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The Geometric Structure of Externally Actuated
Planar Locomoting Systems in Ambient Media
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Abstract—Robots often interact with the world via attached
parts such as wheels, joints, or appendages. In many systems,
these interactions, and the manner in which they lead to
locomotion, can be understood using the machinery of geometric
mechanics, explaining how inputs in the shape space of a robot
affect motion in its configuration space and the configuration
space of its environment. In this paper we consider an opposite
type of locomotion, wherein robots are influenced actively by
interactions with an externally forced ambient medium. We
investigate two examples of externally actuated systems; one for
which locomotion is governed by a principal connection, and is
usually considered to possess no drift dynamics, and another
for which no such connection exists, with drift inherent in its
locomotion. For the driftless system, we develop geometric tools
based on previously understood internally actuated versions of
the system and demonstrate their use for motion planning under
external actuation. For the system possessing drift, we employ
nonholonomic reduction to obtain a reduced representation of
the system dynamics, illustrate geometric features conducive to
studying locomotion, and derive strategies for external actuation.

Index Terms—Geometric mechanics, underactuated robots,
motion planning, locomotion, nonholonomic mechanics

I. INTRODUCTION

It is often the case that the locomotion of a robot can
be understood in a simplified context by analyzing only its
joint trajectories. For example, a simple geometric model has
been developed for the multi-link wheeled robot shown in
Fig. 1, in which joint trajectories map to world trajectories
through a principal connection. We have shown in [1] that
this robot retains similar locomotive capabilities if one joint
becomes passive, by combining the geometric model with
the dynamics of the passive joint. In this work, we study
an alternative problem where the joints of the robot are
completely passive, with input energy being channeled from
the surrounding environment. In particular, the presence of a
controlled moving platform underneath the robot, as shown in
Fig. 1, provides this input.

The first objective of this work is to seek to understand
how this system’s geometric structure changes and to what
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Fig. 1. A three-link nonholonomic robot on top of a movable platform. The
coordinates (x,y, 0) denote the inertial configuration of the robot’s proximal
link, with body velocities ({4, &y, &g). The relative joint angles are (a1, a2).
The platform’s inertial position is (zp,yp)-

extent it can still be exploited to understand locomotion when
control authority is assumed over the environment. It is not
always the case, however, that the locomotion of a robot can
be understood by analyzing only its joint trajectories. There are
many systems for which drift is present in the dynamics and a
mapping between the joint trajectories of the robot and world
trajectories does not exist, meaning one is tasked with invoking
and / or developing additional tools to analyze locomotion or
accomplish control.

The canonical system with drift considered in this paper is
the Chaplygin beanie on a movable platform, shown in Fig.
2. Any change in the rotor angle ¢ of the Chaplygin beanie
will cause it, and the platform beneath it, to accrue nonzero
momentum, and thus drift in its environment. The second
objective of this work is to understand how the geometric
structure of such a system can be exploited when its loco-
motion is inherently driftful and not described by a principal
connection, and again when control authority is assumed over
the environment.

While the tools with which we analyze the locomotion of
these two systems differ geometrically, they share a common
theme in that the robot is coupled to a platform that acts
as the medium through which dynamics are imparted to the
robot. More importantly, we use these examples to illustrate
how the problem structure changes due to how external inputs
are applied. We make an explicit choice to consider only
translational motion of the platform, engendering symmetries
that we leverage in developing the tools we use to accomplish
motion planning and control.
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Fig. 2. A Chaplygin beanie atop a movable platform. The vehicle’s rotor
angle relative to the heading is shown as ¢, its heading as 6, its position
relative to the platform as (x,y), and the position of the platform in a world
frame, (2p, Yp)-

This paper juxtaposes results from a recent conference paper
[2] with complementary new material to construct a more
unified narrative concerning externally actuated nonholonomic
planar locomoting systems in ambient media. We first present
results that draw on familiar tools for the three-link kine-
matic snake robot on a platform for which locomotion is
governed purely by a principal connection. We then discuss
our proposed modifications to these tools which allow one
to leverage connection-like mappings outside of the theory
of principal connections to aid in motion planning when
considering symmetry-breaking fiber variables. Finally, we
present results concerning the control of the Chaplygin beanie
on a platform, a system for which locomotion is not governed
by a principal connection. The material in the present paper
differs from that appearing in our recent conference paper
(Section VI) in that our conference paper did not leverage
or extend familiar tools arising from principal connections
that we introduce in Sections IV and V. These new tools
provide a way to accomplish motion planning and control
for externally actuated planar locomoting systems when an
internally actuated version of the system can be analyzed using
principal connections.

We have structured the material as follows. We review
related work in geometric mechanics and locomotion in Sec-
tion II, provide some mathematical preliminaries in Section
III, and present our contributions to the geometric theory in
Section IV. Section V considers the problem of a passive
three-link wheeled robot on a movable platform, exemplifying
the cases in which external inputs are applied with respect
to a body frame as well as inertial frame dependent on
system orientation. In Section VI we first discuss a com-
pletely passive system and provide a formal proof of stable
trajectories, guiding our approach to the external actuation of
the Chaplygin beanie on a movable platform. We illustrate
the geometric features of the problem that are conducive to
studying its locomotion and conduct a sampling-based analysis
to derive motion primitives. We conclude with a review of
our contributions and discuss novel problems arising from our
analyses and possible approaches to solving them.

II. PRIOR WORK

In recent decades, techniques and methods from geometric
mechanics have been a popular way to model and control
mechanical systems. A key idea is that of symmetries in a
system’s configuration space, which allows for the reduction
of the equations of motion to a simpler first-order form. This
has been addressed for general mechanical systems by [3], [4],
and [5], as well as nonholonomic systems by [6] and [7].

For locomoting robots, geometric reduction is often lever-
aged in tandem with a decomposition of the configuration
variables into actuated shape variables, describing internal
configurations of the robot, and position, describing the po-
sition and orientation of the body frame with respect to an
inertial one. If such a decomposition is possible, then the
configuration space often takes on a fiber bundle structure,
whereby a mapping called the connection relates trajectories
from the shape space to the position space. Analysis of the
connection then gives us intuition into ways to perform motion
planning and control on the system, engendering visualization
and design tools, detailed by [8]-[14].

Much of the progress in the geometric mechanics of loco-
motion is predicated on the assumption that the symmetries
of a system coincide exactly with the position degrees of
freedom. The three-link robot of Fig. 1 with actuated joints is
one of the simplest examples of such a system, and as such,
it has received considerable attention from researchers such
as [15] and [16] treating it as a kinematic system, so named
because its three constraints eliminate the need to consider
second-order dynamics when modeling its locomotion. This
allows for the treatment of the system’s locomotion, and
subsequent motion planning, as a result of geometric phase
[17]-[21].

While the notion of geometric phase lends itself to the study
of certain locomoting robots like the three-link wheeled snake
robot, a different set of tools are required for the analysis
and computation of motion primitives for others. One can
still consider the configuration space to be split into a base
and a fiber space, but a connection relating trajectories in
these spaces is not guaranteed. One such system is that of the
Chaplygin beanie on a movable platform. Any actuation of its
single shape variable will cause motion along its fibers, and
in a partially uncontrollable way. The notion of nonholonomic
momentum was used for the analysis of an internally actuated
Chaplygin beanie in [22]. We will employ reduction using
nonholonomic momentum in our analysis of a completely
passive Chaplygin beanie on a platform system, which will
then guide our approach to finding motion primitives for an
externally actuated version of the system. Other internally
actuated and passively compliant versions of this robot have
been studied in [23], [24] with limit cycle behaviors elucidated
in [25].

External actuation to achieve locomotion has been used for
sorting and controlling the motion of mechanical parts via
controlled vibrations in [26]-[28], and has been used in the
famous ball-on-a-plate problem [29], [30]. In this paper, we
give the problem of external actuation a geometric flavor and
invoke familiar tools from the geometry of locomotion. In



Fig. 3. A visualization of the principal fiber bundle. Base trajectories in B
are lifted via the connection —A(b) to trajectories in the fiber space G.

prior work we posed the problem of actuating a three-link
wheeled snake robot via an external platform as a specific
deviation from the usual geometric assumptions [31]. We also
investigated an externally actuated version of the Chaplygin
beanie in [2]. These two example systems belong to different
classes in that the external actuation of one can be studied
using a principal connection formulation, while the other
demands reduction by means of nonholonomic momenta. The
framework within which each of the examples is analyzed
differs geometrically, clarifying the set of tools necessary to
understand external actuation in each setting.

III. MATHEMATICAL PRELIMINARIES

In this section, provide an overview of the mathematical
ideas we will invoke in the present paper and define terms we
will use throughout.

A. Principal Fiber Bundles

We now review the underlying geometric structure for loco-
moting systems like the three-link wheeled snake robot. The
usage of geometric mechanics in locomotion has traditionally
assumed the existence of a principal fiber bundle structure in
a system’s configuration space. This structure decomposes the
space into two distinct subspaces, often called a fiber bundle,
with a mapping called a connection relating trajectories from
one to trajectories in the other.

Definition IIL.1 (Fiber Bundle). A fiber bundle is a trio of
topological spaces Q, the total space, B, the base space, and
G, the fiber space, together with a map 7 : Q — B called
the bundle projection such that every r € B has an open
neighborhood U C B, there exists a homeomorphism ¢ :
7 Y U) = UxG, and Q = Gx B, i.e., Q is locally equivalent
to G X B, but not necessarily globally.

In this work, we will consider the configuration spaces of a
robot and its environment to comprise smooth fiber bundles,
particularly principal fiber bundles.

Definition IIL.2 (Principal Fiber Bundle). A principal fiber
bundle is a smooth fiber bundle (Q, B, F, ) together with an
action of a Lie group G on @) such that

1) the action of the Lie group preserves fibers (gq € Q for
every g € G)

2) the action is free (for g,h € G, if q € Q, then gq = hq
implies g = h) and transitive (for pairs q;,q; € Q, there
exists a g € G such that gq; = q;) on each fiber.

Fig. 3 shows a typical visualization of the fiber bundle as
a direct product of a base space B and a fiber space G. The
space B corresponds to the system’s shape variables, which
are traditionally assumed to be fully actuated. The space GG
corresponds to the system’s configuration variables, which
typically correspond to symmetries in the system, so that the
dynamics of the system do not depend explicitly on the fiber
variables. Since we will make use of symmetries in both of the
examples presented, a system exhibits a continuous symmetry
if its dynamics are invariant under the free action of a Lie
group on its configuration manifold [4].

In this paper, the symmetry exploited for the three-link
wheeled snake robot on a platform is given by the invariance
of the system’s dynamics under the action of SE(2) on its
configuration manifold () = SE(2) x S! x S!. The Chaplygin
beanie on a platform system exhibits a symmetry arising
from the action of the Lie group G = SE(2) x R? on the
configuration manifold Q = SE? x R? x S' x S'.

The local form of the connection A(b), which depends only
on base variables b, governs how the system’s fiber variables
change due to changes in the base. The equation is typically
of the form

g = 7TeLg(A(b)b)v (1)

where ¢ are the velocities of the fibers, and b are the velocities
of the shape variables. The mapping 7. L, for g € SE(2) is
given by

cosf) —sinf 0
T.Ly= |sinf cosf Of, 2)
0 0 1

with 6 representing the orientation of the robot relative to
an inertial reference frame in the plane. The mapping T, L,
transforms fiber velocities from a body-attached frame to a
world frame; in practice, one can drop the 7.L, mapping
by performing all analysis in the body frame. If we are able
to express the fiber velocities ¢ as body velocities £ via the
transformation ¢ = T, L&, then Eq. (1) can be recast into the
kinematic reconstruction equation [32], given by

§=—A(b)b. 3)

As an example, consider the wheeled robot of Fig. 1
in the absence of an underlying platform. Its configuration
space can naturally be written as Q,, = G, X B, where
gw = (z,9,0)7 € G, are the position and orientation
fiber variables, and b,, = (a1, a2)? are the joint, or shape,
variables.! The fiber G, is the Lie group of planar translations
and rotations SE(2). The body velocities ¢ are related to the
world velocities g,, through the mapping T¢ L.

The structure of the connection form in Eq. (3) can be
visualized in order to understand the response of & to input

'We use the subscript w for the configuration space of the wheeled snake
robot. Similarly, we will use the subscript ¢ for the Chaplygin beanie.



trajectories without regard to time, according to [32]. By
integrating each row of Eq. (3) over a given joint trajectory,
one can obtain a measure of displacement corresponding to
the body frame directions. For SE(2), this measure provides
the exact rotational displacement, i.e., § = &y for the third
row, and an approximation of the translational component for
the first two rows.

We can consider the time integral to be a line integral over
the trajectory ¢ : [0,7] — B in the shape space, since the
kinematics depend only on the gait executed in shape space.
This can then be viewed as an integral over /3, the region of
the joint space enclosed by 7). Assuming that we have periodic
trajectories, or gaits, the integral can be realized by Stokes’
theorem as

/OT Edt = — /OT A(b(1))b(T) dT = /wA(b) db

; “4)
- / dA(b) + [A;, Ap)dp 4 Mgher-order
8

terms

The first term in the final integral is the exterior derivative of
A(b) and is computed as the curl of A(b) in two dimensions,
ie.,

_0Aip  0Ain
dA’L(b> - 3061 3012 )

where A; ; is the element corresponding to the ith row and
jth column of A. The second term is the Lie bracket of the
two vector fields comprising the local connection form A(b).
In this work, we consider only the first term in our approxima-
tion of the displacement. Prior works on similar locomoting
systems have shown that this approximation suffices for the
study of locomotion, even in the absence of Lie bracket and
higher-order terms when considering an appropriate choice of
coordinates [1], [31], [33]. Eq. (5) can be extended to arbitrary
dimensions [34], however, we define it for two-dimensional
base spaces since the present paper focuses on planar systems.

The magnitudes of the three-link robot’s connection exterior
derivative over the joint space are depicted in Fig. 4, along with
a gait trajectory shown as a closed curve on the surfaces. The
area integral over the enclosed region is the geometric phase,
a measure of the displacement in the body z and 6 directions
(the body y plot is not shown because it is zero everywhere).
The x plot is positive everywhere, meaning that any closed
loop will lead to net displacement along the &, direction.
The 6 plot is anti-symmetric about oy = —as, meaning that
gaits symmetric about this line will yield zero net reorientation
while simultaneously moving the robot forward.

®)

B. Reduction by Nonholonomic Momentum

Identifying conserved quantities in mechanical systems per-
mits the use of reduction tools we are ultimately interested in
leveraging in our analysis of an externally actuated locomoting
system with drift in its dynamics, e.g., the Chaplygin beanie
on a movable platform. In particular, Noether’s theorem [35]
states that continuous symmetries correspond to conserved
quantities in a mechanical system. In this section, we introduce
the terminology necessary to leverage symmetries in the

Fig. 4. The z (top) and 6 (bottom) components of the exterior derivative of
the connection that relates the three-link robot’s joint velocities to the robot’s
body velocities. Note that the = plot is non-negative everywhere and that
both plots are symmetric about the &1 = a2 diagonal. An example of a gait
(closed loop) is also shown on these plots.

reduction we employ for the Chaplygin beanie on a movable
platform.

Let v, be a tangent vector at point ¢ in the tangent space
T,Q. The momentum map corresponding to a continuous
symmetry is computed as

(J(vq),€) = (FL(vq), $q()), (6)

where FL is the fiber derivative of the system Lagrangian,

given by
FL:TQ —T"Q

oL .,

~dq"

(g, 95 %4 )

Define the ith component of the vector field £ as (£g)°. We

compute the momentum map with respect to coordinates ¢ as

oL
ql

(7

;0
(q,q 8?) =

J =55 &) ®)
where a summation over ¢ is assumed. Note that every vector
field (o on T'Q) is associated with a component of the
momentum map. Given the above definition, the evolution
equations corresponding to the nonholonomic momenta are

computed as

or [dg] . ©)

T 9¢ | dt
We will utilize Eq. (9) in Section VI in order to provide
proof of particular stable trajectories in this reduced space.



It is worth noting that the symmetries by which we reduce
the dynamics of each system we study correspond to group
actions of G = G™ x G on the configuration manifold of
the system.

The Lie algebra elements £ associated with each vector field
&g are needed to determine J in Eq. (9). To compute each &, it
is necessary to define the subspace on which the constrained
dynamics evolve. Let D be the distribution spanned by all
tangent vectors that annihilate the constraints, and let the group
orbit of the Lie group G be

Orb(q) := {gq|g € G}.

Associated with every vector field g referenced in Eq. (8)
is a Lie algebra element £ € g where g is the Lie algebra of
the Lie group G. We define the tangent space to the group
orbit through a point ¢ € @ as

T,(0rb(q)) = {€e(a) |€ € g}, (11)

where £g(q) is the vector field £ evaluated at g. We define
the intersection of D, and T,(Orb(q)) to be the reduced space
in which the constrained dynamics evolve, which we write as

(10)

Sq =Dy NT,(0rb(q)), 12)

where D, denotes the constraint distribution at point g. We
have the freedom to choose the set of vector fields comprising
T,(Orb(q)), and our choice of vector fields determines the
reduced space (Eq. (12)) and thus the resulting evolution
equations in Eq. (9).

IV. ROLE OF EXTERNAL ACTUATION VIA FIBER BUNDLES

The fiber bundle description of a system assumes that all
of its configuration variables can be neatly categorized into
either the base or a single fiber space. However, this is no
longer sufficient when there are other configuration variables,
such as those describing the evolution of a non-static ambient
medium. In such a scenario, these additional variables will
form a third subspace, whose role depends on its interaction
with the original fiber bundle and whether system symmetries
are still preserved.

A. Stratified Fiber Bundle

If we consider the example of the three-link wheeled robot
of Fig. 1 on a moving platform, then the configuration of the
platform would live in a new fiber space. Furthermore, this
new fiber space corresponds to another set of symmetries in
the system. That is, the system’s dynamics and energetics are
invariant with respect to the robot’s (x,y) position (two of
its fibers) as well as the platform’s position (external fibers).
A subtlety does arise regarding the robot’s orientation, 6,
relative to the platform; the dynamics of the platform depend
on how the robot is oriented in the environment. A helpful
simplification would be to continuously orient the platform’s
frame of reference to the robot’s body frame, eliminating
the dependency of the dynamics on 6. In order for this
arrangement to be practical, the platform would also ideally
be able to move along any direction in the plane.
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Fig. 5. A stratified fiber bundle with an infernal fiber G™™ and external fiber
G, from which controls determine base trajectories through the inverse
mapping of —A®!, which are then lifted back to G'™ via the connection
_ Aml‘

For this type of system, the fiber space takes on a stratified
structure G = G™ x G, We separately identify fiber variables
associated with the configuration of the system g™ € G™
making up an internal fiber, describing the configuration of the
robot, from those describing the configuration of the platform
g™t € G, the external fiber. This is visualized in Fig. 5 as
two differently colored fiber components.

Note that for systems for which locomotion is governed by
a principal connection, the original fiber bundle is unchanged
and we retain our original connection —A™™(b). Furthermore,
a second connection —A*(b) from the robot’s base configura-
tion to the medium’s configuration can be derived in a manner
analogous to — A" (b), and takes the form

- int int .
|:gext:| = _TeLg (|:ﬁext((ll;)):| b) :

The structures of the two connections —A"(h) and
—A®(b) can both be analyzed in the same visual manner
as shown in Fig. 4. For example, if we care only about the
robot’s fiber motion in response to certain joint trajectories
without regard to how the platform moves, then we need only
look at —A™"(b), and the problem is unchanged from before.
On the other hand, looking at —A*(b) tells us how the robot’s
joint trajectories lead to motion of the platform.

In this paper, and in particular for the three-link robot
on a platform system, we will consider both the traditional
problem of mapping base trajectories to the external fiber, as
well as the problem of having the controls in the external
fiber G**', with the base variables remaining passive. Once we
know our trajectories in B, the original connection —A™(b)
ultimately lifts them to the internal fiber GI". The problem of
finding platform inputs in G*' to produce a set of desired base
trajectories in B is more difficult, as the “inverse” mapping of
—A™(b) may not be well defined. In this paper we consider
only cases for which the dimension of the external actuation
is equivalent to the dimension of the base manifold, ensuring
A®(D) is invertible.

13)
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Fig. 6. Trajectories in the base space B determine the dynamics through
which the “non-symmetric” fiber components in G™" evolve. Both B and
G®Y™ trajectories are then mapped together through the connection —A to
trajectories in GY™.

B. Fibers Without Symmetries

In the three-link robot system, the preservation of symme-
tries holds as long as all quantities are prescribed or expressed
relative to the body-fixed frame of the robot. If this is not the
case, e.g., the platform velocity inputs are prescribed relative
to an inertial frame, then one of the fiber components, the
robot’s orientation 6, breaks this symmetry. The decision to
keep all quantities relative to an inertial frame may be one
of practicality, especially when considering multiple distinct
locomoting robots in an ambient medium.

In all of these cases, the system’s internal dynamics will
no longer be symmetric with respect to a subset of the fiber
degrees of freedom (e.g., (z,y) in the case of a three-link
robot on a platform). However, we may still be able to define
a principal bundle on the base variables and the fibers that are
symmetric. For example, a falling, reorienting robot is affected
by gravity in one fiber direction (or two, if orientation is also
considered). A visual representation is shown in Fig. 6; like
Fig. 5 we see fibers atop a base space, the former of which
is subdivided into two distinct components. Trajectories in a
non-symmetric fiber component evolve dynamically depending
on trajectories in the base. This evolution is depicted as flow
along a vector field in the semi-transparent yellow plane
in Fig. 6. Both trajectories are then mapped through a
connection together to obtain trajectories in the symmetric
fiber component.

Mathematically, a new connection mapping —A%™ from
the base variables to all of the configuration variables would
depend explicitly on the fiber variables that lack symmetries.
That is, if ¢g*¥™ are the fiber variables of which the dynamics
are independent, and g"" are the external variables that are
not (previously we had ¢™ and ¢® for internal and external
fiber variables, respectively), then

gsym Asym (gnon’ b):| )
snon | — _TeL non ( ,non b).
[9 ] ! ([A (™", 0)

non

(14)

This splitting between g*¥™ and ¢"°" is conducive to study-
ing motion planning for the three-link snake robot on a
platform when considering the platform fibers to be relative to

an inertial reference frame, and not coinciding with the body
frame of the robot. The first involves being able to decouple
the two lines of Eq. (14). If it is the case that ¢*'™ depends
very weakly on ¢g"" or if g"" evolves on a significantly slower
time scale relative to b and ¢g®™, then one can approximate
the first line of Eq. (14) as a form of Eq. (1), where any ¢g"*"
dependencies are made constant and inputs are prescribed in
b. The second line of Eq. (14), which deals with the evolution
of ¢g"", can then be treated separately from the first as it has
no dependencies on g*™.

If such a decoupling cannot be done, we would have to work
with the full form of Eq. (14). In this case, we can define
B = G™" x B as an extended base space in which we
have partial control over the base variables. We treat g"°" as if
they are passive base variables, and we can first analyze their
kinematics from the second line of Eq. (14) using techniques
that we have already described. Once we have solved for the
motion involving base and non-symmetric fibers only, it is
straightforward to push through the original connection in the
first line of Eq. (14) to find the rest of the system’s fiber
motion.

In summary, we have identified two different approaches
for accommodating external actuation into the principal fiber
bundle picture. In the first, all external degrees of freedom are
themselves symmetries of the entire system, so that we can
consider them to be a separate fiber with their own connection
mapping. In the second, these new degrees of freedom actually
break symmetries, in which case we consider a splitting of
the configuration space to differentiate between symmetric
and non-symmetric variables, dealing with them separately.
It is also possible to have systems that exhibit both types of
splittings simultaneously.

V. THREE-LINK WHEELED SNAKE ROBOT ON A
PLATFORM

We now describe the three-link snake robot of Fig. 1 in
more detail, deriving the mechanical models corresponding to
its locomotion in isolation as well as on a movable platform.
This example will illustrate the stratified fiber bundle structure
introduced in the previous section, as well as our approach to
the problem of locomotion with controls applied externally
(platform) rather than in the base (robot joints). Note that
in our analysis of the three-link wheeled snake robot and
the Chaplygin beanie systems on a platform, we consider the
platform to not possess a rotational degree of freedom.

A. Robot Description

Recall that the configuration space of the robot can be
written as Q,, = G'™ x B,,, where ¢i" = (z,y,0)T € Gt
are the fiber variables describing the robot’s position and
orientation, and b,, = (a1, a2)? € T? are the base variables
describing the robot’s joint angles. We designate the constant
parameter R for the link lengths of the robot, which are
identical across all links.

The kinematics of the system are described by the set of

nonholonomic constraints on the wheels, which prohibit mo-



tion perpendicular to each of the links’ longitudinal directions.
They can be written as three equations of the form

—Z;sin6; + y; cos; =0, (15)

where (&;,9;) is the velocity and 6; is the inertial orientation
of the ith link. These quantities can be computed recursively
to express them as functions of q,,. Starting with the proximal
link, we have (z1,y1,61) = (x,y,0); for i = 2,3:

0; =0;i—1+ o1,

R
Ti=T;_1+ §(COS 0;—1 + cosb;),

R
Yi = Yi—1 T i(sm 0;—1 + sin ;). (16)

The constraint equations are symmetric with respect to the
fiber part G, of the configuration, since the kinematics do not
explicitly depend on where the system is positioned or how it
is oriented in space. We can thus rewrite the constraints in a
reduced Pfaffian form as

we (b )& 4 wp (b )by = 0, (17)

where we € R3*3, wy, € R3*2 and € = (&,,&,,&)T € 5¢(2)
are the body velocities of the system expressed in a frame
attached to the proximal link, as shown in Fig. 1. Recall that
the velocities §,, and ¢ are related through ¢,, = T, L4&, where
T. L, is the lifted left action given by Eq. (2).

The reduced constraints of Eq. (17) can then be rearranged
to derive the connection relationship of Eq. (3). For the three-
link robot, this can be written as

1| cosen +cos(a; — ag) 1+ cosag 4
I
Z(sinag+sin(a —az)) Zsineg |17
2 _AM(by)by, (18)

where D = %(— sin ay — sin(ay — ) + sin az). The values
of the second row, corresponding to &,, are zero since this
corresponds to the direction prohibited by the wheel of the
proximal link. The mapping —A™(b,,) corresponds to the
connection form between the base (robot joints) and the
internal fiber (robot position and orientation). Visualizations
of the exterior derivative of this connection form were shown
in Fig. 4.

B. Adding the Platform

We now add in the dynamics of an underlying movable
platform to the kinematics of the three-link wheeled snake
robot. The position of the platform, which we denote by
(Tp, yp), itself constitutes a symmetry group G5 since the
modified system’s properties do not depend on where the
platform is located in space. The configuration manifold is
now rewritten as @, = Gin' x G2 x B, = SE(2) x R? x T?,
although it is important to note that the connection relationship
of Eq. (18) still holds, as the nonholonomic constraints Eq.
(17) depend only on the robot’s pose and velocities relative to
the platform, rather than an inertial frame.

Suppose that each of the links has identical mass M’ and
a moment of inertia J, while the platform has a mass MP.

Recalling that the inertial link positions and orientation are
given by (z;,y;,0;), the system’s Lagrangian is

> 1

1/ . A . .
L=35> (M (@2 +92) + J@?) + M2+ 32).
i=1
Since the nonholonomic constraints are independent of

&, and ¥,, governing the trajectories of (&,y,6), the free
directions of motion are simply the degrees of freedom of
the platform. The conserved momenta are given by

OL .
p= [pl} = [%?] = pg(bw)guw + pb(bw )b (19)
b2 e
Noting that the form of Eq. (19) is the same as the non-reduced
form of Eq. (17), we can rearrange to obtain

z cosf —sinf| . : 1 {p1
[y'ﬂ - Lin@ cos 6 } Ay (bw)bw + M [pJ Y
where M = 3M*' + MP.

Here, the matrix —A;’“(bw) is the external connection of
our now stratified bundle structure. It is also the local form
of the mechanical connection, so named because it is derived
from the conservation of momentum for the combined robot-
platform system. In practice, we can drop the momentum
drift terms if the platform starts at rest. The main complexity
comes from the rotation matrix in front of the mechanical
connection—the range of the connection is still the robot’s Lie
algebra, or velocities expressed in the robot-fixed frame. In the

next subsection we first bypass this problem by assuming that
we can prescribe platform velocities in the robot’s body frame.

C. Platform Actuation in Body Frame

In deriving Eq. (20) we noted that the main difficulty in
using it, even after dropping the drift terms using a start-from-
rest assumption, is the presence of the rotation matrix. This
relationship signifies a dependence on 6, the orientation of the
robot relative to the platform (and inertial frame). However,
if we know or can prescribe the platform’s position relative
to the robot’s body frame?, we can directly use the external,
mechanical connection — A% (b,,) without accounting for the
effect of 6 on the robot-platform interaction. In other words,
we can choose to specify the platform’s velocity using the

variables
Up| | cos@® sinf| |,
Up|  |—sin@ cosf| |y,|”

Again assuming that the system starts from rest, Eq. (20) then
reduces to

2

[jﬂ = — A (bu)bu (22)
P
Since — A (by,) plays a role identical to that of the kinematic
connection for the robot, we can also plot its exterior derivative
in the same way that we have done for the robot. Fig. 7 shows
their shape for a set of chosen system parameters.

The main observation one finds from these plots is that

the u, plot is in general a flipped version of the robot’s x

20f course, this assumes that we have free control over the platform’s
motion in all directions, rather than along a set of fixed axes.
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Fig. 7. The up (top) and v, (bottom) components of the connection exterior
derivative for the platform; that is, the exterior derivative of the connection
that relates the robot’s joint velocities to the platform’s velocities in the robot’s
body frame.

exterior derivative plot (Fig. 4). This is reasonable; as the robot
moves in the forward or backward direction, we would expect
the platform to move in the opposite direction, preserving
net initial momentum of zero. The exterior derivative for v,
(motion of the platform in a direction lateral to the robot’s
heading) resembles the robot’s # exterior derivative (second
plot of Fig. 4), but reflected about the a; = —aw axis. This
can be physically interpreted as a counteraction of the platform
due to rotation of the robot; as the platform does not have a
rotation degree of freedom, the counteraction is projected onto
the v, component.

With the derivation of Eq. (22) we are now also able to
consider the problem of actuating the platform to induce a
completely passive robot to move in a desired way. In other
words, we can prescribe platform velocities (up,i)p), which
would produce trajectories b,, () in the robot’s joint variables.
These base trajectories (and the associated velocities) then
result in the robot moving along its fiber degrees of freedom
according to Eq. (18) and Fig. 4.

This problem can be approached in two ways. The first
is to assume that we have access to a particular robot fiber
motion, either desired or measured, for which we can find a
corresponding gait in the base space through analysis of the
robot’s original connection mapping in Eq. (18). The same
gait can also then be pushed through the platform connection
relationship shown in Eq. (22). This would yield the required
platform velocity inputs ,(t) and v,(¢) that would generate
the robot’s overall desired motion. As an example, suppose
we want to induce the robot to locomote as shown in the top
figure of Fig. 8, in which the robot advances forward without
reorientation. The gait that would achieve this is the gait shown

— 1,
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Fig. 8. Top: The robot’s desired fiber trajectory, which moves forward without
reorientation. Bottom: The platform velocity inputs, relative to the robot’s
body frame, required to obtain the base gait in Fig. 7 and ultimately the fiber
trajectory above.

as a closed loop in Fig. 7. Mapping this gait through the
platform connection produces the required velocities as shown
in the bottom figure of Fig. 8.

One drawback with the above approach is that there is no
guarantee on the feasibility of platform input. This is reflected
in Fig. 8 in that the required input requires a constant nonzero
offset in 4,(t), meaning that the platform would essentially
have to move on the plane with the robot. The second, more
control-oriented, way to approach this problem is to invert the
mechanical connection in Eq. (22) to find feasible (u,,?,)
trajectories to obtain a desired bey.

That Eq. (22) is reduced, i.e., we have eliminated all robot
fiber dependencies from the equation, allows us to consider
only the interaction between the robot’s joints and the platform
fiber variables. Furthermore, the equation bears a resemblance
to the dynamics between a set of actuated and a set of
unactuated joints on the same robot, as detailed in [1]; the
only difference is that the actuated variables in this case are
external to the robot.

For example, it can be numerically shown that increasing the
relative phase between the two input directions will increase
the offset of the resultant joint trajectories. Such a gait is
shown in Fig. 10 (top); note that ¥, lags 1, more and more
over time. This has the effect of shifting the center of the
gait in shape space (Fig. 10, bottom left) from the third
quadrant to the first quadrant. As we know from the 6 plot
of Fig. 4, gaits with negative offsets in «; and ag acquire
negative net orientation; gaits with positive offsets acquire
positive net orientation. In addition, the robot continues to
move forward in its body direction while rotating, since all
gaits enclose a positive net area in the z plot of Fig. 4.
All of these observations are apparent in the robot’s fiber
trajectory for this simulation (Fig. 10, bottom right). It starts at
the origin moving forward on a trajectory rotating clockwise
(negative curvature) and at around ¢ = 60 begins rotating
counterclockwise (positive curvature), as the relative phase
between 1, and v, becomes large and the center of the
resulting o1-ae gait becomes positive.



Fig. 9. The x, (top) and y, (bottom) components of the connection exterior derivative for the platform, corresponding to the robot’s orientation 6 at 45
(left), 90 (middle), and 180 degrees (right). The case in which the robot is aligned with the platform (6 = 0) is the same as the plots in Fig. 7. Note that the

plots undergo an inversion as # increase from 0 to 180.
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Fig. 10. Top: A set of platform inputs that does not lead to net motion of the
platform over time. Bottom left: The offset of the gait in shape space shifts
from the third quadrant to the first. Bottom right: The resulting fiber motion
of the robot, a trajectory with an increasing curvature.

D. Platform Actuation in Inertial Frame

In the previous subsection, the assumption that we can
actuate the platform relative to the robot body’s longitudinal
and lateral directions requires that the platform can freely
move in all directions. An alternative scenario is that it may
be limited to move only in two fixed directions, corresponding
to two independent degrees of freedom. Assuming that the

system starts from rest, this model is described exactly by
Eq. (21).

Even if the system again starts from rest, dropping the mo-
menta terms from the equation, the dependency of Eq. (21) on
the robot’s orientation # introduces an additional complexity.
We assume that we know the robot’s orientation throughout
the system’s operation, for example via an overhead camera, so
that 6 is not an unknown quantity. However, it is a symmetry-
breaking fiber variable that changes the form of the connection
—A,(bw) (shown in the general case by Eq. (14)) and its
corresponding exterior derivative plots in Fig. 7.

Fig. 9 shows the effect of § on dA,(b,); in other words,
the plots show the exterior derivative, for different values of
0, of a 6-dependent connection

—sin 0] ext

Ag™(0,bw) = [ cos 6 Ap (bw)-

The plots shown correspond to 6 at 45, 90, and 180 degrees (of
course, the nominal plots of Fig. 7 correspond to 6 = 0). As we
would expect, the nature of the interaction between the robot
and platform changes with the orientation of the robot. As the
robot rotates to 90 degrees, its body x axis points along the
inertial y axis, while its body y axis points along the inertial
x axis. The x,, plot is thus identical to —v,, or an inverted
version of the v, plot in Fig. 7, while y, is identical to u,
(recall that the corresponding robot and platform components
are inverted). At 180 degrees, both x,, and y,, are completely
inverted from w, and v, the latter again corresponding to x,,
and y, at 0 degrees. Finally, as the robot reorients back to
0 degrees, both plots smoothly deform back to their nominal
forms (Fig. 7).

With a varying 6, robot base trajectories no longer solely
lie on the ai;-co plane in interacting with the inertial platform

cosf

sin 0 (23)
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Fig. 11. Top: The exterior derivatives of an Ay for 6 between 7 and 2?” (middle plot corresponding to xp, right to yp). Bottom: Same functions but for 6

between 7 and %‘ Note that some of the plots appear relatively unchanged from those of Fig. 9; the others acquire deformations starting from the edges.

velocities 2, and 1,. However, we are able to simplify this
problem and reduce motion planning to analysis of a single
exterior derivative function as before if 6 is known to be
periodic. In other words, the robot may start out at some
arbitrary orientation, but its net motion only moves it forward
in the body direction and does not turn it away from its
initial orientation. From the connection exterior derivative plot
that depicts the mapping between internal joint changes and
robot position changes in Fig. 4, we know that such gaits are
centered about the origin.

The following strategy is one which we referred to in
Section 1V, that of decoupling the dependency of the fiber
trajectories on the evolution of the non-symmetric fiber, which
in the present case is ¢"°" = . Assuming that the joint tra-
jectories oy and iy are also periodic, we can apply harmonic
balance on the third line of Eq. (18), a first-order differential
equation 6 = f(by,, by,), to obtain a solution for f(t) in terms
of the parameters of «(t) and a(t) [36]. In other words, if

a1(t) = By cos(wt), (24)
as(t) = Bs cos(wt — @), (25)

then we can find
0(t) = O cos(wt —¢) + C, (26)

where ©, v, and C are functions of B, Bs, and ¢. Taking
this procedure one step further, we can apply trigonometric
identities to write

0= a1y + a20i2 + C, (27)

where a; and aq are the solutions of the nonlinear equations

0 = /(a1B1)% + (a2B2)? + 2a1a2 By B cos ¢,
1 = —atan2(—ag Ba sin ¢, a1 By + aa B cos ¢).

The unknowns can be analytically solved as

Osin(¢p — ) Osiny
Bl sin¢ ,BQSian)) '

(a1,a2) =+ ( (28)

With the numerical values of a; and ao in hand, we
can substitute Eq. (27) into Eq. (23) and obtain a reduced
connection mapping solely between the joint variables b,, and
the platform fiber variables x, and y,, without regard to 6.
Again, this new connection assumes that 6§ is periodic and is
only valid for the given or known functional form of 8, whether
through analysis or visual tracking. With this connection form,
we are able to reduce the previous exterior derivative plots
from three dimensions (a1, ag, and 6) back down to two (o
and as only).

Two effective connection exterior derivatives over different
ranges of 6 are shown in Fig. 11 (one may be able to
characterize such approximations if the robot has limited
reorientation over its trajectory, for example). In the first row, 0
has a range from about % to about %’T; in the second, 6 ranges
from about 7 to about %T. In both rows, the representative
exterior derivative functions corresponding to x, and y, are
shown. Interestingly, the x;, plot in the first row and y,, plot
in the second row are not very different from their constant 6
counterparts at 90 and 180 degrees, respectively. This indicates
that those particular surfaces are more stable and hold over
large ranges of §. On the other hand, the other two plots are
noticeably different, particularly on the edges. In both the y,
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Fig. 12. Coordinate assignments and inertial parameters of a Chaplygin beanie
on a platform. We designate m, B, C' the mass of the Chaplygin beanie,
rotational inertia of the rotor, and rotational inertia of the cart, respectively.
We let k be the stiffness of the linear torsional spring coupling the cart to the
rotor, and M the total mass of the platform.

plot in the first row and z,, plot in the second, the edges are
the first regions to deform as 6 changes.

Given that we are able to find single representative connec-
tion derivative plots over a given range of #, we can use this
visual tool for locomotion analysis and planning for the three-
link wheeled snake robot on a platform system, whether the
inputs are applied to the robot on a passive platform or to an
actuated platform underneath a passive robot. A weakness of
this approach is that the computed connection only holds for
the specific 6 range. If this range changes, whether by shifting
or scaling, a new connection must be found.

VI. CHAPLYGIN BEANIE ON A PLATFORM

We now shift our focus from a system for which external
actuation strategies can be guided by a principal connection,
to one for which no such connection exists, requiring that we
develop additional tools or intuition for motion planning. We
first investigate behaviors for a completely passive system with
the robot being driven by elastic elements in its body, provide a
formal proof for these behaviors, and then illustrate the degree
to which this formal understanding can inform investigations
into an externally actuated version of the system. We then
compute motion primitives for multiple passively compliant
Chaplygin beanies on an actuated platform. The material in
this section appeared previously in [2] without the broader
context of the present paper.

A. Robot Description

Constrained to the platform via a wheel located at its rear,
the Chaplygin beanie locomotes using a rotor sitting atop its
body. The rotor can be driven actively, for example by a motor,
or passively, via an elastic element coupling the cart to the
rotor. In this subsection, we study the latter of these two
configurations, and assume the elastic element to be a linear
torsional spring. The total mass of the vehicle is represented
by m, its rotational inertia about the center of mass as C,
rotational inertia of the rotor about the center of mass as B,
and the mass of the platform as M. The distance between the
center of mass and the contact point at the wheel is denoted
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Fig. 13. Trajectory of a Chaplygin beanie (in blue) as it locomotes atop a
platform. The platform trajectory is shown in red.

by a, and the stiffness of the spring coupling the rotor to the
body denoted by k. The position of the vehicle relative to the
platform is given coordinates (x,y), its orientation 6, the rotor
angle relative to the vehicle heading by ¢, and the position of
the platform in a laboratory frame by (xp, yp).

The configuration manifold for this system is Q. = SE(2) x
S! x R2, with a subscripted (). to denote Chaplygin beanie.
Adhering to our earlier notation that delineates between inter-
nal and external configurations, we let GI" = SE(2), B. = S,
and G = R2. Furthermore, we let ¢" = (z,y,0) € G,

(3
be = ¢ € B, and g = (xp,y,) € GZ. Note that the use
of this notation does not assume the existence of a connection
relating trajectories in B, to trajectories in GI™ or G Like
the three-link snake robot, the Chaplygin beanie is constrained
via a no-slip condition on its wheel. The nonholonomic

constraint at the wheel is given by

—@sinf 4 ycosd — ab = 0. (29)

Constraints of this kind can also be thought of as one forms
lying in the codistribution on the configuration manifold @,
written equivalently as

w = —sin @dx + cos Ody — adf. (30)

Given an initial condition ¢g™(0) = (0,0, —7/4), b, = m,
ext

95X (0) = (0, 0), and setting the inertial parameters and & equal
to unity, we observe the trajectory in Fig 13.

B. Nonholonomic Reduction

Stable trajectories like the one in Fig. 13 illustrate fixed
points in a reduced space. To analyze these fixed points, we
employ nonholonomic reduction, and leverage the geometric
structure of the passive system to guide our development
of a formal understanding of the types of stable locomotive
trajectories that can arise from external actuation.

The evolution equations arising from the reduction are the
changes in linear and angular momentum permitted by the
no-slip constraint at the wheel and will replace the equations
describing the evolution of %, g, and 6. The presence of
a platform gives rise to two additional evolution equations,
one of which is the time evolution of forward translational
momentum of both the Chaplygin beanie and the platform,
the second of which is the time evolution of the momentum
of both the Chaplygin beanie and the platform in the direction
orthogonal to that allowed by the no-slip consraint at the
wheel. We also refer to this momentum term as momentum



lateral to the forward motion of the vehicle. The Lagrangian
for the system is given by

1 A L 1 .
Lo = gml(@ + ) + (5 + 9p)*) + 5007 o
1 . . 1 1
+ 5B+ $)? + §M(5c§ +2) - 51@2.

We require that the one form describing the no-slip con-
straint be annihilated by the system’s generalized velocity,
having coordinates (z,y,0, ¢, z,,y,), at every point ¢, € Q..
For the Chaplygin beanie on a platform with finite inertia, the
manifold on which the dynamics evolve is described by the
configuration manifold Q. = SE(2) x S' x R?.

We let G = SE(2) x R? = G x G be the Lie group
representing the group of rigid translations and rotations of
the Chaplygin beanie and rigid translations of the platform.
Let an arbitrary element of the Lie group G be described by
g = (z,9,0,2,,yp). Consider now a different element of G
with assignment g = (a,b, a, ¢,d) and an element ¢. € Q.
given by ¢. = (z,y, 0,2y, yp, ¢). The left action of G on @
is given by

D :GXQe— Qc:(9,q9:) = (a+xcosa—ysina,

b+ ycosa + xsina,c+ xp,cosa — y,sina, (32)
d+ypcosa+ zpsina, 6 + a, ¢).
The above defines a tangent lifted action, T'®, of G on the
tangent bundle 7'Q)., given by

Td: G x TQ. — TQ.

. . (33)
: (95 (g, dc)) ¥ (2(g,qc), Ty®(g, 4e)de)
where T, ®(g, q.) is given by
cosa —sina 0 0 0 0
sina cosa 0 O 0 0
0 0 1 0 0 0
T0.9(9, )= 0 0 Ocosa —sina 0 (34)
0 0 0 sina cosa 0
0 0 0 O 0 1

We can use the mapping of tangent vectors according to
the above Jacobian to show that the Lagrangian, Eq. 31, is
invariant under the tangent lifted action, Eq. 33. We must now
verify the constraint one form, w, is invariant under the group
action, ®. Given a point ¢. € (). and a tangent vector ¢. €
T,.Q., we check for left-invariance by computing

<wqca de) = <W<I>gqc»ch(I)ch>7 (35)

where w,_ is the constraint one form evaluated at point ¢, and
We,q. 1s the constraint one form evaluated at point q. after
being mapped through the group action. It can be shown that
the Eq. (35) holds. Thus, the system’s Lagrangian is invariant
under the tangent lifted action and the constraint one form
is invariant under the cotangent lifted action, making G a
symmetry group. The Lie group G then acts on the G part of
Q. via left translation, leaving the B. = S! part unchanged.
We take an approach presented in [6], involving the choos-
ing of appropriate left-invariant vector fields spanning the
intersection of the constraint distribution and the space tan-
gent to the orbit of the group action, and leverage [37] in

computing the components of the nonholonomic momentum.
We designate the distribution D, as the space of all tangent
vectors which annihilate the constraint one form, w, and is

given by
Dy, = span{—a sin@% + acos Ga—y + %,

cos 92 + sinf— 9

Ox Oy’ 0¢°"

Furthermore, we designate T, Orb(q.) as the space tangent
to the orbit of the group action, given by

0 o0 o0 0 0

T, Orb c) = a..0'9 '9n’ 9. ' 9, J°

wO(4e) = spant s 50 36" Bay gy

We then choose appropriate vector fields on the configuration

space, Q¢, to span

Sq. = Dy, NT, Orb(q,),

(36)

(37

Vg € Q..

The intersection of D, and T, Orb(g.) constitutes the space
in which a reduced representation of the dynamics evolve. Its
dimension corresponds to the number of evolution equations
obtained from the reduction. The following choice of vector
fields is made to define this intersection.

(38)

Sq. = span{—asiHQ(% + acos@(% + %7

cos QE + sin@g,cos Oi + sin 0 —,

Oz Oy Oz, Oyp (39)

- sin@i + cos Gi}
Oz Oyp

The first two vector fields correspond to rotation about the
contact point at the wheel and longitudinal translation of the
vehicle, respectively [37]. Flow along the third corresponds
to forward translation of the entire system, including the
platform, along the forward direction of the Chaplygin beanie.
The fourth of these vector fields represents motions of the
entire system lateral to the forward direction of the Chaplygin
beanie.

We invoke the Einstein summation convention in the fol-
lowing definition of the momentum map and designate g’
as the ith coordinate on the configuration manifold, @).. The
nonholonomic momenta are computed following

0L, i

The resulting momenta are given directly by Eq. (42). It is
clear by inspection that Jr7 and Jgy correspond to forward
translational momentum and angular momentum about the
contact point of the wheel, respectively. The quantities Jx and
Jy correspond to forward translational momentum and mo-
mentum lateral to the direction allowed by the nonholonomic
constraint for both the Chaplygin beanie and the platform.

nhc

(40)



m((B + C)Jy + Ma(Jgw — Ba))(maJy — (m + M)(Jrpw — Ba))

jLTzf

(M(ma? + B+ C)+m(B + C))?2 ’
aJpr(mady — (m+ M)(Jrw — Ba))

jRW =

M(ma?+B+C)+m(B+C)
_Jy(maJy + (m+ M)(Jrw — Ba))

(41)

Jx =

M(ma?+B+C)+m(B+C) ~’

_Jx(—maJy + (m + M)(JRW — Ba))

Jy =

M(ma?+ B+ C)+m(B+C)

Jrr = m(& + &) cos§ + m(y + gp) sin b,
Jrw = —ma(& + &p) sin @ + ma(y + ¢,) cos f
+ (B +C)6 + Bé,
Jx =m(& + &p) cos§ + m(y + ¢p) sin 0+
My, cost + Myp,sind,
Jy =—m(Z + &p)sin b + m(y + gp) cos §—
My, sin + My, cos 6.

(42)

Similarly, the evolution equations are computed following

%ﬂ%ﬂi

rnhe __
4 dt

94t

(43)

and are given by Eq. (41).

C. Stable Trajectories of Passive System

A formal understanding of the types of stable locomotive
trajectories of a completely passive system for which b.(0) =
¢ 1s nonzero can give us insight into how to actuate the
platform to induce locomotion in a passive Chaplygin beanie.
In this section, we provide proof for the following proposition.

Proposition 1. For all initial conditions corresponding to the
system starting at rest and for which b.(0) = ¢9 # 0, Jrr
will asymprotically approach a positive constant, with Jgw,
¢, and ¢ exponentially decreasing to zero as t — oo.

This proposition effectively says that all of the rotational
momentum in the system will be transformed into forward
translational momentum. We now present a formal argument
for Proposition 1.

Proof. Defining the following variables, the nonholonomic
momenta, ¢, and ¢ can be expressed as

JIx

_Jur _JIx
Pz = d’

Jir waRW*BO‘
d’ B d ’
o= ¢.

The constants d = m(B + C) + M(ma®> + B+ C), v =
—m?a(B + C)/d, v2 = (m(m + M)(B + C) — m?Ma?)/d,
v3 = mMa(m + M)/d, \y = ma?, Ay = —a(m + M),
w1 = —ma, po = m + M, vy = B/d, D = B(mMa* +
C(m+ M)), vi = —dk/D, vy = —Bma?*(m + M)/(dD),
v3 = aB(m + M)?/(dD), vy = Bm?a?/(dD), and v5 =
—mBa(m + M)/(dD) fully encapsulate the presence of
system parameters in a more convenient form for analysis.
The reduced dynamics are then easier to analyze for stability.

(44)

Taking the time derivatives of (44) and using (41) to make the
necessary substitutions, the evolution equations become
i = mpl + Yapyw + YW,
W = A\rpy + Aarw — v (119 + varp,
+ v3rw + vapapy + Vspew),
Pe = pAD; + H2pyw,
Py = —H1PxDy — H2PaW,
a=9¢,

Q@ = 11§ + varpy + V3TW + VaPapy + Vspow.

(45)

The dynamics given by Eq. (45) can be further simplified
under assumptions of momentum conservation. The quantity
p2+ pz is conserved, with all its level sets invariant under Eq.
(45). We wish to prove that all trajectories corresponding to
P+ pz = 0 approach the r axis asymptotically. Restricting
the dynamics to this level set, Eq. (45) can be written as

W = Aorw — v (V19 + varw),

Pr=0, p,=0, a=¢,
& = 1r1¢+ vzrw.

: 2
r="7w,

(46)

The time evolution of 7, w, ¢, and « then fully describe
the behavior of the system. By inspection it is clear that 7 is
nonnegative, and is positive where w is nonzero. For w = 0,
w is nonzero for ¢ # 0. It follows that r will increase for all
time given that w # 0 and ¢ # 0. Thus, r will increase for
all time unless w, ¢, and «, are zero for all time, requiring r
to increase unless the flow of the vector field corresponding
to Eq. (46) is always on the 7 axis. All fixed positive values
of r correspond to a linear dynamical system described by w,
a, and &. For every such r, denoted by r., the dynamics are
then

W Aorew — uo(z_/l(b + varow)
al = 10) 47
16" v1¢ + v3row
The Jacobian of Eq. (47) is
Xovovsre  —vovy 0
A= 0 0 1 (48)
V3Te 121 0

The eigenvalues of Eq. (48) at (w, ¢, @) = (0,0, 0) correspond
to the roots of a third order polynomial in p with parameter-

dependent coefficients, written as
P>+ (VovsTe — Aare)p® — 11p + A7 = 0. (49)

With r. > 0, Decartes’ rule of signs tells us that the
polynomial above has roots with all negative real part, showing



Fig. 14. Rotational momentum about the rear wheel, longitudinal translational
momentum, and the rotor angle.
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Fig. 15. Platform actuation rotated so as to exert control in the direction
orthogonal to direction of motion allowed by the no-slip constraint at the
wheel

that w, ¢, and o exponentially decrease to zero as r increases.
Given knowledge of the asymptotic values of w, ¢, and
«, this result suggests a stable fixed point of Eq. (46) at
(ryw, ¢, a) = (r~,0,0,0). O

Our proof is supported by numerical simulations, an exam-
ple of which is shown in Fig. 14. Note that this aligns with
the behavior exhibited by the Chaplygin beanie in Fig. 13.

D. Platform Actuation in Body Frame

We have established that for every b.(0) = ¢g # 0
corresponding to the zero level set of momentum, all of the
rotational momentum decreases exponentially to zero as time
approaches infinity. For the Chaplygin beanie equipped with
a torsional spring, we see from numerical simulations that
the rotational dynamics are dampened and oscillatory given
such initial conditions. This perceived damping is a result
of the conversion of rotational momentum into translational
momentum. Using our knowledge of the steady-state behaviors
of the completely passive system, we can therefore assume
that there might exist periodic control inputs to the platform
that will induce limit cycle behavior in the dynamics of the
Chaplygin beanie. That is, there might exist platform control
inputs that result in steady periodic trajectories in Jrr, Jrw,
#, and ¢. Limit cycles for an internally-actuated Chaplygin
beanie were shown to exist in [25].

1) Frequency Response Analysis: We seek to characterize
locomotive behaviors when the frequency at which the envi-
ronment is stimulated varies over a range of values containing

the natural frequency of the rotor and the modal frequency of
the body-rotor couple when not constrained to the platform,
both of which are dependent on the stiffness of the spring.
These two frequencies provide a natural starting point for
our analysis. Consider a single passively compliant Chaplygin
beanie atop an actuated platform and let its parameters, m,
B, C, a, and k, be equal to unity. Note that the platform
can only be actuated in the directions (z,y,) as shown in
Fig. 15. There’s no reason to assume a relationship exists
between forward translational speed, heading, or even stability,
when actuating purely in the (zp,,) directions. In fact, such
a relationship is obfuscated by dependence on the initial
heading of the robot. However, such a relationship could exist
when considering actuation in a rotated frame of reference,
orthogonal to the allowable direction of motion required by
the nonholonomic constraint at the robot’s wheel, much like
the actuation strategy considered for the three-link wheeled
snake robot in the preceding section.

Fig. 15 shows the rotated reference frame of the platform.
Actuation along y,, is not only independent of the heading of
the vehicle, but also the direction for which its passive dy-
namics are most responsive. Actuation along 7, for example,
causes no deformations of the rotor relative to the body and
therefore no passive response. Consider the natural frequency
of the rotor and the modal frequency of the vehicle when not
constrained to the platform, given by

oo e kB0
nat — B; mod — BC .

With a spring coupling the cart to the rotor, we sweep through
a range of frequencies for a particular set of parameters to
analyze the response of the system to external actuation in the
y, direction and use asymptotic mean forward translational
momentum of the system (Jpr) as a performance metric.
Since we expect that under certain periodic actuation the
system dynamics will approach a limit cycle behavior, we
will compute the mean forward translational momentum for an
integer number of periods of oscillation. Forward translational
momentum of the Chaplygin beanie is given by Jrr in Eq.
40.

Consider a situation that allows the orientation of the robot
to be tracked in the environment. We actuate the platform

according to

[x;} B [0089 —Sin9] - {a:p]

Yy sinf  cosf Yp
and let z; = 0 and y, = Asin(wt). Note that this is
effectively a feedback-like controller in that it requires tracking
the heading of the robot, which is then used to compute
the control z, and y,. Setting system parameters and the
amplitude A to unity, we discretize the range of frequencies
between 0.3 and 2.0 into N = 100 equally-spaced intervals.
Using the final three periods of oscillation to compute Jrr
for a given actuation frequency w, we obtain the frequency
response plot shown in Fig. 16.

In carrying out this experiment, it is clear that the natural

frequency of the rotor and modal frequency of the system in

(50)
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Fig. 16. Frequency response of a passive Chaplygin beanie under external
actuation in the body frame. The parameters were set to unity to obtain this
response.
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Fig. 17.
parameter combinations

Frequency responses of a Chaplygin beanie for two different

free space bound a region of high performance when consid-
ering mean forward translational momentum as a metric. Ad-
ditional questions concerning generalizability and associated
behaviors arise from this particular result. To address the first
of these questions, we consider a variation in the parameters of
the robot, compute the corresponding frequencies given in Eq.
(50) and generate similar results to Fig. 16. The results of these
experiments are shown in Fig. 17. The natural frequency of
the rotor and modal frequency of the robot in free space again
yield lower and upper bounds on regions of high performance.

Of further interest are behaviors emerging from actuating
within, and outside of, the frequency bounds set by Eq. (50).
In particular, we wish to characterize the frequencies that
result in stable dynamics and from that characterization deduce
motion primitives for controlling multiple passive vehicles. An
analysis of the time evolution of § when actuating the platform
at frequencies inside and oustide of the bands given above
is shown in Fig. 18, experimentally clarifying the existence
of distinct dynamics in the robot’s heading. The blue curve
is actually a family of curves all resulting from frequencies
lying within the bounds of the natural and modal frequency
of the robot, all resembling stable oscillatory behavior. The red
and green curves each correspond to € dynamics of a single
frequency chosen that satisfies the inequalities shown in the
legend.

2) Manipulation: The frequency characterization carried
out above provides clear rules by which we can exert control
over the platform to manipulate Chaplygin beanies. Actuating
the platform at frequencies within the bounds set by the
natural frequency of the rotor and the modal frequency of

— W < Whpat
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Fig. 18. Analysis of the asymptotic heading of a Chaplygin beanie over the
actuation bounds described in Fig. 16
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Fig. 19. Trajectories of two individual simulations for actuation of the

platform inside of the bounds (blue) and outside of bounds (red) defined
by wnat and wy, o4

the robot in free space allow for control primitives which
induce robots to achieve stable undulatory locomotion along
a particular heading. We term such behavior in the context of
manipulating multiple robots as dispersion. Actuation outside
of these boundaries yield trajectories corresponding to much
more complex dynamics, not as easily classified as those
of stable undulatory behavior. We discuss some of these
behaviors in Section VII. Two such trajectories are shown in
Fig. 19.

The Chaplygin beanie under external actuation with w =
wnat Will disperse from its initial position and undulate stably
at a particular heading for all time. The degree to which it
stably oscillates in @ increases with increasing w, as long as
actuation stays within the bounds of the natural frequency
of the rotor and the modal frequency of the robot. Though
no formal guarantee is given in this work, the authors assert
that trajectories corresponding to those of platform actuation
at frequencies of w < Wpet OF W > Wmeq Will stay within
some neighborhood of its initial position, much like that of
the red trajectory in Fig. 19. Such trajectories are also prone
to exhibit dynamics that reveal the presence of multi-scale time
dynamics, discussed below.

This result clarifies the ability to control passive robots
using the kind of actuation given by Eq. (51). Consider a
case with two identical passive Chaplygin beanies at rest atop
an actuated platform with different initial headings. Naively
assuming control over the platform to manipulate one robot in
this sense does not guarantee a certain behavior for the other.
In the presence of other passive robots, however, to achieve a
desired behavior, the platform can be actuated corresponding
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Fig. 20. Resulting trajectories for two Chaplygin beanie agents atop an
actuated platform. The blue trajectory corresponds to actuation of beanie 1 at
a frequency lower than the natural frequency of its rotor. The red trajectory
corresponds to the dynamics induced by actuating the platform so as to induce
the behavior seen in beanie 1.

to the desired control for that particular robot and its resulting
behavior remains independent of the others. Fig. 20 shows
such a case if the desired behavior for Chaplygin beanie 1 is
to stay within some neighborhood of its initial position.

Though the second Chaplygin beanie appears to stably
locomote away in this example, there is no basis in assuming
it does so. Similarly, actuation within the frequency bands
discussed above would result in the vehicle approaching a
stable oscillatory trajectory rather than oscillating about the
initial position. In this result, we emphasize the importance
of exerting control over a particular robot in a multi-robot
setting given that we actuate the platform according to Eq.
(51). The ability to actuate the platform in this way leads to
questions concerning the control of multiple robot. Naively,
one may conclude this control methodology can be targeted
to one robot and switched at any time to target another to
disperse or station-keep robots as needed, but this is nullified
by each robot having attained nonzero momentum.

VII. CONCLUSIONS AND FUTURE WORK

We have presented an investigation into two distinct ex-
amples of externally actuated planar locomoting systems in
ambient media, namely systems without and with drift, that
rely on external interactions to achieve locomotion. In contrast
to more traditional systems that locomote via commands to in-
ternal joints, the types of systems that we consider may require
that we analyze and exploit the resulting external dynamics.
These present difficulties in more complex mappings between
different configuration components, as well as extra structure
that cannot be easily reduced as before. Nevertheless, we have
also presented a framework that incorporates these changes
and is still amenable to established methods for analysis and
motion planning.

The three-link wheeled robot on a platform is an example
in which a stratified fiber bundle structure, with the external
platform’s configuration forming a separate fiber space of
its own. By manipulating both of the resultant connection
mappings, we can find base trajectories that lead to desired
fiber trajectories and vice versa, addressing the problem of
actuating a passive robot using the platform only. We also

— W > Wmod

—40 —

Fig. 21. Trajectory resulting from actuating the platform at a frequency of
w < Wmoq for a Chaplygin beanie with parameters C' = 0.5, m = B =
k =1 for a duration of 500 simulation seconds.

discussed the problem of the broken symmetry in the relative
orientation, and we proposed a method by which to eliminate
this dependency for different ranges by using its periodicity.

The Chaplygin beanie on a platform exemplifies the chal-
lenges introduced by drift in an externally actuated system’s
dynamics. Though it is clear based on the present work that
there exist parameter-invariant bounds on platform actuation
frequencies for achieving stable undulatory behavior of a pas-
sive Chaplygin beanie under external control, formal proof for
this result is sought. Other interesting phenomena are exhibited
by the nonlinear dynamics that warrant further exploration.
Namely, certain platform actuation frequencies yield behaviors
which indicate the presence of multi-scale time dynamics,
demonstrated in Fig. 21.

This behavior relates qualitatively to that exhibited by an
externally actuated three-link snake-like robot in [38]. The
system was given an initial position at the origin and controlled
corresponding to Eq. (51). The robot locomotes away along
some heading for some time, reverses direction, locomotes
for some time, switches its heading, and repeats this behavior.
The dynamics of moving along in some heading occur at a fast
time scale, while the dynamics for switching direction occur
at a much slower time scale. Changes in the direction taken
by the robot likely correspond to bifurcations in the dynamics
at one of these time scales, the analysis of which is a topic
of future work. The actuated system has also been shown to
display stable oscillatory behavior for frequencies within the
frequency bands discussed. As such, proving stabilizability for
the externally-actuated system will also be included in future
publications.

There are several avenues along which to move forward
with this work. One is to produce a more general description
of the “inversion” of the connection mapping when pushing
trajectories from one fiber to another in a stratified structure.
Here we were able to reuse some of the results of our com-
panion work in analyzing the harmonics of the passive joint



variables; we envision a more complete framework describing
the usage of such methods in all these situations.

More generally, we showed that leveraging the tools of
connection exterior derivative plots allowed us to achieve
motion planning for a fully dynamic externally actuated three-
link snake robot by varying the phasing between the two
platform inputs. These tools gave us a structured way to
accomplish motion planning, but do not consider the drift
inherent in externally actuated systems. That is, any actuation
of the platform beneath any robot will introduce second-
order dynamics in the robot, like those seen in the Chaplygin
beanie. Moving forward, considering, and even leveraging,
these second-order dynamics will be a priority in controlling
externally actuated systems. Of particular interest to the au-
thors is the introduction of geometric optimal control in the
sense of [39], [40] to externally actuated locomoting systems.
Moreover, applications of this work in a multi-robot setting
are also of interest to the authors, particularly in the context
of mechanical communication >, where robots use a shared
ambient medium to transmit information as well as propulsive
energy for locomotion.
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