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3D Segmentation Learning from Sparse
Annotations and Hierarchical Descriptors

Peng Yin1, Lingyun Xu1,∗, Jianmin Ji2, Sebastian Scherer1 and Howie Choset1

Abstract—One of the main obstacles to 3D semantic seg-
mentation is the significant amount of endeavor required to
generate expensive point-wise annotations for fully supervised
training. To alleviate manual efforts, we propose GIDSeg, a
novel approach that can simultaneously learn segmentation
from sparse annotations via reasoning global-regional structures
and individual-vicinal properties. GIDSeg depicts global- and
individual- relation via a dynamic edge convolution network
coupled with a kernelized identity descriptor. The ensemble
effects are obtained by endowing a fine-grained receptive
field to a low-resolution voxelized map. In our GIDSeg, an
adversarial learning module is also designed to further enhance
the conditional constraint of identity descriptors within the
joint feature distribution. Despite the apparent simplicity, our
proposed approach achieves superior performance over state-of-
the-art for inferencing 3D dense segmentation with only sparse
annotations. Particularly, with 5% annotations of raw data,
GIDSeg outperforms other 3D segmentation methods.

Index Terms—Recognition, SLAM, Visual Learning

I. INTRODUCTION

IN autonomous driving, robotics and virtual reality, we
usually obtain abundant 3D point cloud from ubiquitous

sensing devices, such as LiDAR, RealSense and Kinect
devices. The capability to directly measure point cloud is
invaluable in those applications as 3D geometry could reduce
segmentation ambiguities for scene understanding, and 3D
semantic information provides essential cues in decision
making [1]. While a number of 3D segmentation approaches
have demonstrated promising results [2, 3], learning accurate
point-wise segmentation requires large amounts of labeled
training data [4, 5]. Annotating 3D training data is a particular
bottleneck in segmentation tasks, where labeling each point
in the point cloud by hand is extremely time-consuming and
requires expert knowledge in point cloud and complex 3D
operation. This problem is illustrated on the SemanticKITTI
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Fig. 1: The proposed GIDSeg pipeline for 3D segmentation.
Given raw point cloud, we extract two scale (global-local) features
for 3D semantic predictions. With only tiny 3D annotation labels,
GIDSeg can achieve robust 3D segmentation.

dataset [6] where finely annotating requires “on average 1.5
hours for labeling a highway tile” and “a total of over 1700
hours” for the entire KITTI odometry datasets [4].

In this paper, we focus on the problem of learning 3D
segmentation using only sparse annotations which account
for 5% of the original 3D point cloud data. However, such
a task cannot be achieved by current point-based representa-
tions straightforward. Traditionally, volumetric representation
of point cloud is a common approach [7], but it cannot
capture high-resolution or fine-grained features even with
excessive memory usage. PointNet-based methods [2] treat
points independently at local scale to achieve permutation
invariance, but cannot capture geometric relationships among
points, which reduces its inferencing ability for points with
similar geometric structures. On the other hand, graph-based
methods can infer points in both Euclidean and semantic
space. For instance, DGCNN [8] constructs a graph and
learns the embeddings for the edges on the global-local
scale. However, it fails to capture geometric features on local
scale. These methods either focus on independent points’
features [2] on local scale, or target on extracting geometry
structures [8] on global scale and directly ignore the local
geometric structures. Thus the aforementioned works cannot
capture plentiful features with only sparse annotations.

To address these drawbacks, we propose a novel approach,
called GIDSeg, which can achieve competitive 3D segmen-
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tation with only sparse annotations in the voxel level and
reasoning concrete geometric structures from joint condi-
tional features in the meantime. Instead of targeting on a
single scale (i.e., sparse- or dense- scale ) feature extraction,
GIDSeg generates global-local scale features that describe the
relationships between global-local geometry structures via:
(1) edge convolution operation [8] on the global voxel points,
and (2) radius kernelized feature extraction on the local
points. The later works as local geometry features for voxel-
wise global geometric features. The decoder of GIDSeg is
designed to include both global and local geometric features,
and thus the segmentation results are conditioned on the
joint descriptions. Because the GIDSeg indirectly groups
points in semantic space, the model is capable of inferencing
unlabeled points’ semantics based on labeled points with sim-
ilar individual properties despite their distinct differences in
Euclidean space. Using only sparse annotations corresponds
to a reduction factor of 50 in labeling KITTI datasets [6].
With such annotations, the performance of GIDSeg manifests
its superiority over other point-based methods [2] and fully
annotated CNN-based approaches [9]. Intrinsically, our work
utilizes a cost-effective and sparse annotation-based strategy
on 3D segmentation tasks.

In our experiments, we compare our GIDSeg method with
both point- and CNN- based state-of-the-art 3D segmentation
methods, where GIDSeg and point-based methods are trained
with sparse annotations (account 5% in the original data)
and CNN-based methods are trained with full annotations.
On both Semantic3D and SemanticKITTI datasets, we show
that the resulting network achieves competitive segmentation
performance to all the point- and CNN- based methods
with only sparse annotations. In the ablation studies, we
investigate the effect of different GIDSeg configurations on
the 3D segmentation performance.

II. RELATED WORK

A. Feature description in segmentation

Early approaches in point cloud segmentation can be
divided into two categories: voxel [10] and multi-view [9]
based methods. Despite their considerable performance in
public datasets [5, 6], they still have obvious shortcomings.
In most cases, 3D volume is sparse, and representing both
occupied and free spaces as voxels makes it computationally
intractable to perform CNNs on high resolution volumetric
grids. However, both multiview projections and voxelization
will reduce the geometry details in original 3D point cloud.
PointNet [2] is the first method that directly takes point
sets as input, and explores the geometric interactions among
neighboring points by integrating each point with a global
signature. PointNet++ [3] further enhances the connections
between local and global features by deploying PointNet in
a hierarchical manner. However, the points in local scale are
treated independently for perturbation invariance, and their

geometric connections are neglected. FusionNet [11] com-
bine the point feature and voxel feature to achieve better 3D
segmentation result. DGCNN [8] introduces edge convolution
that encodes the connections between points and proves that
stacking multiple edge convolution layers can learn global
shape properties. But it fails to model the geometric feature
of individual voxelized point. To alleviate this problem, radial
basis function operators is applied [12] to represent geometric
properties, and it shows invariance and equivariance to the
raw data.

To facilitate the robustness of local geometric represen-
tation while capturing the connections between them at the
same time, we propose a hierarchical graph representation
approach in our GIDSeg as described in Section III-A.

B. Learning from sparse annotation

Most fully supervised learning methods of 3D semantic
segmentation require a large amount of point-wise labeled
data, which are extremely costly to obtain. Many trials on
learning from sparse data are done on images. Papandreou et
al. [13] introduced a method that learns from bounding box
annotation of the objects. But it can hardly be generated to
point clouds, because in three-dimensional spaces, annotating
each object bounding box is still non-trivial labor. Qin et
al. [14] used sparse annotation to provide constraints for
clustering. However, it completely ignores the geometric rela-
tion between the annotated points. FickleNet [15] generates
a localization map from multiple combinations of random
dropout on hidden layers to learn the relationship between
locations in the image. Wei et al. [16] introduces multiple
dilated convolution layers with different dilation rates to
produce a dense localization map. However, generalizing
these methods to point cloud can be expensive in both the
number of random localization maps or dilation rate, and
the convolution itself. 3D Unet [17] is one of the few 3D
semantic segmentation works with sparse annotations. But
their data is represented by voxel tiles of images and has
an essential difference from the point cloud. In the recent
years, researchers also develop the 3D segmentation methods
in the weakly supervised learning scope. Wei et al. [18]
introduce propose a weakly supervised approach to predict
point-level results using weak labels on 3D point clouds. The
most similiar work to ours is proposed by Xu et al. [19].
The author designs a weakly supervised point cloud segmen-
tation approach, which only needs a small labeled data in
the training stage. The major difference between our work
and their work is that, our method introduce a hierarchical
structure to capture both global spatial connections and local
geometry structures. This property benefit in outdoor large-
scale segmentation task as shown in the experiment.

III. OUR APPROACH

The proposed GIDSeg network operates on point cloud
data with incomplete annotation to produce a full-resolution
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Fig. 2: Architecture of GIDSeg for point cloud semantic segmentation.The framework consists of a Hierarchical Geometry Encoder
(HGE) for projecting the voxelized-level and dense level descriptors to a canonical space, coupled with a successive Conditional Constraint
Decoder (CCD) to generate all labels for each points.

segmentation. As illustrated in Fig. 1,the framework of GID-
Seg contains two major modules:(1) a Hierarchical Geometry
Encoder (HGE) module, which encodes multi-scale feature
distributions by combining the voxelized-level global features
with a global-local Structure Module (GSM) and the dense-
level features with a Point Identity Module (PIM); (2) a
Conditional Constraint Decoder (CCD) module, which can
enhance the connections between voxel- and dense- level dur-
ing the segmentation predictions via a Generative Adversarial
Networks (GAN) based adversarial learning procedure. The
training labels are the voxelized-level points, which represent
the incomplete sparse annotations and account for 5% of raw
data.

To capture the spatial connections of points, we define a di-
rected graph G = (V, E) representing the geometry structure,
where V = {v1, ..., vn} are the points, and E ⊆ V × V are
the edges between different points. Let superscript d represent
the dense raw points , v represent the voxelized-level points.
We denote dense points as P(d) = {p(d)

1 ,...,p(d)
nd } ⊆ RD,

voxelized points as P(v) = {p(v)
1 ,...,p(v)

nv } ⊆ RD, where
the dimension D of the vertices node may vary based on
the filter configurations. For the setting of D=4, each point
pi = (xi, yi, zi, ii) is composed of 3D coordinates and
LiDAR intensity. The framework for HGE and CCD is
described in Section III-A and Section III-B.

A. Hierarchical Geometry Encoder

HGE enables integration of descriptors from both global-
to-local and point-wise scope, providing a wealth of con-
textual information for point cloud semantic learning. Given
a voxelized points p

(v)
i , we formulate HGE to encode their

geometry connections as follows:

EΘ(p
(v)
i ) =

EΘ[fGSM,ψ(p
(v)
i ,p

(v)
j ), fPIM (p

(v)
i ,Q

p
(v)
i ,K

)] (1)

where E represents HGE, {p(v)
j : (i, j) ⊆ E} serves

as the neighbour patch of point p
(v)
i , and Q

p
(v)
i ,K

=

{p(d)
1 ,p

(d)
2 , ...,p

(d)
K } is the set of the K-nearest points of

p
(v)
i from the dense scope. Correspondingly, fGSM,ψ is the

function of global-local Structure Module (GSM) that estab-
lishes global-regional construction of center point p(v)

i and
its neighbour information p

(v)
j −p

(v)
i , while fPIM represents

the Point Identity Module (PIM) , providing dense-level local
contextual information of point p(v)

i . Θ and ψ are learnable
parameters. Intuitively, fGSM,ψ shows how p

(v)
j relates to

p
(v)
i , learning the manner of grouping voxelized points within

a point cloud, while fPIM is the point identity descriptor with
abundant local region information incorporated, providing
more details and higher accuracy.

Given a dense point cloud, each voxelized point p
(v)
i

and its corresponding Q
p

(v)
i ,K

can be obtained via a pre-
possessing step. We accumulate the 3D points into local
dense map with the assistance of LiDAR odometry, then
downscale the dense map into both lower resolution (0.2m)
and higher resolution (0.1m) for point extraction from both
GSM module and PIM module respectively. The concate-
nation of these two level descriptors are combined into
Hierarchical Geometry Descriptor as shown in the Fig. 2.

1) Global-local Structure Module: (GSM), denoted as
fGSM , is a combination of multiple EdgeConv layers [8],
proven to efficiently capture the global-local feature con-
nections without discarding points after applying farthest
point sampling (FPS) like PointNet++ [3] or HDGCNN [20].
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Instead of connecting all the vertices in V , we only build
connections between each node and its M -nearest nodes
in the graph G. The M -nearest nodes for the point p

(v)
i

are found by comparing the feature similarity in a radial
distance function. The output edge features between point
p
(v)
i and p

(v)
j after multiple EdgeConv layers are defined

as fGSM,ψ(p
(v)
i ,p

(v)
j ), where fGSM,ψ : RD × RD

′

is a
nonlinear function with a set of learnable parameters ψ,
which is define by

fGSM,ψ(p
(v)
i ,p

(v)
j ) = f̂GSM,ψ(p

(v)
i ,p

(v)
j − p

(v)
i ). (2)

The method explicitly combines global shape structure,
captured by the coordinates of the patch centers p

(v)
i , with

its contextual information captured by p
(v)
j −p

(v)
i . Consider

two layers L and L + 1 from adjacent EdgeConv’s, the

output of layer L + 1 should be p
(v)
j

′

= maxj:(i,j)∈Eh
L
ij ,

where hLij = LeakyReLU [φ(p
(v)
j − p

(v)
i ) + Ωp

(v)
i ]. φ and

Ω are learnable parameters. Given a voxelized point cloud as
input size [Nv, Cin], we can obtain the feature from distance
connection f̂GSM,ψ(p

(v)
i ,p

(v)
j −p

(v)
i ) in the vicinity with the

output size of [Nv, CGSM ]. In our implementation, four Edge
Conv’s are used with output channels EC1 = 64, EC2 =
64, EC3 = 128 and EC4 = 256. The concatenation of
the point feature outputs after each Edge Conv layers can
be viewed as the global spatial connection descriptor with
dimension Nv × CGSM .

2) Point Identity Module: (PIM) learns individual proper-
ties of points p

(v)
i ’s, where we use a combination of radius-

based kernels to reflect the radial similarity. Let γ be the
inverse of the radius of influence of Q

p
(v)
i ,K

on point p(v)
i ,

we consider J different parameter γ to set widths of the
bell-shaped curve, expressing variety in influence of Q

p
(v)
i ,K

.
Then latent nearest-neighbor interpolation is applied where
semantics are mapped in a radial manner. Each point, as an
identity, can be depicted in concatenation of J radius-based
kernel values:

fPIM (p
(v)
i ,Q

p
(v)
i ,K

)

= �jexp[−γj ‖ p(v)
i −Q

p
(v)
i ,K

‖2],j=1,2,...,J (3)

PIM intrinsically obtains the local geometry features for
each voxelized identity p

(v)
i with the parameters γ pre-

trained on dense maps, providing a auxiliary descriptor
to HGE K-nearest neighbour results in [Nv, J × K] di-
mensional descriptor. Our best implementation takes J =
4 and K = 16. With this extracted hidden features,
we are able to predict the semantic information with the
multi-layer perceptron (MLP) based layer. To guarantee the
global descriptor f̂GSM,ψ(p

(v)
i ,p

(v)
j −p

(v)
i ) conditioning on

fPIM (p
(v)
i ,Q

p
(v)
i ,K

), we need to construct the correspond-
ing decoder and build relative constraint loss, which is shown
in Section III-B. corresponding decoder and build relative
constraint loss, which is shown in Section III-B.

B. Conditional Constrain Decoder

As mentioned, the concatenation of GSM’s and PIM’s
outputs can be viewed as Hierarchical Geometry Descrip-
tor FHGD with dimension Nv × (CGSM + J ∗ K). After
feeding FHGD into several per-point MLPs that corresponds
to Recons MLPs in Fig. 1, reconstructed point features
are generated. Our implementation takes two reconstruc-
tion MLPs with input/output dimensions as [576, 256] and
[256,128]. Denoting the output channel dimension of seg-
mentation as Cout, the dimension of output point features
MLPRecons(FHGD) is Cout ∗ 16. Then two branches are
following, among which one is responsible for segmentation
prediction, the other one provides adversarial learning for
point identity descriptor.

For the first branch, four Seg MLPs (Fig. 1) with in-
put/output dimensions [Cout ∗ 16, Cout ∗ 8] → [Cout ∗
8, Cout ∗ 4] → [Cout ∗ 4, Cout ∗ 2] → [Cout ∗ 2, Cout] take
MLPRecons(FHGD) as the input and generate the segmen-
tation results with dimension Cout × Nv . The segmentation
loss is a Cross-Entropy loss between the sparse annotation
and the estimated labels for voxelized-level points. The loss
is denoted as LSeg. After obtaining the sparse annotations,
we perform radius nearest neighbors search to broadcast the
annotations to all dense points as the post-processing step.

The output of Point Identity Module,
fPIM (p

(v)
i ,Q

p
(v)
i ,K

), can be viewed as the Point Identity
Descriptor and denoted as FPID. Then in the second
branch, the Point Identity Generator (Fig. 1) is a MLP
that takes MLPRecons(FHGD) as the input, and outputs
the generated descriptor f̂PIM (p

(v)
i ,Q

p
(v)
i ,k

). Denoting the

generated Point Identity Descriptor as F̂PID, instead of
directly designing a reconstruction loss between FPID and
F̂PID, we construct a Generative Adversarial Networks
(GAN) based loss metric, which is achieved by adding
an additional discriminator loss on FPID difference
δPID = FPID− F̂PID. The motivation behind is to enhance
the coupling between the global-local spatial connections
descriptor f̂GSM,ψ(p

(v)
i ,p

(v)
j − p

(v)
i ) and the local identity

descriptor fPIM (p
(v)
i ,Q

p
(v)
i ,K

). We generate a random
noise feature σPID with the same dimension as δPID whose
elements are random numbers ranging from 0 to 1e-3. The
Point Identity Discriminator (Fig. 1) views the random noise
feature σPID as the real data and δPID as the fake data.
Denoting the Point Identity Discriminator as D, during the
training process, the adversarial loss and discriminator loos
can be formulated as:

LAdv = log(1−D(δPID)) (4)
LDis = log[D(δPID)] + log[1−D(σPID)] (5)

IV. EXPERIMENT SETUP

In this section, we evaluate the performance of GIDSeg
and relative Point- and CNN- based 3D segmentation meth-
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shows estimated range images with the domain-transfer module, last column shows the matched range projections of i3dLoc

TABLE I: Dataset splitting for different datasets.

Training Validation Inference

Semantic3D [5] 18, 007 13, 682 16, 458
SemanticKITTI [6] 19, 000 3, 000 9, 005

ods on Semantic3D [5] and SemanticKITTI [6] dataset. All
experiments are implemented with two Nvidia RTX 2080Ti
GPU cards and 64G RAM on an Ubuntu 18.04 system.

A. Dataset Overview

Our experiment is performed on two datasets:
• Semantic3D [5], which is recorded by a Surveying-

grade laser scanner for large-scale outdoor segmentation
task, includes 15 training scenes and eight classes labels
(i.e, Man-made terrain, Natural terrain, High vegeta-
tion, Low vegetation, Buildings, Hard scape, Scanning
artefacts and Cars). To generate training/inference point
cloud samples, we uniformly extract sub-maps from the
15 training scenes, each sub-map covers an area of
40× 40× 10 meters in 3D space of original map.

• SemanticKITTI [6] is the dense annotation of the
KITTI [4] odometry dataset, which include 28 classes
labels and 21 odometry trajectories gathered around the
mid-size city of Karlsruhe. In this work, we merged
the 28 classes into 6 classes (Ground, Structure, Ve-
hicle, Nature, Human and Object) as the official Se-
manticKITTI suggested, namely Ground, Structure, Ve-
hicle, Nature, Human and Object. Each LiDAR scan
contains around 120, 000 ∼ 150, 000 points and can
scan up to 60× 60× 10 meters in 3D space.

As mentioned in Section. III-A, GIDSeg requires both
spares points and their corresponding radius kernelized fea-
tures. In both Semantic3D and SemanticKITTI dataset, we
down-sample the raw point cloud into 10, 000 points with
a voxelization operation (voxel resolution is 0.2m). We
uniformly select 4, 096 points from the point cloud, and use
sparse annotations (1%, 5%, 10%,...,100% for each class
within the point cloud) in the training procedure.

There are several hyper-parameters need to be selected
based on the data and object shapes 1) the voxel resolutions

of both global and local points, 2) the radius of local points
R, 3) the number of K neighbors for global points and
4) the number of kernels J to describe each point identity
descriptor. In our setup, since both SemanticKITTI and
Semantic3D are outdoor datasets, the dense map we extracted
is a circle area with a radius of 30m. The voxel resolution of
local points is 0.1m and local radius R = 0.5m to generate
enough neighbors (> 32) for kernel feature extraction. A
sequence of four radius kernel function is used to encode
the neighboring points into local features. The parameters
within the radius kernel function is selected by gradient-
decent searching to enhance feature description ability of
radius kernelized features. To verify the suitable neighbors
K and kernel size J , we use different [K,J ] values and
analyze their relative effects in Section IV-C.

B. Performance Analysis

We compared our GIDSeg with four state-of-the-arts point-
based methods: PointNet [2], PointNet [3], DGCNN [8] and
PointConv [24], and four 2D CNN-based methods: Squeeze-
Seg [9], SqueezeSegV2 [21], SqueezeSegV3 [22] and Dark-
net [23]. All the point-based methods above are trained with
the sparse point sets, which is 4, 096 points counting 5% in
the original point cloud. The only difference between our
GIDSeg’s inputs and the inputs of the other methods are
the additional point-identity features as described in above
section. All the CNN-based methods are trained with all
the points, which are projected into sphere views. Table II
presents the quantitative results of different approaches on
Semantic3D and SemanticKITTI datasets. Fig. ?? and Fig. ??
further shows the qualitative comparisons on the two datasets.

Comparing with other point-based methods, the hierarchi-
cal feature encoding ability of our GIDSeg enhances the
segmentation with only sparse annotations. As we can see
in Table II, we can notice that with 5% annotations of the
original point cloud, GIDSeg can achieve better segmentation
performance than all other point-based methods on both
datasets. GIDSeg leads the strongest baseline DGCNN [8]
by 3.9% in overall accuracy on Semantic3D dataset and
3.4% on SemanticKITTI dataset. This performance shows
GIDSeg’s generalization ability of doing inference with 3D
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TABLE II: Segmentation accuracy on Semantic3D and SemanticKITTI datasets.

Semantic3D

OA
(%)

mAcc
(%)

mIoU
(%)

man-made
terrain

natural
terrain

high
vegetation

low
vegetation buildings hard

scape
scanning
artefacts cars

PointNet[2] 63.9 31.6 22.4 56.6 26.1 22.9 1.6 61.7 0.7 9.6 0.0
PointNet++[3] 71.2 43.0 31.6 62.5 45.8 33.6 4.2 71.8 12.6 22.0 0.0
PointConv[12] 75.0 52.0 37.4 64.0 49.8 51.0 15.6 77.3 14.1 27.4 0.0
DGCNN[8] 85.0 65.6 53.2 77.6 74.0 70.8 30.0 84.2 26.1 37.8 25.3

SqueezeSeg[9] 61.8 24.4 16.2 43.9 12.4 17.9 0.0 53.7 0.1 1.4 0.0
SqueezeSegV2[21] 83.7 40.3 33.0 66.0 22.5 40.1 9.7 77.4 25.2 14.6 8.2
SqueezeSegV3[22] 88.6 50.8 44.3 80.8 35.1 52.3 22.9 89.2 37.1 24.8 23.4
Darknet21[23] 86.5 46.9 39.7 68.9 25.8 45.3 21.3 80.3 35.5 19.3 21.2
Darknet53[23] 87.1 49.1 41.6 70.1 26.2 45.5 23.4 81.0 38.3 22.4 25.5

GIDSeg 87.9 68.6 61.2 79.6 78.9 77.7 40.2 88.5 41.5 42.6 40.6

SemanticKITTI

OA(%) mAcc(%) mIoU(%) ground structure vehicle nature human object

PointNet[2] 71.5 46.9 36.1 76.8 41.5 48.7 49.5 0.0 0.1
PointNet++[3] 78.9 53.9 44.2 79.6 56.6 64.5 61.0 0.0 3.5
PointConv[12] 80.3 55.7 46.6 78.2 63.8 64.6 64.2 0.0 8.9
DGCNN[8] 84.9 61.0 53.2 83.6 71.2 77.0 71.4 0.0 15.3

SqueezeSeg[9] 71.5 47.2 34.8 83.7 43.6 40.8 40.5 0.0 0.1
SqueezeSegV2[21] 89.5 61.5 54.2 91.3 76.3 73.1 73.7 0.0 0.1
SqueezeSegV3[22] 94.8 70.1 64.0 95.2 83.5 84.4 83.9 1.2 10.8
Darknet21[23] 91.8 67.0 60.2 94.4 79.8 82.4 79.1 0.0 25.6
Darknet53[23] 93.2 69.3 63.0 95.3 82.6 83.9 82.4 0.9 33.8

GIDSeg 88.3 67.3 59.8 85.4 77.0 80.1 78.9 4.8 30.8

segmentation with sparse annotations. Comparing with the
CNN-based methods which are trained with fully points,
GIDSeg can reach the similiar segmentation accuracy with
only sparse annotations. The performance of CNN-based
methods are different on two datasets, this is because the
projections on Semantic3D contain lots of overlaps than
SemanticKITTI.

As shown in Table. III, we also analysis the mIoU un-
der different annotation levels on the KITTI datasets. We
also compared the state-of-the-art 3D segmentation method
CylindrNet [25] and also the weakly supervised learning
method [19]. And results show that under sparse annotations,
our method outperform the others. While CylindrNet is better
than our method under 100% annotations, but it cannot
achieve good performance with sparse annotations. Though
the Weakly method is robust in indoor environment and shape
datasets [19], the generalization ability in outdoor environ-
ments is limited. The average inference time of for GIDSeg
is 114.7ms, which include pre-processing time 110ms and
online inference time 4.7ms.

C. Ablation Study

To analyze the impact of points’ sparsity level on the
segmentation accuracy, we make comparison between our

TABLE III: The mIoU under different annotation levels on the
KITTI dataset.

mIoU (1%) mIoU (10%) mIoU (100%)
PointNet++ [3] 37.9% 48.4% 51.4%
DGCNN [8] 41.7% 54.8% 58.1%
CylindrNet [25] 38.3% 49.9% 64.5%
Weakly [19] 39.4% 55.2% 58.32%
GIDSeg 45.8% 60.1% 63.8%

method and CNN-based methods. We conducted these ex-
periments on the SemanticKITTI datasets. GIDSeg is trained
with different percentages of the raw data (range from 1.25%
to 15%). We also conducted ablation studies on both Seman-
tic3D and SemanticKITTI datasets to further investigate in the
effects of different configurations of GIDSeg’s PIM module.
We tested the segmentation performance by adding/removing
PIM module, utilizing different K values in PIM module, and
testing different M in Edge Conv layers. A careful selection
of bell-curve shapes is performed to ensure that multiple
levels of geometric features are captured. We also verify the
segmentation performance in the PIM module with/without
the discriminator, which we claim to be essential for condi-
tional decoding as described in Section. III-B.

As shown in Table. IV, the case that without PIM module
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TABLE IV: Semantic segmentation results on Semantic3D and SemanticKITTI dataset with GIDSeg’s different PIM configurations.

Semantic3D SemanticKITTI
Network Configurations mIoU(%) OA(%) mAcc(%) mIoU(%) OA(%) mAcc(%)

Without PIM module 53.9 84.4 66.3 54.8 85.4 61.9
PIM + bell-shaped curve ([J=1, K=8]) 54.7 84.3 66.9 55.1 85.9 62.5
PIM + bell-shaped curve ([J=1, K=16]) 55.6 85.1 68.9 56.3 87.3 63.2
PIM + bell-shaped curve ([J=1, K=32]) 55.8 84.5 68.6 56.5 86.6 63.3
PIM + bell-shaped curve ([J=4, K=16]) 57.2 84.7 70.4 57.9 87.6 65.4
PIM + bell-shaped curve ([J=4, K=16]) + Dis 61.2 87.9 73.5 59.8 88.3 67.3

Fig. 4: Ablation study for the radius kernel and edge convolu-
tion. The mean IoU under different settings of K of radius kernel
function and M in edge convolution layer on (a) Semantic3D, (b)
SemanticKITTI dataset.

(i.e., only use sparse voxelized points, without point-wise
radius kernel features) is worse than all other cases with PIM
module. In the later cases, suitable radius kernelized feature
can improve the segmentation performance, and the discrim-
inator of PIM can further enhance the segmentation accuracy
by adding conditional constraints. If the number of neighbors
K is too small, the neighbors of the voxelized points cannot
cover enough information, preventing local features from
being effectively captured. While if L is so large that points
belonging to different classes are included, local features
cannot be represented precisely. Fig. 4 shows the relationship
between edge convolution and radius kernelized feature. As
we can see the best parameters for Semantic3D datasets
are [K=24, M=20], while for SemanticKITTI are [K=16,
M=20]. One limitation of current work is that GIDSeg cannot
select the best K and M for point cloud datasets, and such
hyper-parameters will vary based on the points distribution.
In further work, we can investigate apply gradient decent
approach to automatically select the best parameters for new
point cloud datasets.

To fully understand the performance of the proposed GID-
Seg method, we utilize the t-Distributed Stochastic Neighbor
Embedding (t-SNE) [26] algorithm to visualize the segmenta-
tion distributions, which calculates a similarity measurement
between pairs of instances in the high dimensional space. In
Fig. 5, we analysis the feature distribution of both original
3D points and the second to last layer of Seg MLPs module
in Fig. 2. We randomly sample 300 points from the full
area for each category and plot the feature distribution as
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Fig. 5: t-SNE visualization. Feature distribution on Semantic3D
datasets with 8 classes (as shown with different colors): (a) input 3D
points, (b) output features without PIM (c) output features without
Discriminator (d) output features with all modules.

illustrated. Without adversarial learning, the learned point
identity module can have limited generalization ability, and
easily mixture with other patterns. From both Table. IV and
Fig. 5, we can notice that, with the adversarial learning,
PIM can enhance enhance the generalization ability of the
GIDSeg by parallelly updating the Point Identity Module,
Point Identity Generator Module and Recons MLPs module.

D. Discussion

The complexity of our method is related to the semantic
classes. GIDSeg is mainly suitable for large objects (cars,
trees, buildings, etc), this is due to the fact that our semantic
extraction is based on the combination of high resolution
geometry features and voxel level geometry structures, which
makes are method less sensitive to small objects. We also
trained the GIDSeg for the 19 class on SemanticKITTI,
while some class with smalls shapes will be easily ignored.
Another limitation of our method is in the pre-processing
step, where KNN search and kernel feature extraction are
time-consuming. In the future work, we will apply parallel
processing to speed up the local feature extraction.

V. CONCLUSION

In this paper, we introduced an end-to-end learning
method, GIDSeg, that learns 3D semantic segmentation with
only sparse labels. It offers an accurate segmentation from
only 5% annotations of the original point cloud by capturing
the hierarchical geometry features from both voxel-level
global and dense-level local geometry structures. The final
segmentation results are predicted based on the joint feature
distribution with the assistance of our conditional constraints
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decoder module. Experimental results on two challenging
datasets demonstrate the effectiveness and generality of our
method. With only sparse annotations, GIDSeg achieves
the state-of-the-art on point-based methods, and can also
surpass fully-annotated CNN-based methods. The limited
requirement for computation resource and efficient real-time
inferencing make our method possible to imply on mobile
robot platform.

REFERENCES

[1] E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda,
“A survey of autonomous driving: Common practices
and emerging technologies,” IEEE Access, vol. 8, pp.
58 443–58 469, 2020.

[2] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “PointNet:
Deep Learning on Point Sets for 3D Classification and
Segmentation,” in Proc. CVPR, 2017.

[3] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “PointNet++
: Deep Hierarchical Feature Learning on Point Sets in
a Metric Space,” in Proc. NIPS, 2017.

[4] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “The
kitti vision benchmark suite,” in Proc. URL http://www.
cvlibs. net/datasets/kitti, 2015.

[5] R. B. Rusu, “Semantic 3d object maps for everyday
manipulation in human living environments,” in Proc.
KI-Künstliche Intelligenz, 2010.

[6] J. Behley, M. Garbade, A. Milioto, J. Quenzel,
S. Behnke, C. Stachniss, and J. Gall, “SemanticKITTI:
A Dataset for Semantic Scene Understanding of LiDAR
Sequences,” in Proc. of the IEEE/CVF International
Conf. on Computer Vision (ICCV), 2019.

[7] C. R. Qi, H. Su, M. Niessner, A. Dai, M. Yan, and L. J.
Guibas, “Volumetric and Multi-View CNNs for Object
Classification on 3D Data,” in Proc. CVPR, 2016.

[8] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein,
and J. M. Solomon, “Dynamic Graph CNN for Learning
on Point Clouds,” in Proc. TOG, 2019.

[9] B. Wu, A. Wan, X. Yue, and K. Keutzer, “SqueezeSeg:
Convolutional Neural Nets with Recurrent CRF for
Real-Time Road-Object Segmentation from 3D LiDAR
Point Cloud,” in Proc. ICRA, 2018.

[10] H. Su, V. Jampani, D. Sun, S. Maji, E. Kalogerakis,
M.-H. Yang, and J. Kautz, “SPLATNet: Sparse Lattice
Networks for Point Cloud Processing,” in Proc. CVPR,
2018.

[11] F. Zhang, J. Fang, B. Wah, and P. Torr, “Deep fusionnet
for point cloud semantic segmentation,” in Computer
Vision – ECCV 2020, A. Vedaldi, H. Bischof, T. Brox,
and J.-M. Frahm, Eds. Cham: Springer International
Publishing, 2020, pp. 644–663.

[12] M. Atzmon, H. Maron, and Y. Lipman, “Point convo-
lutional neural networks by extension operators,” ACM
Trans. Graph., vol. 37, no. 4, Jul. 2018.

[13] G. Papandreou, L.-C. Chen, K. P. Murphy, and A. L.
Yuille, “Weakly- and Semi-Supervised Learning of a
Deep Convolutional Network for Semantic Image Seg-
mentation,” in Proc. ICCV, 2015.

[14] C. Qin, M. Gong, Y. Wu, D. Tian, and P. Zhang,
“Efficient scene labeling via sparse annotations,” in
Proc. AAAI, 2018.

[15] J. Lee, E. Kim, S. Lee, J. Lee, and S. Yoon, “Ficklenet:
Weakly and semi-supervised semantic image segmenta-
tion using stochastic inference,” in Proc. ICCV, 2019.

[16] Y. Wei, H. Xiao, H. Shi, Z. Jie, J. Feng, and T. S. Huang,
“Revisiting Dilated Convolution: A Simple Approach
for Weakly- and Semi-Supervised Semantic Segmenta-
tion,” in Proc. CVPR, 2018.

[17] Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and
O. Ronneberger, “3d u-net: learning dense volumetric
segmentation from sparse annotation,” in Proc. MIC-
CAI, 2016.

[18] J. Wei, G. Lin, K.-H. Yap, T.-Y. Hung, and L. Xie,
“Multi-path region mining for weakly supervised 3d
semantic segmentation on point clouds,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2020, pp. 4384–4393.

[19] X. Xu and G. H. Lee, “Weakly supervised semantic
point cloud segmentation: Towards 10x fewer labels,”
in Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 2020, pp. 13 706–
13 715.

[20] L. Jiang, H. Zhao, S. Liu, X. Shen, C.-W. Fu, and J. Jia,
“Hierarchical point-edge interaction network for point
cloud semantic segmentation,” in Proc. ICCV, 2019.

[21] B. Wu, X. Zhou, S. Zhao, X. Yue, and K. Keutzer,
“Squeezesegv2: Improved model structure and unsuper-
vised domain adaptation for road-object segmentation
from a lidar point cloud,” in Proc. arXiv preprint
arXiv:1809.08495, 2018.

[22] C. Xu, B. Wu, Z. Wang, W. Zhan, P. Vajda, K. Keutzer,
and M. Tomizuka, “Squeezesegv3: Spatially-adaptive
convolution for efficient point-cloud segmentation,” in
European Conference on Computer Vision. Springer,
2020, pp. 1–19.

[23] A. Milioto, I. Vizzo, J. Behley, and C. Stachniss,
“Rangenet++: Fast and accurate lidar semantic segmen-
tation,” in Proc. IROS, 2019.

[24] W. Wu, Z. Qi, and L. Fuxin, “Pointconv: Deep convo-
lutional networks on 3d point clouds,” in Proc. ICCV,
2019.

[25] X. Zhu, H. Zhou, T. Wang, F. Hong, Y. Ma, W. Li,
H. Li, and D. Lin, “Cylindrical and asymmetrical 3d
convolution networks for lidar segmentation,” in Proc.
CVPR, 2021.

[26] L. v. d. Maaten and G. Hinton, “Visualizing data using
t-sne,” in Proc. JMLR, 2008.


	Introduction
	Related Work
	Feature description in segmentation
	Learning from sparse annotation

	Our Approach
	Hierarchical Geometry Encoder
	Global-local Structure Module
	Point Identity Module

	Conditional Constrain Decoder

	Experiment Setup
	Dataset Overview
	Performance Analysis
	Ablation Study
	Discussion

	Conclusion

