
On Combining Reinforcement Learning

& Adversarial Training

Ankur Deka

CMU-RI-TR-21-32

July 30, 2021

The Robotics Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Thesis Committee:
Katia Sycara, advisor
Michael Lewis, advisor

Deepak Pathak
Wenhao Luo

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Robotics.

Copyright © 2021 Ankur Deka. All rights reserved.





To my family, friends and teachers.



iv



Abstract

Reinforcement Learning (RL) allows us to train an agent to excel at a
given sequential decision making task by optimizing for a reward signal.
Adversarial training involves a joint optimization scheme where an agent
and an adversary compete against each other. In this work, we explore
some domains involving the combination of RL and adversarial training,
yielding practical learning algorithms. Certain domains use adversarial
training as a tool to help improve the RL agent’s performance whereas
others have an adversary built into the problem statement. We explore
both these kinds of scenarios and propose new algorithms that outperform
existing ones.

1. We formulate a new class of Actor Residual Critic (ARC) RL algo-
rithms for improving Adversarial Imitation Learning (AIL). Unlike
most RL settings, the reward in AIL is differentiable and to leverage
the exact gradient of the reward, we propose ARC instead of the
standard Actor Critic algorithms in RL. ARC aided AIL algorithms
outperform existing AIL algorithms in continuous-control tasks.

2. We create a new multi-agent mixed cooperative-competitive simula-
tion environment called FortAttack that addresses several limitations
in existing multi-agent environments. We further show that complex
multi-agent strategies, that involve coordination and heterogeneous
task allocation, can naturally emerge from scratch through competi-
tion between two teams of agents.

3. Leader-follower strategy is popular in multi-robot navigation. If a
leader-follower multi-robot team is in a crucial mission and there is
an external adversarial observer (enemy), hiding the leader’s identity
is crucial. The external adversary who wishes to sabotage the robot
team’s mission can simply identify and harm just the leader. This
will compromise the whole robot team’s mission. We propose a
defense mechanism of hiding the leader’s identity by ensuring the
leader moves in a way that behaviorally camouflages it with the
followers, making it difficult for an adversary to identify the leader.
We further show that our multi-robot policies trained purely in
simulation generalizes to real human observers, making it difficult
for them to identify the leader.

v



vi



Acknowledgments

I am extremely thankful to my advisors Prof. Katia Sycara and Prof.
Michael Lewis for allowing me to explore the areas of my interest and
supporting me through my master’s journey. They taught me how to
approach a problem in a structured way and present my work in a cohesive
fashion. I am thankful to my thesis committee members Prof. Deepak
Pathak and Wenhao Luo for the discussions and feedback on my work.

During my master’s program, I have had the opportunity to work with
and meet many awesome people. I am thankful to my collaborators
Prof. Changliu Liu, Huao Li and Phillip Walker. I have had many long
discussions with my lab-mates Tejus Gupta and Swaminathan Gurumurthy
on the recent progresses in Reinforcement Learning and also on how I can
better furnish my ideas. My lab-mates Siddharth Agrawal, Rohit Jena,
Vidhi Jain, Jaskaran Singh Grover, Sha Yi, Chendi Lin, Akshay Sharma,
Akshay Dharmavaram, Siddharth Ghiya, Yunfei Shi, Fan Jia, Keitaro
Nishimura, Sophie Guo and Andrew Jong are all brilliant and fun people
to work and spend time with. I am thankful to Dana Hughes for helping
me out with his magic wand of computer engineering skills whenever I
was in need. I am thankful to Lynnetta Miller for smoothly handling
the logistics in our lab and to Barbara Jean and Prof. George Kantor
for smoothly conducting the MS in Robotics program. I am thankful to
everyone I met at the Robotics Institute or CMU.

My apartment-mates Yash Belhe and Advait Gadhikar have played a
pivotal role in my journey. They tolerated boring speeches on my then
ongoing work (much like you the reader will hopefully do in some time)
and gave me a homely company. I cannot over-thank my parents, brother,
sister-in-law and girlfriend for constantly believing in me and providing
me the much needed mental strength and support. Without them, this
work wouldn’t have been possible.

vii



viii



Funding

This research has been supported by ONR N00014-19-C-1070, AFOSR/AFRL
award FA9550-18-1-0251, FA9550-18-1-0097, AFOSR FA9550-15-1-0442
and DARPA Cooperative Agreement No.: HR00111820051.

ix



x



Contents

1 Introduction 1

2 ARC - Actor Residual Critic for Adversarial Imitation Learning 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.1 Definition of Residual Critic (C function) . . . . . . . . . . . . 11
2.4.2 Properties of C function . . . . . . . . . . . . . . . . . . . . . 12

2.5 Continuous-control using Actor Residual Critic . . . . . . . . . . . . 13
2.5.1 ARC aided Adversarial Imitation Learning . . . . . . . . . . . 14
2.5.2 Why choose ARC over Actor-Critic in Adversarial Imitation

Learning? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6.1 Policy Iteration on a Grid World . . . . . . . . . . . . . . . . 15
2.6.2 Imitation Learning in continuous-control tasks . . . . . . . . . 16

2.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.7.1 Derivations and Proofs . . . . . . . . . . . . . . . . . . . . . . 19
2.7.2 Convergence of policy evaluation using C function . . . . . . . 20

2.8 Popular Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.8.1 Policy Iteration using Q function . . . . . . . . . . . . . . . . 21

2.9 Experimental Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.10 Extending to Real Robots . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Natural Emergence of Heterogeneous Strategies in Artificially In-
telligent Competitive Teams 27
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 Multi-Agent Reinforcement Learning . . . . . . . . . . . . . . 29
3.2.2 Multi-Agent Environments . . . . . . . . . . . . . . . . . . . . 30

3.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

xi



3.3.1 Modeling observation of opponents . . . . . . . . . . . . . . . 32
3.3.2 Modeling interactions with teammates . . . . . . . . . . . . . 32
3.3.3 Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.4 Scalability and real world applicability . . . . . . . . . . . . . 33
3.3.5 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4.1 Observation space . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4.2 Action space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4.3 Reward structure . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5.1 Evolution of strategies . . . . . . . . . . . . . . . . . . . . . . 36
3.5.2 Being Attentive . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5.3 Ensemble strategies . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Hiding Leader’s Identity in Leader-Follower Navigation through
Multi-Agent Reinforcement Learning 41
4.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.1 MARL Formulation . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.2 Adversarial Training . . . . . . . . . . . . . . . . . . . . . . . 47
4.3.3 Graph Neural Networks Multi-agent Architecture . . . . . . . 48
4.3.4 Scalable LSTM Adversary Architecture . . . . . . . . . . . . . 50
4.3.5 Scalability, Adaptability and Decentralized Control . . . . . . 51
4.3.6 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3.7 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.4.1 Adversary performance . . . . . . . . . . . . . . . . . . . . . . 53
4.4.2 Multi-Agent Performance . . . . . . . . . . . . . . . . . . . . 57
4.4.3 Effectiveness against Human observers . . . . . . . . . . . . . 58

5 Conclusions 61

Bibliography 63

xii



List of Figures

2.1 Visual illustration of approximating reward via Q function or C function. 10
2.2 On a Grid World, the results of running two Policy Iteration (PI)

algorithms - PI with C function (Algorithm 1) and the standard
PI with Q function (Appendix 2.8.1 Algorithm 3). Both algorithms
converge in 7 policy improvement steps to the same optimal policy π∗

as shown in Fig. 2.2a. The optimal policy gets the immediate reward
shown shown in Fig. 2.2b. The C values (Fig. 2.2c) at the convergence
of PI with C function and the Q values (Fig. 2.2d) at the convergence
of PI with Q function are consistent with their relation Q∗ = r∗ + C∗

(2.12). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 OpenAI Gym’s [12] Mujoco continuous-control environments used for

evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Episode return versus number of environment interaction steps for

different Imitation Learning algorithms on Mujoco continuous-control
environments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 The FortAttack environment in which guards (green) need to protect
the fort (cyan semicircle at the top) from the attackers (red). The
attackers win when any one of them reaches the fort. Each agent can
shoot a laser which can kill an opponent. . . . . . . . . . . . . . . . . 28

3.2 Modeling of inter agent interactions with Graph Neural Networks
(GNNs) from the perspective of agent 1, in a 3 friendly agents vs 3
opponents scenario. Left: agent 1’s embedding, H0

1 is formed by taking
into consideration the states of all opponents through an attention
layer. Right: agent 1’s embedding gets updated, (Hk

1 → Hk+1
1 ) by

taking into consideration its team mates through an attention layer. . 31
3.3 Average reward per agent per episode for the teams of attackers and

guards as training progresses. The reward plots have distinct extrema
and corresponding snapshots of the environment are shown. The x-axis
shows the number of steps of environment interaction. The reward is
plotted after Gaussian smoothing. . . . . . . . . . . . . . . . . . . . . 36

xiii



3.4 Sample sequences for different strategies that evolved during training.
Each row represents one sequence and time moves from left to right. . 37
(a) Random exploration . . . . . . . . . . . . . . . . . . . . . . . 37
(b) Laser flashing strategy of guards . . . . . . . . . . . . . . . . . 37
(c) Sneaking strategy of attackers . . . . . . . . . . . . . . . . . . 37
(d) Spreading and flashing strategy of guards . . . . . . . . . . . . 37
(e) Deception strategy of attackers . . . . . . . . . . . . . . . . . 37
(f) Smartly spreading strategy of guards . . . . . . . . . . . . . . 37

3.5 Average reward per agent per episode for guards as ensemble training
progresses. The reward is shown after Gaussian smoothing. . . . . . . 39

4.1 A leader-follower multi-robot team in a disaster relief mission in the presence

of an external adversary. It is crucial to hide the leader’s identity from the

adversary because if the adversary harms the leader then the whole team’s

mission would be compromised. . . . . . . . . . . . . . . . . . . . . . . 42
4.2 A goal reaching task for a leader-follower multi-robot team. All robots can

sense the neighboring robots and additionally the leader knows the goal

location. All robots have the same visual appearance, the leader is shown

in a different color only for illustrative purpose. . . . . . . . . . . . . . . 45
4.3 GNNs based multi-agent architecture (Fig. 4.3a,4.3b) and Scalable-LSTM

adversary architecture (Fig. 4.3c). . . . . . . . . . . . . . . . . . . . . 46
4.4 An episode of Naive MARL Multi robot trajectories (Fig. 4.4a) which the

Scalable-LSTM adversary observes and tries to identify the leader. Scalable-

LSTM predicts the leader at every time step t based on the trajectory

observation till time t. Initially it fails to identify the leader correctly (shown

in black) but within 10 time steps in predicts leader correctly (shown in

red). Fig. 4.4b shows confidence of the adversary on its prediction for the

same episode. Again we can observe that initially Scalable LSTM has low

confidence and fails to identify the leader (shown in black) but within 10

time it identifies the leader correctly (shown in red) and within 20 time

steps its confidence is almost 1 (100% confident). . . . . . . . . . . . . . 51
4.5 Scalable-LSTM adversary’s 0-shot generalization to different number of

agents. The blue curve, which shows the accuracy of Scalable-LSTM in

identifying the leader in robot teams with different number of agents,

constantly stays high (close to 1). Although Scalable-LSTM adversary was

trained with only 6 agents (shown with dashed vertical line), it had high

accuracy in identifying the leader in robot teams with number of agents

varying between 3 and 10. . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.6 Multi-agent performance on primary task reward and identity hiding

reward using different algorithms. Values are normalized between 0
and 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

xiv



4.7 Multi-agent navigation using approach of Zheng et al. [77] and our approach

for the same goal location (shown as black circle). The leader is shown as a

blue circle while the followers are shown as green circles. All agents have

a number written on them - e.g. the leader (blue circle) is numbered 4.

The leader’s identity isn’t concealed well by Zheng et al. (Fig. 4.7a) as it

is clearly ahead of the followers. Using our approach, the leader smartly

moves with the followers as a group, hiding its identity (Fig. 4.7b) - E.g. in

3rd snapshot of Fig. 4.7b, a follower agent (numbered 3) deceptively seems

to be leading the multi-agent team while the leader is behind. . . . . . . 55
4.8 Leader-follower navigation to different goal locations (shown as blue

circle) using our proposed approach. The multi-agent team could
successfully reach different goal locations while fooling the adversary
which made a wrong prediction of the leader’s identity as depicted by
the black color of the leader trajectory in most regions. . . . . . . . . 56

4.9 0-shot generalization of our proposed approach to different multi-agent

team size. We trained a multi-agent policy with n = 6 agents using our

approach directly tested the performance with 2n = 12 agents without any

fine-tuning. The multi-agent team with double the number of agents in able

to navigate to the goal location while successfully hiding the leader within

the followers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.10 This figure presents comparative results of human observers (adversary) try-

ing to identify the leader in multi-robot teams executing different navigation

algorithms (Scirpted PD, Zheng et al. [77], Naive MARL and ours). The

results show that our algorithm performs better (lower value is better)

in terms of overall score (4.10a), accuracy (4.10b) and confidence (4.10c). . 57

xv



xvi



List of Tables

2.1 Popular AIL algorithms, f -divergence metrics they minimize and
corresponding reward functions. . . . . . . . . . . . . . . . . . . . . . 7

2.2 Policy return on Mujoco environments using different Adversarial
Imitation Learning algorithms. Each algorithms is run with 3 random
seeds and each seed is evaluated for 20 episodes. . . . . . . . . . . . . 17

3.1 Reward structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 Comparison of Adversary Architectures . . . . . . . . . . . . . . . . . 53

xvii



xviii



Chapter 1

Introduction

Reinforcement Learning (RL) allows us to train an agent to learn a sequential decision

making task by optimizing a reward signal. The agent learns through trial and

error, gathering experience in an environment and gradually improving over time.

Eventually, it excels at the given task, often generating astonishing results. Some of

the recent feats of RL are - AlphaGo defeating the world champion at the challenging

game of Go [61, 62], challenging dexterous robotic manipulation [4], legged robot

locomotion that can rapidly adapt to difficult unseen terrains [35] and complex

multi-agent coordination strategies [11]. A major reason for the success of RL in such

diverse tasks is the flexibility in its formulation - any sequential decision making task

can be modeled as an RL problem and moreover the reward can be any general scalar

function without assumptions such as continuity or differentiability.

Adversarial training is a joint optimization scheme where an agent and an adver-

sary compete against each other. One particular instance, Generative Adversarial

Networks (GANs) [23], have been extremely successful in modeling and replicating

data distributions in high dimensional spaces, particularly generating realistic fake

images [33, 49, 79].

The combination of RL and adversarial training creates new possibilities, extending

the applications of both these lines of work. The domains combining RL and

adversarial training can be broadly classified into 2 categories, based on the role of

the adversary.

In the first category, an adversary is used as a tool to help improve the RL

1



1. Introduction

agent’s performance by artificially creating a competition. One of the most popular

class of algorithms in this domain is Adversarial Imitation Learning (AIL). Many

popular algorithms such as GAIL [28], AIRL [20] and f -MAX [22] fall in this category.

The primary objective in these algorithms is to optimally act in an environment by

imitating an expert. However, they model it as a 2-player competitive game between

an agent and an adversary (discriminator). The adversary tries to distinguish

agent trajectories from expert trajectories. The agent tries to fool the adversary

by generating trajectories that are similar to expert trajectories. At convergence,

the agent trajectories resemble the expert trajectories and the adversary cannot

distinguish between them. Some other popular applications that use an adversary as

a tool are those of Robust RL or Adversarial attacks in RL [32, 46, 71].

In the second category, an adversary is a part of the problem statement. This

includes the many scenarios where an agent competes against an opponent (adversary).

A popular scenario is self-play, where an agent competes against a clone of itself and

learns to improve from over time [61, 63]. [5] had two agents competing against each

other in the RoboSumo environment. Some other examples are multi-agent teams

competing in the game of hide and seek [11] or in the game of StarCraft II [72].

In this work, we explore both these categories that combine RL and adversarial

training. In particular, we look at the following scenarios:

1. Actor Residual Critic for Adversarial Imitation Learning [16]: Adver-

sarial Imitation Learning (AIL) is a class of popular state-of-the-art Imitation

Learning algorithms where an artificial adversary’s misclassification is used as

a reward signal and is optimized by any standard Reinforcement Learning (RL)

algorithm. Unlike most RL settings, the reward in AIL is differentiable but

model-free RL algorithms do not make use of this property to train a policy. In

contrast, we leverage the differentiability property of the AIL reward function

and formulate a class of Actor Residual Critic (ARC) RL algorithms that draw a

parallel to the standard Actor-Critic (AC) algorithms in RL literature and uses

a residual critic, C function (instead of the standard Q function) to approximate

only the discounted future return (excluding the immediate reward). ARC

algorithms have similar convergence properties as the standard AC algorithms

with the additional advantage that the gradient through the immediate re-

ward is exact. For the discrete (tabular) case with finite states, actions, and

2



1. Introduction

known dynamics, we prove that policy iteration with C function converges to

an optimal policy. In the continuous case with function approximation and

unknown dynamics, we experimentally show that ARC aided AIL outperforms

standard AIL in simulated continuous-control tasks. ARC algorithms are simple

to implement and can be incorporated into any existing AIL implementation

with an AC algorithm.

2. Emergent Multi-Agent Strategies [15]: Multi agent strategies in mixed

cooperative-competitive environments can be hard to craft by hand because

each agent needs to coordinate with its teammates while competing with its

opponents. Learning based algorithms are appealing but they require a com-

petitive opponent to train against, which is often not available. Many scenarios

require heterogeneous agent behavior for the team’s success and this increases

the complexity of the learning algorithm. In this work, we develop a mixed

cooperative-competitive multi agent environment called FortAttack in which

two teams compete against each other for success. FortAttack addresses several

drawbacks in existing multi agent environments. We show that modeling agents

with Graph Neural Networks (GNNs) and training them with Reinforcement

Learning (RL) from scratch, leads to the co-evolution of increasingly complex

strategies for each team. Through competition in Multi-Agent Reinforcement

Learning (MARL), we observe a natural emergence of heterogeneous behavior

among homogeneous agents when such behavior can lead to the team’s success.

Such heterogeneous behavior from homogeneous agents is appealing because

any agent can replace the role of another agent at test time. Finally, we propose

ensemble training, in which we utilize the evolved opponent strategies to train

a single policy for friendly agents. We were able to train a large number of

agents on a commodity laptop, which shows the scalability and efficiency of our

approach.

3. Hiding Leader’s Identity in Leader-Follower Navigation [18, 19]: Leader-

follower navigation is a popular class of multi-robot algorithms where a leader

robot leads the follower robots in a team. The leader has specialized capabilities

or mission critical information (e.g. goal location) that the followers lack which

makes the leader crucial for the mission’s success. However, this also makes

3



1. Introduction

the leader a vulnerability - an external adversary who wishes to sabotage the

robot team’s mission can simply harm the leader and the whole robot team’s

mission would be compromised. Since robot motion generated by traditional

leader-follower navigation algorithms can reveal the identity of the leader, we

propose a defense mechanism of hiding the leader’s identity by ensuring the

leader moves in a way that behaviorally camouflages it with the followers,

making it difficult for an adversary to identify the leader. To achieve this, we

combine Multi-Agent Reinforcement Learning, Graph Neural Networks and

adversarial training. Our approach enables the multi-robot team to optimize

the primary task performance with leader motion similar to follower motion,

behaviorally camouflaging it with the followers. Our algorithm outperforms

existing work that tries to hide the leader’s identity in a multi-robot team by

tuning traditional leader-follower control parameters with Classical Genetic

Algorithms. We also evaluated human performance in inferring the leader’s

identity and found that humans had lower accuracy when the robot team used

our proposed navigation algorithm.

4



Chapter 2

ARC - Actor Residual Critic for

Adversarial Imitation Learning

2.1 Introduction

Although Reinforcement Learning (RL) allows us to train agents to perform complex

tasks without manually designing controllers [25, 42, 58], it is often difficult to hand-

craft a dense reward function that captures the task objective [8, 9, 55]. Imitation

Learning (IL) or Learning from Demonstration (LfD) is a popular choice in such

situations [2, 8, 9, 55]. Common approaches to IL are Behavior Cloning (BC) [10]

and Inverse Reinforcement Learning (IRL) [44].

Within IRL, recent Adversarial Imitation Learning (AIL) algorithms have shown

state-of-the-art performance, especially in continuous control tasks which make them

relevant to real-world robotics problems. AIL involves an agent and an adversary

(discriminator) competing in a 2-player game. The adversary tries to distinguish

agent trajectories from expert trajectories. The agent tries to fool the adversary

by generating trajectories that are similar to expert trajectories. At convergence,

the agent trajectories resemble the expert trajectories and the adversary cannot

distinguish between them. Popular AIL algorithms include Generative Adversarial

Imitation Learning (GAIL) [28], Adversarial Inverse Reinforcement Learning (AIRL)

[20] and f -MAX [22].

5



2. ARC - Actor Residual Critic for Adversarial Imitation Learning

The agent in AIL is trained with any standard RL algorithm. There are two

popular categories of RL algorithms: (i) on-policy algorithms such as TRPO [56],

PPO [58], GAE [57] based on the policy gradient theorem [66, 75]; and (ii) off-policy

Actor-Critic (AC) algorithms such as DDPG [38], TD3 [21], SAC [25] that compute

the policy gradient through a critic (Q function). These standard RL algorithms were

designed for arbitrary scalar reward functions; and they compute an approximate

gradient for updating the policy. Practical on-policy algorithms based on the policy

gradient theorem use several approximations to the true gradient [56, 57, 58] and

off-policy AC algorithms first approximate policy return with a critic (Q function)

and subsequently compute the gradient through this critic [21, 25, 38].

However, our insight is that the reward function in AIL has a special property, it

is differentiable which means we can compute the exact gradient through the reward

function instead of approximating it. As we will see in section 2.3, naively computing

the gradient through reward function would lead to a short-sighted sub-optimal

policy. To address this issue, we formulate a class of Actor Residual Critic (ARC) RL

algorithms that use a residual critic, C function (instead of the standard Q function)

to approximate only the discounted future return (excluding immediate reward).

The contribution of this paper is the introduction of ARC, which can be easily

incorporated to replace the AC algorithm in any existing AIL algorithm for continuous-

control and helps boost the asymptotic performance by computing the exact gradient

through the reward function.

2.2 Related Work

The simplest approach to imitation learning is Behavior Cloning [10] where an agent

policy directly regresses on expert actions (but not states) using supervised learning.

This leads to distribution shift and poor performance at test time [28, 52]. Methods

such as DAgger [52] and Dart [36] eliminate this issue but assume an interactive

access to an expert policy, which is often impractical.

Inverse Reinforcement Learning (IRL) approaches recover a reward function which

can be used to train an agent using RL [44, 80] and have been more successful than

BC. Within IRL, recent Adversarial Imitation Learning (AIL) methods inspired by

Generative Adversarial Networks (GANs) [23] have been extremely successful. GAIL

6



2. ARC - Actor Residual Critic for Adversarial Imitation Learning

Algorithm
Minimized f-Divergence

r(s, a)
Name Expression

GAIL [28] Jensen-Shannon 1
2

{
Eρexp log 2ρexp

ρexp+ρπ
+ Eρπ log 2ρπ

ρexp+ρπ

}
logD(s, a)

AIRL [20],
Reverse KL Eρπ log ρπ

ρexp log D(s,a)
1−D(s,a)f -MAX-RKL [22]

Table 2.1: Popular AIL algorithms, f -divergence metrics they minimize and corre-
sponding reward functions.

[28] showed state-of-the-art results in imitation learning tasks following which several

extensions have been proposed [31, 37]. AIRL [20] imitates an expert as well as

recovers a robust reward function. [34] and [22] presented a unifying view on AIL

methods by showing that they minimize different divergence metrics between expert

and agent state-action distributions but are otherwise similar. [22] also presented

a generalized AIL method f -MAX which can minimize any specified f -divergence

metric [39] between expert and agent state-action distributions thereby imitating the

expert. Choosing different divergence metrics leads to different AIL algorithms, e.g.

choosing Jensen-Shannon divergence leads to GAIL [28]. [76] proposed a method

that automatically learns a f -divergence metric to minimize. Our proposed Actor

Residual Critic (ARC) can be augmented with any of the above AIL algorithms.

Some recent methods have identified that the reward in AIL is differentiable but

they have used this property in very different settings. [45] used the gradient of the

reward to improve the reward function but not to optimize the policy. [26] used the

gradient through the reward to optimize the policy but operated in the model-based

setting. We instead propose a model-free approach that can use the gradient of the

reward to optimize the policy with the help of a new class of RL algorithms called

Actor Residual Critic (ARC).

2.3 Background

Objective Our goal is to imitate an expert from one or more demonstrated trajec-

tories (state-action sequences) in a continuous-control task (state and action spaces

are continuous). Given any Adversarial Imitation Learning (AIL) algorithm that

uses an off-policy Actor-Critic algorithm RL algorithm, we wish to use our insight on

7



2. ARC - Actor Residual Critic for Adversarial Imitation Learning

the availability of a differentiable reward function to improve the imitation learning

algorithm.

Notation The environment is modeled as a Markov Decision Process (MDP)

represented as a tuple (S,A,P , r, ρ0, γ) with state-space S, action-space A, tran-

sition dynamics P : S × A × S → [0, 1], reward function r(s, a), initial state

distribution ρ0(s), and discount factor γ. π(.|s), πexp (.|s) denote policies and

ρπ, ρexp : S × A → [0, 1] denote state-action occupancy distributions for agent and

expert respectively. T = {s1, a1, s2, a2, . . . , sT , aT} denotes a trajectory or episode

and (s, a, s′, a′) denotes a continuous segment in a trajectory. A discriminator or

adversary D(s, a) tries to determine whether the particular (s, a) pair belongs to

an expert trajectory or agent trajectory, i.e. D(s, a) = P (expert|s, a). The optimal

discriminator is D(s, a) = ρexp(s,a)
ρexp(s,a)+ρπ(s,a)

[23].

Adversarial Imitation Learning (AIL) In AIL, the discriminator and agent

are alternately trained. The discriminator is trained to maximize the likelihood of

correctly classifying expert and agent data using supervised learning:

max
D

{
Es,a∼ρexp [logD(s, a)] + Es,a∼ρπ [log(1−D(s, a)]

}
(2.1)

The agent is trained to maximize the discounted return:

max
π

{
Es,a∼ρ0,π,P

∑
t≥0

γtr(st, at)
}

(2.2)

Here, reward r(s, a) = h(D(s, a)) is a function of the discriminator which varies

between different AIL algorithms. Different AIL algorithms minimize different f -

divergence metrics between expert and agent state-action distribution. Defining

a f -divergence metric instantiates different reward functions [22]. Some popular

divergence choices are Jensen-Shannon in GAIL [28] and Reverse Kullback-Leibler in

f -MAX-RKL [22] and AIRL [20] as shown in Table 2.1.

Any RL algorithm could be used to optimize (2.2) and popular choices are off-

policy Actor-Critic algorithms such as DDPG [38], TD3 [21], SAC [25] and on-policy

algorithms such as TRPO [56], PPO [58], GAE [57] which are based on the policy

8



2. ARC - Actor Residual Critic for Adversarial Imitation Learning

gradient theorem [66, 75]. We focus on off-policy Actor-Critic algorithms as they are

usually more sample efficient and stable than on-policy policy gradient algorithms

[21, 25].

Continuous-control using off-policy Actor-Critic The objective in off-policy

RL algorithms is to maximize expected Q function of the policy, Qπ averaged over

the state distribution of a dataset D (typically past states stored in buffer) and the

action distribution of the policy π [60]:

max
π

Es∼D,a∼πQπ(s, a) (2.3)

where, Qπ(s, a) = Es,a∼ρ0,π,P
[∑
k≥0

γkrt+k

∣∣∣∣st = s, at = a

]
(2.4)

The critic and the policy denoted by Q, π respectively are approximated by function

approximators such as neural networks with parameters φ and θ respectively. There

is an additional target Q function parameterized by . There are two alternating

optimization steps:

1. Policy evaluation: Fit critic (Qφ function) by minimizing Bellman Backup error.

min
φ

Es,a,s′∼D {Qφ(s, a)− y(s, a)}2 (2.5)

where, y(s, a) = r(s, a) + γQ(s′, a′) and a′ ∼ πθ(.|s′) (2.6)

Qφ is updated with gradient descent without passing gradient through the

target y(s, a).

2. Policy improvement: Update policy with gradient ascent over RL objective.

Es∼D
[
∇θQφ(s, a ∼ πθ(.|s))

]
(2.7)

All off-policy Actor Critic algorithms follow the core idea above ((2.5) and (2.7))

along with additional details such as the use of a deterministic policy and target

network in DDPG [38], double Q networks and delayed updates in TD3 [21], entropy

regularization and reparameterization trick in SAC [25].

9



2. ARC - Actor Residual Critic for Adversarial Imitation Learning

r1 r2 r3 rT

Q - Approximates return

C - Approximates future return (residue)
Immediate

reward

Figure 2.1: Visual illustration of approximating reward via Q function or C function.

Naive-Diff and why it won’t work Realizing that the reward in AIL is differ-

entiable, we can formulate a Naive-Diff RL algorithm that updates the policy by

differentiating the RL objective (2.2) with respect to the policy parameters θ.

ET ∼D
[
∇θr(s1, a1) + γ∇θr(s2, a2) + γ2∇θr(s3, a3) + . . .

]
(2.8)

Here T = {s1, a1, s2, a2 . . . } is a sampled trajectory in D. It may seem straight

forward to obtain the gradients in (2.8) using standard autodiff packages such as

Pytorch [47] or Tensorflow [1] but this naive approach would produce incorrect

gradients. Apart from the immediate reward r(s1, a1), all the terms depend on the

transition dynamics of the environment P(st+1|st, at), which is unknown and we

cannot differentiate through this term. As a result, autodiff will calculate the gradient

of only immediate reward correctly and calculate the rest as 0’s. The effective gradient

calculated would be Es∼D
[
∇θr(s1, a1)

]
. This will produce a short-sighted policy that

maximizes only the immediate reward (without considering future return) and have

sub-optimal performance.

2.4 Method

The main lesson we learnt from Naive-Diff is that while we can obtain the gradient

of immediate reward, we cannot directly obtain the gradient of future return due

to unknown environment dynamics. This directly motivates our formulation of

Actor Residual Critic (ARC). Standard Actor Critic algorithms use Q function to

approximate the return as described in Eq. 2.4. However, since we can directly

obtain the gradient of the reward, we needn’t approximate it with a Q function.

We, therefore, propose to use C function to approximate only the future return,

leaving out the immediate reward. This is the core idea behind Actor Residual Critic

10



2. ARC - Actor Residual Critic for Adversarial Imitation Learning

(ARC) and is highlighted in Fig. 2.1. Note that the word “Residual” refers to the

residue in return after removing immediate reward. As we will explain in Section

2.5, segregating the immediate reward from future return will allow ARC algorithms

to leverage the exact gradient of the immediate reward. We now formally describe

Residual Critic (C function) and its relation to the standard critic (Q function) in

RL literature.

2.4.1 Definition of Residual Critic (C function)

The Q function under a policy π, Qπ(s, a), is defined as the expected discounted

return from state s taking action a .

Qπ(s, a) = Es,a∼ρ0,π,P
[∑
k≥0

γkrt+k

∣∣∣∣st = s, at = a

]
(2.9)

The C function under a policy π, Cπ(s, a), is defined as the expected discounted

future return, excluding the immediate reward. Note that the summation in (2.10)

starts from 1 instead of 0.

Cπ(s, a) = Es,a∼ρ0,π,P
[∑
k≥1

γkrt+k

∣∣∣∣st = s, at = a

]
(2.10)

Q function can be expressed in terms of C function:

Qπ(s, a) = Es,a∼ρ0,π,P
[∑
k≥0

γkrt+k

∣∣∣∣st = s, at = a

]
= r(s, a) + Es,a∼ρ0,π,P

[∑
k≥1

γkrt+k

∣∣∣∣st = s, at = a

]
(2.11)

∴ Qπ(s, a) = r(s, a) + Cπ(s, a) (2.12)

11



2. ARC - Actor Residual Critic for Adversarial Imitation Learning

2.4.2 Properties of C function

We now show some useful properties of the C function. We define the optimal C

function, C∗ as:

C∗(s, a) = max
π

Cπ(s, a) (2.13)

There exists an unique optimal C function for any MDP as described in Lemma 1. We

can derive the Bellman equation for Cπ (Lemma 2), similar to the Bellman equations

for traditional action value function Qπ [66]. Using the recursive Bellman equation,

we can define a Bellman backup operation for policy evaluation which converges to

the true Cπ function (Theorem 1). Using the convergence of policy evaluation, we can

arrive at the Policy Iteration algorithm using C function as shown in Algorithm 1,

which is guaranteed to converge to an optimal policy (Theorem 2), similar to the case

of Policy Iteration with Q function or V function [66]. For comparison, the standard

Policy Iteration with Q function algorithm is described in Appendix 2.8.1 Algorithm

3.

Lemma 1. There exists a unique optimum C∗ for any MDP.

Proof. Appendix 2.7.1.

Lemma 2. The recursive Bellman equation for Cπ is as follows

Cπ(s, a) = γ
∑
s′

P (s′|s, a)
∑
a′

π(a′|s′) (r(s′, a′) + Cπ(s′, a′))

Proof. Appendix 2.7.1.

Theorem 1. The following Bellman backup operation for policy evaluation using

C function converges to the true C function, Cπ

Cn+1(s, a)← γ
∑
s′

P (s′|s, a)
∑
a′

π(a′|s′) (r(s′, a′) + Cn(s′, a′))

Here, Cn is the estimated value of C at iteration n.

Proof. Appendix 2.7.2

12



2. ARC - Actor Residual Critic for Adversarial Imitation Learning

Theorem 2. The policy iteration algorithm defined by Algorithm 1 converges to

the optimal C∗ function and an optimal policy π∗.

Proof. From Theorem 1, the policy evaluation step converges to true Cπ function.

The policy improvement step is exactly the same as in the case with Q function

since Qπ(s, a) = r(s, a) + Cπ(s, a), which is known to converge to an optimum

policy [66]. These directly imply that Policy Iteration with C function converges

to the optimal C∗ function and an optimal policy π∗.

Algorithm 1 Policy Iteration with C function

Initialize C0(s, a)∀s, a while π not converged do
// Policy evaluation
for n=1,2,. . . until Ck converges do

Cn+1(s, a)← γ
∑

s′ P (s′|s, a)
∑

a′ π(a′|s′) (r(s′, a′) + Cn(s′, a′)) ∀s, a
end
// Policy improvement

π(s, a)←

{
1, if a = argmaxa′ (r(s, a

′) + C(s, a′))

0, otherwise
∀s, a

end

2.5 Continuous-control using Actor Residual

Critic

Now that we have a working policy iteration algorithm with C function, we can

easily extend it for continuous-control tasks using function approximators instead of

discrete C values and a discrete policy (similar to the case of Q function [66]). We

call any RL algorithm that uses a policy, π and a residual critic, C function as an

Actor Residual Critic (ARC) algorithm. Using the specific details of different existing

Actor Critic algorithms, we can formulate analogous ARC algorithms. For example,

using a deterministic policy and target network as in [38] we can get ARC-DDPG.

Using double C networks (instead of Q networks) and delayed updates as in [21] we

can get ARC-TD3. Using entropy regularization and reparameterization trick as in

[25] we can get ARC-SAC or SARC (Soft Actor Residual Critic). We show the SARC

13



2. ARC - Actor Residual Critic for Adversarial Imitation Learning

algorithm in Algorithm 2.

Algorithm 2 SARC - Soft Actor Residual Critic

Intialization: Environment (env), Policy parameters θ, C-function parameters φ1,
φ2, replay buffer D, Target parameters 1 ← φ1, 2 ← φ2, Entropy regularization
coefficient α for no. of environment interactions do

a ∼ πθ(.|s) s′, r, d = env.step(a); d = 1 if s′ is terminal state, 0 otherwise
Store (s, a, r, s′, d) in replay buffer D if Update interval reached then

for no. of update steps do
Sample batch B = (s, a, r, s′, d) ∼ D Compute C targets ∀(s, a, r, s′, d) ∈
B y(s, a, d) = γ (r(s′, ) + mini=1,2Ci(s

′, )− α log πθ(|s′)) , ∼
πθ(.|s′)
Update C-functions with gradient descent.
∇φi

1
|B|
∑

(s,a,r,s′,d)∈B (Cφi(s, a)− y(s, a, d))2 , for i = 1, 2
Update policy with gradient ascent.

∇θ
1
|B|
∑

s∈B

(
r(s, ) + mini=1,2Cφi(s, )− α log π(|s)

)
, ∼ πθ(.|s)

Update target networks
i← ζi+ (1− ζ)φi, for i = 1, 2; ζ controls polyak averaging

end

end

end

2.5.1 ARC aided Adversarial Imitation Learning

To incorporate ARC in any Adversarial Imitation Learning algorithm, we simply

replace the Actor Critic RL algorithm with an ARC RL algorithm without altering

anything else in the pipeline. For example, we can replace SAC [25] with SARC,

Algorithm 2. Implementation-wise this is extremely simple and doesn’t require

any additional functional parts in the algorithm. The same neural network that

approximated Q function can be now be used to approximate C function.

2.5.2 Why choose ARC over Actor-Critic in Adversarial

Imitation Learning?

The advantage of using an ARC algorithm over an Actor-Critic (AC) algorithm is

that we can leverage the exact gradient of the reward. Standard AC algorithms

14



2. ARC - Actor Residual Critic for Adversarial Imitation Learning

use Qφ to approximate the immediate reward + future return and then compute

the gradient of the policy parameters through the Qφ function (2.14). This is an

approximate gradient since the Qφ function is an estimated value. On the other hand,

ARC algorithms segregate the immediate reward (which is known in Adversarial

Imitation Learning) from the future return (which needs to be estimated). ARC

algorithms then compute the gradient of policy parameters through the immediate

reward (which is exact) and the C function (which is approximate) separately (2.15).

Standard AC Es∼D
[
∇θQφ(s, a)

]
, a ∼ πθ(.|s) (2.14)

ARC (Our) Es∼D
[
∇θr(s, a) +∇θCφ(s, a)

]
, a ∼ πθ(.|s) (2.15)

2.6 Results

In Theorem 2, we proved that Policy Iteration (PI) with C function converges to an

optimal policy. In the next section (Section 2.6.1), we experimentally validate it. In

the following section (Section 2.6.2), we show the effectiveness of ARC aided AIL in

continuous-control tasks through experiments in 4 different environments.

2.6.1 Policy Iteration on a Grid World

Our objective in this section is to experimentally validate if Policy Iteration (PI) with

C function converges to an optimal policy (Theorem 2). We choose a simple Grid

World environment to illustrate this. At every time step, the agent can move in one

of 4 directions - left, right, up or down. The reward is 1 for reaching the goal (G)

and 0 otherwise. The discount factor γ = 0.9.

On this environment, we run two PI algorithms - PI with C function (Algorithm

1) and the standard PI with Q function (Appendix 2.8.1 Algorithm 3). Fig. 2.2 shows

the results of this experiment. Both the algorithms converge to the same optimal

policy π∗ shown in Fig. 2.2a. This optimal policy receives the immediate reward

shown in Fig. 2.2b. Note that the immediate reward is 1 for states adjacent to the

goal G as the agent receives 1 reward for taking an action that takes it to the goal.

Fig. 2.2c and Fig. 2.2d show the values of C∗, Q∗ that PI with C function and

PI with Q function respectively converge to. In Fig. 2.2d, Q∗ = r∗ + C∗, which is

15



2. ARC - Actor Residual Critic for Adversarial Imitation Learning

G
(a) π∗

G

0 0 0

0000

1000

0 0 1

0

(b) r∗

G

0.65 0.73 0.81

0.900.810.730.65

0.000.900.810.73

0.81 0.90 0.00

0.59

(c) C∗

G

0.65 0.73 0.81

0.900.810.730.65

1.000.900.810.73

0.81 0.90 1.00

0.59

(d) Q∗ = r∗ + C∗

Figure 2.2: On a Grid World, the results of running two Policy Iteration (PI)
algorithms - PI with C function (Algorithm 1) and the standard PI with Q function
(Appendix 2.8.1 Algorithm 3). Both algorithms converge in 7 policy improvement
steps to the same optimal policy π∗ as shown in Fig. 2.2a. The optimal policy gets
the immediate reward shown shown in Fig. 2.2b. The C values (Fig. 2.2c) at the
convergence of PI with C function and the Q values (Fig. 2.2d) at the convergence
of PI with Q function are consistent with their relation Q∗ = r∗ + C∗ (2.12).

consistent with the relation between Q function and C function (2.12). In Fig. 2.2d,

the Q∗ values in the states adjacent to the goal are 1 since Q function includes the

immediate reward (2.9). C function doesn’t include the immediate reward (2.10) and

hence the C∗ values in these states are 0 (Fig. 2.2c). This experiment validates that

PI with C function converges to an optimal policy as already proved in Theorem 2.

2.6.2 Imitation Learning in continuous-control tasks

We use Ant-v2, Walker-v2, HalfCheetah-v2 and Hopper-v2 Mujoco continuous-control

environments from OpenAI Gym [12], as shown in Fig. 2.3. We evaluated the benefit

of using ARC with two popular Adversarial Imitation Learning (AIL) algorithms,

f -MAX-RKL [22] and GAIL [28]. For each of these algorithms, we evaluated the

performance of standard AIL algorithms (f -MAX-RKL, GAIL), ARC aided AIL

algorithms (ARC-f -MAX-RKL, ARC-GAIL) and Naive-Diff algorithm described

in Section 2.3 (Naive-Diff-f -MAX-RKL, Naive-Diff-GAIL). We also evaluated the

performance of Behavior Cloning (BC). In a given environment, each AIL algorithm

is provided with a single expert trajectory to imitate from. We implemented our

algorithm on top of the AIL code of [45]. The pre-implemented algorithms (f -MAX-

RKL, GAIL) used SAC [25] as the RL algorithm and the ARC aided AIL algorithms

16



2. ARC - Actor Residual Critic for Adversarial Imitation Learning

use SARC (Algorithm 2) as the RL algorithm. Further experimental details are

presented in Appendix 2.9.

Fig. 2.4 shows the training plots and Table 2.2 shows the final performance of the

different algorithms. Across all environments and across both the AIL algorithms,

incorporating ARC shows consistent improvement over standard AIL algorithms

(Table 2.2). BC suffers from distribution shift at test time [28, 52] and performs very

poorly. As we predicted in Section 2.3, Naive-Diff algorithms don’t perform well

as naively using autodiff doesn’t compute the gradients correctly. Amongst all the

algorithms we evaluated, ARC-f -MAX-RKL performed the best.

(a) Ant-v2 (b) Walker-v2 (c) HalfCheetah-v2 (d) Hopper-v2

Figure 2.3: OpenAI Gym’s [12] Mujoco continuous-control environments used for
evaluation.

Method Ant Walker2d HalfCheetah Hopper

Expert return 5926.18 ± 124.56 5344.21 ± 84.45 12427.49 ± 486.38 3592.63 ± 19.21

ARC-f -Max-RKL (Ours) 6275.08 ± 112.61 4741.28 ± 94.49 12698.38 ± 330.67 3453.28 ± 37.95
f -Max-RKL 5983.96 ± 80.94 4107.55 ± 61.16 12003.33 ± 183.04 3410.09 ± 12.6

Naive-Diff f -Max-RKL 997.65 ± 3.31 320.48 ± 7.7 -0.48 ± 0.03 146.43 ± 34.83

ARC-GAIL (Ours) 6048.67 ± 126.97 3941.39 ± 83.72 11615.09 ± 555.05 3385.28 ± 15.92
GAIL 5895.09 ± 10.44 3318.8 ± 48.55 10814.69 ± 323.91 3322.05 ± 8.31

Naive-Diff GAIL 995.97 ± 2.13 55.63 ± 29.04 -0.46 ± 0.02 126.3 ± 51.55

BC 559.76 ± 129.82 87.51 ± 120.39 -444.5 ± 44.67 233.83 ± 84.82

Table 2.2: Policy return on Mujoco environments using different Adversarial Imitation
Learning algorithms. Each algorithms is run with 3 random seeds and each seed is
evaluated for 20 episodes.

17



2. ARC - Actor Residual Critic for Adversarial Imitation Learning

Expert
BC

ARC-f-Max-RKL (Our)
ARC-GAIL (Our)

f-Max-RKL
GAIL

Naive-Diff f-Max-RKL
Naive-Diff GAIL

0 1 2 3 4 5
1e6

0

1

2

3

4

5

1e3 Walker2d

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1e6

0

1

2

3

4

5

6

1e3 Ant

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1e6

0.00

0.25

0.50

0.75

1.00

1.25

1e4 HalfCheetah

0.0 0.2 0.4 0.6 0.8 1.0
1e6

0

1

2

3

1e3 Hopper

Figure 2.4: Episode return versus number of environment interaction steps for different
Imitation Learning algorithms on Mujoco continuous-control environments.

18



2. ARC - Actor Residual Critic for Adversarial Imitation Learning

2.7 Appendix

2.7.1 Derivations and Proofs

Unique optimality of C function

We restate Lemma 1 There exists a unique optimum C∗ for any MDP.

Proof. The unique optimality of C function can be derived from the optimality ofthe

Q function [66]. The optimum Q function, Q∗ is defined as:

Q∗(s, a) = max
π

Qπ(s, a)

= max
π

[r(s, a) + Cπ(s, a)]

= r(s, a) + max
π

Cπ(s, a)

= r(s, a) + C∗(s, a) (2.16)

∴ C∗(s, a) = Q∗(s, a)− r(s, a) (2.17)

Since Q∗ is unique [66], (2.17) implies C∗ must be unique.

Bellman backup for C function

We restate Lemma 2. The recursive Bellman equation for Cπ is as follows

Cπ(s, a) = γ
∑
s′

P (s′|s, a)
∑
a′

π(a′|s′) (r(s′, a′) + Cπ(s′, a′))

Proof. The derivation is similar to that of state value function V π presented in [66].

We start deriving the Bellman backup equation for Cπ function by expressing current

C(st, at) in terms of future C(st+1, at+1). In the following, the expectation is over the

policy π and the transition dynamics P and is omitted for ease of notation.

19



2. ARC - Actor Residual Critic for Adversarial Imitation Learning

Cπ(st, at) = E
∑
k≥1

γkrt+k (2.18)

= E

(
γrt+1 +

∑
k≥2

γkrt+k

)
(2.19)

= γ

(
E[rt+1] + E

∑
k≥1

γkrt+1

)
(2.20)

= γ

(
E[rt+1] + E

∑
k≥1

γkrt+1+k

)
(2.21)

= γE (rt+1 + C(st+1, at+1)) (2.22)

(2.23)

Using Eq. 2.22, we can write the recursive Bellman equation of C.

C(s, a) = γ
∑
s′

P (s′|s, a)
∑
a′

π(a′|s′) (r(s′, a′) + C(s′, a′)) (2.24)

2.7.2 Convergence of policy evaluation using C function

We restate Theorem 1. The following Bellman backup operation for policy evaluation

using C function converges to the true C function, Cπ

Cn+1(s, a)← γ
∑
s′

P (s′|s, a)
∑
a′

π(a′|s′) (r(s′, a′) + Cn(s′, a′))

Proof. Let us define F(.) as the Bellman backup operation over the current estimates

of C values:

FC(s, a) = γ
∑
s′

P (s′|s, a)
∑
a′

π(a′|s′) (r(s′, a′) + C(s′, a′)) (2.25)

We prove that F is a contraction mapping w.r.t ∞ norm and hence is a fixed point

20



2. ARC - Actor Residual Critic for Adversarial Imitation Learning

iteration. Let, C1 and C2 be any 2 sets of estimated C values.

||FC1 − FC2||∞ = max
s,a
|FC1 − FC2 | (2.26)

= γmax
s,a

∣∣∣∣∣∑
s′

P (s′|s, a)
∑
a′

π(a′|s′)[r(s′, a′) + C1(s′, a′)]

−
∑
s′

P (s′|s, a)
∑
a′

π(a′|s′)[r(s′, a′) + C2(s′, a′)]

∣∣∣∣∣ (2.27)

= γ

∣∣∣∣∣max
s,a

∑
s′

P (s′|s, a)
∑
a′

π(a′|s′)(C1(s′, a′)− C2(s′, a′))

∣∣∣∣∣ (2.28)

≤ γmax
s,a

∑
s′

P (s′|s, a)
∑
a′

π(a′|s′) |C1(s′, a′)− C2(s′, a′))| (2.29)

≤ γmax
s,a

∑
s′

P (s′|s, a) max
a′
|C1(s′, a′)− C2(s′, a′))| (2.30)

≤ γmax
s′

max
a′
|C1(s′, a′)− C2(s′, a′))| (2.31)

= γmax
s,a
|C1(s, a)− C2(s, a))| (2.32)

= γ||C1 − C2||∞ (2.33)

∴ ||FC1 − FC2||∞ ≤ γ||C1 − C2||∞ (2.34)

Eq. 2.34 implies that iterative operation of F(.) converges to a fixed point. The

true Cπ function satisfies the Bellman equation Eq. 2.24. These two properties imply

the policy evaluation converges to the true Cπ function.

2.8 Popular Algorithms

2.8.1 Policy Iteration using Q function

We restate the popular Policy Iteration using Q function algorithm in Algorithm 3.

21



2. ARC - Actor Residual Critic for Adversarial Imitation Learning

Algorithm 3 Policy Iteration using Q function

Initialize Q0(s, a)∀s, a while π not converged do
// Policy evaluation
for n=1,2,. . . until Qn converges do

Qn+1(s, a)← r(s, a) + γ
∑

s′ P (s′|s, a)
∑

a′ π(a′|s′)Qn(s′, a′) ∀s, a
end
// Policy improvement

π(s, a)←

{
1, if a = argmaxa′ Q(s, a′)

0, otherwise
∀s, a

end

2.9 Experimental Details

Environment We use Ant-v2, Walker-v2, HalfCheetah-v2 and Hopper-v2 Mujoco

continuous-control environments from OpenAI Gym [12]. All 4 environments use

Mujoco, a realistic physics-engine, to model the environment dynamics. The maximum

time steps, T is set to 1000 in each environment.

Code We implemented our algorithm on top of the AIL code of [45]. The pre-

implemented standard AIL algorithms (f -MAX-RKL, GAIL) used SAC [25] as the

RL algorithm and the ARC aided AIL algorithms use SARC (Algorithm 2) as the

RL algorithm.

Expert trajectories We used the expert trajectories provided by [45]. They used

SAC [25] to train an expert in each environments. The policy network, πθ was a

tanh squashed Gaussian which parameterized the mean and standard deviation with

two output heads. Each of the policy network, πθ and the 2 critic networks, Qφ1 , Qφ1

was a (64, 64) ReLU MLP. Each of them was optimized by Adam optimizer with a

learning rate of 0.003. The entropy regularization coefficient, α was set to 1, the batch

size was set to 256, the discount factor γ was set to 0.99 and the polyak averaging

coefficient ζ for target networks was set to 0.995. The expert was trained for 1 million

time steps on Hopper and 3 million time steps on the other environments. For each

environment, we used 1 trajectory from the expert stochastic policies to train the

imitation learning algorithms.

22



2. ARC - Actor Residual Critic for Adversarial Imitation Learning

Standard AIL For the standard AIL algorithms (f -MAX-RKL [22] and GAIL

[28]) we used the code provide by [45]. The standard AIL algorithms used SAC

[25] as the RL algorithm. SAC used the same network and hyper-parameters that

were used for training the expert policy except the learning rate and the entropy

regularization coefficient, α. The learning rate was set to 0.001. α was set to 0.05

for HalfCheetah and to 0.2 for the other environments. The reward scale scale and

gradient penalty coefficient were set to 0.2 and 4.0 respectively. In each environment,

the observations were normalized in each dimension of the state using the mean and

standard deviation of the expert trajectory.

For the discriminator, we used the same network architecture and hyper-parameters

suggested by [45]. The discriminator was a (128,128) tanh MLP network with the

output clipped within [-10,10]. The discriminator was optimized with Adam optimizer

with a learning rate of 0.0003 and a batch size of 128. Once every 1000 environment

steps, the discriminator and the policy were alternately trained for 100 iterations

each.

Each AIL algorithm was trained for 1 million environment steps on Hopper, 3

million environment steps on Ant, HalfCheetah and 5 million environment steps on

Walker2d.

ARC aided AIL For ARC aided AIL algorithms, we modified the SAC imple-

mentation of [45] to SARC (Algorithm 2). This was relatively straight forward, we

used the same networks to parameterize Cφ1 , Cφ2 instead of Qφ1 , Qφ2 based on the

steps of SARC (Algorithm 2). For SARC, we used the same network and hyper-

parameters as SAC except the following changes. Learning rate was set to 0.0001.

Entropy regularization coefficient, α was set to 0.05 for HalfCheetah and 1 for the

other environments. No reward scaling was used (reward scale was set to 1). The C

networks were updated 10 times for every update of the policy network. We did so

because we noticed that otherwise the C networks (Cφ1 , Cφ2) were slower to update

as compared to the policy network.

The discriminator was the same as with standard AIL algorithms except it had

2 Resnet blocks of 128 dimension each, with batch normalization and leaky ReLU

activation. These changes were motivated by common tricks to train stable GANs

[23]. In GANs, the generator is differentiated through the discriminator and the use

23



2. ARC - Actor Residual Critic for Adversarial Imitation Learning

of leaky ReLU and Resnet helps in gradient flow through the discriminator. In ARC

aided AIL we have a similar scenario, the policy is differentiated through the reward

function. We briefly tried to make the same changes with standard AIL algorithms

as well but didn’t see an improvement in performance.

Naive-Diff For the Naive-Diff aided AIL algorithms (Naive-Diff-f -MAX-RKL and

Naive-Diff-GAIL), we used the same network architectures and hyper-parameters as

with ARC aided AIL.

Behavior Cloning For Behavior Cloning, we trained the agent to regress on expert

actions by minimizing the mean squared error for 10000 epochs using Adam optimizer

with learning rate of 0.001 and batch size of 256.

Evaluation We evaluated all the imitation learning algorithms based on the true

environment return achieved by the deterministic version of their policies. Each

algorithm was run on 3 different seeds and each run was evaluated for 20 episodes.

The final mean reward was used for comparing the algorithms. The results are

presented in Table 2.2.

2.10 Extending to Real Robots

Although we have evaluated our proposed method - ARC aided AIL in simulation,

we believe that it will perform well with real robots because of:

Better performance in physics-based simulation than prior work In this

work we proposed ARC aided AIL, a modification to existing AIL algorithms which

are already used with real robots. Since our proposed method outperforms standard

AIL algorithms in physics-based simulation, it is likely to perform well on real robots.

Better sample-efficiency As we can see from Fig. 2.4, our proposed ARC aided

AIL algorithms have similar sample efficiency as standard AIL algorithms which have

been tested on real robots. In fact, ARC-f -MAX-RKL was more sample efficient

than f -MAX-RKL and GAIL (Fig. 2.4).

24



2. ARC - Actor Residual Critic for Adversarial Imitation Learning

Ease of hyper-parameter tuning We had to perform minimal hyper-parameter

tuning both in terms of different ARC aided AIL algorithms (ARC-f -MAX-RKL

and ARC-GAIL) and in terms of 4 different physics based simulated environments.

This validates the stability of our proposed approach which means that our proposed

approach is likely to perform well with minimal hyper-parameter tuning on a real

robot.

25



2. ARC - Actor Residual Critic for Adversarial Imitation Learning

26



Chapter 3

Natural Emergence of

Heterogeneous Strategies in

Artificially Intelligent Competitive

Teams

3.1 Introduction

Multi agent systems can play an important role in scenarios such as disaster relief,

defense against enemies and games. There have been studies on various aspects

of it including task assignment [59], resilience to failure [50], scalability [3] and

opponent modeling [74]. Multi agent systems become increasingly complex in mixed

cooperative-competitive scenarios where an agent has to cooperate with other agents

of the same team to jointly compete against the opposing team. It becomes difficult

to model behavior of an agent or a team by hand and learning based methods are of

particular appeal.

Our goal is to develop a learning based algorithm for decentralized control of

multi agent systems in mixed cooperative-competitive scenarios with the ability to

handle a variable number of agents, as some robots may get damaged in a real world

scenario or some agents may get killed in a game. To be able to handle a variable

27



3. Natural Emergence of Heterogeneous Strategies in Artificially Intelligent
Competitive Teams

Figure 3.1: The FortAttack environment in which guards (green) need to protect the
fort (cyan semicircle at the top) from the attackers (red). The attackers win when
any one of them reaches the fort. Each agent can shoot a laser which can kill an
opponent.

number of agents and to scale to many agents, we propose to use a Graph Neural

Networks (GNNs) based architecture to model inter-agent interactions, similar to [3]

and [11]. This approach relies on shared parameters amongst all agents in a team

which renders all of them homogeneous. We aim to study if heterogeneous behavior

can emerge out of such homogeneous agents.

Our contributions in this work are:

• We have developed a mixed cooperative-competitive multi agent environment

called FortAttack with simple rules yet room for complex multi agent behavior.

• We show that using GNNs with a standard off the shelf reinforcement learning

algorithm can effectively model inter agent interactions in a competitive multi

agent setting.

• To train strong agents we need competitive opponents. Using an approach

inspired by self play, we are able to create an auto curriculum that generates

strong agents from scratch without using any expert knowledge. Strategies

naturally evolved as a winning strategy from one team created pressure for the

other team to be more competitive. We were able to achieve this by training

on a commodity laptop.

• We show that highly competitive heterogeneous behavior can naturally emerge

amongst homogeneous agents with symmetric reward structure (within the

same team) when such behavior can lead to the team’s success. Such behavior

28



3. Natural Emergence of Heterogeneous Strategies in Artificially Intelligent
Competitive Teams

implicitly includes heterogeneous task allocation and complex coordination

within a team, none of which had to be explicitly crafted but can be extremely

beneficial for multi agent systems.

3.2 Related Work

3.2.1 Multi-Agent Reinforcement Learning

The recent successes of reinforcement learning in games, [43], [62] and robotics, [58],

[25] have encouraged researchers to extend reinforcement learning to multi agent

settings.

There are three broad categories of approaches used, centralized, decentralized

and a mix of the two. Centralized approaches have a single reinforcement learning

agent for the entire team, which has global state information and selects joint actions

for the team. However, the joint state and action spaces grows exponentially with

the number of agents rendering centralized approaches difficult to scale, [13].

Independent Q-learning, [68], [67] is a decentralized approach where each agent

learns separately with Q-learning, [73] and treats all other agents as parts of the

environment. Inter agent interactions are not explicitly modeled and performance is

generally sub-par.

Centralized learning with decentralized execution has gained attention because it

is reasonable to remove communication restrictions at training time. Some approaches

use a decentralized actor with a centralized critic, which is accessible only at training

time. MADDPG, [40] learns a centralized critic for each agent and trains policies

using DDPG, [38]. QMIX, [51] proposes a monotonic decomposition of action value

function. However, the use of centralized critic requires that the number of agents be

fixed in the environment.

GridNet, [27] addresses the issue of multiple and variable number of agents

without exponentially growing the policy representation by representing a policy with

an encoder-decoder architecture with convolution layers. However, the centralized

execution realm renders it infeasible in many scenarios.

Graphs can naturally model multi agent systems with each node representing

an agent. [65] modeled inter agent interactions in multi agent teams using GNNs

29



3. Natural Emergence of Heterogeneous Strategies in Artificially Intelligent
Competitive Teams

which can be learnt through back propagation. [30] proposed to use attention and [3]

proposed to use an entity graph for augmenting environment information. However,

these settings don’t involve two opposing multi agent teams that both evolve by

learning.

[11] explored multi agent reinforcement learning for the game of hide and seek.

They find that increasingly complex behavior emerge out of simple rules of the

game over many episodes of interactions. However, they relied on extremely heavy

computations spanning over many millions of episodes of environment exploration.

We draw inspiration from [3] and [11]. For each team we propose to have two

components within the graph, one to model the observations of the opponents and

one to model the interactions with fellow team mates. Our work falls in the paradigm

of centralized training with decentralized execution. We were able to train our agents

in the FortAttack environment using the proposed approach on a commodity laptop.

We believe that the reasonable computational requirement would encourage further

research in the field of mixed cooperative-competitive MARL.

3.2.2 Multi-Agent Environments

Although there are many existing multi-agent environments, they suffer from the

following deficiencies:

• Multi-Agent Particle Environment (MAPE) [40] doesn’t consider two teams

with multiple agents in each team.

• StarCraft II Learning Environment (SC2LE) [72] assumes a centralized controller

for all agents in a team which is impractical for real world scenarios.

• Starcraft Multi-Agent Challenge (SMAC) [54] doesn’t incorporate learning

based opponents.

• RoboSumo [5] Doesn’t scale to many agents (only contains 1 vs 1 scenarios).

Moreoever, SC2LE [72], SMAC [54] and SoboSumo [5] are computationally heavy

environments.

To overcome these deficiencies, we design a new light-weight (can run on commodity

laptop) mixed cooperative-competitive environment called FortAttack (Fig. 3.1) which

can handle (1) Large number of agents, (2) Decentralized controllers, (3) Learning

30



3. Natural Emergence of Heterogeneous Strategies in Artificially Intelligent
Competitive Teams

based opponents, (4) Variable number of agents within a single episode and (5)

Complex multi-agent strategies as is evident from our results (Section 3.5.1).

3.3 Method

Figure 3.2: Modeling of inter agent interactions with Graph Neural Networks (GNNs)
from the perspective of agent 1, in a 3 friendly agents vs 3 opponents scenario. Left:
agent 1’s embedding, H0

1 is formed by taking into consideration the states of all
opponents through an attention layer. Right: agent 1’s embedding gets updated,
(Hk

1 → Hk+1
1 ) by taking into consideration its team mates through an attention layer.

The agents in a multi-agent team can be treated as nodes of a graph to leverage the

power of Graph Neural Networks (GNNs). GNNs form a deep-learning architecture

where the computations at the nodes and edges of the graph are performed by neural

networks (parameterized non-linear functions), [3]. Due to the presence of graph

structure and multiple neural networks, they are called GNNs.

We describe our use of GNNs from the perspective of one team and use Xi to

denote the state of ith friendly agent in the team, which in our case is its position,

orientation and velocity. We use XOppj to denote the state of the jth opponent in

the opposing team. Let S = {1, 2, . . . , N1} denote the set of friendly agents and

SOpp = {N1 + 1, N1 + 2, . . . , N1 + N2} denote the set of opponents. Note that a

symmetric view can be presented from the perspective of the other team.

In the following, we describe how agent 1 processes the observations of its opponents

and how it interacts with its teammates. Fig. 3.2 shows this pictorially for a 3 agents

vs 3 agents scenario. All the other agents have a symmetric representation of

interactions.

31



3. Natural Emergence of Heterogeneous Strategies in Artificially Intelligent
Competitive Teams

3.3.1 Modeling observation of opponents

Friendly agent 1 takes its state, X1 and passes it through a non-linear function, fθa

to generate an embedding, h1. Similarly, it forms an embedding, hOppj from each of

its opponents with the function fθb .

h1 = fθa(X1) (3.1)

hOppj = fθb(XOppj) ∀j ∈ SOpp (3.2)

Note that the opponents don’t share their information with the friendly agent

1. Friendly agent 1 merely makes its own observation of the opponents. It then

computes a dot product attention, ψ1j which describes how much attention it pays to

each of its opponents. The dimension of h1 and hOppj are d1 each. This attention

allows agent 1 to compute a joint embedding, e1 of all of its opponents.

ψ̂1j =
1

d1

< h1, hOppj > ∀j ∈ SOpp (3.3)

ψ1j =
exp(ψ̂1j)∑

m∈SOpp exp(ψ̂1m)
(3.4)

e1 =
∑

j∈SOpp

ψ1jhOppj (3.5)

In Eq. 3.3, <,> denotes vector dot product. Note that
∑

j∈SOpp ψ1j = 1 which

ensures that the net attention paid by agent 1 to its opponents is fixed. Finally, e1 is

concatenated with h1 to form an agent embedding, H0
1 :

H0
1 = concatenate(h1, e1) (3.6)

3.3.2 Modeling interactions with teammates

Agent 1 forms an embedding for each of its team mates with the non-linear function,

fθa .

H0
i = fθa(Xi) ∀i ∈ S, i 6= 1 (3.7)

32



3. Natural Emergence of Heterogeneous Strategies in Artificially Intelligent
Competitive Teams

Dimension of Hk
i , ∀i ∈ S is d2. Agent 1 computes a dot product attention, φ1i with

all of its team mates and updates it’s embedding with a non-linear function, fθc .

φ̂1i =
1

d2

< Hk
1 , H

k
i > ∀i ∈ S, i 6= 1 (3.8)

φ1i =
exp(φ̂1i)∑

m∈S,m 6=1 exp(φ̂1m)
(3.9)

Ĥk+1
1 =

∑
i∈S,i6=1

φ1iH
k
i (3.10)

Hk+1
1 = fθc(Ĥ

k+1
1 ) (3.11)

Equations, 3.8 to 3.11 can be run over multiple iterations for k = {0, 1, . . . , K} to

allow information propagation to other agents if agents can perceive only its local

neighborhood similar to [3].

3.3.3 Policy

The final embedding of friendly agent 1, HK
1 is passed through a policy head. In our

experiments, we use a stochastic policy in discrete action space and hence the policy

head has a sigmoid activation which outputs a categorical distribution specifying the

probability of each action, αm.

π(αm|O1) = π′(αm|HK
1 ) = sigmoid(fθd(H

K
1 )) (3.12)

where, O1 = {Xi : i ∈ S} ∪ {XOppj : j ∈ SOpp}

Here, O1 is the observation of agent 1, which consists of its own state and the states

of all other agents that it observes. This corresponds to a fully connected graph. We

do this for simplicity. In practice, we could limit the observation space of an agent

within a fixed neighborhood around the agent similar to [3] and [11].

3.3.4 Scalability and real world applicability

Due to the use of GNNs, the learn-able parameters for a team are the shared

parameters, θa, θb, θc and θd of the functions, fθa , fθb , fθc and fθd , respectively which

we model with fully connected neural networks. Note that the number of learn-able

33



3. Natural Emergence of Heterogeneous Strategies in Artificially Intelligent
Competitive Teams

parameters is independent of the number of agents and hence can scale to a large

number of agents. This also allows us to handle a varying number of agents as agents

might get killed during an episode and makes our approach applicable to real world

scenarios where a robot may get damaged during a mission.

3.3.5 Training

Our approach follows the paradigm of centralized training with decentralized execution.

During training, a single set of parameters are shared amongst teammates. We train

our multi agent teams with Proximal Policy Optimization (PPO), [58]. At every

training step, a fixed number of interactions are collected from the environment using

the current policy for each agent and then each team is trained separately using PPO.

The shared parameters naturally share experiences amongst teammates and allow

for training with fewer number of episodes. At test time, each agent maintains a copy

of the parameters and can operate in decentralized fashion. We trained our agents on

a commodity laptop with i7 processor and GTX 1060 graphics card. Training took

about 1-2 days without parallelizing the environment.

3.4 Environment

We design a mixed cooperative-competitive environment called Fortattack with

OpenAI Gym, [12] like interface. Fig. 3.1 shows a rendering of our environment. The

environment consists of a team of guards, shown in green and a team of attackers,

shown in red, that compete against each other. The attackers need to reach the fort

which is shown as a cyan semi-circle at the top. Each agent can shoot a laser beam

which can kill an opponent if it is within the beam window.

At the beginning of an episode, the guards are located randomly near the fort and

the attackers are spawned at random locations near the bottom of the environment.

The guards win if they manage to kill all attackers or manage to keep them away

for a fixed time interval which is the episode length. The guards lose if even one

attacker manages to reach the fort. The environment is built off of Multi-Agent

Particle Environment, [40].

34



3. Natural Emergence of Heterogeneous Strategies in Artificially Intelligent
Competitive Teams

3.4.1 Observation space

Each agent can observe all the other agents in the environment. Hence, the observation

space consists of states (positions, orientations and velocities) of team mates and

opponents. We assume full observability as the environment is small in size. This

can possibly be extended to observability in the local neighborhood such as in [3]

and [11].

3.4.2 Action space

At each time step, an agent can choose one of 7 actions, accelerate in ±x direction,

accelerate in ±y direction, rotate clockwise/anti-clockwise by a fixed angle or do

nothing.

3.4.3 Reward structure

Each agent gets a reward which has components of its individual and the team’s

performance as described in Table 3.1. The last two rows show the major reward

signals corresponding to winning and losing. The negative reward for wasting a laser

shot is higher in magnitude for attackers than for guards. Otherwise, we observed that

the attackers always managed to win. This reward structure can also be attributed

to the fact that attackers in a real world scenario would like to sneak in and wouldn’t

want to shoot too often and reveal themselves to the guards.
Table 3.1: Reward structure

Sl.
No.

Event Reward

1 Guard i leaves the fort Guard i gets -1 reward.
2 Guard i returns to the fort Guard i gets +1 reward.
3 Attacker j moves closer to the fort Attacker j gets small +ve reward = 2[Dj(t − 1) − Dj(t)]. Where,

Dj(t) = distance between attacker and fort at time t.
4 Attacker j moves away from the fort Attacker j gets small -ve reward = −2[Dj(t− 1)−Dj(t)].
5 Guard i shoots attacker j with laser Guard i gets +3 reward and attacker j gets -3 reward.
6 Attacker j shoots guard i with laser Guard i gets -3 reward and attacker j gets +3 reward.
7 Agent i shoots laser but doesn’t hit any

opponent
Agent i gets low -ve reward (-0.1 if guard, -1 if attacker).

8 All attackers are killed All alive guards get high +ve reward (+10). Attacker(s) that just got
killed gets high -ve (-10) reward.

9 Attacker j reaches the fort All alive guards high -ve reward. Attacker j gets high +ve reward.

35



3. Natural Emergence of Heterogeneous Strategies in Artificially Intelligent
Competitive Teams

Figure 3.3: Average reward per agent per episode for the teams of attackers and guards
as training progresses. The reward plots have distinct extrema and corresponding
snapshots of the environment are shown. The x-axis shows the number of steps of
environment interaction. The reward is plotted after Gaussian smoothing.

3.5 Results

We show the results for the 5 guards vs 5 attackers scenario in the FortAttack

environment.

3.5.1 Evolution of strategies

Fig. 3.3 shows the reward plot for attackers and guards and snapshots of specific

checkpoints as training progresses. The reward for guards is roughly a mirror image

of the reward for attackers as victory for one team means defeat for the other.

36



3. Natural Emergence of Heterogeneous Strategies in Artificially Intelligent
Competitive Teams

(a) Random exploration

(b) Laser flashing strategy of guards

(c) Sneaking strategy of attackers

(d) Spreading and flashing strategy of guards

(e) Deception strategy of attackers

(f) Smartly spreading strategy of guards

Figure 3.4: Sample sequences for different strategies that evolved during training.
Each row represents one sequence and time moves from left to right.

37



3. Natural Emergence of Heterogeneous Strategies in Artificially Intelligent
Competitive Teams

The rewards oscillate with multiple local extrema, i.e. maxima for one team and

a corresponding minima for the other. These extrema correspond to increasingly

complex strategies that evolve naturally - as one team gets better at its task, it

creates pressure for the other team, which in turn comes up with a stronger and more

complex strategic behavior.

1. Random behavior : At the beginning of training, agents randomly move around

and shoot in the wild. They explore trying to make sense of the FortAttack

environment and their goals in this world.

2. Flash laser : Attackers eventually learn to approach the fort and the guards

adopt a simple strategy to win. They all continuously flash their lasers creating

a protection zone in front of the fort which kills any attacker that tries to enter.

3. Sneak : As guards block entry from the front, attackers play smart. They

approach from all the directions, some of them get killed but one of them

manages to sneak in from the side.

4. Spread and flash: In response to the sneaking behavior, the guards learn to

spread out and kill all attackers before they can sneak in.

5. Deceive: To tackle the strong guards, the attackers come up with the strategy of

deception. Most of them move forward from the right while one holds back on

the left. The guards start shooting at the attackers on the right which diverts

their attention from the single attacker on the left. This attacker quietly waits

for the right moment to sneak in, bringing victory for the whole team. Note

that this strategy requires heterogeneous behavior amongst the homogeneous

agents, which naturally evolved without explicitly being encouraged to do so.

6. Spread smartly : In response to this, the guards learn to spread smartly, covering

a wider region and killing attackers before they can sneak in.

3.5.2 Being Attentive

In each of the environment snapshots in Fig. 3.3 and Fig. 3.4, we visualize the

attention paid by one alive guard to all the other agents. This guard has a dark

green dot at it’s center. All the other agents have yellow rings around them, with the

sizes of the rings being proportional to the attention values. Eg. in Fig. 3.4(e), agent

38



3. Natural Emergence of Heterogeneous Strategies in Artificially Intelligent
Competitive Teams

1 initially paid roughly uniform and low attention to all attackers when they were

far away. Then, it started paying more attention to agent 8, which was attacking

aggressively from the right. Little did it know that it was being deceived by the clever

attackers. When agent 9 reached near the fort, agent 1 finally started paying more

attention to the sneaky agent 9 but it was too late and the attackers had successfully

deceived it.

3.5.3 Ensemble strategies

To train and generate strong agents, we first need strong opponents to train against.

The learnt strategies in Section 3.5.1 give us a natural way to generate strategies

from simple rules of the game. If we wish to get strong guards, we can train a

single guard policy against all of the attacker strategies, by randomly sampling one

attacker strategy for each environment episode. Fig. 3.5 shows the reward for guards

as training progresses. This time, the reward for guards continually increases and

doesn’t show an oscillating behavior.

Figure 3.5: Average reward per agent per episode for guards as ensemble training
progresses. The reward is shown after Gaussian smoothing.

39



3. Natural Emergence of Heterogeneous Strategies in Artificially Intelligent
Competitive Teams

40



Chapter 4

Hiding Leader’s Identity in

Leader-Follower Navigation

through Multi-Agent

Reinforcement Learning

Multi-robot systems are useful for many scenarios such as drone-delivery [14], agri-

culture [6], search-and-rescue [48], disaster relief [24] and defense [15]. A class of

multi-robot algorithms called leader-follower navigation is particularly popular as

it simplifies the task of controlling multiple robots. It involves at least one leader

robot which the other (follower) robots follow. Using leader follower navigation, it is

sufficient to command only the leader robot and the follower robots simply follow

their leader.

Clearly, the leader is crucial for the robot team’s success. Imagine a critical

scenario such as a multi-robot team in a disaster relief mission as shown in Fig. 4.1.

An external adversary (enemy) who wishes to sabotage the robot team’s mission can

simply identify and harm just the leader. This will compromise the whole robot team’s

mission. Thus, it is crucial to hide the leader’s identity in such critical scenarios.

Even if we make the visual appearance of the leader similar to the followers, it is

possible to identify the leader by observing the motion of all the robots over time.

E.g. the leader is usually ahead of the followers which an adversary can notice and

41



4. Hiding Leader’s Identity in Leader-Follower Navigation through Multi-Agent
Reinforcement Learning

Multi-robot team External adversary

Disaster stricken area

Leader

Followers

Figure 4.1: A leader-follower multi-robot team in a disaster relief mission in the presence of
an external adversary. It is crucial to hide the leader’s identity from the adversary because
if the adversary harms the leader then the whole team’s mission would be compromised.

identify the leader.

We propose a defense mechanism of hiding the leader’s identity by ensuring the

leader moves in a way that behaviorally camouflages it with the followers, making

it difficult for an adversary to identify the leader. Here, by “behavioral camouflage”

we refer to leader behavior (motion) that resembles followers’ motion, blending it

with the followers. Traditional leader-follower controllers are not good at hiding the

leader’s identity - including an approach [77] that explicitly tried to hide the leader’s

identity, as we will see in Section 4.4.2). Moreover, it is difficult to design a leader

identity hiding multi-agent controller by hand, since such a controller would require

complex multi-agent coordination.

Hence, instead of relying on traditional leader-follower controllers, we propose to

leverage on the recent advancements in Multi-Agent Reinforcement Learning (MARL),

Graph Neural Networks (GNNs) and adversarial training. MARL allows us to define

the objective of a multi-agent (in our case multi-robot) team through scalar reward

signals given to each agent which it tries to maximize. GNNs form a deep learning

architecture that allows us to model and train a large & variable number of agents,

which is appealing for real world applications. Adversarial training allows us to

incorporate an intelligent artificial adversary that seeks to identify the leader.

We combine the power of MARL, GNNs and adversarial training for the task of

hiding the leader’s identity through a 3-stage training process. First, agents (robots)

are trained with MARL to maximize a primary task reward, without caring about

hiding the leader’s identity. Then, robot trajectories (spatial coordinates over time)

42



4. Hiding Leader’s Identity in Leader-Follower Navigation through Multi-Agent
Reinforcement Learning

are collected from this multi-robot team. These trajectories are used as training

data to train an artificial adversary with supervised learning to identify the leader.

Finally, the agents are trained again with MARL - but this time they are given both

a primary task reward and an identity hiding reward.

We test our approach on a simulated multi-robot goal reaching task where the

goal is known only to the leader and there is no communication between the robots.

Using our proposed approach, the multi-robot team successfully reaches the goal while

hiding the leader’s identity from an artificial adversary, outperforming the baselines -

both traditional leader-follower controller and MARL algorithms. We also evaluate

human performance in inferring the leader’s identity from multi-robot navigation

videos and found that even humans found it hard to identify the leader when the

multi-robot team deployed our proposed navigation algorithm.

The paper makes the following contributions:

1. We bring MARL, GNNs and adversarial training under one umbrella and present

a multi-stage training process for the task of hiding the leader in a multi-robot

team as a defense mechanism against an external adversary.

2. We propose a novel deep learning architecture called Scalable-LSTM for model-

ing an artificial adversary.

3. Our method is effective not only against an artificial adversary but it also

”fools” human observers, i.e human observers do not detect the leader. To the

best of our knowledge this is the first time this effect has been reported in the

literature.

4. We show that our approach can generalize to multi-robot teams with different

sizes in a 0-shot fashion (wihout any fine tuning).

4.1 Related Work

Leader follower navigation is popular in the robotics community and has been studied

in various contexts. [53] addressed the issues of obstacle avoidance and connectivity

preservation. [70] proposed an adaptive strategy of formation reconfiguration. [64]

experimented with a leader-follower control algorithm on various mobile robots. All of

these relied on traditional control based algorithms that didn’t involve deep learning

43



4. Hiding Leader’s Identity in Leader-Follower Navigation through Multi-Agent
Reinforcement Learning

or Reinforcement Learning (RL).

Recent work has tried to incorporate RL into the leader-follower navigation

problem [41]. However, their method is designed for only 2-member robot teams with

a single leader and a single follower. [78] showed brief results with 2 followers and

mentioned that they found it intractable to train a large number of agents due to

exponentially growing state and action spaces as robot team size increases.

We wish to not only leverage on the power of RL but also have a large robot team

with multiple followers. Because of this, we build up on our previous work on Multi

Agent Reinforcement Learning (MARL) with Graph Neural Networks (GNNs) [15].

We have previously shown that by combining MARL & GNNs large multi-agent teams

can be tractably trained with reasonable computational resources (even a commodity

laptop). In this work we suitably modify the GNNs architecture to incorporate the

constraints of the leader-follower navigation problem, as delineated in Section 4.3.3.

Once we have multiple robots in the leader-follower problem, protecting the

leader’s identity becomes crucial, as we have already discussed in Section ??. The

importance of hiding the leader’s identity has received limited attention in the past.

We only found [77] to have attempted to address this issue. They used a traditional

leader-follower controller and tuned its parameters with classical Genetic Algorithms

(GAs) to hide leader’s identity from an artificial adversary - a Convolutional Neural

Network (CNN). However their results have limited evaluation. The adversary isn’t

benchmarked against other adversaries, which could mean that the adversary isn’t

smart enough and hence is easily deceived. In our experiments we saw that their

approach couldn’t hide the leader’s identity when humans (instead of their artificial

adversary) tried to identify the leader.

We instead propose a novel adversary architecture called Scalable LSTM (Long

Short Term Memory) in Section 4.3.4 and show its superiority over existing deep

learning architectures in Section 4.4.1. We experimentally show that our approach,

relying on MARL & GNNs rather than traditional leader-follower controllers, out-

performs existing approach, [77] that tried to hide the leader’s identity. Further, we

show that even humans have low accuracy in identifying the leader in a multi-robot

team that navigates using our proposed approach.

44



4. Hiding Leader’s Identity in Leader-Follower Navigation through Multi-Agent
Reinforcement Learning

XL
t

XG

X1
t

X2
t

X3
t

Leader

Followers

Goal

Figure 4.2: A goal reaching task for a leader-follower multi-robot team. All robots can
sense the neighboring robots and additionally the leader knows the goal location. All robots
have the same visual appearance, the leader is shown in a different color only for illustrative
purpose.

4.2 Problem Statement

There is a n-robot team with 1 leader, L and (n− 1) followers, as shown in Fig. 4.2

with no communication between them. At every time step t, each robot can sense its

own state, X t
i and the states of its neighbors, {X t

j | j 6= i} using on-board sensors.

At the start of the mission, the goal is randomly located in the environment and only

the leader knows its location XG. E.g. in Fig. 4.2 the leader robot knows the goal

and senses the states of all the neighboring followers; follower robot 2 only senses the

states of the neighboring followers (to its left and right) and the leader.

Our objectives are (i) decentralized control for navigating the leader-follower

multi-robot team to the goal location; and (ii) hide the leader’s identity from an

external adversary.

4.3 Method

We will use the terms robot and agent interchangeably. Let Q = {1, 2, . . . , n} denote

the set of all agents and S = Q − {L} denote the set of followers (excluding the

leader). A denotes the external artificial adversary. We now describe the various

components of our method.

45



4. Hiding Leader’s Identity in Leader-Follower Navigation through Multi-Agent
Reinforcement Learning

(a) Follower architecture (b) Leader architecture
(c) Scalable LSTM adversary archi-

tecture

Figure 4.3: GNNs based multi-agent architecture (Fig. 4.3a,4.3b) and Scalable-LSTM
adversary architecture (Fig. 4.3c).

4.3.1 MARL Formulation

The problem is formulated as a Decentralized Partially Observable Markov Decision

Process (Dec-POMDP), [7] with the following components:

States and observations

The state of ith agent at time step t is denoted by X t
i ∈ R4, which consists of its

planar position and velocity. X t = {X t
i | ∀i ∈ Q} denotes the collective state of all

agents at time t. X̄ t = X t
⋃
XG denotes the full environment state at time t.

Action space

Each agent has an action space ati ∈ Ai that consists of accelerating in the ±x or ±y
direction or not accelerating at all.

Policy

Each agent follows a policy πi to select its actions ati ∼ πi. The leader’s policy

atL ∼ πL(a | X̄ t) is conditioned on X̄ t = X t
⋃
XG which contains goal information.

On the other other hand each follower’s policy ati ∼ πi(a | X t) is conditioned on X t

which does not contain goal information.

46



4. Hiding Leader’s Identity in Leader-Follower Navigation through Multi-Agent
Reinforcement Learning

Reward structure

The primary task reward for agent i at time t is:

rti = λr

(
||XG − X̂ t−1

i ||2 − ||XG − X̂ t
i ||2
)

(4.1)

Here X̂ t
i denotes the position of the agent and λr = 100 is a scaling factor. This

reward indicates how much closer the agent reached towards the goal in the current

time step. Note that the same reward structure is used for both the leader and the

followers. The reward encourages the leader to take large steps towards the goal. The

followers don’t have access to the goal location since their policy is not conditioned

on XG. They are indirectly encouraged to follow the leader which in turn will lead

them to the goal.

The standard MARL objective (Naive MARL) for this reward signal is to maximize

the cumulative reward, Eq. 4.2. Here, γ = 0.99 is the discount factor. We add an

additional identity hiding reward, µti which is indicative of how well the multi-robot

team is hiding its leader’s identity, Eq. 4.3.

ObjectiveNaive MARL ≡ maxE

[
n∑
i=1

∑
t≥0

γtrti

]
(4.2)

ObjectiveProposed ≡ maxE

[
n∑
i=1

∑
t≥0

γt(rti + λµµ
t
i)

]
(4.3)

λµ = 1 is a scaling factor controlling the importance of hiding leader’s identity over

the primary task. Computation of µti is described in the following sub-section in Eq.

4.5. Note that the rewards rti , µ
t
i are only required for training and are not accessible

to the agents at test time.

4.3.2 Adversarial Training

The adversary’s goal is to identify the ID of the leader from i = {1, 2, . . . , n} since

there are n agents. the adversary (A) observes the positions of all the agents X̂ t
i upto

47



4. Hiding Leader’s Identity in Leader-Follower Navigation through Multi-Agent
Reinforcement Learning

the current time step Ot = {X̂k
i |i ∈ Q, k ≤ t} and predicts the leader ID ltpred.

ltpred = A(Ot) = argmax
i

PA(i | Ot) (4.4)

µti = −I(ltpred = L) (4.5)

The adversary is trained with multi-class (since one amongst the n agents is the

leader) cross entropy loss which tries to match the predicted leader ID ltpred to the

true leader ID L. Once the adversary is trained, its prediction is used to generate

identity hiding reward, µti (Eq. 4.5) as a feedback signal to the multi-robot team

(Eq. 4.3). The negative sign in Eq. 4.5 denotes that all agents get the same negative

identity hiding reward, i.e. if the leader is identified by the adversary all the agents

are penalized. This encourages cooperation and team spirit in the multi-agent team

to jointly deceive the adversary by coordinating their motion.

4.3.3 Graph Neural Networks Multi-agent Architecture

The agents (robots) in the multi-robot team can be treated as nodes of a graph to

leverage the power of Graph Neural Networks (GNNs). GNNs form a deep-learning

architecture where the computations at the nodes and edges of the graph are performed

by neural networks (parameterized non-linear functions), [15, 17]. Due to the presence

of graph structure and multiple neural networks, they are called GNNs.

We incorporate the constraints of the leader-follower problem by ensuring that

the goal information is accessible only to the leader and not the followers. In the

following we describe the computations performed by an arbitrary follower and the

leader.

Followers

Computation performed by an arbitrary follower agent i is pictorially shown in Fig.

4.3a. At every time step t, it takes as input its state, X t
i and passes it through

a non-linear function, fθa to compute an embedding, hti. Similarly, it computes

embeddings for all the other neighboring agents.

hti = fθa(X
t
i ) ∀i ∈ Q (4.6)

48



4. Hiding Leader’s Identity in Leader-Follower Navigation through Multi-Agent
Reinforcement Learning

Follower agent i then computes dot product attention, ψij with all the other

neighboring followers vj’s.

ψ̂tij =
1

d
< hti, h

t
j > ∀j ∈ S, j 6= i (4.7)

ψtij =
exp(ψ̂tij)∑

k∈S,k 6=i exp(ψ̂tik)
(4.8)

mt
i =

∑
j∈S,j 6=i

ψtijh
t
j (4.9)

eti = fθb(concat(hti,m
t
i)) (4.10)

d is the dimension of the vectors in dot product <,>. ψtij denotes the attention paid

by agent follower agent i to follower agent j at time t. The total attention paid to

the neighbors sums to 1 due to the normalization in Eq. 4.8. It then concatenates eti

with leader embedding, htL to compute its final embedding, H t
1.

H t
i = concat(eti, h

t
L) (4.11)

Leader

The leader’s computation is pictorially shown in Fig. 4.3b. It is similar to followers’

computations with the key differnces being (i) Leader state (X t
L) is replaced by goal

position (XG) and (ii) fθc is used instead of fθa for computing goal embedding.

Policy and Value function

Once each follower computes its final embedding, it conditions its policy and value

function on it.

πi(a | X t) = fθd(a | H t
i ) ∀i ∈ S (4.12)

Vπi(X
t) = fθe(H

t
i ) ∀i ∈ S (4.13)

49



4. Hiding Leader’s Identity in Leader-Follower Navigation through Multi-Agent
Reinforcement Learning

The leader computes its policy and value function in a similar way but uses a different

set of parameters.

πL(a | X̄ t) = fθf (a | H t
L) (4.14)

VπL(X̄ t) = fθg(H
t
L) (4.15)

4.3.4 Scalable LSTM Adversary Architecture

Long Short Term Memory (LSTM), [29] is a memory based deep learning architecture

that can work with sequential data. It takes data at current time step as input and

retains the past data in memory. It is temporally adaptable since it can handle input

of any time duration.

However, it is not adaptable to different number of agents. This is because, the

input & output sizes at time t depend on the number of agents n and an LSTM

can be designed to handle only fixed sizes of input & output. If we directly feed the

positions of all agents at time t to an LSTM, the input size would be 2× n (planar

position) and the output size would be n (probability of each agent being the leader).

Scalable-LSTM adversary architecture builds on top LSTM. It inputs the position

of each agent separately (to handle variable size inputs) and has a dot product

operation (to handle variable size outputs).

At every time step t, the adversary takes as input the position of each agent

separately, X̂ t
i and passes it through an LSTM to compute an embedding ĥti. Therefore,

for n agents there would be n passes through the same LSTM as follows:

ĥti, ĉ
t
i = LSTM(X̂ t

i , ĥ
t−1
i , ĉt−1

i ) ∀i ∈ Q (4.16)

Because the adversary does n separate passes, the LSTM gets fixed size (=2) input

irrespective of how large n is. Here, ĥti and ĉti denote the hidden state and cell state

of LSTM at time t.

The adversary then computes pairwise dot product between each agent’s embed-

ding, ĥti and an adversary embedding, v (a trainable parameter vector) as in Eq. 4.17.

The output is passed through soft-max function to compute its probabilistic belief of

50



4. Hiding Leader’s Identity in Leader-Follower Navigation through Multi-Agent
Reinforcement Learning

the leader’s identity as in Eq. 4.18.

yti =< v, ĥti > ∀i ∈ Q (4.17)

PA(i|Ot) =
exp(yti)∑

m∈Q exp(ytm)
∀i ∈ Q (4.18)

If we have n agents, there would be n dot-products yti =< v, ĥti > for i = 1 to n and

correspondingly n output probability values PA(i|Ot), irrespective of dimension of hti.

Thus, number of outputs automatically scales with no. of agents. Here, Ot denotes

the observations of the adversary upto time step t, i.e. Ot = {X̂k
i |i ∈ Q, k ≤ t}.

The adversary architecture consists of two sets of trainable parameters, LSTM

weights and a adversary embedding v which we collectively denote as θA.

(a) Naive MARL Multi-robot trajectories (b) Adversary’s confidence increases over time

Figure 4.4: An episode of Naive MARL Multi robot trajectories (Fig. 4.4a) which the
Scalable-LSTM adversary observes and tries to identify the leader. Scalable-LSTM predicts
the leader at every time step t based on the trajectory observation till time t. Initially it fails
to identify the leader correctly (shown in black) but within 10 time steps in predicts leader
correctly (shown in red). Fig. 4.4b shows confidence of the adversary on its prediction for
the same episode. Again we can observe that initially Scalable LSTM has low confidence
and fails to identify the leader (shown in black) but within 10 time it identifies the leader
correctly (shown in red) and within 20 time steps its confidence is almost 1 (100% confident).

4.3.5 Scalability, Adaptability and Decentralized Control

The trainable parameters in our GNNs based Multi-agent architecture are θ =

{θa, θb, . . . , θg} of the non-linear functions fθa , fθb , . . . , fθg respectively (we model

these functions as neural networks, hence the name GNNs). Since the number of

51



4. Hiding Leader’s Identity in Leader-Follower Navigation through Multi-Agent
Reinforcement Learning

parameters is independent of the number of agents, the architecture is scalable and

adaptable to different number of agents. The scalability and adaptability of Scalable

LSTM adversary architecture is already described in the previous section (4.3.4). We

validate these in our experimental results (Section 4.4.1 and 4.4.2).

The parameters θa, θb are shared across all agents and the paramters θd, θe are

shared across all the followers. This means that each agent maintains a separate copy

of their respective parameters at test time for decentralized control.

4.3.6 Training

We train a leader-hiding multi-agent strategy in 3 stages:

Training without identity hiding reward

We first train a multi-agent team with the Naive MARL objective (Eq. 4.2, doesn’t

include identity hiding reward µti) using Proximal Policy Optimization (PPO) [58], a

popular model-free RL algorithm. The multi-agent team learns to navigate to the

goal location without caring about hiding the leader’s identity.

Training an adversary

Once we have a trained Naive MARL policy, we run the policy for multiple episodes

and save the multi-robot trajectories along with the true leader ID in each episode.

These trajectories and leader ID’s are provided to the adversary as training data.

The adversary is trained with Stochastic Gradient Descent (SGD) supervised learning

algorithm to predict the leader ID by minimizing the multi-class cross-entropy loss.

Training with identity hiding reward

Now that we have a trained adversary, we train a new multi-agent policy which tries

to maximize both goal reaching reward and identity hiding reward (Eq. 4.3 using

PPO).

Due to the use of shared parameters in GNNs, our proposed approach is very

simple to train with reasonable computational resources. We performed all our

training on a commodity laptop with i7-7700HQ CPU, 16GB of RAM and a GTX

52



4. Hiding Leader’s Identity in Leader-Follower Navigation through Multi-Agent
Reinforcement Learning

1060 GPU.

Remark

We would like to highlight that our formulation is consistent with the leader-follower

problem because:

1. Followers are not given goal information as input. As shown in Eq. 4.12, follower

policies are conditioned on the embedding H t
i which doesn’t contain any goal

information. Goal information XG is completely absent from the GNNs based

follower architecture, Fig. 4.3a.

2. Reward is NOT accessible at test time. Primary task reward is calculated using

goal information, Eq. 4.1. This might raise the confusion that the followers

have access to goal information at test time. This is not the case as the agents

have access to the reward only at training time and not at test time.

3. Goal location is randomly changed in every episode. At the start of every

episode, the goal is placed at a random location. The test goal location is

different from the training location and it is impossible for the multi-agent

policy to memorize a fixed goal-location seen during training.

4.3.7 Environment

The environment is a simulated goal reaching task built using Multi Agent Particle

Environment (MAPE) [40].

4.4 Results

4.4.1 Adversary performance

Table 4.1: Comparison of Adversary Architectures

Architecture Accuracy No. of Adaptability
(max. 1) Params. Temporal No. of agents

Random guess 0.20 0 3 3

LSTM 0.95 2574 3 7

Zheng et al. [77] 0.97 109286 7 7

Scalable-LSTM 0.99 936 3 3

53



4. Hiding Leader’s Identity in Leader-Follower Navigation through Multi-Agent
Reinforcement Learning

Figure 4.5: Scalable-LSTM adversary’s 0-shot generalization to different number of agents.
The blue curve, which shows the accuracy of Scalable-LSTM in identifying the leader in
robot teams with different number of agents, constantly stays high (close to 1). Although
Scalable-LSTM adversary was trained with only 6 agents (shown with dashed vertical line),
it had high accuracy in identifying the leader in robot teams with number of agents varying
between 3 and 10.

(a) Primary task reward (b) Identity hiding reward

Figure 4.6: Multi-agent performance on primary task reward and identity hiding
reward using different algorithms. Values are normalized between 0 and 1.

We first show that our proposed Scalable-LSTM adversary architecture performs

extremely well in identifying the leader when the multi-robot team doesn’t try to hide

it’s leader’s identity. This is important because there would be no point in designing

and evaluating a multi-agent policy against a weak adversary.

We collect 100 episodes of multi-agent (6 agents) trajectories from a Naive MARL

policy (Section 4.3.6) and test the performance of Scalable-LSTM along with other

baselines in identifying the leader correctly. The baselines includes random guess and

deep learning adversary architectures LSTM, [29] and Zheng et al. [77] which has a

Convolutional Neural Network (CNN) architecture. Scalable-LSTM has an accuracy

of 0.99 which is higher than that of LSTM (0.95) and Zheng et al. (0.97) as shown in

54



4. Hiding Leader’s Identity in Leader-Follower Navigation through Multi-Agent
Reinforcement Learning

(a) Zheng et al. [77]

(b) Ours

Figure 4.7: Multi-agent navigation using approach of Zheng et al. [77] and our approach
for the same goal location (shown as black circle). The leader is shown as a blue circle
while the followers are shown as green circles. All agents have a number written on them -
e.g. the leader (blue circle) is numbered 4. The leader’s identity isn’t concealed well by
Zheng et al. (Fig. 4.7a) as it is clearly ahead of the followers. Using our approach, the
leader smartly moves with the followers as a group, hiding its identity (Fig. 4.7b) - E.g. in
3rd snapshot of Fig. 4.7b, a follower agent (numbered 3) deceptively seems to be leading
the multi-agent team while the leader is behind.

Table 4.1. Table 4.1 also shows that Scalable-LSTM has 2 orders of magnitude lesser

parameters than Zheng et al. [77] and still performs better.

Another advantage of Scalabe-LSTM over the baseline deep learning architectures

is that it is adaptable both temporally and in the number of agents, which is appealing

for real world applications as an adversary might observe only a part of the trajectory

or the multi-agent team size might change.

Temporal adaptability

We show an example episode in Fig. 4.4 to demonstrate temporal adaptability. The

adversary can make a prediction of the leader’s identity at every time step, i.e. even

from partial trajectories. Within 10 time steps, the adversary correctly identifies the

55



4. Hiding Leader’s Identity in Leader-Follower Navigation through Multi-Agent
Reinforcement Learning

(a) Goal location 1 (b) Goal Location 2 (c) Goal location 3

Figure 4.8: Leader-follower navigation to different goal locations (shown as blue
circle) using our proposed approach. The multi-agent team could successfully reach
different goal locations while fooling the adversary which made a wrong prediction of
the leader’s identity as depicted by the black color of the leader trajectory in most
regions.

Figure 4.9: 0-shot generalization of our proposed approach to different multi-agent team
size. We trained a multi-agent policy with n = 6 agents using our approach directly tested
the performance with 2n = 12 agents without any fine-tuning. The multi-agent team with
double the number of agents in able to navigate to the goal location while successfully
hiding the leader within the followers.

leader and as time flows it predicts the true leader with higher confidence (assigns

higher probability to true leader).

Adaptability in no. of agents

We trained the Scalable-LSTM adversary to identify the leader in 6-agent team and

tested it on 3 to 10 agent teams without any fine tuning on different team sizes.

Leader prediction accuracy remains high in all cases as shown in Fig. 4.5. Thus

Scalable-LSTM shows 0-shot generalization to different number of agents.

56



4. Hiding Leader’s Identity in Leader-Follower Navigation through Multi-Agent
Reinforcement Learning

(a) Humans’ Score (b) Humans’ Accuracy (c) Humans’ Confidence

Figure 4.10: This figure presents comparative results of human observers (adversary)
trying to identify the leader in multi-robot teams executing different navigation algorithms
(Scirpted PD, Zheng et al. [77], Naive MARL and ours). The results show that our algorithm
performs better (lower value is better) in terms of overall score (4.10a), accuracy (4.10b)
and confidence (4.10c).

4.4.2 Multi-Agent Performance

Baselines

We test the multi-agent policy’s performance based on primary task reward (efficiently

reaching the goal) and and on its ability to hide the leader’s identity from artificial

adversary (identity hiding reward). These rewards are only used for evaluation purpose

and are not accessible to the agents at test time. We compare the performance against

traditional leader-follower controllers - Scripted PD and Zheng et al., [77] as well as

Naive MARL policy (Section 4.3.6). Scripted PD is a Proportional-Differential (PD)

controller based algorithm where the leader tracks the goal location and the follwers

track the leader. Zheng et al., [77] used traditional control based method to track

waypoints in the trajectory. In their method, the followers don’t know the leader’s

identity. We adopted their method to track the goal instead of waypoints. Scripted

PD and Naive MARL only try to reach the goal location while Zheng et al. [77] and

our approaches also try to hide the leader’s identity.

Goal reaching task

On the goal reaching task, Fig. 4.6a, all the methods we tested performed well and

could successfully navigate the swarm to its goal. The slight drop in performance

of our approach and Zheng et al. [77] is expected as these methods might have to

trade-off primary task objective with identity hiding objective. Among the methods

that considered identity hiding objective, our approach got higher reward than Zheng

57



4. Hiding Leader’s Identity in Leader-Follower Navigation through Multi-Agent
Reinforcement Learning

et al. [77].

Leader Identity hiding

In terms of identity hiding reward, Fig. 4.6b, our approach significantly outperformed

all the baselines, hiding the leader successfully in most of the cases.

Fig. 4.7 shows example multi-robot trajectories using the approach of Zheng

et al. [77] and our approach. In case of Zheng et al. [77], the leader clearly leads

the followers and this makes it easy for an adversary to identify the leader, Fig.

4.7a. Using our approach, the leader doesn’t naively lead the other agents. It rather

smartly moves together with the group while informing the target motion direction

through hidden movement cues. This smart strategy helps our multi-agent team

deceive the adversary while achieving the primary goal, Fig. 4.7b. We show successful

leader-follower navigation to different goal locations while hiding the leader’s identity

using our proposed approach 4.8.

0-shot generalization

We demonstrate the 0-shot generalization of our multi-agent policy to different number

of agents in Fig. 4.9, where we train a policy on n = 6 agents and test on 2n = 12

agents without any fine-tuning.

4.4.3 Effectiveness against Human observers

Although we have shown that our trained multi-agent policy can successfully hide its

leader’s identity from artificial adversary, we wish to push it further and test how

well the learnt navigation strategy can deceive humans when they act as adversaries

and try to identify the leader. In the following sections we describe the experimental

setup and the results.

Experimental setup

We tasked humans with identifying the leader in a multi-agent team by showing videos

of leader-follower multi-robot navigation with visually identical leader and followers.

The human’s goal was to maximize a score that incentivized answers that were both

58



4. Hiding Leader’s Identity in Leader-Follower Navigation through Multi-Agent
Reinforcement Learning

correct and quick. For each algorithm (our and baselines), we collected data from ∼ 30

humans and showed 50 videos to each human. In total, we collected ∼ 30× 50 = 1500

data points for each algorithm to get a good estimate of its performance. We collected

our data through a web based interface via Amazon Mechanical Turk (MTurk) [69].

Amazon Mechanical Turk is a crowd-sourcing platform where real humans are paid

money to perform tasks.

Results

Fig. 4.10 shows the performance of different algorithms - Scripted PD, Zheng et al.

[77], Naive MARL and ours against human adversaries. From a multi-robot team’s

perspective, a lower score achieved by humans is indicative of better performance of

multi-robot team. Across all the metrics, our algorithm outperformed all of the other

algorithms. Humans got much lower score (Fig. 4.10a), lower accuracy (Fig. 4.10b)

and lacked confidence (Fig. 4.10c) in their decisions. It is interesting to note that the

Zheng et al. [77] didn’t generalize to human data well and performed worse than the

Naive MARL policy we trained. On the other hand, our algorithm generalized well to

completely unseen humans making it hard for humans to infer the leader’s identity.

59



4. Hiding Leader’s Identity in Leader-Follower Navigation through Multi-Agent
Reinforcement Learning

60



Chapter 5

Conclusions

In this work we explored the combination of Reinforcement Learning and adversarial

training. This combination is very versatile and is applicable to many scenarios. In

particular, we looked at 3 scenarios and the conclusion we derive from them are:

1. Actor Residual Critic (ARC) [16]: In this work, we highlighted that

the reward in popular Adversarial Imitation Learning (AIL) algorithms are

differentiable but this property has not been leveraged by existing model-free

RL algorithms to train a policy. We also showed that naively differentiating the

policy through this reward function does not perform well. To solve this issue,

we proposed a class of Actor Residual Critic (ARC) algorithms that use a C

function as an alternative to standard Actor Critic (AC) algorithms which use a

Q function. An ARC algorithm can replace the AC RL algorithm in any existing

AIL algorithm. We formally proved that Policy Iteration using C function

converges to an optimum policy in tabular environments. For continuous-control

tasks, using ARC can compute the exact gradient of the policy through the

reward function which we believe helps improves the performance of the AIL

algorithms. Future work might explore the applicability of ARC algorithm to

other scenarios which have a differentiable reward function.

2. Emergent Multi-Agent Strategies [15]: In this work we were able to

scale to multiple agents by modeling inter agent interactions with a graph

containing two attention layers. We studied the evolution of complex multi agent

61



5. Conclusions

strategies in a mixed cooperative-competitive environment. In particular, we

saw the natural emergence of deception strategy which required heterogeneous

behavior amongst homogeneous agents. If instead we wanted to explicitly

encode heterogeneous strategies, a simple extension of our work would be to

have different sets of policy parameters (fθd) within the same team, eg. one set

for aggressive guards and one set of defensive guards. We believe that our study

would inspire further work towards scaling multi agent reinforcement learning

to large number of agents in more complex mixed cooperative-competitive

scenarios.

3. Hiding Leader’s Identity in Leader-Follower Navigation [18, 19] : In

this paper we brought together MARL, GNNs and adversarial training for the

task of hiding the leader’s identity in a multi-robot team as a defense mechanism.

Our proposed leader-follower navigation algorithm allows decentralized control,

scales to a large and variable number of agents and generalizes to unseen human

adversaries showing the effectiveness of our algorithm. Given the formulation of

leader identity hiding as a MARL problem, other leader-follower tasks (such as

trajectory following) could also be adopted by changing the task-related reward

structure of MARL.

62



Bibliography

[1] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
Tensorflow: A system for large-scale machine learning. In 12th {USENIX}
symposium on operating systems design and implementation ({OSDI} 16), pages
265–283, 2016. 2.3

[2] Pieter Abbeel, Adam Coates, and Andrew Y Ng. Autonomous helicopter aero-
batics through apprenticeship learning. The International Journal of Robotics
Research, 29(13):1608–1639, 2010. 2.1

[3] Akshat Agarwal, Sumit Kumar, and Katia Sycara. Learning transferable cooper-
ative behavior in multi-agent teams. arXiv preprint arXiv:1906.01202, 2019. 3.1,
3.2.1, 3.3, 3.3.2, 3.3.3, 3.4.1

[4] Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob Mc-
Grew, Arthur Petron, Alex Paino, Matthias Plappert, Glenn Powell, Raphael
Ribas, et al. Solving rubik’s cube with a robot hand. arXiv preprint
arXiv:1910.07113, 2019. 1

[5] Maruan Al-Shedivat, Trapit Bansal, Yuri Burda, Ilya Sutskever, Igor Mordatch,
and Pieter Abbeel. Continuous adaptation via meta-learning in nonstationary
and competitive environments. arXiv preprint arXiv:1710.03641, 2017. 1, 3.2.2

[6] Dario Albani, Joris IJsselmuiden, Ramon Haken, and Vito Trianni. Monitoring
and mapping with robot swarms for agricultural applications. In 2017 14th IEEE
International Conference on Advanced Video and Signal Based Surveillance
(AVSS), pages 1–6. IEEE, 2017. 4

[7] Christopher Amato, Girish Chowdhary, Alborz Geramifard, N Kemal Üre, and
Mykel J Kochenderfer. Decentralized control of partially observable markov
decision processes. In 52nd IEEE Conference on Decision and Control, pages
2398–2405. IEEE, 2013. 4.3.1

[8] Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A
survey of robot learning from demonstration. Robotics and autonomous systems,
57(5):469–483, 2009. 2.1

63



Bibliography

[9] Christopher G Atkeson and Stefan Schaal. Robot learning from demonstration.
In ICML, volume 97, pages 12–20. Citeseer, 1997. 2.1

[10] Michael Bain and Claude Sammut. A framework for behavioural cloning. In
Machine Intelligence 15, pages 103–129, 1995. 2.1, 2.2

[11] Bowen Baker, Ingmar Kanitscheider, Todor Markov, Yi Wu, Glenn Powell, Bob
McGrew, and Igor Mordatch. Emergent tool use from multi-agent autocurricula.
In International Conference on Learning Representations, 2019. 1, 3.1, 3.2.1,
3.3.3, 3.4.1

[12] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John
Schulman, Jie Tang, and Wojciech Zaremba. Openai gym. arXiv preprint
arXiv:1606.01540, 2016. (document), 2.6.2, 2.3, 2.9, 3.4

[13] Lucian Bu, Robert Babu, Bart De Schutter, et al. A comprehensive survey of
multiagent reinforcement learning. IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), 38(2):156–172, 2008. 3.2.1

[14] Shushman Choudhury, Kiril Solovey, Mykel J Kochenderfer, and Marco Pavone.
Efficient large-scale multi-drone delivery using transit networks. Journal of
Artificial Intelligence Research, 70:757–788, 2021. 4

[15] Ankur Deka and Katia Sycara. Natural emergence of heterogeneous strategies in
artificially intelligent competitive teams. In International Conference on Swarm
Intelligence, pages 13–25. Springer, 2021. 2, 4, 4.1, 4.3.3, 2

[16] Ankur Deka, Changliu Liu, and Katia Sycara. ARC - actor residual critic for
adversarial imitation learning. . under review. 1, 1

[17] Ankur Deka, Vishnu K Narayanan, Takahiro Miyashita, and Norihiro Hagita.
Adaptive attention-aware pedestrian trajectory prediction for robot planning in
human environments. . 4.3.3

[18] Ankur Deka, Michael Lewis, Huao Li, Phillip Walker, and Katia Sycara. Human
vs. deep neural network performance at a leader identification task. In Proceedings
of the 65th Annual Meeting of the Human Factors and Ergonomics Society, 2021.
3, 3

[19] Ankur Deka, Wenhao Luo, Huao Li, Michael Lewis, and Katia Sycara. Hiding
leader’s identity in leader-follower navigation through multi-agent reinforcement
learning. In Accepted to 2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2021. 3, 3

[20] Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adver-
sarial inverse reinforcement learning. arXiv preprint arXiv:1710.11248, 2017. 1,
2.1, ??, 2.2, 2.3

[21] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approxi-

64



Bibliography

mation error in actor-critic methods. In International Conference on Machine
Learning, pages 1587–1596. PMLR, 2018. 2.1, 2.3, 2.3, 2.5

[22] Seyed Kamyar Seyed Ghasemipour, Richard Zemel, and Shixiang Gu. A diver-
gence minimization perspective on imitation learning methods. In Conference
on Robot Learning, pages 1259–1277. PMLR, 2020. 1, 2.1, ??, 2.2, 2.3, 2.6.2, 2.9

[23] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial
nets. Advances in neural information processing systems, 27, 2014. 1, 2.2, 2.3,
2.9

[24] Jason Gregory, Jonathan Fink, Ethan Stump, Jeffrey Twigg, John Rogers, David
Baran, Nicholas Fung, and Stuart Young. Application of multi-robot systems
to disaster-relief scenarios with limited communication. In Field and Service
Robotics, pages 639–653. Springer, 2016. 4

[25] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-
critic: Off-policy maximum entropy deep reinforcement learning with a stochastic
actor. In International Conference on Machine Learning, pages 1861–1870.
PMLR, 2018. 2.1, 2.3, 2.3, 2.5, 2.5.1, 2.6.2, 2.9, 2.9, 2.9, 3.2.1

[26] Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream
to control: Learning behaviors by latent imagination. In International Conference
on Learning Representations, 2019. 2.2

[27] Lei Han, Peng Sun, Yali Du, Jiechao Xiong, Qing Wang, Xinghai Sun, Han
Liu, and Tong Zhang. Grid-wise control for multi-agent reinforcement learning
in video game ai. In International Conference on Machine Learning, pages
2576–2585, 2019. 3.2.1

[28] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In
Advances in neural information processing systems, pages 4565–4573, 2016. 1,
2.1, 2.2, ??, 2.3, 2.6.2, 2.9

[29] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997. 4.3.4, 4.4.1

[30] Yedid Hoshen. Vain: Attentional multi-agent predictive modeling. In Advances
in Neural Information Processing Systems, pages 2701–2711, 2017. 3.2.1

[31] Rohit Jena, Changliu Liu, and Katia Sycara. Augmenting gail with bc for sample
efficient imitation learning. arXiv preprint arXiv:2001.07798, 2020. 2.2

[32] Parameswaran Kamalaruban, Yu-Ting Huang, Ya-Ping Hsieh, Paul Rolland,
Cheng Shi, and Volkan Cevher. Robust reinforcement learning via adversarial
training with langevin dynamics. arXiv preprint arXiv:2002.06063, 2020. 1

[33] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture

65



Bibliography

for generative adversarial networks. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 4401–4410, 2019. 1

[34] Liyiming Ke, Matt Barnes, Wen Sun, Gilwoo Lee, Sanjiban Choudhury, and
Siddhartha Srinivasa. Imitation learning as f -divergence minimization. arXiv
preprint arXiv:1905.12888, 2019. 2.2

[35] Ashish Kumar, Zipeng Fu, Deepak Pathak, and Jitendra Malik. Rma: Rapid
motor adaptation for legged robots. arXiv preprint arXiv:2107.04034, 2021. 1

[36] Michael Laskey, Jonathan Lee, Wesley Hsieh, Richard Liaw, Jeffrey Mahler, Roy
Fox, and Ken Goldberg. Iterative noise injection for scalable imitation learning.
In 1st conference on robot learning (CoRL),(ed., Sergey Levine and Vincent
Vanhoucke and Ken Goldberg), Mountain View, CA, USA, pages 13–15, 2017.
2.2

[37] Yunzhu Li, Jiaming Song, and Stefano Ermon. Infogail: Interpretable imitation
learning from visual demonstrations. In NIPS, 2017. 2.2

[38] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with
deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015. 2.1, 2.3,
2.3, 2.5, 3.2.1

[39] Jianhua Lin. Divergence measures based on the shannon entropy. IEEE Trans-
actions on Information theory, 37(1):145–151, 1991. 2.2

[40] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch.
Multi-agent actor-critic for mixed cooperative-competitive environments. arXiv
preprint arXiv:1706.02275, 2017. 3.2.1, 3.2.2, 3.4, 4.3.7

[41] Md Suruz Miah, Amr Elhussein, Fazel Keshtkar, and Mohammed Abouheaf.
Model-free reinforcement learning approach for leader-follower formation using
nonholonomic mobile robots. In The Thirty-Third International Flairs Confer-
ence, 2020. 4.1

[42] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602, 2013. 2.1

[43] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533, 2015. 3.2.1

[44] Andrew Y Ng, Stuart J Russell, et al. Algorithms for inverse reinforcement
learning. In Icml, volume 1, page 2, 2000. 2.1, 2.2

[45] Tianwei Ni, Harshit Sikchi, Yufei Wang, Tejus Gupta, Lisa Lee, and Benjamin

66



Bibliography

Eysenbach. F-irl: Inverse reinforcement learning via state marginal matching.
arXiv preprint arXiv:2011.04709, 2020. 2.2, 2.6.2, 2.9, 2.9, 2.9, 2.9

[46] Tuomas Oikarinen, Tsui-Wei Weng, and Luca Daniel. Robust deep reinforcement
learning through adversarial loss. arXiv preprint arXiv:2008.01976, 2020. 1

[47] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. Pytorch: An imperative style, high-performance deep learning
library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett, editors, Advances in Neural Information Processing Systems 32,
pages 8024–8035. Curran Associates, Inc., 2019. 2.3

[48] Jorge Pena Queralta, Jussi Taipalmaa, Bilge Can Pullinen, Victor Kathan
Sarker, Tuan Nguyen Gia, Hannu Tenhunen, Moncef Gabbouj, Jenni Raitoharju,
and Tomi Westerlund. Collaborative multi-robot search and rescue: Planning,
coordination, perception, and active vision. IEEE Access, 8:191617–191643, 2020.
4

[49] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation
learning with deep convolutional generative adversarial networks. arXiv preprint
arXiv:1511.06434, 2015. 1

[50] Ragesh K Ramachandran, James A Preiss, and Gaurav S Sukhatme. Resilience
by reconfiguration: Exploiting heterogeneity in robot teams. arXiv preprint
arXiv:1903.04856, 2019. 3.1

[51] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory
Farquhar, Jakob Foerster, and Shimon Whiteson. Qmix: monotonic value
function factorisation for deep multi-agent reinforcement learning. arXiv preprint
arXiv:1803.11485, 2018. 3.2.1

[52] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation
learning and structured prediction to no-regret online learning. In Proceedings
of the fourteenth international conference on artificial intelligence and statistics,
pages 627–635. JMLR Workshop and Conference Proceedings, 2011. 2.2, 2.6.2

[53] Daito Sakai, Hiroaki Fukushima, and Fumitoshi Matsuno. Leader–follower
navigation in obstacle environments while preserving connectivity without data
transmission. IEEE Transactions on Control Systems Technology, 26(4):1233–
1248, 2017. 4.1

[54] Mikayel Samvelyan, Tabish Rashid, Christian Schroeder De Witt, Gregory
Farquhar, Nantas Nardelli, Tim GJ Rudner, Chia-Man Hung, Philip HS Torr,
Jakob Foerster, and Shimon Whiteson. The starcraft multi-agent challenge.

67



Bibliography

arXiv preprint arXiv:1902.04043, 2019. 3.2.2

[55] Stefan Schaal. Learning from demonstration. In Advances in neural information
processing systems, pages 1040–1046, 1997. 2.1

[56] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp
Moritz. Trust region policy optimization. In International conference on machine
learning, pages 1889–1897. PMLR, 2015. 2.1, 2.3

[57] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter
Abbeel. High-dimensional continuous control using generalized advantage esti-
mation. arXiv preprint arXiv:1506.02438, 2015. 2.1, 2.3

[58] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.
2.1, 2.3, 3.2.1, 3.3.5, 4.3.6

[59] Daigo Shishika, James Paulos, and Vijay Kumar. Cooperative team strategies for
multi-player perimeter-defense games. IEEE Robotics and Automation Letters, 5
(2):2738–2745, 2020. 3.1

[60] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and
Martin Riedmiller. Deterministic policy gradient algorithms. In International
conference on machine learning, pages 387–395. PMLR, 2014. 2.3

[61] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. Mastering the game of go with deep neural networks
and tree search. nature, 529(7587):484–489, 2016. 1

[62] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,
et al. Mastering the game of go without human knowledge. nature, 550(7676):
354–359, 2017. 1, 3.2.1

[63] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew
Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore
Graepel, et al. A general reinforcement learning algorithm that masters chess,
shogi, and go through self-play. Science, 362(6419):1140–1144, 2018. 1

[64] Aleksander S Simonsen and Else-Line M Ruud. The application of a flexible
leader-follower control algorithm to different mobile autonomous robots. 4.1

[65] Sainbayar Sukhbaatar, Rob Fergus, et al. Learning multiagent communication
with backpropagation. In Advances in neural information processing systems,
pages 2244–2252, 2016. 3.2.1

[66] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT press, 2018. 2.1, 2.3, 2.4.2, 2, 2.5, 2.7.1, 2.7.1, 2.7.1

68



Bibliography

[67] Ardi Tampuu, Tambet Matiisen, Dorian Kodelja, Ilya Kuzovkin, Kristjan Korjus,
Juhan Aru, Jaan Aru, and Raul Vicente. Multiagent cooperation and competition
with deep reinforcement learning. PloS one, 12(4), 2017. 3.2.1

[68] Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative
agents. In Proceedings of the tenth international conference on machine learning,
pages 330–337, 1993. 3.2.1

[69] Amazon Mechanical Turk. Amazon mechanical turk. Retrieved August, 17:2012,
2012. 4.4.3

[70] José Vilca, Lounis Adouane, and Youcef Mezouar. Adaptive leader-follower
formation in cluttered environment using dynamic target reconfiguration. In
Distributed Autonomous Robotic Systems, pages 237–254. Springer, 2016. 4.1

[71] Eugene Vinitsky, Yuqing Du, Kanaad Parvate, Kathy Jang, Pieter Abbeel, and
Alexandre Bayen. Robust reinforcement learning using adversarial populations.
arXiv preprint arXiv:2008.01825, 2020. 1

[72] Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha
Vezhnevets, Michelle Yeo, Alireza Makhzani, Heinrich Küttler, John Agapiou,
Julian Schrittwieser, et al. Starcraft ii: A new challenge for reinforcement
learning. arXiv preprint arXiv:1708.04782, 2017. 1, 3.2.2

[73] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8
(3-4):279–292, 1992. 3.2.1

[74] Ying Wen, Yaodong Yang, Rui Luo, Jun Wang, and Wei Pan. Probabilis-
tic recursive reasoning for multi-agent reinforcement learning. arXiv preprint
arXiv:1901.09207, 2019. 3.1

[75] Ronald J Williams. Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning. Machine learning, 8(3-4):229–256, 1992. 2.1,
2.3

[76] Xin Zhang, Yanhua Li, Ziming Zhang, and Zhi-Li Zhang. f -gail: Learn-
ing f -divergence for generative adversarial imitation learning. arXiv preprint
arXiv:2010.01207, 2020. 2.2

[77] Hehui Zheng, Jacopo Panerati, Giovanni Beltrame, and Amanda Prorok. An
adversarial approach to private flocking in mobile robot teams. IEEE Robotics
and Automation Letters, 5(2):1009–1016, 2020. (document), 4, 4.1, 4.1, 4.4.1,
4.7a, 4.7, 4.10, 4.4.2, 4.4.2, 4.4.2, 4.4.3

[78] Yanlin Zhou, Fan Lu, George Pu, Xiyao Ma, Runhan Sun, Hsi-Yuan Chen, and
Xiaolin Li. Adaptive leader-follower formation control and obstacle avoidance
via deep reinforcement learning. In 2019 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 4273–4280. IEEE, 2019. 4.1

69



Bibliography

[79] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-
to-image translation using cycle-consistent adversarial networks. In Proceedings
of the IEEE international conference on computer vision, pages 2223–2232, 2017.
1

[80] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind K Dey. Maximum
entropy inverse reinforcement learning. In Aaai, volume 8, pages 1433–1438.
Chicago, IL, USA, 2008. 2.2

70


	1 Introduction
	2 ARC - Actor Residual Critic for Adversarial Imitation Learning
	2.1 Introduction
	2.2 Related Work
	2.3 Background
	2.4 Method
	2.4.1 Definition of Residual Critic (C function)
	2.4.2 Properties of C function

	2.5 Continuous-control using Actor Residual Critic
	2.5.1 ARC aided Adversarial Imitation Learning
	2.5.2 Why choose ARC over Actor-Critic in Adversarial Imitation Learning?

	2.6 Results
	2.6.1 Policy Iteration on a Grid World
	2.6.2 Imitation Learning in continuous-control tasks

	2.7 Appendix
	2.7.1 Derivations and Proofs
	2.7.2 Convergence of policy evaluation using C function

	2.8 Popular Algorithms
	2.8.1 Policy Iteration using Q function

	2.9 Experimental Details
	2.10 Extending to Real Robots

	3 Natural Emergence of Heterogeneous Strategies in Artificially Intelligent Competitive Teams
	3.1 Introduction
	3.2 Related Work
	3.2.1 Multi-Agent Reinforcement Learning
	3.2.2 Multi-Agent Environments

	3.3 Method
	3.3.1 Modeling observation of opponents
	3.3.2 Modeling interactions with teammates
	3.3.3 Policy
	3.3.4 Scalability and real world applicability
	3.3.5 Training

	3.4 Environment
	3.4.1 Observation space
	3.4.2 Action space
	3.4.3 Reward structure

	3.5 Results
	3.5.1 Evolution of strategies
	3.5.2 Being Attentive
	3.5.3 Ensemble strategies


	4 Hiding Leader's Identity in Leader-Follower Navigation through Multi-Agent Reinforcement Learning
	4.1 Related Work
	4.2 Problem Statement
	4.3 Method
	4.3.1 MARL Formulation
	4.3.2 Adversarial Training
	4.3.3 Graph Neural Networks Multi-agent Architecture
	4.3.4 Scalable LSTM Adversary Architecture
	4.3.5 Scalability, Adaptability and Decentralized Control
	4.3.6 Training
	4.3.7 Environment

	4.4 Results
	4.4.1 Adversary performance
	4.4.2 Multi-Agent Performance
	4.4.3 Effectiveness against Human observers


	5 Conclusions
	Bibliography

