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Abstract

Pedestrian localization systems often fuse inertial odometry with map
information via hand-defined methods to reduce odometry drift, but such
methods are sensitive to noise and struggle to generalize across odometry
sources. To address the robustness problem in map utilization, we propose
a system that forms a data-driven prior on possible user locations in a
map by combining learned map and learned odometry embeddings. Our
prior learns to encode which map regions are feasible locations for a user
more accurately than previous hand-defined methods. This prior leads to
a 49% improvement in inertial-only localization accuracy when used in a
particle filter, approaching the performance of bluetooth beacon-based
absolute positioning. To show the generalizability of our method, we
also show similar improvements using wheel encoder odometry instead of
inertial odometry.
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Chapter 1

Introduction

Existing approaches to using occupancy map information to improve odometry-only

localization are hand-defined, leading to sensitivity to odometry errors and implicit

assumptions which do not always generalize across odometry sources. Methods like

SLAM systems [30], map-matching approaches [18, 27], and heuristic map constraints

on motion [12, 26] show that maps are a rich information source to improve localization,

but new methods are needed to more robustly utilize map information. We seek to

extract more robust map information via a learned model to improve localization in

odometry-only scenarios, particularly for pedestrian inertial localization.

Inertial odometry, or the estimation of a human user’s location from a worn

inertial measurement unit (IMU), has seen significant advances in accuracy from

various deep methods [9, 22, 28] but still suffers from drift due to integration of

small errors in relative motion estimates. This is unavoidable in the real world

without introducing absolute constraints on user location, like those provided by a

map. Introducing occupancy map information allows for drift correction without
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CHAPTER 1. INTRODUCTION

requiring additional sensors to provide absolute constraints, like cameras, LiDARs, or

fingerprinting systems.

Existing indoor localization systems using vision, LiDAR, and fingerprinting

suffer from downsides that odometry-only methods avoid. Image or LiDAR-based

localization via Simultaneous Localization and Mapping (SLAM) can be highly

accurate [29, 30], but can require well-lit and highly featured environments, be power-

hungry, and be constraining for human activities since these sensors always have

to be able to see the world. WiFi and Bluetooth fingerprinting systems require

instrumentation of environments, which can be costly and require significant upkeep

[2, 16]. The deep inertial odometry methods proposed in RoNIN [28], TLIO [9], and

IDOL [22] avoid the above drawbacks by making use of IMUs. IMUs are lightweight,

use only milliAmps of current, do not require line-of-sight, and are present in most

modern smartphones and robots.

Map information has been utilized to reduce inertial odometry drift [12, 26, 27],

but prior methods are hand-defined and make assumptions which generalize poorly,

like discretizations of the map for human localization which are too coarse for slower-

moving robots, or use heuristics on location feasibility. In our experimentation, these

heuristics often lead to localization errors. To reduce odometry drift without hand-

defined methods, our approach incorporates map information via an efficient learnable

map prior. Our deep network uses a convolutional model to encode map environmental

information and a recurrent model to encode recent odometry measurements. These

encodings are combined into a map prior to determine areas of the map where

the recent odometry measurements would have been feasible with higher accuracy

than prior methods. When used as the sensor model of a simple particle filter, our

prior is able to utilize highly noisy inertial odometry to provide approximately 49%
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CHAPTER 1. INTRODUCTION

improvements in localization accuracy over the original odometry. This level of

improvement is also seen when our system is applied to wheel encoder odometry for

robots without requiring retraining of any system components.
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Chapter 2

Related Work

Indoor agent localization has been explored from several angles including pure

odometry approaches, combining maps with odometry, and utilizing other sensors

combined with odometry.

2.1 Pure Odometry Approaches

Inertial odometry for pedestrians has used both traditional and data-driven learning

approaches. Traditional approaches like Pedestrian Dead Reckoning (PDR) generally

begin by estimating device heading via filters like Magwick’s [13] or closed source

estimators like the iOS CoreMotion API which utilize gyroscope, accelerometer, and

magentometer signals. Step-detection is then usually performed to find where in

the IMU signals the user has taken a step. PDR methods make assumptions about

the size of the user’s stride and, when a step is detected, add this stride length

in the direction of the estimated heading to the last estimated position to update
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CHAPTER 2. RELATED WORK

the estimate [3]. Such approaches experience significant drift, and the stride length

assumption in particular is easily broken.

Chen et al. [4] used a deep network to learn to consume IMU measurements and

output user polar displacements like PDR but without making assumptions about user

stride and other tunable parameters from PDR. By avoiding these hand-set values,

Chen et al. [4] was able to achieve significant improvements in inertial odometry

through a learned model. RoNIN [28] explored ResNets, Temporal Convolutional

Networks, and recurrent networks to determine the best performing architectures for

the deep inertial localization task. TLIO [9] added a Kalman filtering element to

the ResNet RoNIN architecture to improve accuracy. The Kalman filter combined

RoNIN estimates with the original IMU signals to improve heading estimation and

achieve even more accurate localization. IDOL [22] reduced inertial heading errors

even further by using a learned deep orientation estimation system.

Functioning similarly to IMUs for human localization, wheel encoders are a com-

mon source of odometry measurements for robotic platforms, and recent applications

of deep networks have provided better uncertainty estimation to reduce encoder

odometry drift [14]. Despite improvements, odometry-only approaches still suffer

from drift over the long term since they do not have access to any means of correcting

accumulating small errors or biases.

2.2 Map & Odometry Fusion

Map information has been introduced into odometry localization via several different

techniques. Graph-based systems turn a map into a series of connected nodes which lie

in the space the user might travel through. The user’s trajectory is then constructed

5



CHAPTER 2. RELATED WORK

out of physically feasible transitions between these nodes which best match the user’s

odometry. Luo et al. [10] implements a hidden Markov model (HMM) to localize

agents with unstable GPS signals on a graph of outdoor road segments. GPS signals

are matched to road segments, and based on known factors about the maximum

travel speed of the user and other constraints, a series of maximally likely transitions

are estimated via the Viterbi algorithm. Deep attention networks have been shown to

outperform HMMs in some scenarios for matching user travel to road segments [31].

Indoors, the localization problem in a graph becomes slightly more complex

without the constraints of a road network. There are fewer limitations on agent

motion indoors and smaller distance errors become more significant, meaning that

an algorithm has to track in almost full 2D space instead of the more constraining

road network space. Conditional random fields (CRFs) have seen high pedestrian

localization accuracy by forming a graph consisting of nodes spaced apart by human

step lengths, fully covering the physically accessible space [27]. Transitions in this

graph are predicted based on inertial odometry. Graph approaches are successful

but require tuning the underlying graph for a specific source of odometry or sensor

measurements. The state space of these algorithms is discretized by the nodes. The

algorithm will never be able to localize more precisely than the node spacing parameter

value. For slower-moving systems, a graph spaced for human users means that the

slow agent will spend long periods of time at a given node before transitioning to the

next, despite moving the entire time. To resolve this, the graph must be regenerated

completely to be denser. This is a barrier to generalization to new odometry sources,

can lead to rapid graph size growth, and can increase inference time.

Bayesian filtering systems improve localization accuracy by combining information

sources like odometry and map information directly without an underlying set of
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possible states. Extended Kalman filtering (EKF) is an efficient approach to estimating

user state from both odometry and external information [20], but it suffers from only

maintaining one estimate of state and assumes Gaussian uncertainty. For the indoor

localization task, maintaining multiple estimates of state until one is proven most

likely can be very useful, such as when it is uncertain which side of a narrow obstacle

the user has traveled on.

Particle filters [8] are often used when state distributions are unknown, change over

time, and could be multi-modal. Such filters maintain an estimated state distribution

by storing a set of samples, or particles, which discretely represent the distribution.

Multiple estimates of location (the particles) are propagated using odometry. A small

amount of noise is artificially added to the odometry to simulate the uncertainty in the

odometry measurement. Particles are then weighted based on external information,

e.g. how well their state matches the output from a LiDAR scan. A resampling

process then keeps particles with probability proportional to their weight, maintaining

a discrete distribution which best combines both odometry and external information.

Particle filters are simple and adaptable, lending themselves well to localization on

low compute devices.

For particle filters, map constraints are usually invoked by heuristics which heavily

downweight the probability of particles whose last odometry propagation is infeasible

according to the map. Such a system has been proven useful in practical scenarios

[3, 12, 26], but down-weighting particles in this way is extremely sensitive to certain

types of odometry noise in our experiments and can lead to particle weight degeneracy.

The particle filter presented by Rechy Rormero et al. [18] calculates overlap between

map obstacles and a computed trajectory found by integrating a few previous odometry

measurements backwards from a particle location. Particles are given more weight if

7
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there are fewer overlaps. In our experiments, this type of multi-step heuristic is less

sensitive to odometry noise than a single-step heuristic but still suffers from the high

levels of error in inertial odometry. Our work suggests that a deep network may be

able to capture more general shape characteristics of the odometry to better match

map locations even when odometry error is high.

Peng and Weikersdorfer [17] utilizes a unique method of fusing map information

with odometry which tracks a belief tensor containing all possible user states instead

of individual particles. States are propagated in much the same way as in a particle

filter, and map information is used to downweight the probability of states which

enter obstacles. This method does not noticeably outperform a particle filter in their

experiments and shares the sensitivity to odometry noise of particle filter methods

which use hand-defined map heuristics.

2.3 Localization with Other Sensors

Other sensors are often available indoors and are used for localization. Vision and

LiDAR systems like V-LOAM [30] are highly accurate, but they require line-of-sight

to the environment and have significant power and computation needs. For a human

user who wishes to localize based on their smartphone, these requirements would

mean they are not able to place their smartphone in their pocket and must hold it in a

somewhat unnatural position for common usage. Bluetooth beacon-based localization

allows a user to hold their phone naturally or put it in their pocket. Bluetooth beacons

are used to generate a pattern of radio frequency signals which can fingerprint a

location fairly precisely [1]. Beacons emit occasional broadcasts which include a

unique ID per beacon. By recording signal strength from each ID, the user can be
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triangulated in absolute space [23], or a data-driven model can be used to output more

accurate position estimates [1]. Palaskar et al. [16] performs a similar operation but

with WiFi access points instead of Bluetooth beacons. Fingerprinting systems using

Bluetooth or WiFi are even more effective when combined with inertial odometry to

smooth the noisy fingerprinting location estimates [2]. Fingerprinting often requires

expensive infrastructure installation and maintenance, and building materials can

block signal propagation [21]. Utilizing an odometry-only approach resolves many of

these problems, particularly if the sensors are low-power and non-line-of-sight like

the IMUs and wheel encoders used in our work.
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Chapter 3

Methods

3.1 Systems

We aim to develop a system which consumes high drift odometry measurements and

uses indoor occupancy map information to reduce drift in the final estimated user

location. Map information is integrated via the sensor model of a particle filter, but

prior methods of doing so are sensitive to high levels of error in inertial odometry.

Instead, we learn a data-driven map prior from odometry and building maps which we

hypothesize will indicate likely user locations with higher accuracy than traditional

heuristic methods.

3.1.1 Model Architecture

Our Learnable Map Prior network is shown in Figure 3.1. The network aims to

generate the likelihood that a given series of odometry measurements ends at a given

location x in the map. The likelihood can be used directly as the particle filter weight

10



CHAPTER 3. METHODS

Figure 3.1: System Diagram. N is the amount of odometry history used to calculate
the map prior.

for a particle at x. We set up this network with two branches to separate map and

odometry processing, whose deep encodings are later combined. This setup is useful

because maps are generally static, so at runtime a specific indoor map only needs to

be processed by the network once to generate its encoding. The stored map encoding

can later be combined with the constantly changing odometry encoding, reducing

computational burden. The inputs to our method are a 2D indoor occupancy map

M and a short history of the agent’s most recent odometry from time t − N to t,

O. N is selected experimentally to be 5 seconds for human walking and 20 seconds

for slower robot driving. Our map network f(M,Θf) is a small version of U-Net

[15, 19] parametrized by weights Θf which has been modified to output a “Deep Map

11
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Tensor” of the same spatial dimensions as the input map but with more channels.

The number of channels C = 32 is chosen experimentally as a good balance between

speed of computation and sufficient space to store relevant environmental details.

The odometry network g(O,Θg) is a two-layer Long-Short-Term Memory (LSTM)

network parametrized by weights Θg operating on the time dimension of the odometry

history. The LSTM hidden state is of size C, and the last hidden state output is used

as the “Deep Trajectory Vector”. A dot product is taken between the Deep Map

Tensor and the Deep Trajectory Vector at each pixel location x, giving the likelihood

of x given O and M :

L(x|M,O) = f(M,Θf )x · g(O,Θg) (3.1)

In order to improve learning, the outputs of f and g are normalized to be of 2-norm

equal to 1 before this dot product operation is performed. Without this normalization,

the network overfits to the most common areas of the map. The norms of the outputs

of f and g become very large for the most commonly feasible areas of the map,

reducing performance in areas which are less commonly feasible.

3.1.2 Model Training

To train our model, we window ground truth position data into windows of N

timestamps and subtract the initial position in each window to make this data look like

odometry data. We additionally add a velocity bias drawn from a normal distribution

with σ = 1 pixel/second and a random noise drawn from a normal distribution with

σ = 0.25 pixels to each input sample to better mimic noisy odometry data. These

windows are used as training input for the odometry branch.

12
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At training time, the map branch of the network does not receive the full map.

Instead, the area of the map which includes the ground truth positions in the window

being used for the odometry branch plus some additional randomly selected space is

given. This has a two-fold purpose. It speeds training, since the entire map does not

have to pass through the convolutional layers for each sample. It also theoretically

allows the network to generalize to unseen maps, since the network must learn features

which are not specific to a given map, but instead encode a general understanding of

how obstacles influence motion in different configurations. In this work, the limited

size of our datasets does not allow us to test generalization to unseen maps, so at

test time a network is used that has been trained with data from the building being

tested. For pedestrian inertial localization, the underlying odometry method (IDOL)

must currently be trained with data from the specific building regardless, so this does

not represent an added data collection burden.

We define a cross-correlation target T (Figure 3.2c) which we train our network

to output. A 2D kernel is created with ones where the ground truth “odometry”

trajectory is located, as in Figure 3.2b, and zeros elsewhere. The kernel is cross-

correlated with the occupancy map to form T̄ whose values depend on how much the

input trajectory overlaps obstacles. T̄ is exponentiated as T = 10−6 ∗ e14∗T̄ to heavily

upweight fully free-space trajectory areas and push areas where the trajectory would

overlap an obstacle even a little bit almost to zero. We would like our network to

output T when given noisy or drifting real odometry as input. We train using Mean

Squared Error (MSE) loss: L = MSE(T,L(x|M,O)). In training our method, we

noticed that larger areas of feasible locations in T were being predicted better than

small areas. We weight feasible regions by the inverse of their pixel area in our loss

to improve small area prediction. Areas where the trajectory is infeasible need to be

13



CHAPTER 3. METHODS

(a) Example input ground truth trajectory window (in red). Direction
of travel denoted by arrow.

(b) Cross correla-
tion kernel

(c) Resulting training target. Values near 1 are feasible trajectory end locations.

Figure 3.2: Ground truth generation process for training learnable map prior.

weighted by the same amount as the smallest feasible area weight, because where the

trajectory is not feasible is equally as useful of a prior as where it is feasible.

3.1.3 Particle Filter

We utilize a particle filter to combine the learned map prior with odometry mea-

surements, as particles filters have relatively low computational burden but are able

to handle complex distributions of estimated location. A particle filter maintains

14
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P estimates of the user’s state as particles. At each timestep, each particle has its

stored state updated using a motion model:

xt+1 = xt + ∆x +N (µmotion,Σmotion) (3.2)

where xt is the user’s state (x, y) at timestep t, and ∆x is odometry measurements

between times t and t+1. Noise from the 2D distribution N (µmotion,Σmotion) is added

to each particle’s motion to capture odometry uncertainty.

Due to the significantly higher heading error present in wheel encoder odometry,

we extend the state to include robot heading θ for our wheeled robot experiments:

s = ||(∆x,∆y)||2 (3.3)

xt+1 = xt + s

cos(θ)
sin(θ)

 +N (µmotionΣmotion)0,1 (3.4)

θt+1 = θ + ∆θ +N (µmotion,Σmotion)2 (3.5)

The noise distribution is now 3 dimensional to encode noise in the additional state

element θ. Gaussian subscripts are components of the sampled vector and ∆ terms

are odometry measurements. At test time, encoder odometry is rotated to match the

estimated heading before being passed to the map prior network to correct heading

drift.

Particle weights are then computed as the value of the Location Likelihood

Heatmap at the particle’s location using the last N seconds of odometry. Low

variance resampling of the particle cloud is used due to its stability and consistent

particle space coverage [24]. Resampling copies particles from the original cloud with

15
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probability proportional to their weight. The particle closest to the median of the

new particle cloud is used as the estimated location of the user. This guarantees the

estimated location is feasible and not inside an obstacle even with a multi-modal

particle distribution.

We also implement a re-initialization method for situations where the particle

filter has diverged from a reasonable estimate. We reinitialize by sampling particles

randomly within a radius rreinit of the last estimated location when more than sreinit

of particles have passed through an obstacle. We experimentally set rreinit = 5 meters

and sreinit = 75%.

3.2 Datasets

(a) BLE+IMU dataset (b) TurtleBot dataset

Figure 3.3: Data collection setups used in this study.

A key feature of our system is its invariance to different sources of odometry data.

We test on varied datasets to show the consistent performance of our method.

16
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3.2.1 IDOL Dataset

The IDOL Dataset [22] is an inertial odometry dataset for indoor pedestrian localiza-

tion. It consists of 20 hours of 10 minute pedestrian trajectories collected by users

carrying a smartphone in 3 buildings. Smartphone IMU data and ground truth device

pose is available at 100 Hz. Odometry measurements are generated from IMU data by

the IDOL method proposed in the same work. 2D occupancy maps of the buildings

are extracted from the architectural plans available for the 3 buildings.

3.2.2 BLE+IMU Dataset

In order to compare our method against an exteroceptive measurement for human

user tracking, we collect a dataset of bluetooth low energy (BLE) beacon and IMU

measurements on 2 different floors in the IDOL dataset building 2. Similar data

to the IDOL dataset is also available in this dataset, with the addition of the BLE

beacon measurements. Collection areas are instrumented with BLE beacons emitting

a unique identifier broadcasts at 1 Hz, which are recorded along with IMU data by a

smartphone at 60 Hz. Ground truth device pose and orientation are generated with

a Stereolabs Zed Mini stereo camera configured as in Figure 3.3a.

3.2.3 TurtleBot Dataset

A third dataset was collected to test method generalization to new sources of odometry.

A ROBOTIS TurtleBot 3 (Figure 3.3b) was driven to collect 8 trajectories of 10

minutes in buildings 1 and 2 from the IDOL dataset. Wheel odometry was recorded

from the 2 driven wheels, and ground truth pose was recorded from an attached Intel

t265 tracking camera. Odometry data was generated from the wheel encoders and

17
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IMU via a standard differential drive model:

∆s = r(nturnsL + nturnsR)π (3.6)

[xt+1, yt+1, θt+1] = [xt + ∆s ∗ cos(∆θ + θt), yt + ∆s ∗ sin(∆θ + θt), θt + ∆θ] (3.7)

where nturnsL and nturnsR are the number of revolutions recorded by the wheel encoders

since the last time step, and ∆θ is calculated via a standard Madgwick filter [13]

from onboard IMU data. r is the wheel radius and (x, y, θ) is the robot state.

18



Chapter 4

Experiments

To test our learned map prior, we directly analyze the prior and utilize the prior as a

sensor model for particle filter tracking tasks with various sources of odometry. We

evaluate localization performance using two main metrics:

• Absolute Trajectory Error (ATE) is the root mean square error of points

in the predicted (x̂) and ground truth (x) trajectories. The error at timestamp

i is Ei = ||xi − x̂i||2. ATE measures global consistency and usually increases

with time if only odometry is used due to drift.

• End error (EE) is the distance between the final estimated and final ground

truth positions in a given trajectory, i.e. E = ||xT−x̂T ||2. EE indicates whether

the localization method has been able to correct for drift and localization errors

in the long term.

19



CHAPTER 4. EXPERIMENTS

4.1 Training/Testing

We implemented the learnable map prior model in Pytorch Lightning [5] and train

with Adam optimization [7] on an Nvidia RTX 2080 Ti using a learning rate of 0.01.

A batch size of 32 is used and the network takes between 50 and 100 full passes

through the data (epochs) to converge, depending on the map.

At test time, the particle filter initializes with 1000 normally distributed particles

(σ = 0.01m) around the true starting location. The filter runs at 1 Hz. For

inertial odometry, the motion model adds Gaussian noise with Σ = 0.1I2m and

for wheel encoder odometry with Σ = 0.01I3m. A benefit of our formulation is the

decomposition of trajectory and map processing. Once the network is trained, the

map only needs to be passed through the network once to obtain the Deep Map

Tensor. This can be reused for all trajectories in the same map. At test time, only

the trajectory LSTM needs to run. An AMD Threadripper 1920x CPU takes 6.7 ms

on average to compute the Location Likelihood Heatmap using a stored Deep Map

Tensor. Worst case computation time for our prior is independent of how long the user

has been walking, unlike graph-based approaches using the Viterbi algorithm whose

computation time grows linearly with the length of the trajectory. Our unoptimized

particle filter runs at 4x realtime speed, suggesting that our method would be feasible

for smartphone or low-compute platforms.

4.2 Baselines

We compare against several other methods to show the utility of our learned prior.

Pedestrian Dead Reckoning (PDR) is implemented similarly to the baseline used in
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Yan et al. [28]. A distance traveled and heading are regressed every user step. Step size

is assumed to be 0.67 m, and heading is determined using the iOS internal smartphone

estimator. IDOL [22] is selected to represent the performance of deep inertial odometry

methods. We also compare against our particle filter using a heuristic map prior

based on Rechy Rormero et al. [18] representing the best performing of priors used in

other works. The heuristic prior is generated by map cross correlation with a kernel

based on the noisy odometry trajectory, not the ground truth as for the network

training (Section 3.1.2).

For the BLE+IMU dataset, we also compare against absolute localization via BLE

beacons. BLE localization is implemented in two ways: (i) pure BLE localization

as in Agarwal et al. [1] using ten minutes of fingerprinting data, and (ii) using the

BLE estimates as a particle filter sensor model similarly to Ahmetovic et al. [2]. The

probability of a particle’s state in a Σ = 3 meters Gaussian with mean at the predicted

BLE location is used as its weight in the second case. By comparing against these

baselines, we can relate our method’s performance using only noisy relative position

measurements to the performance of a system which uses significant environmental

instrumentation and does not suffer from odometry drift.

4.3 Learned Map Prior Analysis

Figure 4.1 shows several examples of the learnable map prior network output. Spaces

where the trajectory window used to generate the prior is feasible are generally given

higher weight than extremely unlikely areas. At T = 300, the network is also able to

handle curving trajectories, placing weight in the bottom right corners of rooms and

not nearly as much weight at the top. This matches with the feasible locations for
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Figure 4.1: Example map prior predictions (generated using red odometry history)
below the ground truth feasible locations (generated from the ground truth trajectory
in blue).

the trajectory used to generate this prior.

We also compare the KL divergence between a “ground truth” location distribution

G and our predicted distribution, and between G and the heuristic prior distribution,

shown in Figure 4.2. G is defined as a Gaussian (σ = 1m) around the ground truth

agent location. Our learned prior shows consistently lower divergence from the ground

truth than the heuristic prior by a factor of approximately 3. This is because our

prior places weight more specifically than the heuristic map prior. The learned prior

consistently puts weight in the ground truth location, and it also does not put weight

near obstacles as much as the heuristic prior. The heuristic prior simply sees the areas
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Figure 4.2: KL divergence between ground truth user location distribution and map
priors.

very close to obstacles as feasible, and so weight is put there without consideration to

how commonly such areas are feasible. The learned prior, on the other hand, is able

to draw on its training data to determine whether such areas are normally included

in feasible space and correctly discounts them as extremely unlikely.

To check that the odometry branch is learning reasonable embeddings for odom-

etry windows, we perform two comparisons by compressing some example learned

embeddings down to two dimensions via t-SNE [11]. t-SNE takes N dimensional

vectors and determines an embedding in an M < N dimensional space which aims to

preserve relative distances between the original vectors in the embedding space. We

select M = 2 for visualization.

We first plot the two t-SNE embedding dimensions against each other in Figure

4.3a and color each point by the direction of travel of the input trajectory. The

embeddings form a ring, which smoothly changes color as the travel direction of the
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(a) Color is the heading direction of the input
trajectory.

(b) Color is the distance traveled by the input
trajectory

Figure 4.3: 2D t-SNE embedding of the vectors output by the odometry branch of
the map prior network.

input odometry changes. Heading direction is key to determining which areas of a

map are feasible so, as expected, the network has learned to encode this feature.

Figure 4.3b again plots the 2 t-SNE embedding dimensions, but instead colors the

points by the distance traveled by the input trajectory. We can see that longer input

odometry trajectories appear to be embedded differently from shorter trajectories.

Travel distance is also key to determining whether a given odometry-predicted

trajectory will fit into a given map space so, as expected, the network has learned to

encode this feature as well.

Our map prior network also learns a deep embedding of the map branch input.

This embedding is the same spatial dimension as the input map but with more

channels. We expect these channels to encode information about feasible trajectories

in that region of the map. Figure 4.4 shows the various channels of the learned

embedding for building 2 of the IDOL dataset. Some channels appear to encode

areas where a trajectory travelling in a specific direction will be feasible, like channel
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22 encoding trajectories moving from right to left. Other channels appear to learn

features related to the size of feasible trajectories in that area, like channel 17 which

seems to activate only in small rooms. Both direction and size of room are useful to

determining feasibility of a given trajectory, so these encodings are as expected.
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Figure 4.4: Channels of the learned map embedding for building 2.
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4.4 IDOL Dataset Experiments

Model
Bldg 1 Bldg 2, Floor 1 Bldg 3

ATE End Error ATE End Error ATE End Error

Pedestrian Dead Reckoning (PDR) 24.28 24.96 12.66 13.80 21.86 22.18
Deep Inertial Odometry (IDOL [22]) 5.65 8.51 6.62 10.61 8.33 9.71
PF + Heuristic Map Prior 3.11 3.42 11.37 15.36 6.71 9.67
PF + Learned Map Prior (OURS) 2.87 1.60 2.51 6.08 5.66 9.99

Table 4.1: Mean localization errors in different buildings for inertial localization
methods, IDOL dataset.

Figure 4.5: CDF of position error on IDOL dataset in 3 different buildings

Table 4.1 presents the results of our localization comparison on the IDOL dataset.

Our method generally outperforms others across buildings in both ATE and end

error. Buildings 2 and 3 are substantially larger than building 1 leading to significant

odometry drift, while our method is able to achieve better results with only the

addition of map information. Figure 4.5 shows the cumulative distribution functions

(CDFs) of the various methods’ errors. Our method estimates consistently more

accurate locations and does not exhibit the larger errors skewing the error distribution
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of the particle filter with heuristic prior in building 2. Building 2 has a long hallway

which pure odometry often drifts out of as users walk down it. Since the rooms by

the hallway are large and divided by thin walls, the heuristic prior weights the rooms

similarly to the hallway due to only tiny occasional intersections between the walls

and the trajectory. Our learned prior learns to be more specific. The hallway is

given high likelihood, while the rooms are given low likelihood because there are

obstacles (walls) blocking that much travel in the relevant direction. On average, we

are able to achieve an error of less than 4 meters 80% of the time using only high drift

inertial data and an occupancy map. Figures 4.6, 4.7, and 4.8 show the qualitative

improvement in localization accuracy using our method.
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Figure 4.6: Example trajectories in Building 1 comparing IDOL odometry to the
particle filter using the heuristic and learned map priors. Truncated slightly for clarity,
initial pose is the same across all methods.
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Figure 4.7: Example trajectories in Building 2 comparing IDOL odometry to the
particle filter using the heuristic and learned map priors. Truncated slightly for clarity,
initial pose is the same across all methods.
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Figure 4.8: Example trajectories in Building 3 comparing IDOL odometry to the
particle filter using the heuristic and learned map priors. Truncated slightly for clarity,
initial pose is the same across all methods.

4.5 IMU + BLE Experiments

We now aim to compare our method using relative position measurements and a map

to a method which directly estimates user pose in a global frame of reference, i.e.

BLE beacon localization. Figure 4.9 shows the results of using various numbers of

beacons in a beacon localization system compared to IDOL and our method. BLE

Only uses the raw, 1 Hz BLE estimates of location. The particle filter using the

BLE estimates as a prior is able to achieve better performance by smoothing the
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Figure 4.9: Comparison of odometry-based vs. bluetooth beacon-based indoor
localization performance for different numbers of bluetooth beacons in the environment.
Standard deviation of each method is shown by the shaded region of the relevant
color. IDOL standard deviation is not shown due to size. IDOL & our method do
not rely on beacons, so have consistent performance as the number of beacons varies.

noisy BLE estimates using inertial odometry. Inertial odometry alone generally does

not outperform BLE localization, but with the addition of map information through

our learned prior we outperform BLE-only localization with fewer than 5-7 beacons.

Overall, we achieve ATE within about 1 meter of both BLE methods using 8-10

beacons. Higher beacon densities, like at 8-10 beacons, make BLE localization very

accurate because additional beacons can be used to differentiate between areas which

have similar BLE signal characteristics at lower densities. These experiments are

performed in a 1250 m2 area, which is fairly small relative to 10 beacons. Similar

performance in large areas could require 100s of beacons which can become infeasible
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to install and maintain. Our method is only slightly less accurate and does not require

installing anything in the environment.
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4.6 Wheeled Robot Odometry Experiments

Model
Bldg 1 Bldg 2, Floor 1

ATE End Error ATE End Error

Wheel Odometry Only 4.15 7.84 3.93 3.99

PF + Heuristic Map Prior 3.69 6.25 3.2 2.89

PF + Learned Map Prior (OURS) 1.88 1.69 1.48 1.48

Table 4.2: Results of wheeled robot localization using various odometry-only methods
across two buildings.

Figure 4.10: Cumulative Distribution Function plots of errors caused by wheel
odometry localization methods.

We now show experiments to determine whether our method is able to generalize

to a different source of odometry: wheel encoders. Table 4.2 shows mean results

for tracking a small wheeled robot in two different buildings using wheel encoder

odometry. Our learned prior combined with a particle filter is able to more than

halve the error present in the system, which the heuristic prior is unable to handle.
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The CDF plots in Figure 4.10 also support the utility of our learned map prior when

applied to a particle filter. 90% of errors are less than 2.8 meters using only odometry

and map information. These performance levels are achieved without retraining our

map prior network. The network is trained on only inertial odometry trajectories

and has not seen wheel encoder odometry before.

Figure 4.11: Example estimated trajectories of various odometry-only methods on a
wheeled robot.

The trajectories in Figure 4.11 show our prior’s ability to accurately weight

particles. Odometry heading error often accumulates as the robot makes turns, but

our learned prior absorbs some of this error and places weight in appropriate locations

based on the general curving nature of the trajectory. The heuristic prior is unable

to accurately weight regions when heading error occurs and so does not correct the

error, leading to significant drift.
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Conclusions

5.1 Limitations

Our learned map prior outperforms and is more versatile than hand-defined methods

for fusing inertial odometry and maps but has several limitations. The particle filter

in our approach is based on a learned prior, which has an inherent drawback of

learning-based methods: performance degradation when generalizing. Within the

same map, our method generalized to a variety of trajectories. If some training data

is available, this method should generalize to different maps, but specific issues may

arise with maps very different to our testing environments. For example, our trials did

not explore performance in very large open spaces or trajectories which enter multiple

rooms due to access limitations. The network branch which consumes odometry

information is another location for possible generalization failure. Our method works

well with the noise modalities present in inertial odometry and generalized easily

to wheel encoder odometry. However, odometry sources such as those from legged
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robots may have very different noise characteristics, and our pre-trained network may

be unable to generalize to this new distribution. Specifically for inertial pedestrian

localization, our method relies on a learning-based method to generate odometry

(IDOL) which has underlying difficulty generalizing to different buildings.

A key requirement of our system is an accurate map of the indoor space with

correct transformations between real-world and map coordinates. Architectural plans,

like those used in this work, are not necessarily accurate to the built configuration of

a space. Indoor mapping systems based on SLAM using cameras or LiDARs have

become much easier to use and more accurate, but there is still significant effort

required to generate maps if they are not previously available for a given space. Both

2D architectural and SLAM maps do not necessarily capture all obstacles in a map,

depending on the height of the sensor used to collect the map. For example, tables

are not usually placed in their true locations in architectural plans, and a 2D LiDAR

system held by a human operator performing mapping of a space may be held too

high or low to accurately capture the tables. Obstacle configurations can also change

over time without warning. Since our method relies so heavily on combining obstacle

information with user motion to rule out areas where the motion was infeasible, the

lack of a full understanding of obstacle locations can limit the effectiveness of our

prior.

5.2 Concluding Remarks

In this work, we present a data-driven approach to combining occupancy map

information with odometry measurements for indoor localization. Existing work

uses hand-defined methods to incorporate map information. These methods make
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assumptions which generalize poorly or use noise-sensitive heuristics. Our method

provides a more robust prior on indoor user location using a two-branch deep network

utilizing separate learned map and odometry embeddings which are combined to

determine feasible user locations in the map. Our prior, when used as a sensor model

in a particle filter, is able to achieve 49% accuracy improvement over odometry for

human inertial localization. Compared to a BLE beacon-based localization system,

our method exceeds BLE accuracy in low beacon-density spaces and approaches

similar performance to BLE methods in high beacon-density spaces without requiring

any devices installed in the environment. Our prior is also versatile, halving error in

wheel encoder odometry-based localization for a robot without retraining.

5.3 Future Work

While we are able to achieve significant improvements in localization when only

odometry and map data is available, there remain several key avenues for future work.

Since our method is theoretically invariant to the underlying source of odometry as

long as it is trained with realistic noise, generating synthetic ground truth trajectories

for training may reduce data collection burden. Wang et al. [25] proposes a method

to generate realistic human motion trajectories given only images (“scenes”) of an

indoor environment. Utilizing techniques like this could support the generation of

long realistic training trajectories in an environment with minimal data collection

effort.

An additional benefit of training data generation could be easing the effort required

to collect a large training dataset in different buildings. In our experiments, we noted

that generalization to buildings with very different configurations did not work
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especially well but were unable to resolve this problem due to access to data from

only 3 buildings. A larger number of buildings with training data available would

allow for training on a variety of buildings and testing map-branch generalization

to unseen buildings. If the map branch was able to generalize to new building

configurations easily, the amount of training data required for a new building would

decrease dramatically. As long as the chosen odometry method generalized to new

spaces and a map was available, no new data would need to be collected to generalize

to a new space if the map branch could generalize successfully.

Another direction for future work might be utilizing a fully differentiable particle

filter [6] in place of our traditional method. Such particle filters are able to learn

the various parameters of a particle filter (e.g. particle dynamics models, resampling

systems, re-initialization heuristics) in a data-driven fashion and have been shown

to outperform hand-defined filters for a given task. By making the learning process

backpropagate from error between filter-estimated and ground truth positions, our

prior may learn more useful information than our hand-defined target is currently

able to provide. In addition, our heuristic re-initialization system for resetting the

filter when it begins to predict extremely unlikely locations could be learned, reducing

the need for tuning to a specific map.
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nachev, Akshay Kulkarni, Shunta Komatsu, Martin.B, Jean-Baptiste SCHI-

RATTI, Hadrien Mary, Donal Byrne, Cristobal Eyzaguirre, Cinjon, and Anton

Bakhtin. PyTorchLightning/pytorch-lightning: 0.7.6 release, May 2020. URL

https://zenodo.org/record/3828935. 4.1

[6] Rico Jonschkowski, Divyam Rastogi, and Oliver Brock. Differentiable Parti-

cle Filters: End-to-End Learning with Algorithmic Priors. In Robotics: Sci-

ence and Systems XIV. Robotics: Science and Systems Foundation, June

2018. ISBN 978-0-9923747-4-7. doi: 10.15607/RSS.2018.XIV.001. URL

http://www.roboticsproceedings.org/rss14/p01.pdf. 5.3

[7] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimiza-

tion. arXiv:1412.6980 [cs], January 2017. URL http://arxiv.org/abs/1412.

6980. arXiv: 1412.6980. 4.1

[8] Jun S. Liu and Rong Chen. Sequential Monte Carlo Methods for Dynamic

Systems. Journal of the American Statistical Association, 93(443):1032–1044,

September 1998. ISSN 0162-1459, 1537-274X. doi: 10.1080/01621459.1998.

10473765. URL http://www.tandfonline.com/doi/full/10.1080/01621459.

41

http://arxiv.org/abs/1802.02209
https://zenodo.org/record/3828935
http://www.roboticsproceedings.org/rss14/p01.pdf
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://www.tandfonline.com/doi/full/10.1080/01621459.1998.10473765
http://www.tandfonline.com/doi/full/10.1080/01621459.1998.10473765


Bibliography

1998.10473765. 2.2

[9] Wenxin Liu, David Caruso, Eddy Ilg, Jing Dong, Anastasios I. Mourikis, Kostas

Daniilidis, Vijay Kumar, and Jakob Engel. TLIO: Tight Learned Inertial

Odometry. IEEE Robotics and Automation Letters, 5(4):5653–5660, October

2020. ISSN 2377-3766, 2377-3774. doi: 10.1109/LRA.2020.3007421. URL

http://arxiv.org/abs/2007.01867. arXiv: 2007.01867. 1, 2.1

[10] An Luo, Shenghua Chen, and Bin Xv. Enhanced Map-Matching Algorithm with

a Hidden Markov Model for Mobile Phone Positioning. ISPRS International

Journal of Geo-Information, 6(11):327, October 2017. ISSN 2220-9964. doi:

10.3390/ijgi6110327. URL http://www.mdpi.com/2220-9964/6/11/327. 2.2

[11] Laurens van der Maaten and Geoffrey Hinton. Visualizing Data using t-SNE.

Journal of Machine Learning Research, 9(86):2579–2605, 2008. ISSN 1533-7928.

URL http://jmlr.org/papers/v9/vandermaaten08a.html. 4.3

[12] Robert A MacLachlan and Artur Dubrawski. Applied Indoor Localization: Map-

based, Infrastructure- free, with Divergence Mitigation and Smoothing. page 2.

1, 2.2

[13] S. O. H. Madgwick, A. J. L. Harrison, and R. Vaidyanathan. Estimation of

IMU and MARG orientation using a gradient descent algorithm. In 2011 IEEE

International Conference on Rehabilitation Robotics, pages 1–7, Zurich, June

2011. IEEE. ISBN 978-1-4244-9862-8 978-1-4244-9863-5 978-1-4244-9861-1. doi:

10.1109/ICORR.2011.5975346. URL http://ieeexplore.ieee.org/document/

5975346/. 2.1, 3.2.3

[14] Uche Onyekpe, Vasile Palade, Anuradha Herath, Stratis Kanarachos, and

Michael E Fitzpatrick. WhONet: Wheel Odometry Neural Network for Ve-

42

http://www.tandfonline.com/doi/full/10.1080/01621459.1998.10473765
http://www.tandfonline.com/doi/full/10.1080/01621459.1998.10473765
http://arxiv.org/abs/2007.01867
http://www.mdpi.com/2220-9964/6/11/327
http://jmlr.org/papers/v9/vandermaaten08a.html
http://ieeexplore.ieee.org/document/5975346/
http://ieeexplore.ieee.org/document/5975346/


Bibliography

hicular Localisation in GNSS-Deprived Environments. page 26. 2.1

[15] Shreyas Padhy. shreyaspadhy/UNet-Zoo, May 2021. URL https://github.

com/shreyaspadhy/UNet-Zoo. original-date: 2017-12-09T20:48:15Z. 3.1.1

[16] Pratik Palaskar, Rajesh Palkar, and Mayur Tawari. Wi-Fi Indoor Positioning

System Based on RSSI Measurements from Wi-Fi Access Points –A Tri-lateration

Approach. 5(4):5, 2014. 1, 2.3

[17] Cheng Peng and David Weikersdorfer. Map as The Hidden Sensor: Fast

Odometry-Based Global Localization. arXiv:1910.00572 [cs], September 2019.

URL http://arxiv.org/abs/1910.00572. arXiv: 1910.00572. 2.2

[18] Adrian Rechy Rormero, Paulo V K. Borges, Andreas Pfrunder, and Alberto

Elfes. Map-Aware Particle Filter for Localization. In 2018 IEEE International

Conference on Robotics and Automation (ICRA), pages 2940–2947, Brisbane,

QLD, May 2018. IEEE. ISBN 978-1-5386-3081-5. doi: 10.1109/ICRA.2018.

8460707. URL https://ieeexplore.ieee.org/document/8460707/. 1, 2.2,

4.2

[19] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional

Networks for Biomedical Image Segmentation. arXiv:1505.04597 [cs], May 2015.

URL http://arxiv.org/abs/1505.04597. arXiv: 1505.04597. 3.1.1

[20] Dan Simon. Optimal state estimation: Kalman, H [infinity] and nonlinear

approaches. Wiley-Interscience, Hoboken, N.J, 2006. ISBN 978-0-471-70858-2.

OCLC: ocm64084871. 2.2

[21] Suherman, Fahmi, Waleed Al-Azzawi, Marwan Al-Akaidi, Emerson P. Sinul-

ingga, and Naemah Mubarakah. Radio-Friendly Building for Efficient Sig-

nal Distribution. In 2018 IEEE International Conference on Communica-

43

https://github.com/shreyaspadhy/UNet-Zoo
https://github.com/shreyaspadhy/UNet-Zoo
http://arxiv.org/abs/1910.00572
https://ieeexplore.ieee.org/document/8460707/
http://arxiv.org/abs/1505.04597


Bibliography

tion, Networks and Satellite (Comnetsat), pages 60–63, November 2018. doi:

10.1109/COMNETSAT.2018.8684092. 2.3

[22] Scott Sun, Dennis Melamed, and Kris Kitani. IDOL: Inertial Deep Orientation-

Estimation and Localization. Proceedings of the AAAI Conference on Artificial

Intelligence, 35(7):6128–6137, May 2021. URL https://ojs.aaai.org/index.

php/AAAI/article/view/16763. Section: AAAI Technical Track on Intelligent

Robots. 1, 2.1, 3.2.1, 4.2, ??

[23] Adel Thaljaoui, Thierry Val, Nejah Nasri, and Damien Brulin. BLE localization

using RSSI measurements and iRingLA. In 2015 IEEE International Conference

on Industrial Technology (ICIT), pages 2178–2183, March 2015. doi: 10.1109/

ICIT.2015.7125418. 2.3

[24] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic robotics.

Intelligent robotics and autonomous agents. MIT Press, Cambridge, Mass, 2005.

ISBN 978-0-262-20162-9. OCLC: ocm58451645. 3.1.3

[25] Jingbo Wang, Sijie Yan, Bo Dai, and Dahua LIn. Scene-aware Generative

Network for Human Motion Synthesis. arXiv:2105.14804 [cs], May 2021. URL

http://arxiv.org/abs/2105.14804. arXiv: 2105.14804. 5.3

[26] Hao Xia, Jinbo Zuo, Shuo Liu, and Yanyou Qiao. Indoor Localization on

Smartphones Using Built-In Sensors and Map Constraints. IEEE Transactions

on Instrumentation and Measurement, 68(4):1189–1198, April 2019. ISSN 0018-

9456, 1557-9662. doi: 10.1109/TIM.2018.2863478. URL https://ieeexplore.

ieee.org/document/8444074/. 1, 2.2

[27] Zhuoling Xiao, Hongkai Wen, Andrew Markham, and Niki Trigoni. Lightweight

map matching for indoor localisation using conditional random fields. In IPSN-14

44

https://ojs.aaai.org/index.php/AAAI/article/view/16763
https://ojs.aaai.org/index.php/AAAI/article/view/16763
http://arxiv.org/abs/2105.14804
https://ieeexplore.ieee.org/document/8444074/
https://ieeexplore.ieee.org/document/8444074/


Bibliography

Proceedings of the 13th International Symposium on Information Processing in

Sensor Networks, pages 131–142, April 2014. doi: 10.1109/IPSN.2014.6846747.

1, 2.2

[28] Hang Yan, Sachini Herath, and Yasutaka Furukawa. RoNIN: Robust Neural

Inertial Navigation in the Wild: Benchmark, Evaluations, and New Methods.

arXiv:1905.12853 [cs], May 2019. URL http://arxiv.org/abs/1905.12853.

arXiv: 1905.12853. 1, 2.1, 4.2

[29] Ji Zhang and Sanjiv Singh. LOAM: Lidar Odometry and Mapping in Real-time.

In Robotics: Science and Systems X. Robotics: Science and Systems Foundation,

July 2014. ISBN 978-0-9923747-0-9. doi: 10.15607/RSS.2014.X.007. URL

http://www.roboticsproceedings.org/rss10/p07.pdf. 1

[30] Ji Zhang and Sanjiv Singh. Visual-lidar odometry and mapping: low-drift, robust,

and fast. In 2015 IEEE International Conference on Robotics and Automation

(ICRA), pages 2174–2181, Seattle, WA, USA, May 2015. IEEE. ISBN 978-1-

4799-6923-4. doi: 10.1109/ICRA.2015.7139486. URL http://ieeexplore.ieee.

org/document/7139486/. 1, 2.3

[31] Kai Zhao, Jie Feng, Zhao Xu, Tong Xia, Lin Chen, Funing Sun, Diansheng Guo,

Depeng Jin, and Yong Li. DeepMM: Deep Learning Based Map Matching with

Data Augmentation. In Proceedings of the 27th ACM SIGSPATIAL International

Conference on Advances in Geographic Information Systems, pages 452–455,

Chicago IL USA, November 2019. ACM. ISBN 978-1-4503-6909-1. doi: 10.1145/

3347146.3359090. URL https://dl.acm.org/doi/10.1145/3347146.3359090.

2.2

45

http://arxiv.org/abs/1905.12853
http://www.roboticsproceedings.org/rss10/p07.pdf
http://ieeexplore.ieee.org/document/7139486/
http://ieeexplore.ieee.org/document/7139486/
https://dl.acm.org/doi/10.1145/3347146.3359090

	1 Introduction
	2 Related Work
	2.1 Pure Odometry Approaches
	2.2 Map & Odometry Fusion
	2.3 Localization with Other Sensors

	3 Methods
	3.1 Systems
	3.1.1 Model Architecture
	3.1.2 Model Training
	3.1.3 Particle Filter

	3.2 Datasets
	3.2.1 IDOL Dataset
	3.2.2 BLE+IMU Dataset
	3.2.3 TurtleBot Dataset


	4 Experiments
	4.1 Training/Testing
	4.2 Baselines
	4.3 Learned Map Prior Analysis
	4.4 IDOL Dataset Experiments
	4.5 IMU + BLE Experiments
	4.6 Wheeled Robot Odometry Experiments

	5 Conclusions
	5.1 Limitations
	5.2 Concluding Remarks
	5.3 Future Work

	Bibliography

