representa-
tions for ZSAL, we group existing works according to types
of semantic representation of actions. The first type takes
manual-defined attributes [29, 51] to represent an action.
Gan et al. [14] improve attribute detection via multi-source
domain generalization. Nevertheless, the attributes of ac-
tions are harder to define compared with the image counter-
parts. The second type then exploits objects as attributes.
Jain et al. [21] detect objects in videos and associate videos
to action category with maximum object similarity. Gan
et al. [13] propose to select discriminative concepts. Gao
et al. [15] utilize graph networks to learn action-object re-
lationships and then match objects in the video with ac-
tion prototypes. Though effective, the above work ignore
spatio-temporal relationships in videos and actions. The
third type of approaches uses word embedding of action
names [49, 35, 30, 4] as semantic representation. Qin et
al. [35] derive error-correcting output codes for actions via
both category-level embedding and intrinsic data structures.
The recent work [4] argues that end-to-end training is im-
portant for ZSAR and proposes to train a 3D CNN to pre-
dict word embedding of action names. However, word em-
beddings can be ambiguous and mislead knowledge trans-
fer among action classes. The most similar work to ours is
[44], which employs texts and images as alternative seman-
tic representation for actions, but their text descriptions are
rather noisy and inferior to attributes or word embeddings.

3. Our Approach

In ZSAR, we are given a source dataset Ds =
{(vn, yn)}Nn=1 of N video with labels from seen action
classes S = {1, · · · , S}, where vn is a video clip and
yn ∈ S is the label. Dt = {(vm)}N+M

m=1+N is the target
dataset of M videos with labels from unseen action classes
T = {1 + S, · · · , S + T}. The goal of ZSAR is to clas-
sify vm ∈ Dt over unseen classes T with AR models only
trained on Ds. The main architecture of our ZSAR model
is to embed videos and action classes in a joint semantic
space as [12, 48], using a video embedding function ϕ(v)
and an action class embedding function ψ(y). ϕ(v), ψ(y)
are trained on Ds to map videos and action classes of sim-

ilar semantics closer, such that classification on Dt can be
achieved by nearest-neighbor searching.

In the rest of the section, we present the novel com-
ponents of our ER-enhanced ZSAR model: Elaborative
Description (ED), action class embedding function ψ(y),
video embedding function ϕ(v), and Elaborative Rehearsal
(ER) loss. The framework is illustrated in Figure 2.

3.1. Elaborative Description (ED)

We concatenate a name and its sentence-based definition
as ED for both action classes or object concepts. Examples
of ED are listed in Table 1, which are more discriminative
than class names and easier to generate than attributes to
semantically represent an action or an object.
Justification for Human Involvement. ZSL demands
class-wise semantic representations, which might involve
human to construct, but costs significantly less than sample-
wise annotation efforts in supervised training. In fact, it is
a vital step of ZSL to design a high-quality semantic repre-
sentation with less class-wise annotating efforts. For ZSL
in general object classification task [12, 27, 47], word em-
beddings of class names are gaining popularity as semantic
representation, because the semantic embeddings of general
object words are well-learned in pre-trained language mod-
els and can be used as prior knowledge. However, word
embeddings are not applicable to other domains such as
fine-grained ZSL for bird species [20] where the class name
provides little information about visual appearances. There-
fore, manual-defined attributes [20] or cleaned text descrip-
tions [33] are necessary in such scenarios. The situation is
similar in ZSAR, where action names alone are not discrim-
inative enough to represent context of the action. For exam-
ple, the action “fidgeting” in Kinetics dataset [6] denotes
“playing fidget spinner” instead of its common meaning of
“making small movements”. Therefore, it is necessary for
human involvement to clarify semantics of actions. Com-
pared to carefully designed and annotated attributes, a more
natural way for we humans is to describe the visual process
of target actions in natural language, which motivates us to
collect sentence-based ED for action class representation.
Construction of Elaborative Description. Defining ac-



Figure 2: Architecture of the ER-enhanced ZSAR model. The video embedding function generates two video semantic representations
via a spatio-temporal stream and an object stream. The class embedding function extends concept names into elaborative descriptions to
generate class semantic representations. The action recognition loss is combined with an elaborative rehearsal loss in training.

tions is more complicated than objects. In the ImageNet
dataset [8], object classes are directly linked to concepts in
WordNet [31], and thus EDs of objects are straightforward
to obtain. However, currently there are no such resources
to define actions. To reduce manual efforts of writing EDs
from scratch, we first automatically crawl candidate sen-
tences from Wikipedia and dictionaries using action names
as queries. Then we ask annotators to select and modify a
minimum set of sentences from the candidates to describe
the target action given few video exemplars. More details
are presented in the supplementary material. It takes less
than 20s on average to generate the ED per action class,
which are very efficient. The average length of EDs for ac-
tions in Kinetics dataset [6] is 36 words. We will release our
collected EDs publicly.

3.2. Action Class Embedding

Assuming d = {w1, · · · , wNd
} is the ED for action y,

where wi is the composed word, the goal of action em-
bedding function ψ(y) is to encode d into semantic feature
z ∈ RK with dimension of K.

In order to capture sequential order in d and transfer
knowledge from large-scale of texts, unlike previous works
that use tf-idf [34], average word embedding [49] or RNNs
trained from scratch [52], we propose to employ a pre-
trained BERT model [9] for description encoding. The
BERT model has demonstrated capability of implicitly en-
coding commonsense knowledge [7], which is beneficial to
understand global semantics of the sentences.

Denote hi ∈ R768 as the hidden state from the last layer
of BERT for word wi, we apply average pooling to obtain a
sentence-level feature h̄, which is:

h̄ =
1

Nd

∑Nd

i=1
hi. (1)

Since there are multi-layers of self-attention in BERT, the
content words are more strengthened than other stopwords.

Therefore, we did not observe performance gains using
more complicated methods to aggregate hi compared with
average pooling. Then we use a linear transformation layer
to convert h̄ into the joint semantic embedding space:

ẑ =Wch̄+ bc, (2)

where Wc ∈ RK×768, bc ∈ RK are parameters to learn.
Finally, we normalize the class embedding as z = ẑ/||ẑ||2.

3.3. Multimodal Video Embedding

As an unseen action may involve novel spatio-temporal
relationships as well as novel objects, we thus propose ϕ(v)
to encode videos via two streams to capture spatio-temporal
dynamics and objects respectively.
Spatio-Temporal Stream in Visual Modality. Encouraged
by the recent success of 3D CNNs in supervised AR, we
employ 3D CNNs specifically the TSM network [28] as our
backbone to extract Spatio-Temporal (ST) features. Denote
x̄v ∈ R2048 as the output from the last pooling layer of
TSM, we map x̄v into the joint embedding space through
linear transformation:

x̂v =Wvx̄v + bv, (3)

where Wv ∈ RK×2048, bv ∈ RK are parameters to learn.
We also normalize the embedding as xv = x̂v/||x̂v||2.
Object Stream in Text Modality. There is a widely ac-
knowledged assumption in ZSAR works [21, 15] that the
prior knowledge of object classification in images are avail-
able. Therefore, we are able to use objects recognized from
frames as additional video representation. Specifically, we
use the BiT model [24] pretrained on ImageNet21k dataset
to predict object probabilities from evenly sampled frames
from video v. We average object probabilities over the
frames and choose top No objects O = {o1, · · · , oNo

} to
compute object semantic representation for the video. In



order to alleviate cross-modal semantic gap with ψ(y), we
use the same text embedding function ψ(·) as action class
embeddings to embed the object sequence O, which is:

xo = ψ([ED(o1); · · · ;ED(oNo
)]) (4)

where [; ] denotes the concatenation of texts and ED(oi) de-
notes using the elaborative description of object oi. This
strategy explicitly encourages that object embedding xo and
action class embedding z lie in the same semantic space.
Multimodal-based Channel Attention. The above xv and
xo are encoded independently via two networks. However,
the awareness of object semantics in video can benefit the
spatio-temporal stream to focus on channels correlated to
salient objects, and vice versa. Therefore, we propose to dy-
namically fuse the two embeddings to enhance each other.
The formula of injecting xo to improve xv is as follows:

gvo = σ(W 2
voRELU(W 1

vo[xv;xo])), (5)
xvo = xvgvo/||xvgvo||2, (6)

where W 1
vo ∈ R2K×K ,W 2

vo ∈ RK×K are parameters, σ is
the sigmoid function. Similarly, we obtain xov from object
embedding xo with guidance of xv . Therefore, our video
encoder ϕ(v) produces two types of embeddings xvo and
xov to comprehensively represent video contents.

3.4. Elaborative Rehearsal(ER) enhanced Training

Given video vn and seen classes S, we can generate
video embeddings xnvo, x

n
ov = ϕ(vn) and action class em-

bedding matrix Z ∈ RK×S where each column zi = ψ(i).
Then, we can obtain similarity scores between vn and ac-
tion classes as follows:

pnv = xvo · Z, pno = xov · Z, (7)

where · denote vector-matrix multiplication, pnv , p
n
o ∈ RS .

As the negative score between object and action class em-
beddings mainly indicates that the recognized objects are
irrelevant to the action, the magnitude is less important. We
thus fuse the two types of similarity scores as follows:

pn = pnv + max(pno , 0) (8)

We use a contrastive loss to train the action classification
model. To be generalizable, p ∈ RC denotes the predicted
score, q ∈ RC is the one-hot ground-truth label where qi =
1 if the i-th label is true otherwise qi = 0, and C is the
number of classes. The contrastive loss is computed as:

L(p, q) =
−1∑C
j=1 qj

C∑
i=1

qi log
exp(pi/τ)∑C
j=1 exp(pj/τ)

, (9)

where τ is a temperature hyper-parameter. For action clas-
sification on seen data Ds, we convert label yn into one-hot

vector qn and the loss is:

Lar =
1

N

N∑
n=1

L(pn, qn) + L(pnv , q
n) + L(pno , q

n). (10)

We summarize above losses, because xvo tends to overfit
seen classes compared with xov , making the model trained
on Ds prone to overweight xvo while ignore xov without
the loss L(pnov, q

n).
Moreover, supervisions from only Lar are semantically

sparse, leading to less generalizable video and text repre-
sentations. In order to improve generalization to diverse
semantics, we propose an Elaborative Rehearsal (ER) loss,
which rehearses the video representation with semantics
from ECsO obtained from frame-wise object classification.
Denote On = {on1 , · · · , onNo

} the top recognized objects in
video vn, we generate semantic representation ψ(ED(oni ))
for each oni . Since the total number of all objects are large,
we sample a few object classes during training to reduce
computation. Let Zo as the object class embeddings in a
mini-batch of training, and the ER loss is computed as:

Ler =
1

N

N∑
n=1

L(pnc , q
n
c ) + L(pnc,v, q

n
c ) + L(pnc,o, q

n
c ), (11)

where pnc,v = xvo · Zo, pnc,o = xov · Zo, pnc = pnc,v + pnc,o,
and qnc is the one-hot ground-truth object labels for vn.

We combine Lar and Ler in our ZSAR model training
with a balance factor λ:

L = Lar + λLer. (12)

Comparing to Eq. 10, our model trained by Eq. 12 learns
a shared ψ(·) from ECs (i.e. ψ(oi)), and ED (i.e., ψ(yi)).
The sharing advocates to learn more comprehensive associ-
ations between videos and classes in the common semantic
space defined by (ϕ(·), ψ(·)), and thus leads to better gen-
eralization to unseen classes.

In inference, the action class of vm ∈ Dt is recognized
with the highest similarity score:

ŷm = argmax
y∈T

(xmvo · ψ(y) + max(xmov · ψ(y), 0)) (13)

where xmvo, x
m
ov = ϕ(vm).

4. Experiments
4.1. Datasets and Splits

Existing ZSAR Benchmarks. Olympic Sports [32],
HMDB51 [25] and UCF101 [39] are the three most popular
datasets used in existing ZSAR papers [22], which contain
783, 6766 and 13320 videos of 16, 51, 101 action categories
respectively. For robust evaluation, Xu et al. [49] proposed
to evaluate on 50 independent data splits and report the av-
erage accuracy and standard deviation. In each split, videos



of 50% randomly selected classes are used for training and
the remaining 50% classes are held unseen for testing. We
adopt the same data splits as [49] for fair comparison.

There are two major limitations in the above ZSAR pro-
tocols. Firstly, it is problematic to use deep features pre-
trained on other large-scale supervised video datasets be-
cause there exist overlapped action classes between pre-
training classes and testing classes. Secondly, the size of
training and testing data is small which leads to large varia-
tions among different data splits, so that abundant numbers
of experiments are necessary to evaluate a model. To ad-
dress these limitations, Brattoli et al. [4] proposed another
setting which excludes classes overlapped with the above
testing dataset in pre-training dataset Kinetics. Neverthe-
less, their overlapped class selection algorithm is too tender,
leaving the testing classes still seen in the training. More-
over, new end-to-end training of video backbones is needed
because this setting does not follow the official Kinetics data
split. Therefore, in this work, we propose a more realistic,
convenient and clean ZSAR protocol.
Our Proposed Kinetics ZSAR Benchmark. The evolution
of the Kinetics dataset [6, 5] naturally involves increment of
new action classes: Kinetics-400 and Kinetics-600 datasets
contains 400 and 600 action classes, respectively. Due to
some renamed, removed or split classes in Kinetics-600, we
obtain 220 new action classes outside of Kinetics-400 after
cleaning. Therefore, we use 400 action classes in Kinetics-
400 as seen classes for training. We randomly split the 220
new classes in Kinetics-600 into 60 validation classes and
160 testing classes respectively. We independently split the
classes for three times for robustness evaluation. As shown
in our experiments, due to the large-size training and test-
ing sets, the variations of different splits are significantly
smaller than previous ZSAR benchmarks. In summary, our
benchmark contains 212,577 training videos from Kinetics-
400 training set, 2,682 validation videos from Kinetics-600
validation set and 14,125 testing videos from Kinetics-600
testing set on average of the three splits. More details of our
evaluation protocol are in the supplementary material.

4.2. Implementation Details

For action class embedding, we use a pretrained 12-layer
BERT model [9], and finetune the last two layers if not spec-
ified. For video embedding, we use TSM [28] pretrained
on Kinetics-400 in the spatio-temporal stream for Kinetics
benchmark, and BiT image model [24] pretrained on Ima-
geNet for the other three benchmarks to avoid overlapped
action classes in Kinetics; the object stream uses BiT image
model [24] pretrained on ImageNet21k [8] and top-5 ob-
jects are selected for each video. The above backbones are
fixed for fast training. More details are presented in the sup-
plementary material. We set the dimensionality K = 512
of the common semantic space, τ = 0.1, λ = 1 in the loss

Method Video Class Olympics HMDB51 UCF101

DAP [26] FV A 45.4 ± 12.8 N/A 15.9 ± 1.2
IAP [26] FV A 42.3 ± 12.5 N/A 16.7 ± 1.1
HAA [29] FV A 46.1 ± 12.4 N/A 14.9 ± 0.8
SVE [48] BoW WN N/A 13.0 ± 2.7 10.9 ± 1.5
ESZSL [37] FV WN 39.6 ± 9.6 18.5 ± 2.0 15.0 ± 1.3
SJE [2] FV WN 28.6 ± 4.9 13.3 ± 2.4 9.9 ± 1.4
SJE [2] FV A 47.5 ± 14.8 N/A 12.0 ± 1.2
MTE [50] FV WN 44.3 ± 8.1 19.7 ± 1.6 15.8 ± 1.3
ZSECOC [35] FV WN 59.8 ± 5.6 22.6 ± 1.2 15.1 ± 1.7
UR [53] FV WN N/A 24.4 ± 1.6 17.5 ± 1.6
O2A [21] Obj† WN N/A 15.6 30.3
ASR [44] C3D∗ WT N/A 21.8 ± 0.9 24.4 ± 1.0
TS-GCN [15] Obj† WN 56.5 ± 6.6 23.2 ± 3.0 34.2 ± 3.1
E2E [4] r(2+1)d∗ WN N/A 32.7 48

Ours (S+Obj)† ED 60.2 ± 8.9 35.3 ± 4.6 51.8 ± 2.9

Table 2: ZSAR performances on the three existing benchmarks.
Video: fisher vector (FV), bag of words (BoW), object (Obj), im-
age spatial feature (S), ∗(trained on video datasets), †(trained on
ImageNet dataset); Class: attribute (A), word embedding of class
names (WN ), word embedding of class texts (WT ), elaborative
description (ED). The average top-1 accuracy (%) ± standard de-
viation are reported.

and use top-5 objects in the ER loss. We use ADAM al-
gorithm to train the model with weight decay of 1e-4. The
base learning rate is 1e-4 with warm-up and cosine anneal-
ing. The model was trained for 10 epochs except on the
Olympic Sports dataset where we train 100 epochs due to
its small training size. The best epoch is selected accord-
ing to performance on the validation set. Top-1 and top-5
accuracies (%) are used to evaluate all models.

4.3. Evaluation on Existing ZSAR Benchmarks

We compare our model with: (1) Direct/Indirect At-
tribute Prediction (DAP, IAP) [26]; (2) Human Actions
by Attribute (HAA) [29]; (3) Self-training method with
SVM and semantic Embedding (SVE) [48]; (4) Embarrass-
ingly Simple Zero-Shot Learning (ESZSL) [37]; (5) Struc-
tured Joint Embedding (SJE) [2]; (6) Multi-Task Embed-
ding (MTE) [50]; (7) Zero-Shot with Error-Correcting Out-
put Codes (ZSECOC) [35]; (8) Universal Representation
(UR) model [53]; (9) Objects2Action (O2A) [21]; (10) Al-
ternative Semantic Representation (ASR) [44], which uses
text descriptions and images as alternative class embedding;
(11) TS-GCN [15] which builds graphs among action and
object classes with ConceptNet for better action class em-
bedding; (12) End-to-End Training (E2E) [4] which uses
a reduced Kinetics training set by excluding part of action
classes overlapped with testset. All above methods are eval-
uated on the inductive ZSL setting, where the videos of un-
seen action classes are unavailable during training. The un-
seen action classes are not used in training except [15].

Table 2 presents the comparison. To avoid leaking infor-



Method Video Class top-1 top-5

DEVISE [12]

ST WN

23.8 ± 0.3 51.0 ± 0.6
ALE [1] 23.4 ± 0.8 50.3 ± 1.4
SJE [2] 22.3 ± 0.6 48.2 ± 0.4
DEM [52] 23.6 ± 0.7 49.5 ± 0.4
ESZSL [37] 22.9 ± 1.2 48.3 ± 0.8
GCN [17] 22.3 ± 0.6 49.7 ± 0.6

Ours
ST

ED
37.1 ± 1.7 69.3 ± 0.8

ST+Obj 42.1 ± 1.4 73.1 ± 0.3

Table 3: ZSAR performance on the proposed Kinetics benchmark.
Notations are the same as Table 2; ST: spatio-temporal feature.

mation from features pretrained on Kinetics video dataset,
we only use image features and predicted objects from a
2D network pretrained on ImageNet [24] for video semantic
representation learning. The proposed ER-enhanced ZSAR
model achieves consistent improvements over state-of-the-
art approaches on three benchmarks. Our model outper-
forms previous best performances (without using pretrained
video features) with 0.4, 10.9 and 17.6 absolute gains on
OlympicSports16, HMDB51 and UCF101 respectively, and
achieves even better performance than E2E trained on large-
scale Kinetics dataset with 2.6 and 3.8 gains on HMDB51
and UCF101 datasets1. This demonstrates the effectiveness
of our ED as action semantic representation and the ER ob-
jective to improve generalization ability of the model.

4.4. Evaluation on Kinetics ZSAR Benchmark

Due to limitations of existing benchmarks, we further
carry out extensive experiments on more realistic Kinetics
ZSAR setting to evaluate the effectiveness of our model.

4.4.1 Comparison with State of the Arts

We re-implement state-of-the-art ZSL algorithms on the
proposed benchmark, including: (1) DEVISE [12]; (2) ALE
[1]; (3) SJE [2]; (4) DEM [52]; (5) ESZSL [37]; and (6)
GCN [17]: a very recent ZSAR work leveraging knowledge
graphs of action classes to predict classification weights as
[46]. The implementation details are presented in the sup-
plementary material.

Table 3 shows the ZSAR performances of above meth-
ods. When using the same Spatio-Temporal(ST) features
extracted from TSM network, our ER-enhanced model with
ED and ER loss significantly outperforms previous works
with 13.3 and 18.3 absolute gains on top-1 and top-5 accu-
racies respectively. The existing methods however achieves
similar performances, which might due to ambiguous word
embedding representations. After fusing with object se-

1We observe large performance variations with different random
weight initialization, which mainly results from the small training set.

mantics in video semantic representation, the performance
of our model gets another boost, demonstrating that ST vi-
sual features and object textual features are complementary.
Moreover, compared with the results in Table 2, the per-
formance variations on different splits are much lower than
those in previous benchmarks, which further proves the su-
periority of our benchmark for future ZSAR research.

4.4.2 Ablation Studies

We present the following Q&As to prove the effectiveness
of our proposed semantic representations and the ER train-
ing objectives. More hyper-parameter ablation and analysis
are in the supplementary material. All the ablation studies
below are carried out on the Kinetics ZSAR benchmark.

Is human involvement necessary for action class rep-
resentation? In Table 4a, we compare different action
class representations including action class names(WN ),
Wikipedia entries(Wiki), Dictionary definitions(Dict) and
the manually modified EDs. All the models use TSM video
features and the AR objective for training. The WN is en-
coded with pre-trained Glove word embedding while others
are encoded by BERT because we observe that BERT is not
suitable to encode short text such as the class names. We
can see that the automatically crawled texts of the action
class are very noisy which are even inferior to the ambigu-
ous class names. However, with a minimal manual clean of
crawled descriptions, we achieve significant improvements
such as 8.5% absolute gains on top-5 accuracy compared to
WN . This proves that even such easy human involvement
is beneficial to the class representation quality as justified
in Section 3.1, and ED is more discriminative action class
prototype than word-embedding.

How much improvements are from the pretrained
BERT model? In Table 4b, we compare different action
class encoding modules for EDs. AvgPool, AttnPool and
RNN all transfer knowledge from a pretrained Glove word
embedding, while usng average pooling, attentive weighted
pooling and bi-directional GRU to encode the ED sentence
respectively. Similar to Table 4a, all the models use TSM
video features and are trained with AR loss. The pretrained
BERT significantly boosts the performance over the other
three encoding modules, demonstrating its effectiveness to
understand action descriptions.

Is the ER loss beneficial? Table 4c compares models
trained with or without ER loss. The generalization abil-
ity on unseen actions is boosted by a large margin through
the ER-enhanced training for both ST and object features.
The ER loss augments the semantic labels for videos from
automatic elaborative concepts, making the features more
generalizable to unseen classes.

Whether ST features and object features are comple-
mentary? The object features alone “Obj” in Table 4d



Class Rep top-1 top-5

WN 26.5 ± 0.4 54.7 ± 1.2
Wiki 25.8 ± 1.1 50.4 ± 1.6
Dict 22.3 ± 0.4 49.7 ± 0.6
ED 31.0± 1.2 63.2 ± 0.4

(a) Comparing action class texts.

Class Enc top-1 top-5

AvgPool 25.3 ± 1.2 54.7 ± 0.6
AttnPool 28.2 ± 1.0 56.9 ± 0.2

RNN 25.4 ± 1.1 53.7 ± 1.1
BERT 31.0 ± 1.2 63.2 ± 0.4

(b) Comparing action class encoders.

Video ER top-1 top-5

ST w/o 31.0 ± 1.2 63.2 ± 0.4
ST w/ 37.1 ± 1.7 69.3 ± 0.8
Obj w/o 34.6 ± 1.4 60.6 ± 1.1
Obj w/ 36.7 ± 1.0 63.2 ± 0.5

(c) Comparing models with or without ER loss.

Video top-1 top-5

ST 37.1 ± 1.7 69.3 ± 0.8
Obj 36.7 ± 1.0 63.2 ± 0.5

ST + Obj 42.1 ± 1.4 73.1 ± 0.3

(d) Comparing video representations.

Video Loss top-1 top-5

Obj (Name) ER (Name) 34.5 ± 1.6 61.4 ± 1.2
Obj (ED) ER (Name) 36.3 ± 1.3 62.8 ± 0.9
Obj (ED) ER (ED) 36.7 ± 1.0 63.2 ± 0.5

(e) Comparing EDs and class names to represent object classes.

Table 4: Ablation studies on the Kinetics ZSAR benchmark.

are comparable with ST features on top-1 accuracy, but
are worse than ST on top-5 accuracy. Their combination
“ST+Obj” via the proposed multimodal channel attention
achieves the best performance on the Kinetics ZASR set-
ting. This shows that bject feature alone are not discrimi-
native enough, compared to ST features, to differentiate ac-
tions. But adding object feature enriches ST with the shared
semantic embedding among the action classes.

Whether EDs are universal representations for both
actions and objects? Though we show that ED is beneficial
to represent action classes, it remains a question whether
ED also improves semantic representation for objects. To be
noted, the ED for objects are automatically extracted from
WordNet thanks to the good correspondence between Ima-
geNet classes and WordNet concepts. Therefore, we replace
the ED with the class name of the object in Eq. 4 for video
object embedding, and in Eq. 11 for the ER training objec-
tive. From Table 4e, we see that even though objects are
less ambiguous than actions, it is still beneficial to use its
ED instead of its class name.

4.5. Comparison with Supervised Learning

Previous ZSAR works mainly benchmark the progress
with respect to zero-shot methods. However, it is interesting
to know how well the state-of-the-arts ZSAR methods really
work from a practical prospective of video action recogni-
tion. We present one of the first attempts for this purpose.

In Table 5, we compare our ZSAR model with super-
vised models trained with different numbers of labeled
videos of unseen classes in our Kinetics ZSAR bench-
mark. To avoid overfitting on few training samples, we
use the same ST features from TSM, leaving only the fully-
connected layer to be trained for all models in Table 5. Our
ER-enhanced ZSAR model improves over the 1-shot base-
line by a large margin, but is still inferior to the model us-
ing 2 labeled videos per classes. Although our work is the
new state-of-the-arts in Table 2 and 3, it only establishs a

#videos per class Top-1 (%) Top-5 (%)

ER-ZSAR 0 42.1 ± 1.4 73.1 ± 0.3

supervised

1 31.8 ± 0.8 60.2 ± 2.5
2 45.0 ± 0.9 73.2 ± 0.6
5 56.5 ± 1.5 83.4 ± 0.8

100 72.7 ± 1.4 93.3 ± 0.5

Table 5: Comparison of our ER-enhanced ZSAR model and su-
pervised few-shot baselines on the Kinetics benchmark.

starting point from which ZSAR models are comparable to
supervised models trained on few samples.

5. Conclusion

We present an Elaborative Rehearsal (ER) enhanced
model to advance video understanding under the zero-shot
setting. Our ER-enhanced ZSAR model leverages Elabo-
rative Descriptions (EDs) to learn discriminative semantic
representation for action classes, and generates Elaborative
Concepts (ECs) from prior knowledge of image-based clas-
sification to learn generalizable video semantic representa-
tions. Our model achieves state-of-the-art performances on
existing ZSAR benchmarks as well as our newly proposed
more realistic ZSAR setting based on the Kinetics dataset.
We demonstrated the potential that our new state-of-the-art
on ZSAR benchmarks start to catch up with the supervised
AR baselines. In the future, we will explore the unification
of zero-shot and few-shot for action recognition.
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