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Abstract

Triangulating a point in 3D space should only require two corresponding
camera projections. However in practice, expensive multi-view setups –
involving tens sometimes hundreds of cameras – are required to obtain the
high fidelity 3D reconstructions necessary for many modern applications.
In this thesis, we argue that similar fidelity can be obtained using as little
as two cameras by breaking the tenet of rigidity which is central to much
of modern multi-view geometry. Our approach instead leverages recent
advances in Non-Rigid Structure from Motion (NRSfM) using neural
shape priors while also enforcing multi-view equivariance. We show how
our method can achieve comparable fidelity to expensive multi-view rigs
using only two physical camera views.
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Chapter 1

Background

This thesis focuses on devising affordable setups for high-fidelity 3D reconstruction

of objects in the wild. If we operate over rigid objects that maintain their structure

over time, we can leverage many conventional Structure-from-Motion (SfM) based

approaches prevalent in the Simultaneous Localization and Mapping (SLAM) scenarios.

However, 3D reconstruction of objects in the wild is non-trivial, especially because

most of the objects we encounter deform non-rigidly over time, such as the human

body, human face, human hands, animal body, and so on.

In a restricted environment setup such as the ones in industry and academia, there

are usually very sophisticated setups for high-fidelity 3D reconstruction. Multi-view

setup rigs with specialized hardware for storage, gen-locking camera exposures, and

ground-truth camera parameters are utilized in these sophisticated setups. On the

other hand, going in-the-wild and collecting data cheaply where we don’t necessarily

have such a sophisticated setup brings a question: Could we make the use of this

widely available cheap data to generate similar high-fidelity 3D labels. Solving

the problem of non-rigid 3D reconstruction comes under the domain of Non-rigid

Structure-from-Motion (NRSfM). NRSfM tries to predict the 3D keypoints directly

from the 2D annotations. These 3D keypoints could act as 3D labels in a conventional

deep learning-based architecture that runs the regression frameworks to train a 3D

lifting pipeline, as we have shown in Fig. 1.2. The problem with the regression

frameworks shown in Fig. 1.2 is that they require accurate 3D labels, and it is tough

to get those high-fidelity 3D labels for supervision in an affordable way. This makes
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1. Background

Figure 1.1: The set of 3D shapes describing different object categories (e.g. human
body, monkeys, hand hands, or tiger body) is inherently nonrigid. The work proposed
in this thesis discusses an affordable setup to generate high-fidelity 3D reconstruc-
tions of these non-rigid object categories as shown above. Empirically (see the 3D
reconstructions in the second row), we demonstrate that our approach can achieve
comparable fidelity to expensive multi-view rigs using minimal setup. Blue lines
depict the predicted structure from the proposed approach and red lines show the
corresponding groundtruth (if available).

Figure 1.2: A traditional setup using regression frameworks requires accurate 3D
labels for running the above pipeline.

labeling in 3D a very costly operation if we have only images in the wild. However,

2D annotations on the other hand are very easy to obtain where a human could easily

annotate the 2D annotations over sets of images collected in-the-wild, as shown in

Fig. 1.4

More broadly, the topics discussed in this thesis are about separating the geometry

problem from the vision problem. Learning neural priors using either spatial or

temporal information and applying these techniques to solve 3D problems could be

2



1. Background

Figure 1.3: Images captured in-the-wild using widely available smartphone camera
from multiple views.

immensely helpful in the quest to generate affordable setups for 3D reconstruction.

If we could solve this problem from a geometric perspective before we even look at

the image could have an immense potential, the first being collecting and reasoning

about abundant data available in-the-wild.

As mentioned above, the 2D landmarks data could be easily annotated by humans.

Traditionally, different geometrical constraints are then applied over the given 2D

data to generate the 3D labels out of 2D annotations. In hindsight, we can say that

it is easier to collect a much larger in-the-wild dataset of just images from multiple

views captured by millions of smartphone cameras as shown in Fig. 1.3, compared

to a constrained setup of industrial lab or academia. The question that this thesis

tries to answer then is: Could we apply some neural priors over the 3D structures

to reconstruct them in an affordable way from multi-view 2D annotations collected

in-the-wild?

Taking inspiration from modern deep learning literature, we propose applying

neural priors over the spatial structure to generate the 3D structures. We choose to

impose neural shape priors through hierarchical sparsity constraints [26] literature

for approaching this solution. On this note, we first discuss the background behind

hierarchical sparsity prior introduced by Kong et al. [26], where each non-rigid

shape is represented by a sequence of hierarchical dictionaries - commonly referred

to as sparse dictionary learning problem. This chapter lays a background for the

methodologies discussed in this thesis. We first discuss the notations used to describe

the problem domain of Non-rigid Structure-from-Motion (NRSfM), followed by an

in-depth discussion of hierarchical sparsity neural prior. Finally, the thesis layout is

presented with detailed chapter descriptions.

3



1. Background

Figure 1.4: Natural 2D annotations, W are the projection of rotated/translated 3D
data, S using the rotation and translation matrix, R and t, respectively.

1.1 Notations

This thesis uses the following notations throughout the manuscript.

Variable type Examples

Scalar s,N,K,L

Vector s,ψ,λ

Matrix W,S,R, t,D

Function fe,fd, g

lth layer lψ, lD, lλ

nth instance W(n),S(n),ψ(n),λ(n)

kth view Wk,Rk,ψk

Any different signs utilized to explain a mathematical phenomenon other than

the ones described above would be explicitly defined wherever deemed necessary.

1.2 Non-rigid Structure-from-Motion (NRSfM)

This work relies on the fact that the natural 2D annotations are the projection of

the transformed 3D data in space. Having said that, our task is to factor out the

3D structure, S and the camera matrix, R corresponding to the projection from the

4



1. Background

Figure 1.5: If all the points are visible, we could compute the center of the object
and shift it to origin — thereby eliminating the camera translation.

given 2D annotations, W. However, we need to enforce some neural shape prior

over the structure, S to obtain a unique solution. For the image on the left shown

in Fig. 1.4 having the 2D annotations W, we could factor out the 3D keypoints, S

along with the camera matrices. Since we are trying to calculate the 2D keypoint

annotations, W the camera matrix is a 3× 2 matrix for obtaining the 2D key points.

We assume a weak-perspective effect, supported by the fact that the camera would

be placed reasonably far enough from the object.

The 3D reconstruction problem deals with the problem of factorizing this 2D

projection matrix, W as the product of the 3D shape matrix, S and the rotation

matrix, R, using just the known input pose, W. This problem is referred to as a

Structure for Motion (SfM). However, since we are dealing with a non-rigid object

such as a hand, we refer to it as a Non-Rigid Structure from Motion (NRSfM). Usually,

this problem is solved by decomposing W into SR.

If it was just a rigid structure, then we could assume a prior on S that forces the

shape to remain consistent across frames by enforcing rank-3 as it is a rigid shape [45].

5



1. Background

Figure 1.6: The dictionary on the left could be considered as “codebook”. Each
“atom” is a basic unit that can be used to “compose” larger units.

However, since we are dealing with non-rigid shapes, this prior cannot be applied since

the shape is deforming across the different frames. Different priors on the shape have

been applied in the literature to solve this problem such as low-rank [2, 6, 8, 9, 30]

prior instead of rank-3 priors, and other such priors are discussed later in the thesis.

One such neural shape prior we are specifically interested is the sparsity prior.

1.3 Sparsity prior

We plan to leverage sparse dictionary learning to solve the problem of applying

neural shape priors, where we learn an overcomplete dictionary that encompasses

all the non-rigid variations of the 2D projections, as shown in Fig. 1.6. Inside these

dictionary columns that we call atoms, we have many such bases or concepts, shown

in Fig. 1.6. The goal for dictionary learning is to have as much variation within the

atoms as possible so that we could encapsulate the variations of the shapes among

the non-rigid object categories. Using bases (concepts) that we know, we could learn

this dictionary as shown in Fig. 1.6. Over-complete dictionaries are leveraged here

because they cover the manifold of most of the data available in our non-rigid domain.

6



1. Background

Figure 1.7: ψ is a sparse vector. A combination of these entries with the dictionary
could represent our input with the shown setup of D×ψ that equals the 3D structure,
S.

Hence, if we can capture most of the non-rigid bases, the final 3D reconstruction

representation could retrieve multiple 3D reconstruction solutions.

We learn a dictionary, D along with a sparse code, Ψ that acts as a sparse shape

prior over the given structure, S. In this prior, each nonrigid shape is represented by a

sequence of dictionaries and corresponding non-negative sparse codes hierarchically —

in a multi-layered format. Each sparse code is determined by its lower-level neighbor

and affects the next level. These additional layers actually result in a more constrained

and more stable sparse code recovery process. This insight breaks the combinatorial

explosion of the number of subspaces and consequently maintains the robustness of

sparse code recovery. Based on this observation, we are able to utilize substantially

overcomplete dictionaries to model a highly deformable object from a large-scale

image collection without worrying about constructability and robustness.

1.4 Nonlinearity in shape prior

This section delineates the nonlinearity that is enforced within this neural prior.

Instead of assuming that the shape is a linear combination of shape basis, this

approach assumes that the shape comes from a nonlinear mapping from ψ to the S

7



1. Background

Figure 1.8: Visualization of where the nonlinearity is coming into play within the
sparsity neural shape prior. The subscripts denote the hierarchical layers for the
overcomplete dictionaries and sparse codes.

as shown in Fig. 1.8. Thus, the nonlinear mapping could be understood within the

decoder visualization shown in Fig. 1.8.

1.5 Thesis Outline

To convey the ideas documented above, this thesis is structured as follows –

• Chapter 2 details the motivation for the setup about going in-the-wild, collecting

data cheaply, and reason about them for the task of 3D reconstruction when

multiple views are provided. It sets up the motivation for leveraging the

proposed neural shape priors for high-fidelity multi-view 3D reconstruction.

• Chapter 3 details the work that discusses relevant literature concerning 3D

reconstruction as well as 3D deep learning methodologies with different settings

of available information modalities. This chapter talks about relevant approaches

that has multi-view, single-view, full 3D supervision, to weak 3D supervision,

8
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and finally talks about approaches with no 3D supervision.

• Chapter 4 sets up the base approach of this manuscript by discussing the

methodologies about multi-view neural shape prior.

• Finally, Chap. 5 presents extensive evaluations of the proposed approach across

numerous benchmarks and object categories including the human body, human

hands, and monkey body. This chapter shows how the proposed method is

able to achieve comparable fidelity to expensive multi-view rigs using only two

physical camera views.

• Concluding, Chap. 6 opens the discussion concerning the ramifications of the

proposed work as well as some immediate potential future directions that could

be investigated on top of the proposed work.

9
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Chapter 2

Introduction

Triangulation refers to determining the location of a point in 3D space from projected

2D correspondences across multiple views. In theory, only two calibrated camera

views should be necessary to accurately reconstruct the 3D position of a point.

However, in practice the effectiveness of triangulation is heavily dependent upon the

accuracy of the measured 2D correspondences, baseline, and occlusions. As a result

expensive and cumbersome multi-view rigs, sometimes involving hundreds of cameras

and specialized hardware, are currently the method of choice to obtain high fidelity

3D reconstructions of non-rigid objects [19].

In this thesis, we challenge the need to have such complicated multi-view rigs to

obtain high-fidelity 3D reconstructions. We show that comparable fidelity to these

high complexity rigs can be obtained using as little as two uncalibrated views.

Such a simplification would enable data collection in unstructured, “in-the-wild”

environments, opening the door to a wide variety of applications ranging from

entertainment, neuroscience, psychology, ethology, and several fields of medicine [7,

10, 12, 15, 22], where complex multi-camera rigs may be financially, technologically,

or simply practically infeasible.

One of the most notable multi-view rigs for human pose reconstruction is the PanOptic

studio [19], which contained 480 VGA cameras, 31 HD Cameras, and 10 RGB+D

sensors, distributed over the surface of geodesic sphere with a 5.49m diameter. This

setup also required specialized hardware for storage and gen-lock camera exposures.

Despite its cost and complexity, the fidelity of the 3D reconstructions from PanOptic

11



2. Introduction

Figure 2.1: A traditional multi-view setup relies on the concept of triangulation with
the assumption that the point being reconstructed is static in time – requiring a large
number of physical views (i.e. cameras) to ensure a high fidelity reconstruction. Our
approach breaks this triangulation assumption by allowing the reconstructed points
to deform according to a neural shape prior. Empirically (see the plot in top-right),
we demonstrate that our approach can achieve comparable fidelity to expensive
multi-view rigs using only two physical views. Blue lines depict the triangulation and
proposed approaches (left vs. right, respectively) with as little as two-physical views
and red lines show the corresponding 3D ground-truth.

studio has motivated similar efforts across industry and academia. Of particular note

is a recent effort that employed 62 hardware synchronized cameras to capture the

pose of Rhesus Macaque monkeys [4]. Other notable efforts include [21] for dogs,

[16] for human body, and [11, 41] for the human face.

The idea of applying Non-Rigid Structure from Motion (NRSfM) to reduce the

number of physical cameras required to reconstruct an object is not new. Numerous

works exist on the application of NRSfM to this problem – predominantly using a

single physical camera. They all rely on replacing classical rigidity with other shape

constraints notably: (i) low rank [2, 6, 8, 9, 30], (ii) union-of-subspaces [1, 31, 50],

and (iii) compressibility [25, 27, 49]. These constraints are especially problematic

when it comes to high-fidelity reconstructions as they can only be applied to certain

12
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types of objects with limited amounts of non-rigidity, or they are hyper-sensitive to

noise in the 2D correspondences. Temporal constraints [3, 29] can help with this,

but they can only be applied to temporal sequences with well understood dynamics.

Recently, neural shape priors have been developed in single-view NRSfM [26], and

have been demonstrated to significantly outperform these classical priors in terms of

modeling shape complexity and sensitivity to noise.

In this work, we dramatically reduce the required number of cameras while removing

calibration requirements for multi-view rigs such as [19] by further constraining

the neural shape prior approach with a view-equivariance assumption – namely

that multiple simultaneous views correspond to a single shape – thus preserving

the benefits of both multi-view and neural-prior constraints within our proposed

NRSfM framework. Figure 2.1 presents a graphical depiction of our approach. To our

knowledge, this paper is the first effort to apply neural priors to multi-view NRSfM.

Contributions: In this thesis, we make two major contributions. First, we propose

a multi-view NRSfM architecture that incorporates a neural shape prior while en-

forcing equivariant view consistency. Second, we demonstrate that this framework is

competitive with some of the most complicated multi-view capture rigs – while only

requiring a modest number (2-3) of physical camera views. Our effort is the first we

are aware of that utilizes these new advances in neural shape priors for multi-view 3D

reconstruction. Figure 2.1 presents a graphical depiction of our approach. Extensive

evaluations are presented across numerous benchmarks and object categories including

the human body, human hands, and monkey body. We should note that our proposed

approach assumes known 2D projected measurements so does not directly leverage

pixel intensities. Our approach, however, can be integrated with any available 2D

landmark image detector such as HR-Net [43], Stacked Hourglass Networks [34],

Integral Pose Regression [44], and others.

13
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Chapter 3

Related Work

3.1 Multi-view approaches:

Multi-view triangulation [13] has been the method of choice in the context of large-

scale complex rigs with multiple cameras [4, 11, 19, 41] for obtaining 3D reconstruction

from 2D measurements. The number of views, 2D measurement noise, baseline, and

occlusions bound the fidelity of these 3D reconstructions. These time-synchronized

multiple physical views also come at considerable cost and effort.

Recent work by Iskakov et al. [18] and others [20, 38, 39, 46] have explored how

supervised learning can be used to enhance multi-view reconstruction. Similarly,

work by Rhodin et al. [40] and Kacobas et al. [24] attempted to use supervised and

self-supervised learning, respectively, to infer 3D geometry from a single physical

camera view. An obvious drawback to these approaches is that one is required to

have intimate 3D supervision of the object before deployment – a limitation that

modern multi-view rigs are not faced with. None of these approaches are as general

as the one we are proposing. For example, nearly all these prior works deal solely

with the reconstruction of the human pose as they are heavily reliant upon peripheral

3D supervision.

15



3. Related Work

Figure 3.1: Red tint rows have 3D supervision. Green tint are unsupervised 3D
reconstruction methods.

3.2 Monocular NRSfM:

Of particular interest in this paper is to utilize NRSfM approaches that are atemporal.

Modern multi-view rigs make no assumptions about the dynamics of the object they

are reconstructing – we want our approach to have similarly broad applicability. The

NRSfM task [6] is to simultaneously recover the non-rigid 3D structure and camera

pose from an ensemble of 2D measurements captured at different points in time.

Advances in unsupervised learning based approaches to NRSfM [26, 35] have seen

16
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significant improvements in their robustness and fidelity across a broad set of object

categories and scenarios. These recent advances to date have only been applied

to problems where there is only a single view (i.e. monocular) of the object at a

particular point in time. Our approach is the first – to our knowledge – to leverage

these advancements for 3D reconstruction when there are multi-view measurements

taken at the same instance in time.

3.3 Amount of supervision:

There exists now several multi-view approaches for 3D human pose estimation that

leverage either full or weak 3D supervision [18, 20, 24, 33, 38, 39, 40, 46]. None of these

references, however, directly tackle the unsupervised multi-view 3D reconstruction

problem and hence are not as general as our solution. These approaches however, could

be utilized as part of literature review for showcasing the generalization capability of

the proposed approach. The supervised approaches are shown with a green tint in

Fig. 3.1. Furthermore, the unsupervised approaches such as [17, 26, 28, 35, 37, 47] are

shown with red tint in Fig. 3.1. This table shows the recent monocular unsupervised

3D reconstruction methods as well in the lower red tint part as well.
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Chapter 4

Multi-view Neural Shape Prior

Problem setup. We are interested in a camera rig setup with K synchronized

views capturing N instances of non-rigid objects from the same category. Specifically,

we are given a non-sequential (atemporal) dataset containing N multi-view 2D ob-

servations {W(1)
1 , . . . ,W

(N)
1 ; · · · ; W

(1)
K , . . . ,W

(N)
K }, where each W ∈ RP×2 represents

2D location for P keypoints. We want to reconstruct the 3D shape S(1), . . . ,S(N),

where each S ∈ RP×3 for each of the N instances of the object.

Weak perspective projection. We assume weak perspective projections, i.e. for

a 3D structure S defined at a canonical frame, its 2D projection is approximated as

W ≈ sSRxy + txy (4.1)

where Rxy ∈ R3×2, txy ∈ R2 are the x-y component of a rigid transformation, and

s > 0 is the scaling factor inversely proportional to the object depth if the true

camera model is pin-hole. If all 2D points are visible and centered, txy can be omitted

by assuming the origin of the canonical frame is at the center of the object. Due to

the bilinear form of (4.1), s is ambiguous and becomes up-to-scale recoverable only

when S is assumed to follow certain prior statistics. In our approach, we handle scale

by approximating with an orthogonal projection and solving an Orthogonal-N-Point

(OnP) problem [42] to find the camera pose along with the scale, as discussed in

Sec. 4.1.2.

Statistical shape model. We assume a linear model for the 3D shapes S to be

reconstructed, i.e. at canonical coordinates, the vectorization of S in Eq. (4.1),
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4. Multi-view Neural Shape Prior

Figure 4.1: Two views statistical shape prior. The 3D structure S is drawn from a
statistical shape distribution using neural shape priors and consequently projected to
2 views using the cameras R∗k ∀k ∈ [1, 2] – calculated through OnP formulation [42].
The proposed approach minimizes the 2D projection error between the predicted 2D
projections W̃k and target (input) 2D projections Wk.

denoted s = vec(S) ∈ R3P can be written as

s = Dψ (4.2)

where D ∈ R3P×B is the shape dictionary with B basis and ψ ∈ RB is the code vector

- taking insight from classical sparse dictionary learning methods. The factorization

of S in Eq. (4.2) is ill-posed by nature; in order to resolve the ambiguities in this

factorization, additional priors are necessary to guarantee the uniqueness of the

solution. Notable priors include the assumption of S being (i) low rank [2, 6, 8, 9, 30],

(ii)lying in a union-of-subspaces [1, 31, 50] (iii) or compressible [25, 27, 49]. The low-

rank assumption becomes infeasible when the data exhibits complex shape variations,

the union-of-subspaces NRSfM methods have difficulty clustering shape deformations
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4. Multi-view Neural Shape Prior

and estimating affinity matrices effectively. Finally, the sparsity prior allows more

powerful modeling of shape variations with large number of subspaces, but suffers

from sensitivity to noise.

Neural Shape Prior Our neural shape prior is an approximation to a hierarchical

sparsity prior introduced by Kong et al. [26], where each non-rigid shape is represented

by a sequence of hierarchical dictionaries and corresponding sparse codes. Other neural

shape priors – such as C3PDO [35] – could be entertained as well but we chose to

employ Kong et al.’s method due to its simplicity with respect to enforcing multi-view

equivariant constraints. The approach in [26] maintains the robustness of sparse code

recovery by utilizing overcomplete dictionaries to model highly deformable objects

consisting of large-scale shape variation. Moreover, if the subsequent dictionaries in

this multi-layered representation are learned properly, they can serve as a filter such

that only functional subspaces remain and the redundant are removed. Due to the

introduction of multiple levels of dictionaries and codes in the following section, we

will abuse the notation of D,ψ by adding left superscript 1, i.e. 1D, 1ψ indicating

that they form the first level of hierarchy. Assuming the canonical 3D shapes are

compressible via multi-layered sparse coding with l ∈ L layers, the shape code 1ψ is

constrained as

s = 1D 1ψ

1ψ = 2D2ψ

...

L−1ψ = LDLψ

s.t. ‖lψ‖1 ≤ lλ , lψ ≥ 0 , ∀l ∈ {1, . . . , L}

(4.3)

where lD ∈ R l−1B× lB are the hierarchical dictionaries, l is the index of hierarchy

level, and lλ is the scalar specifying the amount of sparsity in each level. Thus, the

learnable parameters are Θ = {· · · , lD, lλ, · · · }. The single set of parameters Θ

are fit jointly along with the sparse codes, rotation matrices, and structures S for

each instance in the dataset. Jointly constraining each instance via a common set

of weights (the “neural prior”) makes this work more akin to classic factorization

methods, in which both the shared factors and the weightings for each instance are

jointly inferred, rather than to network training approaches which aim to find weights
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4. Multi-view Neural Shape Prior

that generalize well when later used to perform inference on unseen data.

Factorization-based NRSfM. Equivalently, the linear model in Eq. (4.2) could

be rewritten as

S = D#(ψ ⊗ I3)

where D# ∈ RP×3B is a reshape of D and ⊗ denotes a Kronecker product. Applying

the camera matrix Rxy gives the 2D pose. Thus

SRxy = D#(ψ ⊗Rxy)

Substituting the input 2D pose W from Eq. (4.1), we have

W = D#Ψxy

s.t. Ψxy = ψ ⊗Rxy and ψ ∈ C
(4.4)

where Ψxy ∈ R3B×2 is the sparse block code denoting the first two columns of

Ψ ∈ R3B×3; and C denotes the neural shape prior constraints applied on the code ψ,

e.g. hierarchical sparsity [26] in our case. Conceptually, Ψ is a matrix with rotations

and sparse code built into it. Under the unsupervised settings, D,ψ,R,S are all

unknowns and are solved under the simplified assumptions that the input 2D poses

are obtained through a weak perspective or an orthogonal camera projection. It

is important to note that along with the R predicted through the factorization of

Ψ, we also analytically compute R∗ as a solution to a Orthographic-n-point (OnP)

problem that implicitly acts as a supervisory signal for the R generated from Ψ.

Corresponding proof for R∗ is discussed in the supplementary section.

4.1 Approach

4.1.1 Bilevel optimization

Given only the input 2D poses in Eq. (4.4), two problems remain to address

• How to formulate an optimization strategy to recover D,ψ,R,S?
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4. Multi-view Neural Shape Prior

Figure 4.2: Architecture showing our K = 2-views 3D reconstruction approach.
The 2D projections from both views Wk ∀k ∈ [1, 2] acts as an input to encoder f e

that extracts the block sparse code Ψk from the corresponding views. A Rotation
Factorization (RF) layer at the bottleneck stage shown in green, factorizes the block
sparse code into the respective camera matrix Rk and the unrotated vector sparse
code Lψk. The codes are then fused via pooling function g into a single code Lψ
that acts as an input to the shape decoder f d. The shape decoder predicts the 3D
structure S in the canonical frame while enforcing equivariant view consistency.

• How to efficiently pool in K different camera views and enforce equivariance

over the predicted K camera matrices and a single 3D structure in canonical

frame?

We choose to impose neural shape priors through hierarchical sparsity con-

straints [26] literature for approaching a solution to the above problems, with learnable

parameters Θ (see Sec. 4.1.2). From Eq. (4.4), the learning strategy of multi-view

NRSfM problem for N instances with K views is then interpreted as solving the

following bilevel optimization problem. Eq. (4.3) leads to relaxation of the following
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lower-level problem

min
D,Θ

K∑
k=1

N∑
n=1

(
min

lψ
(n)
k ,R

(n)
k

‖W(n)
k −

1D
(

1Ψ
(n)
k

)
‖F+

L∑
l=1

lλ‖lΨ(n)
k ‖F +

L∑
l=2

‖(l−1Ψ
(n)
k )− lD (lΨ

(n)
k )‖F

) (4.5)

where the first expression in (4.5) minimizes the 2D projection error, the second

expression enforces sparsity, and the third expression fits each dictionary in the

hierarchy to the dictionary representation in the preceding layer.

4.1.2 Network approximate solution

The optimization problem in Eq. (4.5) is an instance of dictionary learning problem

with sparse codes ψ. The classical approach to this problem is by solving the Iterative

Shrinkage and Thresholding Algorithm (ISTA) [5]. However, Papyan et al. [36] show

that a single layer feedforward network with Rectified Linear Unit (ReLU) activations

approximate one step of ISTA, with the bias terms lλ adjusting the sparsity of

recovered code for the lth layer. Furthermore, the dictionaries [ 1D, . . . , LD] can be

learned by back-propagating through the feedforward network. We devise a network

architecture that serves as an approximate solver to the above optimization problem

and provide derivations in the following subsections.

Approximating sparse codes. We review the sparse dictionary learning problem

and consider the single-layer case stated above. To reconstruct an input signal X,

the optimization problem becomes

min
Ψ
‖X−DΨ‖F + λ‖Ψ‖F

As stated above, Papyan et al. [36] propose that one iteration of ISTA gives back the

block-sparse codes Ψ as

Ψ = ReLU(D>X;λ)
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4. Multi-view Neural Shape Prior

We interpret ReLU as solving for the block-sparse code and incorporate ReLU as the

nonlinearity in our encoder part of the network.

Encoder architecture. We propose to devise an encoder network fe that takes

the 2D poses as input and outputs the block sparse codes Ψ that has within itself the

rotation matrix R as well as a rotationally invariant sparse code ψ, i.e. fe(W
(n)
k ) 7→(

LΨ∗k

)
. Unrolling one iteration of ISTA for each layer, fe takes W

(n)
k as 2D pose

inputs and produces block sparse codes for the last layer [ 1Ψ
(n)
k , . . . , LΨ

(n)
k ] as output,

shown in Fig. A.1

1Ψ
(n)
k = ReLU

([
( 1D#)> ·W(n)

k

]
3×2

; 1λ(n)
)

2Ψ
(n)
k = ReLU

(
( 2D⊗ I3)> · 1Ψ

(n)
k ; 2λ(n)

)
...

LΨ
(n)
k = ReLU

(
(LD⊗ I3)> · L−1Ψ

(n)
k ; Lλ(n)

)
(4.6)

where lλ(n) is the learnable threshold for each layer. ( lD⊗I3)>· l−1ψ
(n)
k is implemented

by a convolution transpose.

Rotation Factorization layer. At the bottleneck, our encoder network generates

a block sparse code for K−views LΨ
(n)
k . As evident in Eq. (4.4), since the block

sparse code has rotations R
(n)
k as well as an unrotated sparse code ψ

(n)
k , we add a fully-

connected layer that factorizes out these quantities, named Rotation Factorization

(RF) layer, shown as a green block in Fig. A.1. Consequently, LΨ
(n)
k is then factorized

into an unrotated sparse code Lψ
(n)
k and the rotation matrix R

(n)
k (constraining to

SO(3) using SVD) using this fully-connected RF layer. At this stage, we pool the

features from all the rotationally invariant or unrotated sparse codes Lψ
(n)
k using a

sum pooling operation g that enforces the equivariance consistency within all the

views by combining features from multiple views.

g(Lψ
(n)
1 , . . . ,Lψ

(n)
K ) 7→ (Lψ(n)) (4.7)

as shown in architecture overview Fig. A.1, where g denotes a sum operation.

Since the pooled sparse code Lψ is rotationally invariant, we generate a single

canonical 3D structure S through a decoder network f d, that remains equivariant to
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4. Multi-view Neural Shape Prior

K camera rotations R1, . . . ,RK . Thus, the decoder network f d helps supervise the

fully-connected RF layer.

Insight behind multi-view consistency. For each individual view, we get a

block sparse code representation Ψ
(n)
k that has the rotation R

(n)
k combined with an

unrotated sparse code ψ
(n)
k . RF layer disentangles these quantities and generates

codes that are consistent with an unrotated or canonicalized view. This architecture

thus enforces equivariance consistency by consequently passing the unrotated sparse

code ψ through a shape decoder to produce a canonicalized 3D structure. When

we jointly encode multiple views into a single canonical shape, the equivariance is

implicitly enforced after projecting them through the given multiple cameras. These

multi-view projections help supervise the multi-view NRSfM network.

Decoder architecture. Finally, a decoder f d is devised that takes input a pooled

bottleneck sparse code (see Eq. 4.7) and generates a canonical 3D structure S. Thus,

fd(
Lψ(n)) 7→

(
S(n)

)
L−1ψ(n) = ReLU( LD · Lψ(n); Lλ(n))

...

1ψ(n) = ReLU( 2D · 2ψ(n); 2λ(n))

S(n) = 1D · 1ψ(n) (4.8)

We analytically compute a closed-form solution to R∗ as a solution to an Orthographic-

n-point (OnP) problem that implicitly acts as supervisory signal for the R
(n)
k . Detailed

proof is shown in the supplementary section.

Supervising R using solution from OnP We are using a closed-form solution

to R∗ that gives us an optimal solution different from the one produced by the

network at the bottleneck stage. We opt to use an algebraic solution which can be

implemented as a differentiable operator and could be easily accomplished via modern

autograde packages. The R∗ generated by OnP implicitly supervises the R generated

in the RF layer of the encoder-decoder network. The detailed proof for the OnP

solution is given in the appendix.

Loss function To reemphasize the loss function in our neural architecture, the loss

function driving the proposed approach is a reprojection error
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4. Multi-view Neural Shape Prior

L =
1

KN

K∑
k=1

N∑
n=1

‖W(n)
k − S(n)R

(n)
k ‖F (4.9)
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Chapter 5

Results – Multi-view Neural Shape

Prior

5.1 Experiments

We present evaluations across numerous object categories including the human body,

human hands, and monkey body. Evaluation is divided into two major categories:

(i) Multi-view 3D reconstruction of an input 2D dataset, and (ii) Generation of

3D labels for unseen 2D data. The former compares against classical algorithms to

generate high-fidelity 3D reconstruction from multi-view 2D input datasets. The

latter discusses the generalization capability of our approach, and shows that it does

not overfit. For this we follow one of the standard protocols for a human pose dataset

and show results on the validation split. We go through the experimentation and

dataset details.

Network architecture and implementation details In our implementation, we

use the same neural encoder architecture for all the K views across different datasets.

As shown in Fig. A.1 we use K−encoders and a single shape decoder to generate one

3D structure in a canonicalized frame. The dictionary size (i.e. neural units) within

each layer of encoder is decreased exponentially: {1024, 512, 256, 128, 64, 32, 16, 8}.
Ideally, if a validation set with 3D groundtruth is provided, we could select optimal

architecture based on cross-validation. However, due to the unsupervised setting, we
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5. Results – Multi-view Neural Shape Prior

rather set the hyperparameters heuristically. We pick a bottleneck dimension, 8 for

articulated objects such as human skeleton, human hands, or monkey body. For the

encoder and decoder architecture discussed in Eq. (4.6), (4.8), we use a convolutional

network as in Kong et al. [26] and share the convolution kernels (i.e. dictionaries)

between the encoder and decoder.

Training details We keep the same weightings for the reprojection error shown in

loss function Eq. (4.9). We use the Adam optimizer [23] in our implementation.

Evaluation metrics We utilize the following metrics to assess the prediction

accuracy of 3D reconstruction. PA-MPJPE: prior to computing the mean per-

joint position error, we standardize the scale of the predictions by normalizing them

to match against the given ground-truth (GT) followed by rigidly aligning these

predictions to GT. Lower the better PCK: percentage of correct keypoints. The

predicted joint is viewed as correct if the separation between the predicted and the

GT joint is within a specific range (usually in cm or mm).

Monkey body dataset OpenMonkeyStudio [4] is a huge Rhesus Macaque monkey

pose dataset in a setup similar to PanOptic Studio where 62 cameras capture the

markerless pose of Rhesus Macaque monkeys. We use the provided 2D annotations

over the Batch (7, 9, 9a, 9b, 10, and 11). This dataset also provides the groundtruth

3D labels for the given batches to evaluate the 3D reconstruction performance.

Human body dataset Human 3.6 Million (H3.6M) [16] is a large-scale human

pose dataset with 3.6 million images featuring 11 actors performing 15 daily activities,

such as eating, sitting, walking, and taking a photo, from 4 camera views - annotated

by motion capture systems. The 2D keypoint annotations of H3.6M preserve the

perspective effect, and thus is a realistic dataset for evaluating the practical usage of

generating 3D labels for unseen data as well as test the generalization capability of our

approach. We use this dataset for both quantitative and qualitative evaluation. For

generating 3D reconstruction of an input dataset (see Sec. 5.1.1), we pick 5 subjects

(1, 5, 6, 7, 8) and compare against the classical multi-view triangulation baselines. For

generating 3D labels over unseen 2D data to showcase the generalization capability

(see Sec. 5.1.2), we follow the standard protocol on H3.6M and use the subjects (1,

5, 6, 7, 8) during the training stage and the subjects (9, 11) for evaluation stage.
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Evaluation is performed on every 64th frame of the test set. We include average

errors for each method.

Human hands dataset Finally, we use an open-source hands dataset - Frei-

Hand [51] - a large-scale open-source dataset with varied movements of hands with

3D pose annotated by motion capture systems. It consists of 32560 samples with their

corresponding camera intrinsics. We generate random camera extrinsics and randomly

create multiple camera views to generate multi-view 2D inputs for evaluating the

proposed approach.

5.1.1 3D reconstruction of an input 2D dataset

Like classical 3D reconstruction algorithms such as multi-view triangulation or bundle

adjustment, our approach jointly infers the unknown 3D shape and camera rotations

from 2D keypoints. By simultaneously fitting the shared network parameters used to

recover shape and pose, our approach constrains the possible reconstructions much

more strongly than multi-view triangulation or bundle-adjustment approaches. We

emphasize that, while we later showcase the generalization capability of the setup by

applying the fitted network to generate 3D labels for unseen 2D data (see Sec. 5.1.2),

the major contribution of our approach is the optimization process for multi-view 3D

reconstruction of an input 2D dataset. The goal is to evaluate the robustness of the

proposed multi-view neural shape prior across different shape variations and hence as

part of the evaluation, we report how well our method is able to reconstruct different

datasets compared to the baseline methods.

Baseline We use a baseline implementation of iterative multi-view triangulation

with robust outlier rejection [13, 14], referred to as TRNG. This is also the triangu-

lation method of choice for recent multi-view 3D human pose learning by Kocabas et

al. [24], who also provide an open-source implementation for this method. A more

recent method doing classical optimization on triangulation is proposed by Lee and

Civera [32], however, their method is not necessarily optimal in terms of accuracy, but

more in terms of computation time. TRNG first finds the points which minimize the

distance from all the rays and removes the rays which are the furthest away from that

point. It then re-evaluates the triangulation and this iteration is repeated 2-3 times.

Empirically, we find that increasing the iteration leads us to predict near-perfect
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Table 5.1: PA-MPJPE error values for Monkey body dataset shows substantial
improvement over the baseline rigid multi-view triangulation approach while using
only two views over noisy 2D keypoints. PA-MPJPE values are in cm.

Table 5.2: Robustness to camera calibration and 2D annotations noise for Human
3.6M dataset.

3D reconstruction if we have exact camera calibration parameters and exact, clean

2D projections. We consider this to be a very strong baseline comparison since

this approach is being widely used in industry as well as academia to generate very

accurate 3D reconstructions that are further used to train 3D regression methods. The

detailed proof is provided in the supplementary section. We evaluate our approach

on the above three datasets with substantial non-rigid deformities. For all the given

experiments the 2-view cameras are chosen at random and the same set of cameras

are used in the comparative baselines for a fair comparison.

Method PCK

2 Views [4] 1.2%
4 Views [4] 59%
8 Views [4] 80%
16 Views [4] 82%
32 Views[4] 87%
48 Views [4] 95%

2-views (ours) 68.63%
3-views (ours) 84.63%

Table 5.3: Percentage of Correct Keypoint (PCK) % for OpenMonkeyStudio dataset.
Following [4], the threshold for considering a keypoint to be correct is set at 10cm.
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Figure 5.1: Qualitative 3D reconstruction comparison between the multi-view trian-
gulation technique and our technique for Monkey body [4] and human hands [51]
when operated over noisy 2D keypoints.

Evaluation analysis For the Monkey body dataset, multi-view 3D reconstruction

with 2− or 3− view using our approach significantly outperforms the given results

in [4] and achieves comparable fidelity with only two physical views. Similar to [4],

we consider all the keypoints as correct if their reconstruction is within 10cm of the

groundtruth in the PCK protocol. Table 5.3 and top-right plot in Fig. 2.1 shows

that we outperform the given results of 2-Views by a significant margin (1.2% vs.

68.63%). The fidelity of 3D reconstructions using the proposed method continues to

rise as we add in more views - evident by the uptick in performance from 3−views.

Qualitative performance of Monkey dataset and human hands dataset is shown in

Fig. 5.1.1 and quantitative performance of monkey body is given in Tab. 5.1 when

operated over noisy 2D keypoints. For the human body dataset, we inject noise

in the camera extrinsics, intrinsics, and 2D keypoints separately and compare the
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Figure 5.2: Qualitative results on Human 3.6M dataset with σ = [0.5, 0.5, 25] as
intrinsics, extrinsics, and 2D keypoints Gaussian noise, respectively.

performance in Fig. 5.2 and Tab. 5.2. The baseline method fails when noise with a

small standard deviation is added, degrading the fidelity of the 3D reconstruction.

Since our approach is only dependent on the quality of 2D keypoints, it shows slightly

degraded performance only when the noise is injected over the input 2D keypoints.

Qualitative 3D reconstruction performance of our approach in Fig. 5.1.1, 5.2 shows

the visual improvement over the classical multi-view triangulation approaches when

operated over noisy 2D keypoints.

5.1.2 Generation to unseen 2D data

There exists now several multi-view approaches for 3D human pose estimation that

leverage either full or weak 3D supervision [18, 20, 24, 38, 39, 40, 46]. None of these

references, however, directly tackle the unsupervised multi-view 3D reconstruction

problem and hence are not as general as our solution. However, to showcase the

generalization capability of our approach, we include these approaches in our evalu-

ation, shown in Tab. 5.4. Furthermore, we also compare against recent monocular

unsupervised 3D reconstruction methods. We leverage the processed datasets by
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Method Detected 2D GT 2D
Iskakov et al. [18] 20.8 -
Remelli et al.[39] 30.2 -
Kadkhodamohammadi et al. [20] 49.1 -
Tome et al. [46] 52.8 -
Pavlakos et al. [38] 56.9 -
Multi-view Martinez [33] 57.0 -
Rhodin et al.[40] 51.6 -
Kocabas et al [24] 45.04 -
Kocabas et al. (SS w/o R) [24] 70.67 -
PRN [37] 124.5 86.4
RepNet [47] 65.1 38.2
Iqbal et al.[17] 69.1 -
Pose-GAN [28] 173.2 130.9
Deep NRSfM [26] - 104.2
C3DPO [35] 153.0 95.6
MV NRSfM (Ours) 45.2 30.2

Table 5.4: Generalization experiments. Red tint rows have 3D supervision. Green
tint are unsupervised 3D reconstruction methods. Our method is on par with most
3D supervised methods, and outperforms all unsupervised methods.

Dovotny et al. [35] as the detected 2D keypoints for a fair evaluation. We use the

evaluation split of H3.6M dataset for this comparison. We find that our approach

clearly outperforms all other unsupervised approaches, and is on-par with many

supervised methods.
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Chapter 6

Discussions

This thesis proposes a multi-view NRSfM architecture that incorporates neural shape

prior using the recent advances of modern deep learning methods. We observe that

two-physical views achieve comparable fidelity to complex, expensive setups that use

multi-view triangulation. We also show the generalization capability of the proposed

approach by generating accurate 3D reconstructions on unseen data. Although we

require two rigid views at any instant of time, our approach still requires multiple

non-rigid atemporal views to enforce the proposed neural shape prior. Literature

in the domain of neural shape priors is extensive [35, 48] and new innovations are

proposed constantly, and we believe we could leverage these innovations within our

framework as one of the parts of our future direction.

6.1 Future Directions

6.1.1 Spatio-temporal neural prior

The proposed neural shape prior is able to help bring the regularization within the

neural network. On top of bringing the spatial neural prior, one immediate step we

propose is to bring in the temporal information to bring about the regularization

within our network. A spatio-temporal neural prior could be leveraged to reason

about both the modalities of information simultaneously.
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6.1.2 Implicit pooling

As shown in the appendix, although the proposed network used max-pooling in the

architecture, it is robust to different pooling operations in the fact that the network

is agnostic to this operation. With this observation, one potential idea could be

the investigation into implicit feature selection from multiple views instead of the

max-pooling of the features currently used in our architecture.
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Appendix A

Appendix

A.1 Reproducibility details

The Kronecker product in Eq. (6) increases the implementation complexity of our

approach. To eliminate it and make parameter sharing easier in modern deep learning

environments (e.g. TensorFlow, PyTorch), we reshape the filters and features and

show that the matrix multiplication in each step of the encoder and decoder can be

equivalently computed via a multi-channel convolution ∗ and transposed convolution

∗> i.e. first layer on Eq. (6) could be implemented as

( 1D#)> ·W(n)
k =⇒ 1d# ∗> w(n)

where 1d# ∈ R3×1× 1B×P and w(n) ∈ R1×2×P . Here, the filter dimension is height ×
width ×# of in-channel ×# of out-channel, while the feature dimension is height ×
width ×# of channel. Similarly, the subsequent layer operation is carried out as

( 2D⊗ I3)> · 1Ψ
(n)
k =⇒ 2d# ∗> 1Ψ

(n)
k

where 2d# ∈ R1×1× 2B× 1B and 1Ψ
(n)
k ∈ R3×2× 1B. Following the similar operations,

the layers on the decoder part in Eq. (8) could be written as

LD · Lψ(n) =⇒ Ld ∗ Lψ(n)
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A. Appendix

Figure A.1: 3D reconstruction error in MPJPE with different pooling operations. For
each configuration, MV NRSfM is run 5 times and visualized with average accuracy
(solid lines) together with standard deviation (shaded areas).

where Ld ∈ R1×1× LB× L−1B and Lψ(n) ∈ R1×1× L−1B.

A.2 Robustness against pooling operation

As shown in the figure below, we run our approach with different pooling operations,

i.e. max and sum pooling on human hands dataset. To account for the stochastic

behavior due to network initialization and gradient descent, we run the approach 5

times and visualize with average accuracy (solid lines) together with standard deviation

(shaded areas). MV NRSfM gives similar results for either pooling operation. This

indicates our method is robust to the type of pooling operation that combines features

from multiple views. As part of future avenues, we propose to investigate an implicit

formulation to choose among the features coming from different views as part of the

pooling operation.
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A.3 Differentiable OnP solution

We find the solution to Orthographic-N-Point (OnP) problem for extracting the

K rotation matrices from 2D-3D correspondences between K input poses Wk and

canonicalized 3D structure S, as shown in Fig. 2. We opt to use an algebraic

solution that is computationally more light-weight compared to OnP solvers iteratively

minimizing the geometric error. Although an algebraic solution does not necessarily

reach local minima, it still leads to equivalent training performance of using a geometric

solution. The benefit of using an algebraic solution is that it could be implemented as

a differentiable operator, which could be easily accomplished via modern deep learning

autograd packages. We choose a solution that finds the closed-form least square

solution R̃∗ for minimizing the reprojection error shown in Eq. (9), by subsequently

projecting the R̃∗ to become a rotation matrix R∗ ∈ SO(3) using SVD. Due to its

differentiability, we could easily insert the solution directly within our pipeline.

An alternative solution to find R is using an approximation from the network

that we keep at the Rotation Factorization (RF) layer as a fully connected layer

connecting LΨ
(n)
k and Lψ

(n)
k and a linear combination among each blocks of LΨ

(n)
k

to estimate R
(n)
k , where the fully connected layer parameters are learned from the

data. Our closed-form solution R∗ from solving the OnP problem now implicitly acts

as supervisory signal for the R
(n)
k generated by the network explained above.

A.4 Triangulation baseline

To obtain a 3D structure for corresponding synchronized 2D keypoints as a baseline,

we utilize the triangulation method as the one given in [14] by leveraging epipolar

geometry. Kocabas et al. [24] provide an open-source implementation for this method.

Iterative Linear Least Squares (Iterative-LS) or Iterative-Eigen method is utilized as

our baseline. The idea of the iterative linear method is to change the weights of the

linear equations adaptively so that the weighted equations correspond to the errors

in the 2D coordinate measurements.
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