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Abstract
LiDAR sensors can be used to obtain a wide range of measurement signals other

than a simple 3D point cloud, and those signals can be leveraged to improve per-
ception tasks like 3D object detection. A single laser pulse can be partially reflected
by multiple objects along its path, resulting in multiple measurements called echoes.
Multi-echo measurement can provide information about object contours and semi-
transparent surfaces which can be used to better identify and locate objects. LiDAR
can also measure surface reflectance (intensity of laser pulse return), as well as am-
bient light of the scene (sunlight reflected by objects). These signals are already
available in commercial LiDAR devices but have not been used in most LiDAR-
based detection models. We present a 3D object detection model which leverages
the full spectrum of measurement signals provided by LiDAR. First, we propose a
multi-signal fusion (MSF) module to combine (1) the reflectance and ambient fea-
tures extracted with a 2D CNN, and (2) point cloud features extracted using a 3D
graph neural network (GNN). Second, we propose a multi-echo aggregation (MEA)
module to combine the information encoded in different set of echo points. Com-
pared with traditional single echo point cloud methods, our proposed multi-signal
LiDAR Detector (MSLiD) extracts richer context information from a wider range of
sensing measurements and achieves more accurate 3D object detection. Experiments
show that by incorporating the multi-modality of LiDAR, our method outperforms
the state-of-the-art by relatively up to 9.1%.
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Chapter 1

Introduction

LiDAR is a powerful sensor which has the ability to capture a wide range measurements for per-

ception tasks including object detection. The most commonly used LiDAR measurement type

is a set of 3D points (a point cloud) and their reflectance values, which provides accurate 3D

shape information of objects in the scene. State-of-the-art object detection methods have made

great breakthroughs by leveraging 3D point cloud data. However, despite such success, there are

several types of LiDAR measurements which are largely ignored in modern day LiDAR percep-

tion algorithms. In the following, we describe three unique features of the LiDAR sensor, which

are available in standard LiDAR sensors, but surprisingly have rarely been used in published

LiDAR-based object detection algorithms. We show that by leveraging these features, one can

greatly improve 3D object detection performance.

The first important feature of LiDAR is its ability to obtain multiple return signals with a

single laser pulse, called echoes. LiDAR is a time-of-flight measurement system which measures

the time it takes for a laser pulse to hit an object and return to the sensor. More specifically, the

laser emits a short pulse, and a photodetector timestamps the arrival of photons reflected back

by object surfaces. It is possible for a photodetector to acquire multiple return signals (echoes)

if the laser is partially reflected by multiple objects along its path of propagation. We call the

multiple returned signals generated from the same laser beam an ‘echo group.’ Points in the same
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Figure 1.1: Illustration of multi-signal measurements from LiDAR sensor. Each photon

detector on the sensor collects a group of signals and forms an ”Echo Group”, which is converted

into a 2D LiDAR image and a multi-echo point cloud representation.

echo group lie on one line in 3D space, and they are typically ordered according to their signal

strength. In addition to the direct benefit of increasing the number of points available, multiple

echoes also imply that the laser signal is only partially reflected at non-terminal echo locations.

Thus, these echo points are likely on the contour of an object (it obstructs only a part of the laser)

or on a semi-transparent surface (a portion of the laser propagates through the surface). In either

case, we hypothesize that echoes encode meaningful features that can help locate or classify an

object.

The second important feature of LiDAR is the ability to capture ambient scene illumination.

The photodetector of the LiDAR continuously captures infrared (IR) light and therefore is cap-

turing IR images of the scene (typically reflected sunlight) between laser pulses. Although this

information is typically ignored in most LiDAR based perception algorithms, a LiDAR can be

used to capture an image of the scene using the IR spectrum. Ambient measurements can be

processed as a 2D image and can be used to extract texture information about the objects in the

2



scene.

The third important features of LiDAR is the ability to capture surface reflectance. LiDAR

captures laser signal returns, so each point will have a corresponding reflectance value which

measures the strength of the detected laser pulse. Reflectance also encodes material properties

of objects useful for detection and classification. Unlike the ambient signal, different points

inside the same echo group will have different reflectance values, resulting in multiple reflectance

intensity values which we call multi-echo reflectance.

We propose a multi-signal LiDAR-based 3D object detector (MSLiD). First, in order to better

leverage the dense texture and surface properties encoded in the ambient and reflectance signals,

we re-organize them as a dense 2D representation, called the ‘LiDAR Image.’ Then, in order to

combine the dense 2D ‘LiDAR Image’ with sparse 3D point cloud, we propose a multi-signal

fusion (MSF) module which incorporates a 2D CNN branch and a 3D GNN branch. The MSF

module aims at fusing 2D visual information with 3D positional information by sending pixel and

class feature from 2D branch to point-wise feature learned in 3D branch. Furthermore, In order

to extract and combine information encoded in different echo groups, we propose a multi-echo

aggregation (MEA) module. To resolve the imbalance between number of points in different

echos, The MEA module reassigns multi-echo points into two sets – ‘penetrable’ and ‘impene-

trable’ sets according to whether the object reflects partial laser signal. Aggregating the features

learned from two new sets of points provides a richer context information of objects and leads

to better location estimation. By cascading the MSF and MEA modules, the proposed system

combines dense visual information from ambient/reflectance and sparse geometric information

from point cloud, while also extract richer context feature by aggregating multiple echoes. By

leveraging multi-signal LiDAR measurements other than a single point cloud, MSLiD learns a

more discriminative object representation which leads to accurate object localization and classi-

fication.

We collect one real-world and one synthetic dataset with multiple LiDAR measurements,
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including ambient signal, multi-echo point cloud and reflectance signals. Experiments on two

datasets demonstrate that our method outperforms state-of-the-art single-echo methods by up to

9.1%. Overall, our contributions can be summarized as follows:

1. MSLiD is the first to propose a 3D detection framework that properly leverages ambient

illumination, multiple echos of point clouds and reflectance signals for LiDAR sensor.

Our method shows improvement over prior methods using single-echo point cloud with

reflectance intensity.

2. We propose a multi-signal fusion module to effectively combine dense visual information

from ambient and reflectance signals with sparse 3D positional information from point

cloud.

3. We propose a multi-echo aggregation module to form a richer context representation of

objects from multiple groups of echoes, resulting in more accurate object localization and

classification.
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Chapter 2

Related Work

2.1 3D Object Detection with Grid-based Methods.

Many existing works convert the point cloud into a regular grid space representation in order to

tackle the inherent sparsity and irregular format of the point cloud. [3, 11, 13, 29] project 3D

point cloud into 2D birds eye view image to extract feature with mature 2D CNN. For real-time

detection, [12, 30] explore more efficient framework for birds eye view transformation. Other

work focuses on 3D voxel representation. [34] voxelizes the point cloud and uses 3D CNNs to

extract features. Sparse convolution [6] is introduced in [28] for more efficient voxel processing

and feature extraction. Also, [27] explores non-regular shape of 3D voxels while [24] proposes to

combine point feature learning with voxelization, leading to higher detection performance. Grid-

based methods are generally efficient for proposal generation, but they suffer from information

loss during the projection or voxelization process. In contrast, our method does not have the

problem of loss of information as we do not voxelize or project point clouds.
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2.2 3D Object Detection with Point-based Methods.

F-PointNet [20] first proposes to use frustum proposals from 2D object detection and regresses

the final bounding box directly from point features extracted by PointNet [18, 19]. [23] instead

proposes to generate 3D candidate proposals directly from the point cloud in a bottom-up man-

ner, and the following [31] proposes to learn a dense voxel representation of each candidate

proposal for more efficient bounding box regression. [32] further reduces the inference time by

removing the refinement stage and regressing directly from 3D keypoints. Despite using differ-

ent point cloud encoding frameworks, these works are working with single-echo point cloud and

reflectance value. Compared to prior work, our method leverages multi-echo point clouds and

ambient images to learn a richer representation for both point-level features and proposal-level

features.

2.3 3D Object Detection with Multi-modal Fusion Methods.

Exploring effective ways to fuse signals from multiple modalities is still an open question in

3D object detection. [3, 11, 14] propose to project point cloud to BEV space, and then fuse 2D

RGB features with a BEV feature to generate proposals and regress bounding boxes. [20] does

not apply feature fusion, but instead uses 2D detection bounding boxes to guide 3D proposal

generation. [9, 33, 35] explores deep feature fusion between LiDAR and RGB sensors. [26]

proposes to augment point cloud with image semantic segmentation results. [21] proposes to

fuse geometry cue, semantic cue and texture cue from 2D features with 3D point features and

obtains promising performance for indoor 3D object detection. [17] proposed a post-detection

fusion mechanism to combine the candidate boxes from RGB and LiDAR inputs. In our work,

we propose to work with a wider range of modalities coming from the LiDAR sensor. We are

the first to explore a proper way of combining multi-echo points with ambient/reflectance signal

information.
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Chapter 3

Approach

We design a 3D object detection solution suited for multi-signal measurements provided by the

LiDAR sensor, including multi-echo point cloud, as well as ambient and reflectance signals. Our

multi-signal LiDAR-based detection method, called MSLiD, achieves fusion between multiple

LiDAR signals with two modules, i.e. Multi-signal Fusion (MSF) module where visual signals

are combined with geometric signals, and Multi-Echo Aggregation (MEA) module where points

from different echo groups are fused together. In this section, we first describe how multiple types

of signals are processed, encoded and fused in the MSF module for point-wise feature extraction

and proposal generation (Sec 3.1). Then, we describe the MEA module where multiple point

clouds are reassigned into different point sets, and features of these point sets are extracted and

aggregated to form the proper proposal RoI feature for 3D bounding box regression (Sec 3.2).

Note that we assume the LiDAR sensor generates k echo point clouds. The overall pipeline of

our method is shown in Fig 3.1.

3.1 Multi-signal Fusion for Proposal Generation

Learning features of multiple modalities by multiple streams [14, 21, 26] is proved to be effective

in feature fusion. Aiming at fully making use of the complementary nature between different
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Figure 3.1: Illustration of our proposed framework. Our method takes multi-echo point cloud and

LiDAR image as input. The MSF module learns separate features for 2D and 3D representation,

and fuses 2D pixel feature with 3D point feature. The MEA module first performs point set

reassignment to group together points with similar properties. Discriminative RoI feature for

each proposal candidate is then learned by aggregating features learned from different set of

points. The learned feature is then used for confidence estimation and bounding box regression.

signals, we utilize a two-stream feature extraction and blending framework.

3.1.1 Data Encoding.

In order to leverage mature 2D detection models to extract visual cues from multiple signals, we

first convert ambient and reflectance signals into 2D image representation called ”LiDAR image”.

Unlike previous methods where point cloud is projected into image space with the calibration

matrix, we re-organize the LiDAR multi-modal measurement into a 2D image according to the

alignment of LiDAR detector array (i.e., range view [2]), as shown in Fig 1.1. Specifically, each

column of pixels are signals captured by the vertically aligned LiDAR detectors and each row of
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pixels are signals captured by the same detector in different horizontal directions. The converted

LiDAR image has resolution [H × W × k] where H corresponds to the number of vertically

aligned strip of detectors and W corresponds to horizontally aligned ones. k is the number of

modalities encoded in each ‘pixel’, which in our case includes one ambient value and multiple

reflectance values.

For the image stream, the converted LiDAR images are fed into a 2D detector to generate

2D bounding boxes. We adopt a FPN-based model [15] as our 2D detector, where the backbone

weights are pre-trained on ImageNet classification and the model is pre-trained on COCO object

detection. We then fine-tune it on our dataset using LiDAR image as inputs to detect 2D bounding

boxes. For the point cloud stream, we utilize PointNet++ [19] as our backbone network to learn

discriminative point-wise features from raw 3D point cloud. To leverage point clouds from

different echos and increase point density, we group k-echo points together as a whole point

cloud and extract features from it.

3.1.2 Multi-signal Fusion (MSF).

In order to generate rich point-wise features for proposal generation, we present a 2D-to-3D

feature blending method that augments 2D pixel-wise semantic information to 3D point-wise

geometric features. [21] presents an effective indoor 3D object detection framework to extract

three different cues (features) from 2D detection, where geometric cue infers 3D proposal center

from 2D bounding box center, semantics cue infers the object type of the proposal, and texture

cue (RGB value) encodes the texture information of the surface. However, the geometric cue

relies on a very strict assumption where the sensor origin, 2D center and 3D center lies on the

same line. This assumption approximately holds for indoor scenarios with controllable depth

range and object shape. But for the autonomous driving scenario, the error caused by this ap-

proximation is often unbearable.

In contrast, we propose an MSF module which appends 2D semantic features from a pixel to
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its corresponding point - class probability vector (class vector) and dense LiDAR measurements

(pixel vector). Specifically, for each pixel of the LiDAR image, we form a one-hot vector to

represent which class it belongs to. If the pixel is not inside any bounding box, the vector is

set to be all zero, and if the pixel is inside multiple bounding boxes, the corresponding class

entries are all set to one. We believe that the regional prediction vector helps to address the

ambiguity of object class in the sparse 3D point cloud. On the other hand, the dense LiDAR

measurements include the ambient value and reflectance value the point corresponds to. Each

point has its unique reflectance value, while multiple points in the same echo group share the

same ambient value. The dense LiDAR measurements include lower-level semantic features that

3D point cloud does not possess, including object texture and surface reflectivity. By fusing 2D

semantic features with 3D point features, our method can encode multi-modal information which

helps better locate and identify objects.

Given fused features, we apply a bottom-up proposal generation strategy [23] to generate

3D candidates for the bounding box refinement stage. Specifically, we learn a binary fore-

ground/background segmentation using the fused point-wise features, where foreground points

are defined as points inside any ground truth 3D bounding boxes. Afterward, we generate anchor

boxes around foreground points and regress the residual of box parameters [20, 23].

3.2 Multi-echo Aggregation for Box Refinement

Given several proposal candidates, the bounding box refinement network aims to estimate the

proposal confidence and predict the residuals of bounding box parameters (i.e., center, size and

orientation) based on a representative RoI feature. Following [23, 25, 31], we first perform a

canonical transformation to each point by subtracting their 3D position with the proposal center

(X, Y, Z) values and rotating them to the proposal predicted orientation. This makes the model

robust under geometrical transformation and thus can learn better local features. Then we want

to learn a representative RoI feature of each proposal for confidence estimation and bounding

10



box regression. Our main motivation is to effectively extract discriminative features from multi-

echo point clouds. To this end, we propose point set reassignment and multi-echo aggregation

modules.

3.2.1 Point Set Reassignment.

The most straightforward way to leverage multi-echo points in RoI feature pooling is to learn

separate features for each group of echo points. However, this naive idea leads to poor perfor-

mance for two reasons. The first reason is that the numbers of points in different echo point

clouds are extremely biased. If the echoes are ordered by signal reflectance (where low order

echoes have higher intensity), then higher echo point clouds will have far fewer points than low

echo point clouds. This is because points with lower signal intensity are less likely to be de-

tected by the sensor. Second, too many uncontrollable factors can affect the order of echo points.

Since echoes are ordered according to signal reflectance, various unpredictable factors decide

with echo group a point belongs to, including but not limited to atmosphere humidity, incident

angle, surface roughness and other optical properties of the object surface. It turns out the net-

work is not able to extract useful features to refine the bounding box when a huge pack of factors

is entangled in every each echo point cloud.

As a result, we present a grouping method to reassign multi-echo points into two new sets.

As shown in Fig 3.2, the farther point to the sensor of each ‘echo group’ is assigned to one

set and the rest points are assigned to the other set. We call the two new sets ‘penetrable’ and

‘impenetrable’ point set, in the sense that if an echo is not the last point in an ‘echo group’, it

means the laser can ‘penetrate’ this object and be reflected by points further away. If a point is

assigned to the penetrable set, it is likely that the point is reflected by the contour of an object

(partial signal keeps propagating forward), or reflected by a semi-transparent surface (partial

signal travels through the surface). It is clear that contour information helps better locate the

object, and semi-transparent information encodes the existence of certain part of an object such

11



reassign

Figure 3.2: Illustration of our point reassignment strategy on a three-echo point cloud, where

white dots represent sensor signal origins. Left: original multi-echo point sets. [1st, 2nd, 3rd] echo

points. Right: After reassignment. [penetrable, impenetrable] points.

as the window of a car, both are useful for object box refinement.

3.2.2 Multi-echo Aggregation.

Given two new sets of points, we then aim to learn a regional RoI feature for accurate bound-

ing box refinement. Since points in two sets encode different object information, we learn two

separate features for each set with MLP followed by a point-wise pooling [18]. Then we form

a joint feature of the RoI region by aggregating two feature vectors together. We explore multi-

ple aggregation schemes and choose concatenation as the final method. The refinement network

finally adopts a 2-layer MLP which diverges into 2 branches to perform confidence estimation

and proposal regression.

12



3.3 Loss Function

Our proposed method is trained with a multi-task loss, including proposal generation loss Lpg

and bounding box refinement loss Lrefine:

Loverall = Lpg + Lrefine. (3.1)

Following [23, 31], the proposal generation loss Lpg consists of a point cloud binary segmen-

tation loss and the proposal regression loss:

Lpg = Lreg + Lfocal, (3.2)

where Lfocal is the focal loss used to learn point cloud foreground segmentation as described in

[16, 23]. Using a bottom-up bin-based proposal generation module, the proposal regression loss

Lreg is composed of a bin classification loss Lbin and a size residual loss Lres. Given the proposal

parameter (x, y, z, h, w, l, θ) where (x, y, z) is the object center, (h,w, l) is the object size and θ

is the orientation, the loss terms are formulated as:

Lpbin =
∑

u∈{x,z,θ}

(Lcls(b̂in
p
u, bin

p
u) + LL1(r̂es

p
u, res

p
u)),

Lpres =
∑

u∈{y,h,w,l}

LL1(r̂es
p
v, res

p
v),

Lreg =
1

Npos

∑
p∈pos

(Lpbin + L
p
res) ,

(3.3)

where Lcls is the classification cross-entropy loss, and LL1 is the smooth L1 regression loss. b̂inp

and r̂esp are predicted bin selection and parameter residual for point p, while binp and resp are

the ground truth ones. Npos is the number of total foreground points, so the proposal regression

loss is the average sum of bin loss and residual loss for all foreground points. Also, the bounding

box refinement loss Lrefine is composed of a classification loss for confidence estimation and a
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regression loss for similar to the previous stage.

Lrefine =
1

Na

Na∑
i

Lcls(scorei, labeli)

+
1

Np

Np∑
i

(L̃ibin, L̃ires),

(3.4)

where Na is the number of anchor boxes, and Np is the number of positive proposals for regres-

sion, scorei and labeli are predicted and ground truth confidence label. L̃ibin and L̃ires are bin and

residual loss similar to previous stage, except both the predicted and ground truth bounding box

parameters are transformed into the canonical coordinate.

Table 3.1: Performance comparison of 3D object detection with state-of-the-art methods on the

real-wold dataset. The evaluation metric is Average Precision (AP) with different IoU thresholds.

Method
Car - IoU = 0.7 Car - IoU = 0.5 Person - IoU = 0.5 Person - IoU = 0.25

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

SECOND [28]
1st echo 67.9 37.1 27.3 79.9 57.0 56.2 42.1 25.2 19.8 54.8 35.5 23.9

full echo 75.0 42.9 30.6 86.8 65.5 65.1 47.4 29.9 20.3 58.5 39.2 25.6

PointRCNN [23]
1st echo 66.9 37.8 28.1 80.2 57.7 52.1 45.2 28.9 20.0 57.0 38.7 25.2

full echo 73.6 41.9 28.9 85.0 65.6 62.7 51.6 31.4 20.2 61.2 40.7 25.9

3DSSD [32]
1st echo 64.1 36.7 27.0 77.4 55.9 52.4 45.7 28.8 20.2 57.5 38.5 23.8

full echo 72.4 40.6 28.1 83.9 65.1 63.9 51.9 30.7 19.9 60.8 40.5 26.2

SASSD [7]
1st echo 68.8 37.9 28.6 81.2 58.3 56.8 42.5 26.7 18.2 54.7 36.6 23.2

full echo 76.1 43.2 29.8 87.2 66.0 63.7 46.9 28.5 19.4 58.1 38.6 23.7

PV-RCNN [24]
1st echo 69.1 38.3 28.4 81.7 59.1 57.4 44.9 28.2 19.7 56.3 38.2 24.9

full echo 76.9 44.1 31.2 88.1 67.2 65.3 52.7 30.9 20.8 62.0 41.2 26.2

MSLiD 79.5 45.3 30.7 89.7 68.1 65.3 57.5 34.2 21.5 66.5 43.2 27.7

Improvement +2.6 +1.2 -0.5 +1.6 +0.9 +0.0 +4.8 +2.8 +0.7 +4.5 +2.0 +1.5
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Chapter 4

Experiments

In this section we introduce the dataset (Sec 4.1) we used to train and test our approach. We

also introduce the implementation details including network architecture and training parameters

(Sec 4.2) used in our experiment. Then we compare our results with other state-of-the-art 3D

detection methods on two datasets (Sec 4.3, Sec 4.5) and conduct extensive ablation studies

(Sec 4.4) to investigate each component of our approach and validate our design choices.

4.1 Dataset

Since there is no publicly available Multi-signal LiDAR benchmark dataset with ambient illumi-

nation, multi-echo point cloud and reflectance measurements for 3D object detection evaluation,

we collect two new datasets with the multi-signal measurements to evaluate our method.

4.1.1 Real Dataset

is collected by a roof-mounted prototype LiDAR on top of a vehicle driving around a North

America city. The LiDAR provides three-echo point cloud along with ambient and reflectance

value for each point. Each echo group EG = [(p1, i1) , (p2, i2) , (p3, i3) , a], where p = (x, y, z)
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is a 3D point coordinate, i is reflectance value for each echo point and a is the ambient value

for the echo group. The echoes are ordered by signal strength, so the first echo has the highest

reflectance value within the echo group. None detected echoes are marked empty with zero

reflectance. The converted ‘LiDAR image’ has resolution [96, 600], meaning that there are 96

vertically aligned echo groups each column and 600 horizontally aligned echo groups each row.

The dataset consists of 35,850 frames collected from various driving scenes including downtown,

highway, suburban areas, etc. We split our dataset into training and testing sets with a 70/30

ratio, where the training set consists of 25,002 frames and validation set has 10,848 frames, both

sampled from different video clips with high diversity. Ground truth labels of the dataset are 3D

oriented bounding boxes of ‘Person’ and ‘Car’ classes in the 3D space, and the 2D bounding

boxes of the same classes in the ‘LiDAR image’ space.

4.1.2 Synthetic Dataset

is collected using the CARLA [4] simulator. It is a large-scale multi-sensor multi-task dataset.

Similar to the real dataset, we also collect three-echo point cloud with reflectance value. We

approximate ambient value with r-channel of RGB image because they both capture ambient

sunlight signal of close wavelength. We use 26,043 frames for training and 8,682 frames for

testing. The format of the synthetic dataset is the same as the real dataset. Moreover, the synthetic

dataset provides a wide range of ground truth annotation including 2D and 3D bounding boxes

and segmentation. Among various classes, we focus on ‘Car’, ‘Person’ and ‘Cyclist.’ We will

release our synthetic dataset to public for reproduction and competition. More details of our

synthetic dataset are provided in the supplementary.
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4.2 Implementation Details

4.2.1 Network Architecture.

In order to align network inputs, we randomly subsample 16K points from multi-echo point

cloud in each scene. Note that multiple point clouds are treated as one whole set to sample from.

In the proposal generation stage, we follow the network structure of [19] with four set abstraction

([4096, 1024, 256, 64] with multi-scale grouping) and four feature propagation layers as our 3D

feature extraction backbone. For 2D detector, we use Faster-RCNN [22] with Feature Pyramid

Networks (FPN) [15] module and ResNet-50 [8] as backbone.

In the bounding box refinement network, we randomly sample 256 points from each reas-

signed point set as input to MEA module. We follow the network structure of [19] with three set

abstraction layers ([64, 16, 1]) to generate a single feature vector for each of the point sets. Then

the two features are concatenated to jointly perform estimation and regression heads.

4.2.2 Training Parameters.

The two stages of our methods are trained separately using Adam optimizer [10]. For real-world

dataset, stage-1 is trained for 150 epoch with learning rate 0.002, and stage-2 is trained for 50

epochs with learning rate 0.001. For synthetic data, stage-1 is trained for 100 epoch with learning

rate 0.002, and stage-2 is trained for 40 epochs with learning rate 0.002. For bin-based proposal

generation and refinement module, we adopt the same bin size, search range and orientation

numbers as in [23]. During confidence estimation, a ‘Car’ proposal is considered positive if its

maximum 3D IoU is above 0.6, and negative if its below 0.45. For ‘Person’, the positive and

negative thresholds are set to be 0.5 and 0.4.

Our 2D detector is pre-trained on ImageNet classification and COCO object detection. We

then fine-tune it on our datasets using LiDAR image as inputs to detect 2D bounding boxes.

Batch size, weight decay and momentum are set to be 8, 1e-4 and 0.9 for both datasets. Learning
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rate is set to be 0.005 for real-world dataset and 0.01 for synthetic dataset. Horizontal flipping is

used for data augmentation.

4.3 Results on Real-World Dataset

We compare our model against state-of-the-art point-based and grid-based 3D object detectors

under different point sets. For evaluation metric we use average precision (AP) under different

IoU thresholds, where for ‘Car’ class we use IoU = {0.5, 0.7}, and for ‘Person’ we use IoU =

{0.25, 0.5}. Difficulty level is chosen based on the depth value, where easy class contains objects

within 40m, moderate class contains objects between 40-80m and hard class contains objects

between 80-200m.

4.3.1 Comparison with state-of-the-art methods.

We show the evaluation results and comparison with SOTA methods in Table 3.1. Note that rows

corresponding to “1st echo” refers to experiments using the strongest echo, i.e., with the highest

intensities – This mimics the classic single-echo point cloud data where only the strongest point

is preserved. Rows corresponding to full echo means “multi-echo points grouped as one point

cloud.” On both ‘Car’ and ‘Person’ class with different IoU threshold, our method outperforms

state-of-the-art methods with remarkable margins. For ‘Car’ class, our method achieves up to 2.9

AP increase and for ‘Person’ class we achieve up to 4.8 improvement. The improvements over

‘Easy’ and ‘Moderate’ classes are both noticeable. Note that we do not get noticeable improve-

ment for hard objects farther than 80m, because multiple modalities provide less information

faraway objects. First, the number of multi-echo points decreases quickly as distance increases

because of the signal attenuation. Also, they are hard to detect on LiDAR image because of

the small size. Under ‘Person’ class, our method outperforms previous methods on all three

difficulty levels.
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Table 4.1: Effects of different input signals on overall 3D detection performance, where SE

stands for single-echo and ME stands for multi-echo.

Point Cloud Ambient Signal ME Reflectance Signal Overall AP

SE 50.5

ME 53.6

ME X 53.7

ME X 55.1

ME X X 55.5

Table 4.2: Effects of our proposed components on overall detection, including the MSF module

and MEA module.

Method
MSF Module

MEA module Overall AP
class feature pixel feature

baseline 50.5

MSF only X X 52.1

MEA only X 53.6

w/o class feature X X 54.0

w/o pixel feature X X 55.3

MSLiD X X X 55.5

Notice that all previous methods using “full echo” perform better than using only “1st echo”,

despite that this is achieved by simply merging points from available echos together as a single

point cloud. This means that raw information contained in other echos (e.g., 2nd, 3rd echos) in

addition to the strongest echo (i.e., the 1st echo) can be used to improve performance. Moreover,

our method is designed to better extract and aggregate features from multi-signal information, so

can achieve even higher performance.

19



Table 4.3: Performance on synthetic dataset. Previous SOTA methods are trained with all multi-echo

points grouped as one (Full echo training). The evaluation metric is Average Precision (AP).

Method
Car - IoU = 0.7 Pedestrian - IoU = 0.5 Cyclist - IoU = 0.5

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

SECOND [28] 76.9 70.8 63.2 56.2 51.8 43.1 60.7 55.5 48.7

PointRCNN [23] 77.8 71.4 63.3 59.9 53.4 44.8 61.1 55.7 48.8

PV-RCNN [24] 80.4 72.8 64.5 61.2 54.7 45.5 63.5 57.0 49.3

MSLiD 81.6 73.9 66.9 66.2 59.1 49.3 64.6 58.2 51.2

Improvement +1.4 +1.1 +2.4 +5.0 +4.4 +3.8 +1.1 +1.2 +1.9

4.4 Ablation Study

We conduct extensive ablation experiments to analyze the effectiveness of different proposed

components of our model and other design choices. Following [31, 34], all ablation studies are

conducted on the ‘Car’ class.

4.4.1 Effect of different input signal.

In Table 4.1, we first test the point cloud sets where we take only single-echo (SE) or multi-echo

(ME) point cloud as input. For ME we use three echo groups of points and for SE, we merge

three groups together as one single group. The first two rows shows that our method which

leverages multi-echo point features through the MEA module is better than simply merging all

echo groups, achieving a 3-point improvement in AP. We then ablate the ambient signal as well

as the ME reflectance signal to show their effect. As the table indicates, MSLiD also makes

improvement on detection results by properly leveraging these two types of LiDAR signals –

Adding ambient and ME reflectance signal improves the overall AP by 1.9% from the point-

cloud-only baseline.
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Table 4.4: Performance for difference feature aggregation schemes (column 1-3) and point cloud

set definition (column 4-5) of bounding box refinement stage. pcecho represents the raw multi-

echo point cloud, and pcreassign represents point sets after using reassignment strategy described

in Sec 3.2.1.

Aggregation Scheme Point Cloud Sets
Overall AP

Max-P Mean-P Concat. pcecho pcreassign

X X 51.1

X X 53.9

X X 54.5

X X 55.5

4.4.2 Effect of MSF and MEA modules.

In Table 4.2 the 1st row, we remove both the MSF module (use 3D GNN feature only) and the

MEA module (treats all points identically). This results in a baseline working with only single-

echo point cloud. In the following two rows, we disable one of the two modules to validate how

it contributes to the our method. Then, we look inside MSF module and ablate each of the two

2D branch feature vectors. As table shows, the two proposed modules together improve absolute

AP by 5.0 from the baseline. For the ‘Car’ class, multi-echo aggregation tends to contribute

more between the two modules. This improvement comes from that multi-echo points encodes

contour and surface reflectivity information useful to estimate location, size and orientation of

the object.

4.4.3 Effect of point cloud reassignment and aggregation.

We show the results in Table 4.4, where Max-P, Mean-P and Concat represent different methods

to aggregate features learned from different point sets, pcecho and pcreassign represent different
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point sets definition. The overall AP is calculated over all ground truth proposals without con-

sidering difficulty levels. From the 1st-3rd row we can see that using concatenation to aggregate

features of different sets results in the best performance, while max-pooling tends to get low

performance. This performance gap is because features learned from multiple point sets encode

complementary information, which can be better encoded by concatenation than pooling. From

the last two rows, we can see that our point set reassignment strategy helps better learn the RoI

feature and further improve the absolute AP of 1.

4.5 Results on Synthetic Dataset

We also validate our method on the synthetic dataset. For the synthetic dataset, the difficulty

level follows the same definition as in the KITTI benchmark [5], where easy, moderate and

hard are arranged by 2D bounding box size and occlusion/truncation level. For ‘Car’, we use

IoU = 0.7, and for ‘Pedestrian’ and ‘Cyclist’ we use IoU = 0.5. As shown in Table 4.3, our

proposed method outperforms state-of-the-art methods by descent margins on all three classes.

For ‘Car’ and ‘Cyclist’ classes, we get even higher improvements on the hard class, because the

hard class is not defined merely by distance and Multi-signal information still helps better detect

truncated/occluded objects. The experiment further proves that our proposed method has a good

generalization property and works better for different datasets.

4.6 Discussion on Cost-Benefit Trade-off

The size of MSLiD is 10G with a batch size of 4. The inference time is 110ms on a RTX

2080Ti GPU, with PointNet++[19] backbone taking bulk of the time. We also show that leverag-

ing multi-echo points for performance improvements does not significantly increase the running

time. In our experiments, we always sample a total of 16K points in different settings (full echo

or only the 1st echo). Thus, adding the MSF module or not requires the same time to process
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the full echo or only the 1st echo. The only source of additional time cost when using multiple

echoes in our method comes from the MEA module, where a 3-layer MLP is used to learn sepa-

rate RoI features for two point sets. It increases AP by 3.4 according to Table 4.2 with marginal

increase of inference time. Also, there is no additional space needed for multi-echo fusion as we

sample the same number of points in different settings.
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Chapter 5

Conclusion

We proposed the first method exploring to fuse a wide range of Multi-signal LiDAR information

for 3D object detection. Our method takes advantage of multi-echo point clouds and ambi-

ent/reflectance signals to learn discriminative point features and proposal regional RoI features.

In the proposal generation stage, a multi-signal fusion (MSF) module was proposed to fuse 2D

CNN features learned from ‘LiDAR image’ with 3D GNN features learned from point cloud.

In the refinement stage, a multi-echo aggregation (MEA) module was proposed to learn a better

object context RoI feature from multi-echo point clouds. The better RoI feature leads to accurate

bounding box refinement. Our proposed method achieved state-of-the-art performance in two

datasets with multiple LiDAR measurements.
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Appendix A

Synthetic Dataset Simulation

Though we briefly describe the synthetic multi-signal LiDAR measurement generation process

and its data format in the main paper, here we provide details about the entire data simulation

process. We will introduce our simulation of ambient signals (Sec A.2) as well as multi-echo

point cloud and reflectance signals (Sec A.3).

Our simulation is based on a new large-scale synthetic dataset AIODrive [1] which is in

submission to another conference. We cite the paper anonymously.

A.1 Input Coordinate Transformation

As shown in Algorithm 1, we take RGB, depth and surface normal images, denotes as Irgb, Id, In,

as the input of the simulation process, where the RGB and depth signals are directly captured by

top-mounted RGBD cameras [1], and the surface normal is directly converted from depth images

– The process is accurate because of the perfect synthetic depth values.

In order to mimic the spinning mechanism of LiDAR sensor, we perform a Polar-to-Image

coordinate transformation on all input images. Specifically, we approximate the LiDAR sensor

as a point in the 3D space and define a LiDAR sensor array A[RV , RH ] in the polar coordinate
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(i.e. elevation and azimuth). For all i ∈ [1, RV ], j ∈ [1, RH ],

A(i, j) = (θi, γj), θi, γj ∈ [0, 2π) (A.1)

where θ and γ are vectors representing the LiDAR sensor detector arrangement, and are prede-

fined according to the desired vertical and horizontal FoV and resolution, and RH denotes the

number of vertically aligned LiDAR detectors on the sensor, and RV denotes the number of hor-

izontally aligned detection a detector performs during one single sweep. Then, we project the

polar coordinate mapA[RV , RH ] onto the 2D image space, resulting in non-linearly arranged po-

sitional mapA2D[RV , RH ] on the 2D image plane. Then, we generate new images from the input

images by sampling and interpolating pixels according to the 2D positional map A2D[RV , RH ].

For any input image Iim ∈ {Irgb, Id, In}, ∀i ∈ [1, RV ], j ∈ [1, RH ],

I ′im(i, j) = interp(Iim(x, y)), (x, y) = A2D(i, j) (A.2)

Then we get new images I ′rgb, I
′
d, I
′
n where pixels are arranged according to the arrangement of

LiDAR detector orientations.

A.2 Ambient Illumination Signals

The ambient illumination signals are sunlight reflected by objects. Thus, from the imaging per-

spective, the information encoded in the ambient signals is very similar to that collected by RGB

camera. Collected using CARLA [4] simulator, the AIODrive dataset [1] captures RGB images

in the scene by deploying RGB cameras on top of the ego-vehicles. Since LiDAR sensor usually

captures light with infrared wavelength, we take R-channel from the RGB images and treat it

as a simulation of the ambient signal. The ambient signal is represented in the form of images

Iambient,

Iambient ∼ I ′r

where I ′r denotes the R-channel of image I ′ after coordinate transformation.
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Figure A.1: Multi-signal LiDAR measurements Simulation. Taking the inputs from AIODrive

[1], we first transform the images from Cartesian space into polar space to mimic the LiDAR

spinning mechanism. Then infrared ambient illumination is approximated by taking R channel

of the RGB image. Multi-echo point cloud and reflectance signals are generated from trasformed

RGB, Depth and surface normal images.

A.3 Multi-echo Point Cloud and Reflectance Signals

Generate Raw 3D Tensor Data. Because the LiDAR sensor is essentially a time-of-flight mea-

surement of photons, to simulate multi-signal LiDAR sensing measurements, we first simulate

the photon measurements. Specifically, without considering the random false detection which

happens occasionally in real LiDAR sensors, we formulate the number of photons Np received

by a LiDAR detector in response to an illumination period of a signal light pulse by a temporal

histogram:

Np[n] ∼ P(Nsignal[n] +Nambient[n]), (A.3)

where n is the n-th time interval along the temporal axis. Function P(·) models a Poisson

distribution,Nsignal[n] is the number of detected signal photons at the time interval n, andNambient

models the number of ambient photons.

Based on the Eq. A.3, the first step of our raw multi-echo LiDAR data generation is to gen-

erate a 3D tensor of photon counts Np[RV , RH , N ] representing the number of photons detected

by the sensor. Here (RV , RH) is the vertical and horizontal resolution of the LiDAR (height and

width of the ‘LiDAR Image’) and N represents the number of time intervals.
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To model the number of signal photons Nsignal[n], we consider the surface reflectance, angle

of incidence during reflection and radial attenuation. We model the relative photon number by

assuming all LiDAR transmitters emit lasers with the same energy (same number of photons).

Then, according to Lambert’s cosine law, the reflected energy is proportional to cos(θ) where θ is

the incidence angle of the light with respect to the surface. This information is given by surface

normal image I ′n. We use a near infrared signal light, i.e, the R channel of the RGB image I ′r, to

approximate the reflectance of the surface. Also, the radial falloff (attenuation) of light energy

is proportional to the square of travel distance. We can directly take advantage of the accurate

depth image I ′d. Then, the number of signal photons is modeled as:

Nsignal(h,w, n) ∼

 Norm
(
SBR× I′r(h,w)·cos θ

I′d(h,w)2

)
If n = n∗

0 If n 6= n∗
(A.4)

where the Norm operation means to normalize over the whole image, (i.e. divided by the aver-

age value in the entire image), SBR is the Signal-Background-Ratio used to control the relative

strength between signal and background light, and n∗ is the time bin during which the signal

light is reflected by the surface.

To model the number of ambient photons Nambient[n], we simply takes the R-channel of the

RGB images and normalize over the whole image,

Nambient(h,w, n) ∼ Norm (Ir[h,w]) , ∀n ∈ [1, N ] (A.5)

Then using Eq. A.3 together with Eq. A.4 and Eq. A.5, we can simulate the 3D tensor of photon

number Np[RV , RH , N ].

Given the 3D tensor of photon numbers, the next step is to model the multi-echo mechanism.

As explained in the main paper, multiple echoes happen because laser beams have a wider cov-

erage of the 3D space instead of a perfect 2D line. In the 2D ‘LiDAR Image’ space, this can be

explained as – Neighbor pixels overlap with each other.

We use a kernel function G(·) to simulate the spatial coverage, i.e., the number of photons

in a given time bin will be a weighted sum of its spatial neighborhood bins (not temporal ones),
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with nearer neighbors contributing more:

N∗p[h,w, n] =
∑∑

(h,w)∈N (h,w)

G(kh, kw) ·Np[h,w, n], (A.6)

where N is the neighborhood of a given position on the image plane, and G(kh, kw) is the

weight function over the distance between a given 2D position (rh, rw) and its neighbor position

(kh, kw). Specifically, we use a Gaussian function for G(·). By controlling the parameters of the

kernel function, we can control the spatial coverage of the lasers.

Generate Top-K Point Cloud Returns. Because standard LiDAR-based perception systems

[12, 25, 28] take point cloud data as input (not raw photon count data N∗p[RV , RH , N ]), we take

one step further to convert our raw multi-echo LiDAR data into point clouds so that they can

be easily used in modern perception systems. Note that, with a large spatial coverage rate, each

laser beam is able to cover a large 3D volume and is more likely to hit more than one target

(object). This is represented as multiple strong peaks along the temporal histogram of a sensor

beam. Specifically, when generating the top-K point cloud returns, we take the top-K maximum

bins along the temporal axis for each sensor beam, i.e., we select the bin with the top-K number

of photons that exceeds a threshold and obtain N∗p[RV , RH , K] as follows:

N∗p[RV , RH , K] = T
(
S
(
N∗p[RV , RH , N ]

)
[:, :, :K]

)
, (A.7)

where S(·) is a sort function that descendingly sorts the number of photon counts along the

temporal axis N . Then we only take the top-K channels in the temporal axis (i.e., the top-k

maximum bins). Also, T (·) is a threshold function that masks out bins with number of photons

less than a threshold, i.e., reject bins that receive noise instead of a light signal. Once we have

obtained the N∗p[RH , RV , K], we can then transform it to K point clouds as each valid bin (non-

rejected) can be back-projected to a point in 3D space. As we use a threshold to mask out invalid

points, the number of valid points will be fewer when K is higher, i.e., the 1st strongest point

cloud has more points than the 2nd strongest point cloud and so on.

After getting the multi-echo point cloud, we can simulate the reflectance of each point by

normalizing the number of points inside the bins, because we assume that each LiDAR sensor
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transmitter emits same number of photons. The reflectance values of the multi-echo point cloud

can be rearranged into the ‘LiDAR Image’ space Ireflectance[RV , RH , K] .

We summarize our multi-echo LiDAR simulation process in Algorithm 1 and in Figure A.1.

In terms of the implementation details, we use our all five camera viewpoints and create a 360◦

FoV of the multi-echo LiDAR point cloud. We use 10240 numbers of time bins to voxelize

1000 meters of depth range in each view. When we sample the LiDAR sensor array in the polar

coordinate, each view has a 45◦ vertical FoV and 140◦ horizontal FoV. For frontal view, we

sample in [−20◦, 25◦] vertical FoV with 0.2◦ of resolution, and [−70◦, 70◦] horizontal FoV with

0.1◦ of resolution. To simulate a relatively large spatial coverage, we define a [5, 5] patch in

image coordinate centered around the projected position as its neighborhood.
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Algorithm 1 Multi-echo LiDAR Simulation
Inputs: Irgb: RGB image

Id: Depth image

In: Surface normal image

Parameters: N: Number of time bins

SBR: Signal-Background-Ratio

RH,FH: Horizontal Resolution and FoV

RV,FV: Vertical Resolution and FoV

S: Neighborhood aggregation kernel size

K: Number of echo groups

Outputs: Iambient[RV , RH ]: Ambient image

Ireflectance[RV , RH , K]: Reflectance image

PK: Multi-echo Point Cloud Returns

1: Sample LiDAR sensor array A[RH , RV ] in the polar coordinate according to FoV FH , FV

2: Project A[RH , RV ] onto the 2D image space and get the positional map A2D[RH , RV ]

3: Transform the input images Iim into polar coordinate Iim′ as Eq. A.2

4: Calculate signal photons Nsignal for each pixel (h,w) from Eq. A.4;

5: Calculate ambient photons Nambient for each pixel (h,w) from Eq. A.5;

6: Calculate ambient photons Np[RV , RH ] for each pixel (h,w) from Eq. A.3;

7: Simulate multi-echo mechanism and generate N∗p[RH , RV , N ] by neighborhood aggregation

as in Eq. A.6

8: Get Top-K returns along the temporal axis with Eq. A.7

9: Project the valid bins into 3D space and generate Top-K point cloud returns

10: Simulate the reflectance by number of points insides its corresponding bins

11: Rearrange reflectance values of points into ‘LiDAR Image’ space
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Appendix B

Ablation on Input of the SOTA methods

Table B.1: Ablation study about the input dimension of the SOTA methods on real-wold dataset.

Method
Car - IoU = 0.7 Car - IoU = 0.5 Person - IoU = 0.5 Person - IoU = 0.25

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

SECOND [27]

full echo 75.0 42.9 30.6 86.8 65.5 65.1 47.4 29.9 20.3 58.5 39.2 25.6

+ambient 74.2 42.0 30.1 86.5 65.6 62.9 46.9 29.7 19.8 58.9 39.1 25.4

+echo label 75.0 43.2 30.5 86.9 65.9 65.0 48.2 30.2 20.0 59.1 39.5 25.6

PV-RCNN [22]

full echo 76.9 44.1 31.2 88.1 67.2 65.3 52.7 30.9 20.8 62.0 41.2 26.2

+ambient 76.3 43.8 31.3 87.9 67.1 65.0 52.6 30.3 20.4 61.7 41.3 25.8

+echo label 77.4 44.0 30.9 88.4 66.9 64.9 53.5 31.4 20.6 62.8 41.7 26.0

MSLiD 79.5 45.3 30.7 89.7 68.1 65.3 57.5 34.2 21.5 66.5 43.2 27.7

Improvement +2.1 +1.2 -0.6 +1.3 +0.9 +0.0 +4.0 +2.8 +0.7 +3.7 +1.5 +1.5

In Table B.1, we add results for [24, 28], using points with extra input dimensions (ambient and

echo index label), and validate that the improvement of MSLiD is from our technical contribu-

tions. In the experiments, multi-echo points are regarded as independent points and grouped into

one point cloud. In ‘full echo’, points have 3D coordinates and reflectance, with the dimension

of [x, y, z, r]. In ‘+ambient’, an additional ambient channel a is added to each point. In ‘+echo

label’, both the ambient value a and the echo label e (indicating the echo group of each point)

are added, resulting in the point input dimension [x, y, z, r, a, e].
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From the results, we observed that adding ambient a does not significantly affect perfor-

mance, and adding echo label only shows incremental improvements to [22, 27] on “easy” and

“moderate”. This means that trivially adding extra input dimensions (ambient and echo label)

cannot provide significant improvements while the technique proposed in our MSLiD model can

better leverage these extra inputs.
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Appendix C

Qualitative results of MSLiD

In the Sec. 4.3 of the main paper, we give a quantitative analysis of our method on the real-

world dataset. Here, we shown some qualitative results of our MSLiD in Fig C.1. Note that

1st echo points are shown as white, 2nd echo points are shown as green, and 3rd echo points are

shown as blue. Our method achieves good results on the real-world dataset in different traffic

and scenarios.
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Figure C.1: Qualitative results of our MSLiD on real dataset. The ground truth bounding

boxes and predicted bounding boxes are labeled as red and green respectively. Note that 1st echo

points are shown as white, 2nd echo points are shown as green, and 3rd echo points are shown as

blue.
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