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Abstract—Recognizing the same place under variant
viewpoint differences is the fundamental capability for hu-
man beings and animals. However, such a strong place
recognition ability in robotics is still an unsolved problem.
Extracting local invariant descriptors from the same place
under various viewpoint differences is difficult. This paper
seeks to provide robots with a human-like place recognition
ability using a new 3D feature learning method. This paper
proposes a novel lightweight 3D place recognition and fast
sequence-matching to achieve robust 3D place recognition,
capable of recognizing places from a previous trajectory
regardless of viewpoints and temporary observation dif-
ferences. Specifically, we extracted the viewpoint-invariant
place feature from 2D spherical perspectives by leverag-
ing spherical harmonics’ orientation-equivalent property.
To improve sequence matching efficiency, we designed a
coarse-to-fine fast sequence matching mechanism to bal-
ance the matching efficiency and accuracy. Despite the
apparent simplicity, our proposed approach outperforms
the relative state-of-the-art. In both public and self-gathered
datasets with orientation/translation differences or noise
observations, our method can achieve above 95% average
recall for the best match with only 18% inference time of
PointNet-based place recognition methods.

Index Terms—3D Place Recognition, Viewpoint Invariant,
SLAM, Spherical Harmonics, Sequence Matching

I. INTRODUCTION

PLACE recognition plays an essential role in mobile
robotics and has been well-studied over the past two

decades. The capability to re-localize visited areas has en-
abled multiple applications, such as autonomous vehicles,
warehouse automation, rescue-, service- and delivery- robotics,
etc. Vision-based place recognition methods [1] usually suffer
from illumination variations, while the 3D LiDAR inputs do
not have such issue. The price decline and accurate mea-
surements of LiDAR devices make 3D point cloud widely
applied in Simultaneous Localization and Mapping (SLAM)
and navigation tasks. However, 3D place recognition in the
same area under various viewpoints and dynamic scenarios
is still a very challenging task. Traditional place recognition
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Fig. 1: Given two local 3D sequences Ol1, Ol2 and a reference
sequence Or, which are observed with different orientations or
positions, our method can extract out viewpoint-invariant place
descriptors Sl1, Sl2 and Sr respectively. Without any initial
estimation, we can efficiently detect the feature similarity via
our fast sequence-matching procedure.

methods are mainly based on 3D registration algorithms [2],
or handcraft 3D feature descriptor [3]–[5]. Achieving efficient
place recognition with registration-based methods is difficult in
practice since they usually require good initial estimation [2].
3D handcraft features can be viewpoint-invariant, such as 3D-
SIFT [3] and Spin-Image [4], while extracting such features
in the real applications is time-consuming [6].

Recent studies on PointNet [7]-based 3D data association
have brought light to the LiDAR-based place recognition
task [8]–[10]. These approaches extract place descriptors from
the raw point cloud in an end-to-end learning manner, and have
achieved remarkable performance on public datasets. However,
most learning-based 3D place descriptors are sensitive to view-
point changes. Furthermore, their dependence on the single
observation usually fails to guarantee a correct potential match,
because the sensor information always contains measurement
noises.

To achieve viewpoint-invariant 3D place recognition while
balancing the matching accuracy and searching efficiency
simultaneously, we propose a 3D place recognition frame-
work. As depicted in Figure 1, our method mainly includes
two modules, spherical harmonic place descriptor extraction
(SphereVLAD), and fast sequence-matching (Fast-Matching).
SphereVLAD is an viewpoint-invariant descriptor extraction
module, which leverages the orientation-equivalent property of
spherical harmonics. It can provide place descriptors with a se-
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quence of spherical projections. Compared with raw 3D point
cloud data, spherical projections can capture sufficient geo-
metric structure for recognition in complex 3D environment
and have an intrinsic advantage in orientation-equivalence. Our
matching results are conducted on the sequence observation,
instead of time-consuming brute-force searching in the tradi-
tional sequence matching [11], [12], Fast-Matching can speed
up the matching procedure by 30-50 times.

We conduct an extensive experimental analysis to evaluate
the proposed method on both public datasets [13], [14] and
self-gathered datasets. Notably, experiment results show that
our method is more robust against viewpoint-difference than
the relative state-of-the-arts [8]–[10], [15], [16]. Additionally,
our method consumes less GPU memory and can extract the
local place descriptor within 30 ms, making it more suitable
for large-scale place recognition and SLAM applications.

II. RELATED WORK

This section will mainly focus on related works of LiDAR-
based 3D place recognition and recent developments in place
matching approaches.

A. 3D Place Recognition
Recent 3D place recognition approaches [8], [9] have made

significant progress. Mikaela et al. [8] combined the feature
extraction ability of PointNet [7] to obtain translation-invariant
3D place descriptors. Thus, PointNetVLAD [8] has less lim-
itation to the optimal local problem in traditional alignment-
based approaches [2]. Based on Mikaela’s work, LPDNet [9]
further improved place recognition accuracy by combining
with PointNet++ [17], which is designed to capture more ge-
ometric features from raw point clouds. SeqLPD [18] obtains
an improvement by incorporating the LPDNet [9] and the
sequence matching module. Recently, PCAN [10] improves
the feature aggregation ability by applying an attention VLAD
layer to mark out the essential points in the 3D point cloud.
However, all the above methods are sensitive to viewpoints
changes, since PointNet approaches [7], [17] are not designed
to be viewpoint-invariant.

Kim et al. [19] proposed a projection-based descriptor called
Scan-Context to solve long-term global localization. Yin et
al. [15] proposed a viewpoint-invariant descriptor from the
projections and combined with Monte Carlo localization to
achieve a fast global localization. Most recently, Chen et
al. [20] introduced an overlapping estimation network to
predict the place feature difference and the relative yaw
differences simultaneously. However, the viewpoint-invariant
ability in the above projection-based methods is rusticity to
yaw and non-translation differences. In the real applications,
such as unstructured road status (with changing pitch/roll
in viewpoints) and large-scale 3D environments (with local
translation differences on XY plane), such constraints can not
be always satisfied.

Different from the above point-based or projection-based
methods, we inference the viewpoint-invariant place descrip-
tors from spherical harmonic domain [21], which is robust to
both 3D orientations and local translations.

B. Sequence Matching

Traditional place recognition methods usually rely on Bag-
of-Visual-Words (BoW) [22] to encode place descriptors into
a tree-like structure and retrieve similar places with one single
scan. FABMAP [23] uses a Bayesian filtering approach to
achieve long-term place recognition over a 1000km trajectory
with one single scan. Since a single scan usually contains
measurement noise and observable texture difference caused
by spatial/dynamic scenery differences, SeqSLAM [11] uses
a brute-force sequence matching manner improve the place
matching accuracy. However, brute-force searching is time-
consuming in practice. These methods cannot be directly
applied to place recognition tasks. Sayem et al. [24] proposed
a Fast-SeqSLAM method, which improved the searching ef-
ficiency by utilizing an approximate nearest neighbor (ANN)
as the initial estimate for potential matches. Since ANN in
Fast-SeqSLAM still relies on single image feature similarities,
the initial search efficiency may decrease when the number of
reference sequences is beyond specific amounts.

Our proposed framework balances the recognition efficiency
and accuracy by leveraging the sequence matching with a
coarse-to-fine searching manner.

III. OUR METHOD

In this section we will introduce the details of our frame-
work. Given the local and global reference sequences of
LiDAR scans, we first generate the multi-layer spherical
projections, which are then encoded as viewpoint-invariant
place descriptors by our SphereVLAD module, finally we
locate the best matches based on our Fast-Matching module.
We will investigate the three modules respectively.

A. Multi-layer Spherical Generation

Fig. 2: Multi-layer spherical views generation. Given a
local point cloud, we project points of different ranges
([0, 5], [5, 10], [10, 15, [15, 20]m) to corresponding spherical
views (L1, L2, L3, L4). Each layer includes two channels,
nearest point distance dθi,φj and direction angle αθi,φj on grid
(θi, φj).

To apply the feature extraction in the SphereVLAD, we need
first transform 3D point clouds into spherical representations.
In [25], the author proposed a ray-mash interaction method
to project 3D points onto one spherical mesh. However,
this projection is unsuitable for naturally dense point clouds,
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Fig. 3: Network structure of SphereVLAD. Given multi-layer spherical perspectives, SphereVLAD can obtain orientation-
equivariant local features through the spherical convolution in the harmonic domain, and then transform them into viewpoint-
invariant features via feature aggregation. Such features are designed to be invariant to heading and roll/pitch differences.

since there may exist several points within one grid on
the spherical mesh. To mitigate this problem, we design a
multi-layer spherical-view generation mechanism. As shown
in Figure. 2, we divide the raw point cloud into different ranges
([0, 5, 10, 15, 20]m), and each layer projects one range of 3D
data onto a spherical view. Given a desired resolution H , we
generate a H×H grids from the center on the spherical view.
On the grid (θi, φj), we set dθi,φj

as distance to nearest points
within this grid. We also compute the angle αθi,φj between
the ray and the surface normal at the intersecting face. In our
applications, H = 64, this parameter is selected by evaluating
the performance and efficiency on different datasets.

B. SphereVLAD

1) Viewpoint-invariant Feature Extraction: SphereVLAD
first extracts the orientation-equivalent features with the spher-
ical convolution operation. Given g, ψ ∈ SO(3) → RK on
the rotation group, spherical convolution between g and ψ is
defined as:

[g ?SO(3) ψ](R) =

∫
SO(3)

g(R−1Q)ψ(Q)dQ. (1)

where R,Q ∈ SO(3). Based on the proof in [26], spherical
convolution is shown to be orientation-equivariant:

[g ?SO(3) [LGψ]](R) =[LG[g ?SO(3) ψ]](R) (2)

where LG(G ∈ SO(3)) is the rotation operator for spherical
signals. As shown in Figure. 3, the spherical convolution
of two signals g and ψ are computed by three steps. We
first expand g and ψ to their spherical harmonic basis, then
compute the point-wise product of harmonic coefficients, and
finally invert the spherical harmonic expansion.

Same as in [8], we leverage a feature clustering operation to
convert the output of spherical convolution into a viewpoint-
invariant place descriptor. Intuitively, there exists spatial sim-
ilarity in output local descriptors of spherical convolution.
Therefore, we cluster the local descriptors and take a sum
of residuals (difference vector between descriptor and cor-
responding cluster center) as a global place descriptor. The
extracted place descriptor is invariant to orientation because
the unsupervised clustering property of the VLAD layer [27].

On the other hand, our multi-layer spherical projections
can improve the geometry feature extraction and reduce the
sensitiveness to the translation differences. In experiments,
we will analysis the place recognition performance of our
SphereVLAD approach under variant viewpoint differences.

2) Learning Metrics: To enable the end-to-end training for
our SphereVLAD module, we introduce a ”Lazy Viewpoint”
loss metric. For the convenience of illustrating the loss func-
tions, the necessary definitions are first described as following.
Each training tuple in our training datasets consists of four
components: S = [Sa, {Srot}, {Spos}, {Sneg}}], where Sa
is the spherical projections of the local 3D scan onto the
ground truth position. {Srot} is a set of spherical represen-
tations of 3D scans manually rotated from {Sa}, where the
rotation angles are random sampled from ([0◦, 30◦, ...330◦]).
{Spos} denotes a set of spherical representations of 3D scans
(“positive”) whose distance to {Sa} is within the threshold
Dpos, and {Sneg} denotes a set of 3D scans (“negative”)
whose distance to {Sa} is beyond Dnet. In our applica-
tions, we set the threshold Dpos = 5m and Dneg =
20m. Ideally, we want to minimize two distances: δposi =

d(f(Sa), f(Sposi)) and δ
rotj
posi = d(f(Srotj ), f(Sposi)), while

maximizing two distances: δnegi = d(f(Sa), f(Snegi)) and
δ
rotj
negi = d(f(Srotj ), f(Snegi)). Here Srotj ∈ {Srot}, Sposi ∈
{Spos} and Snegi ∈ {Sneg}. f(.) is the function that
encodes spherical representations into global descriptors by
SphereVLAD, and d(·) denoted the Euclidean distance.

We apply a “Lazy Viewpoint” loss to minimize the distance
between f(Sa) and f(Sposi), and maximize the distance
between f(Sa) and f(Snegj ), which is written as:

LV iewpoint(T ) =max
i,j

([γ + δposi − δnegj ]+)+ (3)

max
i,j,k

([α+ δrotjposi − δ
rotj
negk

]+)

where [.]+ denotes the hinge loss, γ and α are the constant
threshold to control the margins between δposi ∼ δnegj and
δ
rotj
posi ∼ δ

rotj
negk respectively. In our application, both γ and α

is set to 0.5.

C. Fast Matching
Given the extracted viewpoint-invariant place descriptor,

we apply a fast sequence-matching approach to improve
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Fig. 4: The Fast sequence matching method. v is the frame
down-sampling interval, and p is the number of particles. An
area will be marked as ‘negative’ when no active particles
within this area. After particles converged on v = V0, new
particles are sampled from active area on v = V0

2 level.

place recognition accuracy against the measurement noise.
As shown in Figure. 4, given a sequence of global reference
descriptors Sg and a sequence of temporary descriptors Sl,
we calculate feature differences based on features’ Euclidean
distances. The proposed fast sequence-matching method can
locate the best match via a hierarchical searching manner.
This searching manner can balance the searching efficiency
and accuracy. Since our Fast-Matching approach follows the
transitional particle filter framework, we will introduce the
particle initialization, particle/map updating, and complexity
analysis respectively.

1) Particle Initialization: We first define a skipping interval
v = V0, i.e. every v frames to take a place descriptor,
as shown in the second row of Figure. 4. The particles
are generated uniformly within the reference descriptors Sg ,
where each particle represents a potential match between Sl
and Sg . At the lowest resolution level, particles are sampled
uniformly along the whole frame sequence, and the sequence
length for each particle is Sl

V0
. We define an overlapped ratio

ROverlap ∈ [0, 1] to controls the overlapping ratio between
two neighbor particles. Then the initial number of particles
Pinit can be estimated by

Pinit =
M

N
· 1

1−ROverlap
=
M

N
τ, (4)

where M and N are the sequence length of reference frames
Og and local frames Ol. When ROverlap = 50%, initial
particles are τ = 2 times of M

N . The entire particle sets have
the following format

P = {p[1]t , p
[2]
t , p

[3]
t , ..., p

[Pinit]
t } (5)

pit = [idit, w
i
t],

where idit and wit represent the index of predicted reference
sequence and its corresponding weight for particle pit.

2) Particle & Map Updating: For each particle, we evaluate
its corresponding matching score by following the SeqS-
LAM [11] procedure. Please refer to the original paper for

detailed explanation. The new particle weighting is obtained
by ω̂ik = ωik−1 × 1

1+e−scorei
. After updating all particles, the

particles’ weights are further updated with a normalization
operation ωik =

ω̂i
k∑
ω̂i

k

. Based on the new particles’ weight-
ing,the effectiveness score of new particles P is calculated
by N̂eff = 1/(

∑(
ωik
)2
). If the N̂eff is smaller than the

given threshold thresheff , resampling on the new particles’
distribution will be triggered.

As shown in the third row of Fig. 4, the particles will
converge to potential matching targets. We determine whether
to change the sequence resolution level by evaluating an
active coverage score Mcover = Mactive

Mactive+Mnegative
, If the

convergence rate satisfies Mcover ≤ 50%, sequences Slt and
Sgr will be updated into a higher resolution level. Please
note, we will not generate new particles within the negative
areas, and only half of the particles will be kept to avoid the
increasing computation consumption for a single particle.

3) Complexity Analysis: Given M reference frames and N
temporary frames, for SeqSLAM, the complexity is O (MN).
In map resolution level i with Pinit initial particles, the com-
plexity of our method is O

(
Pinit

2i Ni
)
, where Ni is the number

of testing frames on the i-th resolution level. Assume lmax is
the maximum resolution level, we will have Ni = N

2lmax−i

testing frames. Then,

C Seq
MRS

=
O(MN)

O
(∑lmax

i=0
Pinit

2i ·Ni
) (6)

=
O(MN)

O
(∑lmax

i=0
1
2i ·

M
N ·

1
1−Roverlap

· N
2lmax−i

)
=N · (1−Roverlap) ·

2lmax

lmax
.

where C Seq
MRS

is the computation complexity ratio between
SeqSLAM and our method. If we set lmax = 3 and Roverlap =
0.5, the computation complexity ratio will be 1.33N . Assume
N = 50, ideally we can speed up by 66.5 times.

IV. EXPERIMENTS

In this section, we compare the proposed method with
current arts in learning-based 3D place recognition on both

Fig. 5: The data recording platform.
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(a) Single frame matching
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(b) Sequence matching

Fig. 6: Precision-recall curves of single frame matching and sequence matching. For both single frame matching and
sequence matching, SphereVLAD shows better place retrieval performance than state-of-the-art PointNetVLAD under all 6
orientation different cases in KITTI dataset, Campus dataset, and City dataset.

public and self-recorded datasets. To record our own datasets,
we designed a data collection platform as shown in Figure. 5,
which contains a LiDAR device (Velodyne-VLP 16), an iner-
tial measurement unit (Xsense MTi 30, 0.5◦ error in roll/pitch,
1◦ error in yaw, 550mW), a mini computer (i7 Intel NUC i7,
3.5 GHz, 28W) and a Nivida AGX Xavier (32 GB Memory,
30W). All training and evaluation experiments are conducted
on two 1080Ti GPUs with 64G memory.

A. Dataset Overview

Our experiment is performed on three datasets:
• KITTI [28]. The odometry dataset consists of 21 trajecto-

ries generated with Velodyne-64 LiDAR scanner around
the mid-size city of Karlsruhe. We use trajectory {1 ∼ 8}
for network training, and {9, 10} for evaluation.

• Campus dataset. We created a Campus dataset with 11
trajectories with our recording platform by traversing a
2km outdoor route in the campus. We use trajectories
{1 ∼ 9} for network training, and {10, 11} for evaluation.

• City dataset. We created a City dataset by mounting the
data recording module on the top of a car and traverse
11km trajectories in the city. We use trajectories {1 ∼
10} for network training, and {11, 12} for evaluation.

In Figure. 7, we record the Campus and City datasets with
the LiDAR Odometry [29]. And the ground truth on the
self-gathered datasets is estimated with the General-ICP [2]
method. The dataset separation for training and evaluation is
shown in Table I. We trained and evaluated the performance
of our proposed method in three datasets. In the evaluation

TABLE I: Dataset splitting for training/evaluation.

KITTI Campus City

Training (baseline) 12, 587 13, 682 16, 458
Training (refine) 13, 287 14, 519 17, 826

Evaluation (baseline) 2, 434 3, 512 3, 638
Evaluation (refine) 1, 269 2, 037 2, 392

Fig. 7: Data Collection for Campus and City.

step, we generate reference and testing sequences in the same
trajectory under different orientations to evaluate the place
recognition accuracy. Same as PointNetVLAD [8], we define
the baseline and refine network with different dataset config-
urations to verify the matching performance. To further verify
the generalization ability, we also evaluate place recognition
performance with different trajectories on the campus dataset,
where the testing trajectory is slightly different to the reference
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TABLE II: Average Recall (%) @1% on different datasets.
Note “(seq)” represents sequence matching version.

KITTI Campus Campus-R City

PN-STD 0.46 4.20 4.15 3.79
PN-MAX 0.69 2.75 2.64 7.38

PN-VLAD baseline 13.75 17.88 16.17 15.96
PN-VLAD refine 18.93 32.11 32.08 31.16

SPH-VLAD baseline 77.91 89.28 85.19 79.06
SPH-VLAD refine 88.63 91.40 88.28 81.58

PN-STD (seq) 2.27 8.64 8.23 5.76
PN-MAX (seq) 3.02 9.69 9.19 8.15

PN-VLAD baseline (seq) 34.31 20.07 19.54 23.82
PN-VLAD refine (seq) 43.54 56.25 55.87 46.12

SPH-VLAD baseline (seq) 99.70 98.82 96.28 97.01
SPH-VLAD refine (seq) 99.93 98.88 98.21 99.04

trajectory. We use the precision-recall curve and the average
recall to quantify the place recognition accuracy.

B. Place Recognition on Single/Sequence Matching

Figure. 6 and Table. II show the comparison between
single frame matching results and sequence matching results.
For each dataset, we analyze SphereVLAD (SPH-VLAD),
original PointNetVLAD (PN-VLAD), PointNet with the max-
pool layer (PN-MAX) and PointNet trained with object classi-
fication in ModelNet (PN-STD) [7], and the PN-VLAD refined
version with the same configuration as in [8]. Campus-R
in Table. II is place recognition results on Campus dataset
but under different real trajectories, whose average transla-
tion/orientation differences are within [−1, 1]m and [−10, 10]◦
respectively. Our method shows robust place recognition per-
formance under various orientation differences. Furthermore,
compared to single scan matching, the sequence matching
mechanism can further improve the matching accuracy. The
standard sequence matching based on the burst-force searching
is accurate but time-consuming. In the next subsection, we will
further analyze the matching efficiency of our fast sequence
matching and standard sequence matching.

C. Efficiency Analysis

Compared with the original burst-force sequence matching
method SeqSLAM [11], deeper resolution based coarse-to-
fine searching can improve the initial estimation for the best
sequence matching and reduce the matching time. However,
in the lowest resolution level case, each particle’s sequence
features may fail to find the initial estimation. Another critical
parameter in the fast sequence matching is τ , which determines
the initial number of particles, as shown in Equation 4. As
observed in Fig 9, with the increasing of τ , the particle
effectiveness index N̂eff of first particle-updating decreases,
which means that there will be more particles converging to
the potential optimal. To balance both efficiency and accuracy,
we set τ within (1.5, 2.5), depending on the requirement
of efficiency. In our experiment, the default τ value is 2.0,
i.e. the overlapping ratio between two neighbor particle is
ROverlap = 66.6%. To sum up, with a fast sequence matching
approach, we can balance efficiency and accuracy.

TABLE III: Comparison result of time and memory require-
ments of PointNetVLAD and SphereVLAD.

Method Training GPU memory Run-time per frame

PointNetVLAD 7711M 55.00ms
SphereVLAD 2459M 10.50ms

TABLE IV: Top 1% Recall of different methods in three
datasets under random orientation yaw ∈ [−30 ∼ 30◦].

Method KITTI Campus City

PointNetVLAD 18.9% 32.1% 21.2%
LPDNet 20.1% 33.5% 24.4%
PCAN 19.8% 31.7% 23.9%

SphereVLAD(our) 88.6% 73.7% 82.6%

Table III shows the GPU memory usages and run-times
in the training procedure of our SphereVLAD method and
PointNetVLAD. And our method takes only 10.5ms time for
extracting place descriptor for a local 3D map. The light-wight
framework of our method enable its employing on real robots.

D. Viewpoint-invariant Analysis
To analyze the place recognition performance under dif-

ferent viewpoints, we compare it with the original Point-
NetVLAD [8], LPDNet [9] and PCAN [10]. For both LPDNet
and PCAN, we use their official implementation on the
Github12. For each dataset, we randomly add orientation
difference (yaw ∈ [−30 ∼ 30◦]) between reference and testing
point clouds. Table IV shows the top 1% recall of different
methods. It demonstrates that both LPDNet and PCAN are
pretty sensitive to orientation difference. On the contrary, our
SphereVLAD outperforms all the point-based methods and
achieves robust viewpoint-invariant place recognition perfor-
mance in different datasets.

We further analyze place recognition performance of Point-
NetVLAD and SphereVLAD on the Campus dataset as de-
picted in Figure. 8. The left figure shows the average recall
at the top 1% under various orientation differences. We can
see: the matching accuracy of PointNetVLAD quickly declines
as rotation difference increases; while SphereVLAD can still
guarantee a relatively stable matching accuracy. The middle
figure shows that the SphereVLAD features of point clouds
belonging to the same place are nearly invariant to input
orientations. The right figure shows the retrieved map and
sequence feature similarity under random roll (−10 ∼ 10◦)
and pitch (−10 ∼ 10◦) differences. We also present the
comparison results of our method with ScanContext [19] and
OverlapNet [20] in Table V and Figure 10. We conduct exper-
iments in three experimental setup: standard, with “ROT”, and
with “ROT/TRANS” on KITTI sequence 10. Under standard
manner, the Top 1 accuracy of our approach is worse than
others, this is due to the low resolution inputs for spherical
convolutions. However, our method shows more stable perfor-
mance under variant translation/orientation differences.

1https://github.com/Suoivy/LPD-net
2https://github.com/XLechter/PCAN
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Fig. 9: The matching performance under different overlap area
configurations τ for reference sequence Or = 9, 000 and
testing sequence Ol = 300. Increase τ will increase sequence
matching time and stabilize the matching performance.

TABLE V: Top 1 recall of different methods on KITTI
sequence 10. “ROT” denotes the random orientation difference
on roll, pitch ∈ [−10 ∼ 10◦], yaw ∈ [−15 ∼ 15◦], “TRANS”
denotes the random translation difference on x, y ∈ [−1, 1].

Method Standard With ROT With ROT and TRANS

ScanContext 76.19% 73.81% 55.56%
OverlapNet 89.68% 3.97% 0.79%

SphereVLAD (our) 70.4% 66.4% 63.2%

E. Place Recognition with Different Multi-layer Projection

As depicted in Section III-A, we generate multiple-layer
spherical representations to capture geometric information of
points within different distance range. For each layer, we apply
two channels on the spherical grid [θi, φj ], i.e. the distance
channel dθi,φj

and the orientation-equivalent surface angels
αθi,φj

. This subsection further investigates the place recogni-
tion performance with different multi-layer configurations on
the Campus dataset. As we can see in Table VI, with the same
channel configuration, rich layer configuration can further
improve the robustness to local translation difference. And
with the same number of layers, the additional orientation-

TABLE VI: Top 1% recall of different configurations in
SphereVLAD’s Multi-layer Spherical projections evaluated
under fixed translation (m) or orientation (◦) differences.

Multi-layer T(5), R(10) T(5), R(90) T(10), R(90)

L=1, C={dis,alpha} 68.7% 62.2% 58.9%
L=2, C={dis,alpha} 76.1% 71.5% 64.3%
L=3, C={dis,alpha} 80.5% 79.3% 72.5%
L=4, C={dis,alpha} 83.1% 82.9% 78.3%

L=4, C={dis} 71.2% 70.3% 65.6%

equivalent surface angels αθi,φj
can help SphereVLAD learn

more geometric features, which benefits matching robustness
to both translation and orientation differences.

V. CONCLUSIONS

In this paper, we proposed a fast sequence matching
enhanced viewpoint-invariant 3D place recognition method.
Within this framework, we design the SphereVLAD, which
can extract viewpoint-invariant place descriptors from spheri-
cal representations of raw point clouds. Given extracted place
descriptors, we develop a coarse-to-fine sequence matching
approach to balance the place recognition accuracy and effi-
ciency. The results on both public and self-recorded datasets
show that our method notably outperforms state-of-the-arts
in 3D point cloud based place recognition tasks. We also
evaluate the method on our data recording platform, the
place recognition ability shows great robustness translation
and orientation differences. On the other hand, the light-
weight network structure of our method also enable the large-
scale localization task for lower-cost mobile robots. In our
future work, we will improve the place recognition accuracy
by updating our current spherical convolution with higher
resolution inputs.
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