
Exploiting Uncertainty in
Triangulation Light Curtains for

Object Tracking and Depth
Estimation

Yaadhav Raaj

CMU-RI-TR-21-08

May 6, 2021

The Robotics Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Thesis Committee:
Prof. Srinivasa G. Narasimhan, CMU

Prof. Deva Ramanan, CMU
Siddharth Ancha, CMU

Thesis proposal submitted in partial fulfillment of the
requirements for the degree of Master of Science in Robotics

©Yaadhav Raaj, 2021

Abstract
Active sensing through the use of Adaptive Depth Sensors is a nascent field, with poten-

tial in areas such as Advanced driver-assistance systems (ADAS). One such class of sensor
is the Triangulation Light Curtain, which was developed in the Illumination and Imaging
(ILIM) Lab at CMU. This sensor (comprising of a rolling shutter NIR camera and a galvom-
irror with a laser) uses a unique imaging strategy that relies on the user providing the depth
to be sampled, with the sensor returning the return intensity at said location. Prior work
demonstrated effective strategies for local depth estimation, but failed to take into account
the physical limitations of the galvomirror, work over long ranges, or exploit the triangu-
lation uncertainty in the sensor. Our goal is this thesis is to demonstrate the effectiveness
of this sensor in the ADAS space. We do this by developing planning, control and sen-
sor fusion algorithms that consider the device constraints, and exploit the device’s physical
effects. We present those results in this thesis.

I would like to thank my advisor Srinivas, and various CMU folks including Joe Bartels,
Robert Tamburo, Siddharth Ancha, Chao Liu, Dinesh Reddy, Gines Hidalgo for access to
their expertise and resources.

I

Contents

1 Introduction 1
1.1 Background . 1
1.2 Related Work . 2
1.3 Research Problem . 3

2 The Triangulation Light Curtain 5
2.1 Working Principle . 5
2.2 Simulator . 7
2.3 Hardware Setup . 8

3 Planning and Control 9
3.1 Keypoint Based Planning . 9
3.2 Imaging Arbitrary Paths . 11
3.3 Discretized Planning . 12

4 Sensing and Fusion 15
4.1 Multi-Object Tracking . 15
4.2 Depth Discovery From Light Curtains . 18
4.3 RGB + Light Curtain Fusion . 27

5 Dataset and Code 33
5.1 Dataset . 33
5.2 Code . 34

6 Conclusion 35
6.1 Major Findings . 35
6.2 Future Work . 35

II

Chapter 1

Introduction

1.1 Background

Figure 1.1: Left: Advanced Driver-Assistance Systems (ADAS) have become a crucial for
vehicular safety, and depth perception forms a core component of it. This is currently
achieved through high-cost, high-resolution LIDARs or low-cost, low-resolution RADARs.
Right: Are we able to exploit the nascent field of low-cost, high-resolution Adaptive Sensors
that can sense the depth of regions most important?

The NHTSA (National Highway Traffic Safety Administration) notes that almost 36,000
people died in traffic incidents in the United States [23]. There is currently no law that
requires auto manufacturers to install anti-collision hardware and software in their vehicles,
and a large majority of vehicles on the road today do not have the appropriate sensors to do
so. Newer vehicles manufactured after 2019 have started to install RADARs in their vehicles
(eg. Toyota Safety Sense), providing basic collision detection and lane keeping assistance,
but these sensors perform poorly in most real-world city-driving scenarios (dense scene
with lots of moving objects) due to their low resolution. This makes the current generation
of mass installed safety hardware adequate for highway driving only.

On the other spectrum, self-driving companies (Aurora, Argo AI, Waymo) have been
using spinning fixed scan LIDARs. These have been the de-factor sensor of choice due to
their reliability in depth estimation, but mass adoption is near impossible due to their pro-
hibitive cost. There has been a push towards solid state LIDARs via time-of-flight technol-
ogy (Ouster, Luminar), but those sensors are yet to show up in real world deployments as
of yet. Companies like Tesla and NVIDIA have been using RGB-only depth estimation as

1

well, but these are nowhere near as reliable as LIDARs, and require immense computational
resources and alot of data for training to handle the tail-end of scenarios (low-lighting, fog,
oversaturation, scale ambiguity etc.). There has been work that explores how one can cap-
ture the uncertainty and error in RGB depth estimation, but there has been limited work in
methods that actually exploit and correct this uncertainty.

Finally, we have Adaptive LIDARs. These are sensors that uses various tricks in optics,
to achieve a higher depth resolution at the regions that matter most. This is a nascent field,
and I only found 3 major approaches that were practical enough to be used in the ADAS
space which I will describe in the related work section later. One of these sensors, is the
Triangulation Light Curtain [18] [31] which was developed in our lab (ILIM). This is a
sensor that allows a user to specify a depth he wishes to measure for a particular row of
pixels, and the sensor returns the measured intensity at said location. So can we use this
sensor to actually demonstrate practical value in the ADAS space? Before we go further,
let us look at a deeper dive at the current state of depth estimation in ADAS with existing
sensors.

1.2 Related Work

Figure 1.2: 1: Traditional LIDAR based depth and object detection [32] 2: Triangulation
Light Curtain focusing it’s depth on the vehicle ahead [31] 3: MEMS based Lidar focusing
it’s depth sensing pixels on the hand of the person [24] 4: RGB based depth estimation
using the KITTI dataset

Depth from Active Sensors: Active sensors use a fixed scan light source / receiver
to perceive depth. Long range outdoor depth from these such as commercially available
Time-Of-Flight cameras [1] or LIDARs [3] [2] provide dense metric depth with confidence
values with wide usage in research [12] [6] [8]. However, apart from low resolution, these
sensors are difficult to procure and expensive, making everyday personal vehicle adoption
challenging as described earlier.

Depth from Adaptive Sensors: Adaptive sensors use a dynamically controllable light
source / receiver instead. The first method is focal length/baseline variation through the
use of servos or motors [20] [11] [21] [27]. These are effectively Stereo RGB cameras that
have a varying baseline, allowing for the triangulation / stereo ambiguity to be reduced
in the regions where the depth is more critical. The second method drives a receiver like a
SPAD to pixels (Wetzstein et. al.) [5] [22] [24] or a MEMS mirror and laser to the pixels that
matter (Koppal et. al.) [28] [29] [34]. Wetzstein et. al. presents sensors and algorithms for
adaptive sensing via 2D angular sampling, providing precise depth at limited number of
pixels, but they use a SPAD where light is spread out over the entire FOV limiting it’s range
and operation outdoors due to ambient light. Koppal et. al. got around this by driving

2

the light source via MEMS mirrors, but the current hardware implementations have a very
limited resolution. The third method uses gated depth imaging [30] [15] [14] where every
single pixel of the sensor receives information, but it relies on the user specifying at which
slice of depth they want the entire measurement (for all pixel) to be made. If we wanted
finer control (specify the depth for each row of pixels), we would have the Triangulation
Light Curtain [18] [31]. They increase the adaptability of existing gated depth imaging
approaches, and maximize the light energy at the region of interest via triangulation.

Depth from RGB: Depth from Monocular and Multi-Camera RGB has been extensively
studied. We focus on a class of Probabilistic Depth estimation approaches that have refor-
mulated the problem as a prediction of per-pixel depth distribution [19] [35] [7] [38] [17]
[33]. Some of this work has actually passively exploited and refined [19] [33] the uncer-
tainty in the depth values via Moving Cameras and Multi-View-Camera constraints, but
have not used the capabilities of the slew of Adaptive Sensors available.

1.3 Research Problem
It seems like taking a deeper dive into Adaptive Sensors (namely the Triangulation Light
Curtain), and whether we can use it practically for ADAS specific problems such as 3D
object tracking and depth estimation is a goal worthy of exploring. The existing literature
on the Light Curtain (LC) [31] [18] focuses more on the hardware implementations, but
has a limited scope on the algorithms and approaches used to solve problems with it.

Figure 1.3: Previous work on depth estimation with the Triangulation Light Curtain relied
on a sampling strategy that was based on fitting a spline to regions of high intensity to dis-
cover the depth in a scene. It didn’t take into account the velocity or acceleration constraints
of the galvomirror, or take into account the change in intensity as the curtains approached
an object.

Previous work on the Triangulation Light Curtain, focused on the sub-problem of depth
discovery. It used a baseline method of randomly sampling a B-Spline on a scene. The re-
gions on that spline that had an intensity above a certain threshold was reformulated as a
control point for the generation of the next spline. This was then iterated on until depth
convergence. This method while fast, had several limitations. Firstly, it did not take into
account any of the galvomirror constraints (such as its maximum angular velocity or accel-
eration), which means that some of the splines generated may not have been imaged cor-
rectly. Secondly, it relied on thresholding of the intensity image, which meant that objects
with limited returns (such as being far away or being made with a challenging material)
did not get their depth imaged. Lastly, it did not use any kind of sensor fusion or use any
priors from other sensors in it’s approach. If any of these sound confusing, it will become
clearer in Section 2.1, which explains the working principle of the Light Curtain sensor.

3

Hence our goal in this work, is to correctly formalize the problem of 3D object tracking
and depth discovery with the Light Curtain. We do this by creating planning and control
algorithms that actually take the sensor constraints into account, make use of the actual sen-
sor model with regards to the intensity returns, explore probabilistic approaches to object
tracking and depth discovery, and look at how other sensor modalities such as RGB cameras
can be used in tandem with it.

The result of this work can be summarized as into the following set of bullet points seen
below, and should be reflected in the Table of Contents as well:

• Creating a Simulator for the Light Curtain with tight integration into KITTI and CARLA
to facilititate algorithm development and testing

• Developing a Hardware Rig consisting of the Light Curtain, a 128 Beam Lidar, and
Stereo Cameras for proper evaluation and testing.

• Coming up with a proper understanding of the Light Curtain’s intensity response
when imaging objects

• Creating Planning and Control Strategies for Keypoint based imaging, and imaging
multiple curtains.

• Creating Planning and Control Strategies for planning a curtain over a discretized
space

• Creating a multi object tracking framework with a Particle Filter based approach

• Creating a depth discovery framework based on a Recursive Bayesian update based
approach

• Creating a Neural Network that generates a prior from other sensors (RGB cameras),
and fusing Light Curtain information into this network

This thesis contains a summary of work found in two published works with my name
on it. Active Perception using Light Curtains for Autonomous Driving [4] and Exploiting and
Refining Depth Distributions with Triangulation Light Curtains [26]

4

Chapter 2

The Triangulation Light Curtain

2.1 Working Principle

Figure 2.1: The Triangulation Light Curtain device, consisting of a steerable laser, an IR
camera and a microcontroller, capable of generating a slice in space to image in 3D

Our lab (ILIM) had developed a new kind of sensing technology called a Triangulation
Light Curtain [31] [18], a kind of adaptive or steerable LIDAR that allows one to dynam-
ically and adaptively sample the depths of a scene using principles found in stereo based
triangulation. The above image demonstrates how a planar curtain is swept across a scene,
and when it intersects with the bike, produces an intensity response that can be detected.

The Light Curtain (LC) device consists of a rolling shutter camera flipped vertically,
a laser with a galvo-mirror and an RGB camera. The rolling shutter IR camera runs in
sync with the laser, where each row of the camera can be thought of as a plane going out
vertically into space. The laser/projector fires a similar vertical sheet of light as a plane into
space, which intersects with the camera’s vertical plane to produce an intersecting line. Any
objects that lie within this line will then be imaged by the camera. We we will know the 3D
position of said objects (since we know the 3D equation of the intersecting line).

The user/algorithm first decides a path to be traced from a top-down view in the camera
frame. We call this set of points Pc. Next, we compute the ray directions of all the pixels p
for the middle scanline of the camera from left to right, given the camera intrinsics K. We
then interpolate the closest points to Pc that lie on rays rnorm in order to produce Pci, which

5

Figure 2.2: The Triangulation Light Curtain device, consisting of a steerable laser, an IR
camera and a microcontroller, capable of generating a slice in space to image in 3D. (a)
We interpolate control points from the desired curve which can be imaged by the rolling
shutter camera. (b) imaging uncertainty inherent in the system. (c) 3D surface imaged by
our system

are points that can actually be imaged by our rolling shutter camera.

rnorm = K−1p
Pci = interpolate(Pc, rnorm)

(2.1)

We transform these points Pci to the laser frame, and compute the desired angles re-
quired by the laser to hit these points. Since our goal is to recover the full 3D surface im-
aged by the camera and laser, we compute the planes projected by the laser at each of these
angles, and then transform the planes back to the camera frame. lTc below denotes the
transformation from camera space to laser space.

Pli =l Tc.Pci
θli = atan(

P z
li

Px
li

) + 90

Plci = (lTc)
T .(Ry(θli)

−1)T .[0, 0, 1, 1]T
(2.2)

Finally for each planePlci we iterate over all the camera rays rvert that are exposed while
this plane is projected and use plane to line intersection to generate the imaged 3D surface.
Let rvert = (xi, yi, 1), then

Axit+Byit+ Ct+D = 0
t = −D

Axi+Byi+C

(2.3)

which gives us a captured point on the 3D surface. See Figure above for an illustration.
In reality however, the camera ray is more of a 3D Pyramid (or a triangle if viewed top
down) that goes out into space, and the laser is a cone (or a triangle again if viewed top
down) that goes out into space due to it’s divergence or thickness. Hence, the intersection
results in a volume in space where any objects that intersect it result in higher intensities in
the NIR image. This means that as the sensing location approaches the true surface, pixel
intensities on NIR image increases. We note that this follows a exponential falloff effect in
our later experiment (Fig. 2.3).

We can use the same equations above, and simply model multiple planes and multiple
rays in order to compute the thickness of the curtain, and given the true sensing location, we

6

Figure 2.3: The divergence of the camera ray and laser sheet can be described as the curtain
thickness, which can be thought as a form of triangulation uncertainty. Any object that falls
into the region bounded by the quadrilateral will produce some return, which is modelled
as an exponential falloff. Note how sweeping a planar curtain across a scene results in a rise
and fall of the intensity image

will be able to determine the intensity scaling. The exponential fall-off function used here
for each pixel (u, v) is described below. The measured intensity at each pixel is a function
of the curtain placement depth dcu,v on that camera ray, the unknown ground truth depth
du,v of that pixel, the thickness of the light curtain σ(u, v, dcu,v) for a particular pixel and
curtain placement, and the maximum intensity possible if a curtain is placed perfectly on
the surface pu,v (varies from 0 to 1). From real world data, we find the intensity decays
exponentially as the distance between the curtain placement dcu.v and ground truth depth
du,v increases, with the scaling factor pu,v parameterizing the surface properties. We also
simulate sensor noise as a Gaussian distribution with standard deviation σnse.

iu,v = exp
(
−
(
dcu,v − du,v

σ(u, v, dcu,v)

)2)
.pu,v + σnse (2.4)

2.2 Simulator

Figure 2.4: The Light Curtain simulator takes in the user designed curtain, and generates a
light curtain response similar to what you would find in the real device.

We developed a Light Curtain (LC) simulator using the working principle derived in the
previous section. It takes in the NIR camera coefficients (Instrinsics and Distortion), NIR
to Laser transformation, Galvomirror constraints, user designed curve, and a depth map.
It then outputs the correct intensity value and measured points [XYZI] as a tensor output.
This is analogous to the output of the real device. We then integrate this with both CARLA
(a ADAS focused simulation environment) and the KITTI dataset (using the upsampled

7

lidar data). Being able to simulate the LC in KITTI is crucial for our later work. Note that
we are unable to simulate the effects on the surface properties pu,v at this time.

2.3 Hardware Setup

In
te

ns
ity

Depth RGB NIR

Figure 2.5: Left: The hardware and experimental setup consists of a FLIR stereo camera
pair with a baseline of 0.7m, the Light Curtain device, and an 128 beam lidar. These are
calibrated and mounted onto the CMU jeep. Right: We sweep a planar light curtain across
a scene at 0.1m intervals, and observe that the changes in intensity over various pixels fol-
low an exponential falloff model. Blue / Orange: Car door has a higher response than the
tire. Green: Object further away has a lower response with a larger sigma due to curtain
thickness. Red: Retroreflective objects cause the signal to saturate.

In order to develop and validate our algorithms, we have a hardware setup that con-
sists of an FLIR RGB stereo camera pair with a baseline of 0.7m, an Ouster OS2-128 beam
lidar, and the Light Curtain device itself. We mounted all of these sensors on the jeep, and
calibrated the entire setup. The calibration involves computing the instrinsics and distor-
tion coefficients of the NIR on the LC, the extrinsics between the galvomirror and NIR, the
galvomirror lookup table that maps the ADC values (-1 to 1) to angles, the intrinsics and
extrinsics of the stereo camera pair, and the extrinsics between the lidar and the stereo pair,
and the stereo pair and NIR camera.

We then showed that our derivations of the light curtain model are in line with the real
device. We swept a planar light curtain across a scene from 3 to 18m at 0.1m intervals. As
seen, we note than exponential rise and falloff as the curtain approaches a surface. We also
note that some surfaces are more reflective than others, and we note that there is a larger
standard deviation in the falloff the further away an object is due to the curtain’s thickness.

8

Chapter 3

Planning and Control

Earlier, we had described how the user needs to input a traced top-down 2D path for the
curtain they wish to image via Pc. The current algorithm automatically maps this path to
each NIR camera ray via interpolation and handles points that are outside the FOV of both
the laser and NIR, to generate a set of points Xc. However, it didn’t handle cases where
the actual angle and angular velocity / acceleration that the galvomirror had to move were
within bounds. Let us look at how we can resolve this.

3.1 Keypoint Based Planning
The simplest task we can solve is to plan a curtain such that the curtain goes through a set
of keypoints or control points. There are many cases where the object we want to image
is made out of a set of crucial keypoints, but the object itself is rather smooth shaped over
a larger volume (eg. a car on a road). Or it could be that we are tracking a set of moving
keypoints (eg. a car on the road or people on the road). We could linearly interpolate a
curtain across those keypoints, or we could smoothly interpolate it. Let us see the effects
it has on the galvomirrors acceleration profile. To see that, we can model the dynamics of
the sensor given the points Xc in the camera frame. The angular velocity and the angular
acceleration can be described as follows:

Xl = lTc.Xc

θl = atan(
Xz

l

Xx
l

) + 90

θ̇ = d
dt (θl) θ̈ = d

dt

(
θ̇
)

δt = 15us

(3.1)

Figure 3.1: θ̈ before and after smoothing out the path between targets to track

9

One is able to see that linearly interpolating across the keypoints results in a sharp jerk
in the θ̈ of the galvomirror. We note that smoothing out the curve profile of the middle
point via a spline based representation results in a much smoother profile. Let us define a
smoothing function that does this. We have chosen to go with Cubic Bezier Curves ([16],
[9]), and build upon its formulation to control the smoothness of the curve at the control
points.

Bezier curves are a family of B-Splines. However, there is only one polynomial in the
piecewise components (The Bernstein polynomials) unlike splines, which can be thought of
as the B-Spline basis functions over the domain of those polynomials. We begin by defining
a set of control points P with the example below having P = {P0, P1, P2}. We aim to
compute a set of tangent vectors d such that the the curve can be interpolated from the
parametric form of cubic beizer curve equation below.

B(t) = (Pi) (1− t)3 + (Pi + di)
(

3.t. (1− t)2
)

+ (Pi+1 − di+1)
(
3.t2. (1− t)

)
+ (Pi+1)

(
t2
)

(3.2)
We can see from the above example that the following holds true:

P1 − 2. (P1 − d1) + (P0 + d0) = (P2 − d2)− 2. (P1 + d1) + P1 (3.3)

We define the first and last tangent vectors as follows:

A1 = (P2 − P0 − d0) /α1 B2 = −1/α2

Ai = (Pi+1 − Pi−1 −Ai−1).Bi Bi = 1/(αi +Bi−1)
(3.4)

Figure 3.2: Controlling the α parameter makes the curve more linear

Increasing αi causes the corresponding tangent vector to be shifted closer the control
point related to it, making it more linear. We can compute θ from these points by taking
the atan of the z and x coordinates at each point, and we approximate θ̇ and θ̈ via finite
differences with δt = 15us. Using splines in this manner for control can be found in various
existing literature. [10], [16], [9], [37].

With this formulation, we simply need to solve for αi for each control point which we
do via numerical gradient descent and simulated annealing. The error term we try to mini-
mize takes the acceleration curve generated, and convolves it with a smoothing ψ1 and edge
detection ψ2 kernel before taking the overall sum of squares.

e = σ.

n∑
i=0

(
θ̈ ~ ψ1 ~ ψ2

)2
(3.5)

10

Figure 3.3: Example of splitting and path planning to image all points P . Left: All control
points can be imaged, but it must be split into 2 curtains being imaged. Middle: 2 control
points on the right cannot be imaged as they are out of the FOV, but the remaining ones can
be imaged in 1 curtain. Right: The right 2 control points cannot be imaged as they are out
of the FOV, but the remaining can be imaged in 2 curtains.

If a set of generated points are lying close to the same ray, or having a set of points that
completely exceed max(θ̇) of the galvo, then we deal with it via splitting operations. We
start with num splits = 0 where we try to select the right ordering of control points P that
minimize e. If it exceeds max(θ̇) or if any control points Pi fails to lie near the generated
spline Xc, we perform a split, setting num splits = 1. We try this incrementally where we
try to select an ordering and a split such that the following is minimized (where ei denote
the errors for each split):

num splits∑
i=0

(ei) (3.6)

3.2 Imaging Arbitrary Paths
We have a formulation for imaging control points or keypoints, that takes the galvomirror
constraints into account, and performs splitting operations to image all points in multiple
curtains or passes if required. Can we now extend this formulation to any arbitrary curve?

Figure 3.4: Given any arbitrary curve, we have an algorithm that automatically breaks the
curve down in such a manner than it can be imaged in it’s entirety with the minimum
number of light curtain sweeps

11

Algorithm 1 : Imaging Arbitrary Paths
Input: Arbitrary curve Pc
Output: Multiple curtains needed to image Pc as given by F = {F1...Fn}c

1: procedure imageArbitrary()
2: Initialize empty Subcomponents list S = {}
3: while Pc is not empty do
4: Image Pc using Interpolation method in Section 2.1
5: This generates a subcomponent curve Si.
6: It’s guaranteed to be imaged in one light curtain pass. Add Si to S
7: Remove points of Si from Pc
8: end while
9: Initialize output list F = {}

10: Initialize combination list C = {}
11: for every i in MaxSplits = 5 do

12: Add the combination of subcomponents
(
S
k

)
to C

13: end for
14: for every i in MaxSplits = 5 do
15: Iterate Ci / set of curves. Combine the curves.
16: Ignore those that can’t be imaged (θ̇ < θ̇max)
17: Select set of curves in Ci that minimizes e.
18: Add it to P and remove combination from rest of C
19: end for
20: end procedure

Our algorithm takes any arbitrary curve Pc, and breaks it down into subcomponent
curves that are guaranteed to be imaged in 1 pass by the LC. We then attempt to find a
combination of these subcomponent paths that can be imaged when conjoined together,
and try to select the smoothest and easiest to image profile using the error term e described
earlier. We try to minimize the total number of splits or curtains that need to be imaged this
way. With this algorithm, a user can pass any curve and we have a method to image that
curve completely. This has benefits when designing complex safety curtains.

3.3 Discretized Planning
The final planning and control method addresses discretized spaces. Let us say that we
had a square grid containing the locations in space. We then have each cell in the grid
containing a probability from 0 to 1. We wish to plan a light curtain path over this space from
left to right that attempts to maximize the cells selected with the highest probability, when
ensuring that the path is valid and constraints of the galvomirror are not compromised. This
is especially useful when we have these probability grids generated from a neural network
or other sensing source. Do note that a large section of this work is from Ancha et. al. [4]
of which I am the second author.

Let us consider this discretized probability map U . We must choose control points
{Xt}Tt=1 to satisfy the physical constraints of the light curtain device: |θ(Xt+1) − θ(Xt)| ≤
∆θmax light curtain constraints). The problem is discretized into the grid mentioned above,

12

Figure 3.5: (a) Light curtain constraint graph. Black dots are nodes and blue arrows are
the edges of the graph. The optimized light curtain profile is depicted as red arrows. (b)
Example uncertainty map from the detector and optimized light curtain profile in red. Black
is lowest uncertainty and white is highest uncertainty. The optimized light curtain covers
the most uncertain regions.

with equally spaced points Dt = {X(n)
t }Nn=1 on each ray Rt. Hence, the optimization prob-

lem can be formulated as:

arg max
{Xt}Tt=1

T∑
t=1

U(Xt) where Xt ∈ Dt ∀1 ≤ t ≤ T (3.7)

subject to |θ(Xt+1)− θ(Xt)| ≤ ∆θmax, ∀1 ≤ t < T (3.8)

Assuming we are planning a light curtain across this grid, the total number of possible
curtains is |D1 × · · · × DT | = NT , making brute force search difficult. The problem can be
broken down into simpler subproblems however. Let us define J∗t (Xt) as the optimal sum
of uncertainties of the tail subproblem starting from Xt i.e.

J∗t (Xt) = max
Xt+1,...,XT

U(Xt) +

T∑
k=t+1

U(Xk); (3.9)

subject to |θ(Xk+1)− θ(Xk)| ≤ ∆θmax, ∀ t ≤ k < T (3.10)

Computing J∗t (Xt), would help us in solving this more complex subproblem using recur-
sion: we observe that J∗t (Xt) has the property of optimal substructure, i.e. the optimal solu-
tion of J∗t (Xt) can be computed from the optimal solution of J∗t−1(Xt):

J∗t−1(Xt−1) = U(Xt−1)+ max
Xt∈Dt

J∗t (Xt)

subject to |θ(Xt)− θ(Xt−1)| ≤ ∆θmax
(3.11)

This property allows us to solve for J∗t−1(Xt−1) via dynamic programming. We also note
that the solution to minX1

J∗1 (X1) is the solution to our original constrained optimization
problem (Eqn. 1-3). The recursion from Eqn. 3.11 can be implemented by first performing
a backwards pass, starting from T and computing J∗t (Xt) for each Xt. Computing each
J∗t (Xt) takes only O(Bavg) time where Bavg is the average degree of a vertex (number of
edges starting from a vertex) in the constraint graph, since we iterate once over all edges of
Xt in Eqn. 3.11. Then, we do a forward pass, starting with arg maxX1∈D1

J∗1 (X1) and for a

13

given X∗t−1, choosing X∗t according to Eqn. 3.11. Since there are N vertices per ray and T
rays in the graph, the overall algorithm takesO(NTBavg) time; this is a significant reduction
from the O(NT) brute-force solution.

14

Chapter 4

Sensing and Fusion

In the previous section, we developed algorithms that let us plan curtains that consider
the constraints and limitations of the hardware used in the light curtain device. We can
use these planning and control strategies in the next section. Here, we explore 3 different
ways in which the sensor can actually be used to solve vision problems in the ADAS space.
These include multi object tracking (eg. pedestrians on a sidewalk), depth estimation over
larger ranges (eg. city driving or parking lots), and fusion with other sensing modalities
(eg. RGB, Lidar fusion etc.).

4.1 Multi-Object Tracking
For multi-object tracking, we make use of the Keypoint Based Planning (Sec 3.1). To per-
form tracking we use one of several Bayesian Filtering approaches, namely a probabilistic
particle filter [25]. We begin first by randomly placing curtains in a scene, and attempt to
discover tracklets. Let X(k)

n represent a single particle of index k with timestep n, where
each particle represents a 3D position (Xs, Ys, Zs) and 3D velocity (Ẋs, Ẏs, Żs). We instan-
tiate K = 100 particles per tracklet with a uniform distribution and an equal weight per
particle initially, and apply the following motion model with gaussian noise ω added as
follows:

X
(k)
n|n−1 =

Xs

Ys
Zs
Ẋs

Ẏs
Żs

 X
(k)
n|n−1 =

1 0 0 T 0 0
0 1 0 0 T 0
0 0 1 0 0 T
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ∗X
(k)
n−1|n−1 + ωn−1 (15)

This lets us generate particles X
(k)
n|n−1 conditioned on the previous timestep n − 1. We

then apply non-uniform random sampling of the particle weights for each tracklet to gen-
erate M = 3 keypoints per particle, and use the keypoint based planner to generate M = 3
curtains. Fig. 4.1, below shows how this would look like.

We then apply an appropriate measurement model. For example, we could compute
weights for each particle k given a measurement Yn based on a multivariate gaussian dis-

15

Figure 4.1: In this simulated scenario, we randomly sampled curtains and discovered 3
objects worth tracking. We instantiate 3 particle filters for these 3 objects with K = 100
particles with a uniform distribution. We then apply our motion model above, and then
apply non-uniform sampling on the particles of each of these 3 tracklets to select M = 3
points each (total of 9 keypoints). We then generate M = 3 curtains in total that cover
these 9 keypoints. The particle weights are recomputed from the signal from these curtain
returns as described below

tribution model where d could represent the difference from mean of a particular feature:

P
(

Yn|X(k)
n|n−1

)
=

1√
2πσ2

· exp
(
− d

2

2σ

)
(4.1)

log
(
P (Yn|X(k)

n|n−1)
)

= −log(σ
√

2π)− 0.5

σ2
· d2 (4.2)

We then regenerateK new particles by resampling with replacement given the normal-
ized weight qn:

qn =
P (Yn|X(k)

n|n−1)

ΣkP (Yn|X(k)
n|n−1)

k ∈ N (4.3)

X
(k)
n+1|n = h(X

(k)
n|n|qn) k ∈ N (4.4)

The measurement model we used is described here. Once these M = 3 curtains have
been placed, we iterate each particle and minimize 2 objectives. We apply a lower distance
cost to particles closer to a curtain placed, and a lower intensity cost to any particle projected
back into the NIR camera to get the light curtain intensity returns (Note the exponential
falloff model described earlier). We also introduce a collision term to prevent collision be-
tween multiple targets (penalizes particles that are too close to another tracklet’s particles):

ql2n = −log(σl2
√

2π)− 0.5

σ2
l2

· (l2(Curtain,X(k)
n))2 (4.5)

qintn = −log(σint
√

2π)− 0.5

σ2
int

· ((Proj(X(k)
n))int − 255)2 (4.6)

P (Yn|X(k)
n|n−1) = ql2n + qintn (4.7)

We then performed real world experiments in an outdoor setting, varying the number of
particlesK and number of curtainsM sampled from the distribution. As expected, increas-
ing the number of particles results in an improvement in the MOTA (Mean Object Tracking
Accuracy), as an increasing number better approximates the underlying distribution of the

16

Figure 4.2: The real light curtain sensor tracking multiple targets in real time. It dynamically
samples the scene based on the distribution of targets, plans the various galvo positions
needed that can optimally track the target, images it, and repeats the process in a closed
loop

No. of Particles (3 curtains) MOTA fps No. of Curtains (100 particles) MOTA fps
50 48.4 10 1 37.2 28
100 51.4 8 2 48.3 15
150 52.2 7 3 51.4 8
200 52.1 6 4 47.3 4

Table 4.1: In this experiment, we attempted to track the MOTA (Mean Object Tracking Ac-
curacy) of 3 real world objects in a scene. The left table shows that increasingK (number of
particles) results in increased tracking performance, up until a certain point. The right ta-
ble shows that increasingM (number of curtains per tracklet) results in improved tracking
performance up until about 3 curtains. Beyond that, the computational and light curtain
placement cost results in poorer performance.

object being tracked. However, the improvement does taper off as it is still a function of
the number of curtains sampled from the distribution (3 Curtains here). We also did ex-
periments varying the number of curtains sampled from each tracklet. We note improving
MOTA scores as we increase the number of curtains, but this is at the expense of the frame
rate. At some point, the frame rate drops too much that the tracking accuracy starts to get
affected.

While this approach is interesting, it is not tractable computationally with an increasing
number of objects. Furthermore, if objects get occluded, it is easy for the particle filter to lose
track of the object. This is partially mitigated by the motion model, which works well for
the case of pedestrians etc. Also, this tracking problem can be also thought of as a targeted
depth estimation problem. In the next line of work, we are interested in seeing if we solve for
problem of discovering depth adaptively through the use a bayesian inference formulation.

17

4.2 Depth Discovery From Light Curtains

4.2.1 Representation
We wish to estimate the depth map D = {du,v} of the scene, which specifies the depth
value du,v for every camera pixel (u, v) at spatial resolution [H,W]. Since there is inherent
uncertainty in the depth value at every pixel, we represent a probability distribution over
depths for every pixel. Let us define du,v to be a random variable for depth predictions at the
pixel (u, v). We quantize depth values into a setD = {d0, . . . , dN−1} ofN discrete, uniformly
spaced depth values lying in (dmin, dmax). All the predictionsdu,v ∈ D belong to this set. The
output of our depth estimation method for each pixel is a probability distribution P (du,v),
modeled as a categorical distribution over D. In this work, we use N = 64, resulting in a
Depth Probability Volume (DPV) tensor of size [64, W, H]:

D = {d0, . . . , dN−1}; dq = dmin + (dmax − dmin) · q (4.8)
N−1∑
q=0

P (du,v = dq) = 1 (q is the quantization index) (4.9)

Depth estimate = E[du,v] =

N−1∑
q=0

P (du,v = dq) · dq (4.10)

This DPV can be initialized using another sensor such as an RGB camera, or can be initial-
ized with a Uniform or Gaussian distribution with a large σ for each pixel.

While an ideal sensor could choose to plan a path to sample the full 3D volume, our
light curtain device only has control over a top-down 2D profile. Hence, we compress our
DPV into a top-down an “Uncertainty Field” (UF) [35], by averaging the probabilities of
the DPV across a subset of each column (Fig. 4.3). This subset considers those pixels (u, v)
whose corresponding 3D heights h(u, v) are between (hmin, hmax). The UF is defined for the
camera column u and quantized depth location q as:

UF (u, q) =
1

|V(u)|
∑

v∈V(u)

P (du,v = dq)

where V(u) = {v | hmin ≤ h(u, v) ≤ hmax} (4.11)

We denote the categorical distribution of the uncertainty field on the u-th camera ray as:
UF (u) = Categorical(dq ∈ D | P (dq) = UF (u, q)).

4.2.2 Curtain Planning
We can use the extracted Uncertainty Field (UF) to plan where to place light curtains.
We adapt prior work solving light curtain placement as a constraint optimization / Dy-
namic Programming problem [4]. A single light curtain placement is defined by a set of
control points {q(u)}Wu=1, where u indexes columns of the camera image of width W , and
0 ≤ q(u) ≤ N − 1. This denotes that the curtain intersects the camera rays of the u-th col-
umn at the discretized depth dq(u) ∈ D. We wish to maximize the objective J({q(u)}Wu=1) =∑W
u=1 UF (u, q(u)). Let Xu be the 2D point in the top-down view that corresponds to the

depth q(u) on camera rays of column u. The control points {q(u)}Wu=1 must be chosen to

18

c

z

z

r

c

r

c

z

z

Figure 4.3: Our state space consists of a Depth Probability Volume (DPV) (left) storing per-
pixel uncertainty distributions. It can be collapsed to a Bird’s Eye Uncertainty Field (UF)
(right) by averaging those rays in each row (blue pixels) of the DPV that correspond to
a slice on the road parallel to the ground plane (right) (cyan pixels). Red pixels on UF
represent the low resolution LIDAR ground truth.

z

range

c / rays

z

x

Figure 4.4: Given an Uncertainty Field (UF), our planner solves for an optimal galvomirror
trajectory subject to it’s constraints (eg. θ̊max). We show a 3D ruled surface / curtain placed
on the highest probability region of UF.

satisfy the physical constraints of the light curtain device: |θ(Xu+1)− θ(Xu)| ≤ ∆θmax with
θmax being the max angular velocity of Galvo:

arg max
{q(u)}Wu=1

W∑
u=1

UF (u, q(u))

subj to |θ(Xu+1)− θ(Xu)| ≤ ∆θmax, ∀1 ≤ u < W (4.12)

4.2.3 Curtain Placement

The uncertainty field UF contains the current uncertainty about pixel-wise object depths
du,v in the scene. Let us denote by π(dck |UF) the placement policy of the k-th light curtain,
where dck = {dcku,v | ∀u, v}. Our goal is to sample light curtain placements dck ∼ π(dck | UF)
from this policy, and obtain intensities iu,v for every pixel.

19

1

0

π0 π0 π1

z z z

Figure 4.5: Sampling the world at the highest probability region is not enough. To converge
to the true depth, we show policies that place additional curtains given UF. Let’s look at
a ray (in yellow) from the UF to see how each policy works. Left: π0 given a unimodal
gaussian with small σ. Middle: π0 given a multimodal gaussian with larger σ. Right: π1
given a multimodal gaussian with larger σ. Observe that π1 results in curtains being placed
on the second mode.

To do this, we propose two policies: π0 and π1. In Fig. 4.4, we have placed a single
curtain along the highest probability region per column of rays, but our goal is to maximize
the information gained. For this, we generate corresponding entropy fields H(u, q)i to be
input to the planner computed from UF (u, q). We use two approaches to generate H(u, q):
π0 finds the mean in each ray’s distribution UF (u) and selects a σπ0

that determines the
neighbouring span selected. π1 samples a point on the ray given UF (u).

As seen in Fig. 4.5, strategy π0 is able to generate fields that adaptively place additional
curtains around a consistent span around the mean with some σπ0 , but is unable to do so in
cases of multimodal distributions. π1 on the other hand is able to place a curtain around the
second modality, albeit with a lower probability. We will show the effects of both strategies
in our experiments.

4.2.4 Observation Model
A curtain placement corresponds to specifying the depth for each camera ray indexed by u
from the top-down view. After placing the light curtain, intensities iu,v are imaged by the
light curtain’s camera at every pixel (u, v). The measured intensity at each pixel is a function
of the curtain placement depth dcu,v on that camera ray, the unknown ground truth depth
du,v of that pixel, the thickness of the light curtain σ(u, v, dcu,v) for a particular pixel and
curtain placement, and the maximum intensity possible if a curtain is placed perfectly on
the surface pu,v (varies from 0 to 1). This is as what was described in the earlier section
on the light curtain return model. As a recap, the sensor model P (iu,v | du,v, dcu,v) can be
described as:

P (iu,v | du,v, dcu,v) ≡

N
(
iu,v | exp

(
−
(
dcu,v − du,v

σ(u, v, dcu,v)

)2)
.pu,v, σ

2
nse

)
(4.13)

Note that when dcu,v = du,v and pu,v = 1, the mean intensity is 1 (the value), and it
reduces exponentially as the light curtain is placed farther from the true surface. pu,v can
be extracted from the ambient NIR image.

20

4.2.5 Recursive Bayesian Update
How do we incorporate the newly acquired information about the scene from the light
curtain to update our current beliefs of object depths? Since we have a probabilistic sensor
model, we use the Bayes’ rule to infer the posterior distribution of the ground truth depths
given the observations. Let Pprev(u, v, q) denote the probability of the depth at pixel (u, v)
being equal to dq before sensing, and Pnext(u, v, q) the updated probability after sensing.
Then by Bayes’ rule:

Pnext(u, v, q)

= P (du,v = dq | iu,v, dcku,v)

=
P (du,v = dq) · P (iu,v | du,v = dq, d

ck
u,v)

P (iu,v | dcku,v)

=
P (du,v = dq) · P (iu,v | du,v = dq, d

ck
u,v)∑N−1

q′=0 P (du,v = dq′) · P (iu,v | du,v = dq′ , d
ck
u,v)

=
Pprev(u, v, q) · P (iu,v | du,v = dq, d

ck
u,v)∑N−1

q′=0 Pprev(u, v, q′) · P (iu,v | du,v = dq′ , d
ck
u,v)

(4.14)

Note that P (iu,v | du,v = dq, d
ck
u,v) is the sensor model whose form is given in Equation 4.13.

If we place K light curtains at a given time-step, we can incorporate the information
received from all of them into our Bayesian update simultaneously. Since the sensor noise
is independent of curtain placement, the likelihoods of the observed intensities can be mul-
tiplied across the curtains. Hence, the overall update becomes:

Pnext(u, v, q)

=
Pprev(u, v, q) ·∏K

k=1 P (iu,v | du,v = dq, d
ck
u,v)∑N−1

q′=0 Pprev(u, v, q′) ·∏K
k=1 P (iu,v | du,v = dq′ , d

ck
u,v)

The behavior of this model as the placement depth dcu,v , curtain thickness σ(u, v, dcu,v)
and intensity i change is seen in Fig. 4.7. We observe that low intensities lead to an inverting
gaussian like weight updates, with a low weight at the light curtain’s placement location
while other regions get uniform weights. This indicates that the method is certain that
an object doesn’t exist at the light curtain’s location, but is uniformly uncertain about the
other un-measured regions. A medium intensity leads due a bimodal gaussian, indicating
that the curtain may not be placed exactly on the surface and could be on either side of
the curtain. Finally, as the intensity rises, so does weight assigned to the light curtain’s
placement location.

Do note that we have an approximated version of this model, which consists of a aussian
and a uniform distribution, where σ is a function of the thickness of the light curtain as
described earlier where t ∈ [−1..1]. t is a function of the intensity value i, based on two
possible profiles where z either takes a value of 0.5 or 1.0, and m is some control factor we
tune:

P (ci t|dt) =
N (Dc, µc, σc) (t) + U (Dc) (1− t)∑
(N (Dc, µc, σc) (t) + U (Dc) (1− t)) (4.15)

t =

(−1

(z) + (mi)

)
+ 1 (4.16)

21

6 8 10 12 14
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16 Mean intensity
Weights

Placement 10.00
Intensity 0.17

Intensity sigma 1.51
Noise sigma 0.17 Reset

6 8 10 12 14
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16 Mean intensity
Weights

Placement 10.00
Intensity 0.38

Intensity sigma 1.47
Noise sigma 0.11 Reset

6 8 10 12 14
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16 Mean intensity
Weights

Placement 10.00
Intensity 0.91

Intensity sigma 2.00
Noise sigma 0.16 Reset

Figure 4.6: Visualization of the recursive Bayesian update method to refine depth probabil-
ities after observing light curtain intensities. The curtain is placed at 10m. The red curves
denote the expected intensity (Y-axis) as a function of ground truth depth (X-axis); this is
the sensor model given in Eqn. 4.13. After an intensity is observed by the light curtain, we
can update the probability distribution of what the ground truth depth might be using our
sensor model and the Bayes’ rule. The updated probability is shown by the blue curves,
computed using the Bayesian update of Eqn. 4.14 (here, the prior distribution Pprev is as-
sumed to be uniform, and dcku,v = 10m). Left: Low i return leads to an inverted Gaussian
distribution at the light curtain’s placement location, with other regions getting a uniform
probability. Middle: Medium i means that the curtain isn’t placed exactly on the object
and the true depth could be on either side of the light curtain. Right: High i leads to an
increased belief that the true depth is at 10m.

The approximated version allows one to test the benefits of the inverting gaussian like
effect when the intensity goes to 0.

Figure 4.7: Visualizing the approximated observation model. The effect on the posterior
when getting a close to 0 intensity return from the Light Curtain when z is either 1.0 or 0.5

22

4.2.6 Experiments
We first demonstrate depth estimation using just the Light Curtain as described in the pre-
vious section. In this initial baseline, we track the Uncertainty Field (UF) depth error by

computing the RMSE error metric
√∑ (E(UF (u,q))−dgt(u)i)

2

n against ground truth. We eval-
uate our method against several outdoor scenarios consisting of vehicles in a scene.

Figure 4.8: Examples of the kind of locations we did experiments in. We were able to evalu-
ate our light curtain only depth discovery algorithms on the KITTI dataset, in the basement
with the hardware setup on the NAVLAB Jeep, and in various outdoor scenarios represent-
ing various ADAS situations.

Planar Sweep Curtain Placement: We are able to simulate the light curtain response
using depth from LIDAR. A simple fixed policy not adapted to the UF helps validate our
sensor model and provides corroboration between the simulated and real light curtains.
We perform a uniform sweep across the scene above (at 0.25 to 1.0m intervals) (Fig. 4.9),
incorporating intensity measurements at each pixel for each curtain using our process de-
scribed earlier. Our simulated device is able to reasonably match the real device, and we
also show how sweeping more curtains increases accuracy at the cost of increased runtime
(Table. 4.2).

Figure 4.9: We demonstrate corroboration between simulated and real light curtain device
by sweeping several planes across this scene. Colored point cloud is the estimated depth,
and lidar ground truth in yellow. Left: LC simulated from the lidar depth. Right: Using
the real device.

23

Policy 50LC @ 0.25m 25LC @ 0.5m 50LC @ 0.25m 25LC @ 0.5m 12LC @ 1.0m
RMS/m 1.156 1.374 1.284 1.574 1.927
Runtime /s - - 2 1 0.5

Table 4.2: Policy depicts different numbers of light curtains (LC) placed at regular intervals.
The first two columns are simulations and the rest are real experiments. Sampling the scene
by placing more curtains results in better depth accuracy (lower RMS) at the cost of higher
runtime.

Effect of Dynamic Sigma: Earlier, we had noted how σ(u, v, dcu,v) defined for each ck
measurement in P

(
dcku,v

)
is a function of the thickness of the curtain. We also experiment

by making σ(u, v, dcu,v) fixed. We observe that it being a function of the curtain thickness is
critical to better performance over larger steps/placements. Results in Tab. 4.3

Policy Runtime/s RMSE/m
Sweep C Step 0.25m (Dyn) 2 1.276
Sweep C Step 0.5m (Dyn) 1 1.532
Sweep C Step 1.0m (Dyn) 0.5 2.013
Sweep C Step 0.25m (Fixed) 2 1.218
Sweep C Step 0.5m (Fixed) 1 1.658
Sweep C Step 1.0m (Fixed) 0.5 2.290

Table 4.3: σc in our model P
(
dcku,v

)
being dynamic as a function of curtain thickness as

opposed to being fixed, results in better depth estimates

Effect of Inverting Gaussian Model: Our observation model ensures that the sensor
distribution tends to an Inverted Gaussian when intensities are low, instead of a Uniform
distribution. With our approximated model, we are able to see what happens when a low
intensity leads to a uniform distribution (no information) instead. Fig. 4.10 and Fig. 4.11
show significantly improved performance with this inverting gaussian effect.

0 5 10 15
Update Iterations

3

4

5

6

U
nc

Fi
el

d
R

M
S

E
/m

Real Light Curtain in Scenario (b)
π0 - Inverted Gaussian
π1 - Inverted Gaussian
π0 - Uniform Distribution
π1 - Uniform Distribution

0 5 10 15
Update Iterations

2

3

4

U
nc

Fi
el

d
R

M
S

E
/m

Sim Light Curtain in Scenario (a)
π0 - Inverted Gaussian
π1 - Inverted Gaussian
π0 - Uniform Distribution
π1 - Uniform Distribution

Figure 4.10: RMSE of Depth in UF over every iteration in scenarios left/(a) right/(b). Note
the largely improved performance when low intensities tend to an Inverted Gaussian

Policy based Curtain Placement: Sweeping a planar LC can be time consuming (25
iterations), so we want our curtains to be a function of our UF. We evaluated two different
scenarios (c1, c2) for each placement policy (π0, π1), and we observed that planning and
placing curtains as a function of UF results in much faster convergence (Fig. 4.12). We
also provide visualizations of what the field looks like in real-world experiments at various
iterations (Fig. 4.13).

24

Figure 4.11: Left: Policies m0 and m1 where low intensities result in no information (Uni-
form Distribution). Right: Where low intensities result in an Inverted Gaussian based on
our Sensor Model

0 5 10 15
Update Iterations

1

2

3

4

5

U
nc

Fi
el

d
R

M
S

E
/m

Real Light Curtain in Scenario (c1)

PlanarSweep
π0 - [±2.25σπ0

]
π0 - [±0.75σπ0

]
π0 - [{±0.75,±2.25}σπ0

]
π0 - [{±0.75,±1.5,±2.25}σπ0

]

0 5 10 15
Update Iterations

3

4

5

U
nc

Fi
el

d
R

M
S

E
/m

Real Light Curtain in Scenario (c2)

PlanarSweep

π1 - 1 Curtain
π1 - 2 Curtains
π1 - 3 Curtains
π1 - 4 Curtains

Figure 4.12: Curtain placement as a function of the Uncertainty Field (UF) converges within
a lower number of iterations as opposed to a uniform planar sweep which took 25 iterations

Conclusion: We have concluded that this strategy of representing each pixel as a depth
distribution (DPV), collapsing said distribution to form an uncertainty field (UF), planning
and placing light curtains conditioned on this field, and applying our observation model
using a bayesian inference approach is a valid strategy for depth discovery. We are able to
validate this in both simulation and in real-world experiments. We have also provided code
along with our light curtain sweep dataset so that one may try this process.

Limitations: There are limitations this approach however. For one, the accuracy is lim-
ited to the amount of quantization done since the distribution is effectively discretized. We
also cannot completely handle surfaces / pixels that return 0 intensity despite being trian-
gulated exactly. Computation is also expensive, and our un-optimized implementation of
each planning and curtain placement step takes 40ms. Depth convergence takes about 10
iterations on average (2.5fps). Starting from a gaussian distribution with a large sigma at
each timestep means that convergence can take a significant amount of time. Our next goal
is to see if we have make use of the temporal nature of driving, or make use of a better prior
as an input to our algorithm.

25

Figure 4.13: Looking at the top-down Uncertainty Field (UF), we see per pixel distributions
in Cyan and the GT in Red. We start with a gaussian prior with a large σ, take measurements
and apply the bayesian update, trying both policies π0 and π1. Note how measurements
taken close to the true surface split into a bimodal distribution (Yellow Box)

26

4.3 RGB + Light Curtain Fusion
While starting from a uniform or Gaussian prior with a large uncertainty is a valid option,
it is slow to converge. Furthermore, a light curtain’s only means of depth estimation is
extracted primarily along the ruled placement of the curtain, at least based on our above
placement policies. We would ideally like to use information from a Monocular RGB camera
or Stereo Pair to initialize our prior, with a similar DPV representation. For this, a Deep
Learning based architecture is ideal, and we also reason that such an architecture could
potentially learn to fuse/incorporate information from both modalities better. Below is an
overview of the overall approach used:

NIR Laser

5m

40m

5m

40m

RMSE:
1.2m

RMSE:
0.4m

 (a) (b) (c) (d)

Figure 4.14: (a) We show how errors in Monocular Depth Estimation are corrected when
used in tandem with an Adaptive Sensor such as a Triangulating Light Curtain (Yellow
Points and Red lines are Ground Truth). (b) We predict a per-pixel Depth Probability Vol-
ume from Monocular RGB and we observe large per-pixel uncertainties (σ = 3m) as seen
in the Bird’s Eye View / Top-Down Uncertainty Field slice. (c) We actively drive the Light
Curtain sensor’s Laser to exploit and sense multiple regions along a curve that maximize in-
formation gained. (d) We feed these measurements back recursively to get a refined depth
estimate, along with a reduction in uncertainty (σ = 1m)

4.3.1 Structure of Network

Low Res DPV

...

Monocular /
Stereo RGB

Warp features
based on R,T

Differentiable Homography

Prev DPV

Low Res DPV

...
DPV

Fusion
Network

Shared
Encoder

Shared
Encoder

Decoder

High Res DPV
LC DPV

+

+

+ +

+

Optional

Light Curtain
Placement

Figure 4.15: Our Light Curtain (LC) Fusion Network can take in RGB images from a sin-
gle monocular image, multiple temporally consistent monocular images, or a stereo camera
pair to generate a Depth Probability Volume (DPV) prior. We then recursively drive our
Triangulation Light Curtain’s laser line to plan and place curtains on regions that are uncer-
tain and refine them. This is then fed back on the next timestep to get much more refined
DPV estimate.

The first step is to build a network (Fig. 4.15) that can generate DPV’s from RGB images.

27

We extend the Neural-RGBD [19] architecture to incorporate light curtain measurements.
Anywhere from 1 to N images, usually two (I0, I1), are fed into shared encoders, and the
features are then warped into different fronto-parallel planes of the reference image I0 using
pre-computed camera extrinsics RI1Io , t

I1
Io

. Further convolutions are run to generate a low
resolution DPV dpvl0t [H/4, W/4] where the log softmax operator is applied and regressed
on. The transformation between the cameras acts as a constraint, forcing the feature maps
to respect depth to channel correspondence. The add operator into a common feature map
is similar to adding probabilities in log-space.

dpvl0t is then fed into the DPV Fusion Network (a set of 3D Convolutions) that incor-
porate a downsampled version of dpvLt−1 along with the the light curtain DPV that we had
applied recursive Bayesian updates on dpvlct−1, and a residual is computed and added back
to dpvl0t to generate dpvl1t to be regressed upon similarly. With a 30% probability, we train
without dpvlct−1 feedback by inputting a uniform distribution. Finally, dpvl1t is then passed
into a decoder with skip connections to generate a high resolution DPV dpvLt . This is then
used to plan and place light curtains, from which we generate a new dpvlct for next stage.

4.3.2 Loss Functions
Soft Cross Entropy Loss: We build upon the ideas in [36] and use a soft cross entropy
loss function, with the ground truth LIDAR depthmap becoming a Gaussian DPV with σgt
instead of a one hot vector. This way, when estimating E (dpvgt) we get the exact depth
value instead of an approximations limited by the depth quantization D. We also make the
quantization slightly non-linear to have more steps between objects that are closer to the
camera:

lsce =
−∑i

∑
d

(
dpv{l0,l1,L} ∗ log (dpvgt)

)
n

(4.17)

D = {d0, . . . , dN−1}; dq = dmin + (dmax − dmin) · qpow (4.18)

L/R Consistency Loss: We train on both the Left and Right Images of the stereo pair whose
Projection matrices Pl, Pr are known [13]. We enforce predicted Depth and RGB consis-
tency by warping the Left Depthmap into the Right Camera and vice-versa, and minimize
the following metric:

Dl = E
(
dpvLl

)
Dr = E

(
dpvLr

)
(4.19)

ldcl =
1

n

∑
i

(∣∣D{l,r} − w (D{r,l}, P{l,r})∣∣
D{l,r} + w

(
D{r,l}, P{l,r}

)) (4.20)

lrcl =
1

n

∑
i

(
||I{l,r} − w

(
I{r,l}, D{l,r}, P{l,r}

)
||1
)

(4.21)

Edge aware Smoothness Loss: We ensure that neighboring pixels have consistent surface
normals, except on the edges/boundaries of objects with the Sobel operator Sx, Sy via the
term:

ls =
1

n

∑
i

(∣∣∣∣∂I∂x
∣∣∣∣ e−|SxI| +

∣∣∣∣∂I∂y
∣∣∣∣ e−|SyI|

)
(4.22)

The L/R Consistency and Edge aware losses are only applied to the final dpvLt . While
the Soft Cross Entropy Loss is applied to dpvl0t , dpvl1t , dpvLt .

28

Figure 4.16: In KITTI + Simulated Light Curtain, we note improved depthmaps when
Monocular inputs are fused with Light Curtain inputs. Note the improvements in regions
bounded in the yellow box. Our network is also capable of ingesting Stereo inputs, and also
solving the task of Lidar Upsampling

Figure 4.17: In real world Experiments, we are able to see the monocular scale ambiguity
in domain specific scenarios (driving scenario with a van 8m away) get corrected by the
Light Curtain, and we are able to see correction in an arbitrary scene (dumpster 15m away)
provided to the system as well

Figure 4.18: We show the internal state of the bayesian update at Iteration 0 and Iteration 5.
Starting with a prior DPV from Monocular Depth estimation, we show the convergence of
the sensor’s laser and curtain profile on an object 10m away

Figure 4.19: Monocular RGB alone suffers from scale ambiguity but does give an inital un-
certain depth estimate on a car 15m away. Iterating on Light Curtain measurements from
a mean-centered gaussian prior alone gives a more accurate depth but with a noisy profile,
but starting with the RGB DPV results in a more accurate and smoother profile.

29

4.3.3 Light Curtain + RGB Fusion Experiments
We train and validate our algorithms on the KITTI dataset. We then trained the same net-
work by initializing on those weights, but using our custom dataset to evaluate our algo-
rithms with the real sensors on the Jeep. For evaluation, we consider the RMSE metric

against the entire depthmap as opposed to just the Uncertainty Field (UF) as
√∑ (E(du,v)−dgt(u,v)i)

2

n

against our ground truth.

DPV Prior from RGB: Our first goal is to ensure that our network is capable of gener-
ating a reasonable DPV with monocular RGB input, given the above loss functions. We do
some simple experiments that explore these effects.

Parameters σgt = 0.05 σgt = 0.2 σgt = 0.3
σgt = 0.3

with ldcl, lrcl
σgt = 0.3

with ldcl, lrcl, ls
RMSE/m 3.24 3.16 3.06 2.93 2.90

Table 4.4: Effects of Soft Cross Entropy (σgt), Left/Right Consistency (ldcl, lrcl), Smoothness
losses (ls) on Monocular Depth Estimation.

Table 4.4 shows successively improving performance as we increase σgt, with poorer
performance when the depth is effectively encoded as a one-hot vector (eg. σgt = 0.05),
since the depth was more likely to be forced into one of the categories in D. Adding in
ldcl, lrcl and ls improved performance further.

Stereo Inputs: Since our method can generalize to any N camera setup, we compare
and contrasted monocular pair inputs at times t, t−1, against a stereo pair at time t as input
(extrinsics known in both cases). As expected, we note significantly better performance
with stereo input (Table 4.5) and Fig. 4.20.

Mono vs Stereo Lidar Upsample with DPV Fusion Network
Mono 2.904
Stereo 1.737

Without DPV Fusion Network 1.118
With DPV Fusion Network 0.702

Table 4.5: Left: Stereo pair at t instead of Monocular pair at t, t − 1 input to the network.
Right: Fusing the GT LIDAR data with dpvl0t to generate dpvl1t and dpvLt with Bayesian
inference vs DPV Fusion Network.

0 20 40 60
Epochs

2

4

6

8

10

D
ep

th
m

ap
R

M
S

E
/m

Depth RMSE of KITTI Validation

Monocular RGB Input: 2.904
Stereo RGB Input: 1.737

0 20 40 60
Epochs

2.5

5.0

7.5

10.0

D
ep

th
m

ap
R

M
S

E
/m

Depth RMSE of KITTI Validation

Mono + Lidar Upsample: 1.118
Mono + Lidar Upsample:
- DPV Fusion Network: 0.702

Figure 4.20: Left: Stereo pair at t instead of Monocular pair at t, t− 1 input to the network.
Right: Fusing the GT LIDAR data with dpvl0t to generate dpvl1t and dpvLt with Bayesian
inference vs DPV Fusion Network.

30

Effect of a Stronger Prior: Previously, we had run our adaptive sensing algorithm from
a gaussian prior with a large σ (Fig. 4.11). In various outdoor experiments, we show that a
prior DPV from our network instead, yields higher accuracy and faster convergence towards
the true depth (Fig. 4.19, Fig. 4.21)(a, b).

0 5 10 15
Update Iterations

1

2

3

4

5

U
nc

Fi
el

d
R

M
S

E
/m

Real Light Curtain Scenario (c2)
π0 - [{±0.75,±2.25}σπ0

]
π0 - [{±0.75,±2.25}σπ0

] - Prior

Figure 4.21: Top: Adaptive depth sensing with the Light Curtain: Starting from a Prior
distribution from a Monocular Depth Network as opposed to a gaussian with a large σ
leads to faster convergence towards the true depth.

DPV Fusion Network: With this corrected DPV, we want to explore how to effectively
handle erroneous measurements (due to low light curtain returns etc.), or fuse it other
DPVs (from previous frame or from another sensor). With this in mind, we consider the
sub task of LIDAR Upsampling. The Velodyne LIDAR in the KITTI dataset, can be converted
into a low resolution depthmap, and consequently a low-res DPV we call dpvgtt . We could
then fuse both dpvl0t and dpvgtt to generate dpvl1t using Bayesian inference. Alternatively, we
could feed both of those inputs into our DPV Fusion Network, which relies on a series of 3D
Convolutions. We note improved performance in this upsampling task using this approach
as seen in Table 4.5 and Fig. 4.20.

Light Curtain Fusion Network: Finally, we combine all of these concepts into one. Here,
we train our monocular and stereo depth estimation without light curtain feedback, and one
where we enable dpvlct to be planned and fed-back on the next stage via our DPV Fusion
Network, as described in (Fig. 4.15). Training is done on the KITTI dataset with our light
curtain simulator, with a maximum of 5 update iterations for performance and memory rea-
sons. In order to perform real world qualitative experiments, we then trained the network
(using the weights trained on the KITTI dataset) with the light curtain simulator on our
large scale ILIM dataset (similar to KITTI). We observed qualitative (Fig. 4.17) and quanti-
tative (Fig. 4.22) performance improvement of depth with Monocular input, and marginal
but visible improvement with Stereo. This is likely due to the wide baseline of 0.7m in the
stereo pair, so we could see that smaller baseline pairs would benefit more with our light
curtain measurements.

Performance: As mentioned earlier, our un-optimized implementation of each planning
and curtain placement step takes 40ms. Depth convergence occurs in 5 iterations (5 fps)
when starting from a monocular RGB prior and 10 iterations (2.5 fps) with a Gaussian
prior. In temporally continuous operations, the prior from t − 1 reduces convergence to 2
iterations (12.5 fps) depending on the camera motion. A well-engineered implementation
could achieve 20-40 fps but much faster motion would require explicitly encoding 3D optical
flow. The network itself takes about 20ms to run it’s inference, and since it requires 2 passes

31

0 10 20 30 40
Epochs

4

6

8

10

D
ep

th
m

ap
R

M
S

E
/m

Depth RMSE of KITTI Validation

Mono: 3.176
Mono + LC Fusion: 2.458

0 10 20 30 40
Epochs

2.5

5.0

7.5

10.0

D
ep

th
m

ap
R

M
S

E
/m

Depth RMSE of KITTI Validation

Stereo: 1.781
Stereo + LC Fusion: 1.693

Figure 4.22: Monocular (Left) and Stereo (Right) Depth Estimation show improvements
when we enabled feedback of the sensed Light Curtain DPV at epoch 16 when training on
KITTI dataset with light curtain simulator.

to ingest the light curtion DPV, it takes 40ms. Furthermore, more work could be done to
better explore varying baselines with varying discretization of the DPV to see if there can
be greater performance improvements.

32

Chapter 5

Dataset and Code

5.1 Dataset

Figure 5.1: A notebook demonstrating what our LC sweep dataset consists of

In order to facilitate work on the algorithm offline, and to give others who do not have
access to a Light Curtain device access to real world data, we collected a LC Sweep dataset
on various outdoor scenes. This dataset includes Stereo RGB data, ambient NIR data, 128
beam Lidar data, and a planar light curtain sweep volume done from 3m to 18m (at 0.1m
intervals). This allows one to ”sample” the sweep volume to generate any curtain required,
effectively simulating real world light curtain placement in a static scene. We did this on
over 600 unique scenes, with about 20 percent of the scenes being temporally consistent
(back to back).

Currently, we are only using the dataset for simply evaluating the algorithm we have for
depth discovery, which we demonstrate in various notebooks in our code. As noted earlier
however, our code is unable to handle cases where the LC return saturates due to retro-

33

reflective objects, or simply has little to no return due to it’s surface properties. It would
be possible to use this dataset to train a model that could ingest this ambient NIR or stereo
data to learn to predict the pu,v or σ(u, v, dcu,v) terms correctly.

5.2 Code

Figure 5.2: A notebook demonstrating the depth discovery algorithm described earlier run
on the dataset we collected

The code for downloading the dataset, and for evaluating the depth discovery algorithm
can be found at (https://github.com/soulslicer/rgb-lc-fusion-code).

34

Chapter 6

Conclusion

6.1 Major Findings
We have demonstrated the first known work that has leveraged uncertainty in RGB-based
depth estimation to drive an Adaptive Sensor such as a Light Curtain, in the context of
ADAS. Our approach can generalize to any sensor that uses the principle of driving a laser
or light source to specific pixels that are uncertain, and can benefit from depth uncertainty
information at a pixel. Through this work, we have created a simulator for our light curtain
device, and we have collected large scale datasets for real world experimentation with our
hardware setup. We have also created planning and control strategies for curtain place-
ment, subject to the device constraints. Finally, we have demonstrated a multi object track-
ing framework, and a depth discovery framework based on various bayesian filtering tech-
niques.

6.2 Future Work
One of the biggest issues right now is that normally non-incident and low reflectively sur-
faces (dark surfaces etc.) result in poor intensity returns. This is intended to be handled by
the pu,v in our model, which would tend the generated distribution to a uniform one if the
surface is unable to give light curtain returns. We have attempted to use the ambient NIR
image to predict this value, but we note that this can be very noisy and only works well if
the scene is lit up by a general NIR light source (indirect sunlight). Since we have collected
a large scale dataset of these light curtain sweeps, it may be possible to build a model that
ingests the RGB and Ambient NIR image to predict the pu,v term for each pixel. Lastly,
we could also consider modelling optical flow / scene flow in order to handle temporally
changing scenes better (eg. fast moving vehicle).

35

Bibliography

[1] Luminar. https://www.luminartech.com/.

[2] Ouster. https://ouster.com/.

[3] Velodyne. https://velodynelidar.com/.

[4] S. Ancha, Y. Raaj, P. Hu, S. G. Narasimhan, and D. Held. Active perception using light curtains
for autonomous driving. In A. Vedaldi, H. Bischof, T. Brox, and J.-M. Frahm, editors, Computer
Vision – ECCV 2020, pages 751–766, Cham, 2020. Springer International Publishing.

[5] A. W. Bergman, D. B. Lindell, and G. Wetzstein. Deep adaptive lidar: End-to-end optimization
of sampling and depth completion at low sampling rates. In 2020 IEEE International Conference
on Computational Photography (ICCP), pages 1–11, 2020.

[6] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan, Y. Pan, G. Baldan, and
O. Beijbom. nuscenes: A multimodal dataset for autonomous driving, 2020.

[7] J.-R. Chang and Y.-S. Chen. Pyramid stereo matching network. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, pages 5410–5418, 2018.

[8] M.-F. Chang, J. Lambert, P. Sangkloy, J. Singh, S. Bak, A. Hartnett, D. Wang, P. Carr, S. Lucey,
D. Ramanan, and J. Hays. Argoverse: 3d tracking and forecasting with rich maps, 2019.

[9] L. Chen, S. Wang, H. Hu, and K. McDonald-Maier. Bézier curve based trajectory planning for an
intelligent wheelchair to pass a doorway. In Proceedings of 2012 UKACC International Conference
on Control, pages 339–344. IEEE, 2012.

[10] M. Elbanhawi, M. Simic, and R. N. Jazar. Continuous-curvature bounded trajectory planning
using parametric splines. In IDT/IIMSS/STET, pages 513–522, 2014.

[11] D. Gallup, J. Frahm, P. Mordohai, and M. Pollefeys. Variable baseline/resolution stereo. In 2008
IEEE Conference on Computer Vision and Pattern Recognition, pages 1–8, 2008.

[12] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets robotics: The kitti dataset. International
Journal of Robotics Research (IJRR), 2013.

[13] C. Godard, O. M. Aodha, and G. J. Brostow. Unsupervised monocular depth estimation with
left-right consistency, 2017.

[14] Y. Grauer and E. Sonn. Active gated imaging for automotive safety applications. In R. P. Loce
and E. Saber, editors, Video Surveillance and Transportation Imaging Applications 2015, volume 9407,
pages 112 – 129. International Society for Optics and Photonics, SPIE, 2015.

[15] T. Gruber, F. Julca-Aguilar, M. Bijelic, W. Ritter, K. Dietmayer, and F. Heide. Gated2depth: Real-
time dense lidar from gated images, 2019.

[16] L. Han, H. Yashiro, H. T. N. Nejad, Q. H. Do, and S. Mita. Bezier curve based path planning for
autonomous vehicle in urban environment. In 2010 IEEE Intelligent Vehicles Symposium, pages
1036–1042. IEEE, 2010.

36

https://www.luminartech.com/
https://ouster.com/
https://velodynelidar.com/

[17] E. Ilg, Özgün Çiçek, S. Galesso, A. Klein, O. Makansi, F. Hutter, and T. Brox. Uncertainty esti-
mates and multi-hypotheses networks for optical flow, 2018.

[18] W. Joe Bartels, Jian Wang and S. G. Agile depth sensing using triangulating light curtains. In
2019 IEEE International Conference on Computer Vision (ICCV), 2019.

[19] C. Liu, J. Gu, K. Kim, S. Narasimhan, and J. Kautz. Neural rgb-¿d sensing: Depth and uncertainty
from a video camera, 2019.

[20] A. Mohamed, P. Culverhouse, A. Cangelosi, and C. Yang. Active stereo platform: online epipolar
geometry update. EURASIP Journal on Image and Video Processing, 2018:1–16, 2018.

[21] Y. Nakabo, T. Mukai, Y. Hattori, Y. Takeuchi, and N. Ohnishi. Variable baseline stereo tracking
vision system using high-speed linear slider. Proceedings of the 2005 IEEE International Conference
on Robotics and Automation, pages 1567–1572, 2005.

[22] M. Nishimura, D. B. Lindell, C. A. Metzler, and G. Wetzstein. Disambiguating monocular depth
estimation with a single transient. In ECCV, 2020.

[23] NSC, 2020.
[24] F. Pittaluga, Z. Tasneem, J. Folden, B. Tilmon, A. Chakrabarti, and S. Koppal. Towards a mems-

based adaptive lidar, 10 2020.
[25] Y. Raaj, A. John, and T. Jin. 3d object localization using forward looking sonar (fls) and optical

camera via particle filter based calibration and fusion. In OCEANS 2016 MTS/IEEE Monterey,
pages 1–10, 2016.

[26] Y. Raaj, S. Ancha, R. Tamburo, D. Held, and S. G. Narasimhan. Exploiting and refining depth
distributions with triangulation light curtains. 2021.

[27] A. Schneider, N. Sharma, and B. Tripp. Visually guided vergence in a new stereo camera system.
2018.

[28] Z. Tasneem, D. Wang, H. Xie, and K. Sanjeev. Directionally controlled time-of-flight ranging for
mobile sensing platforms. 06 2018.

[29] B. Tilmon, E. Jain, S. Ferrari, and S. Koppal. Foveacam: A mems mirror-enabled foveating cam-
era. In 2020 IEEE International Conference on Computational Photography (ICCP), pages 1–11, 2020.

[30] S. Walz, T. Gruber, W. Ritter, and K. Dietmayer. Uncertainty depth estimation with gated images
for 3d reconstruction, 2020.

[31] J. Wang, J. Bartels, W. Whittaker, A. C. Sankaranarayanan, and S. G. Narasimhan. Programmable
triangulation light curtains. In Proceedings of the European Conference on Computer Vision (ECCV),
pages 19–34, 2018.

[32] Y. Wang, W.-L. Chao, D. Garg, B. Hariharan, M. Campbell, and K. Q. Weinberger. Pseudo-lidar
from visual depth estimation: Bridging the gap in 3d object detection for autonomous driving,
2020.

[33] Z. Xia, P. Sullivan, and A. Chakrabarti. Generating and exploiting probabilistic monocular depth
estimates, 2019.

[34] T. Yamamoto, Y. Kawanishi, I. Ide, H. Murase, F. Shinmura, and D. Deguchi. Efficient pedes-
trian scanning by active scan lidar. In 2018 International Workshop on Advanced Image Technology
(IWAIT), pages 1–4, 2018.

[35] G. Yang, P. Hu, and D. Ramanan. Inferring distributions over depth from a single image, 2019.
[36] G. Yang, P. Hu, and D. Ramanan. Inferring distributions over depth from a single image. In Pro-

ceedings of (IROS) IEEE/RSJ International Conference on Intelligent Robots and Systems, November
2019.

[37] G. J. Yang and B. W. Choi. Smooth trajectory planning along bezier curve for mobile robots with
velocity constraints. International Journal of Control and Automation, 6(2):225–234, 2013.

[38] Y. Yao, Z. Luo, S. Li, T. Fang, and L. Quan. Mvsnet: Depth inference for unstructured multi-view
stereo, 2018.

37

	Introduction
	Background
	Related Work
	Research Problem

	The Triangulation Light Curtain
	Working Principle
	Simulator
	Hardware Setup

	Planning and Control
	Keypoint Based Planning
	Imaging Arbitrary Paths
	Discretized Planning

	Sensing and Fusion
	Multi-Object Tracking
	Depth Discovery From Light Curtains
	RGB + Light Curtain Fusion

	Dataset and Code
	Dataset
	Code

	Conclusion
	Major Findings
	Future Work

