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Abstract

For robots to understand the environment they interact with, a combi-
nation of geometric information and semantic information is crucial. In
this thesis, we propose a fast, and scalable Simultaneous Localization
and Mapping (SLAM) system that represents indoor scenes as a graph of
semantic objects. Leveraging the observation that artificial environments
are structured and occupied by recognizable objects, we show that a com-
bination of compositional rendering and sparse volumetric object graph as
the map results in a SLAM system suitable for drift-free large-scale indoor
reconstruction. While object based SLAM has been proposed in the past,
we improve on both object reconstruction quality, trajectory accuracy,
and online performance. We also propose a semantically assisted data
association method that results in unambiguous and persistent object
landmarks. We deliver an online implementation that can run at about
4-5Hz on a single commodity graphics card, and provide a comprehensive
evaluation against state-of-the-art baselines.
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Chapter 1

Introduction

1.1 SLAM

Simultaneous Localization and Mapping (SLAM) is the chicken-and-egg problem of

estimating the model of the environment (the map), and simultaneously optimizing

the robot trajectory associated with the map, given measurements.

Typically, when the map is modeled as a collection of landmarks L = {`m}Mm=1,

and the robot trajectory is modeled as a sequence of poses X = {xt}Tt=1, given a

set of measurements Z = {zn}Nn=1, the SLAM problem can be summarized as a

maximum-a-posteriori estimation [8] as follows:

X̂ , L̂ = argmax
X ,L

p(X ,L|Z) (1.1)

∝ argmax
X ,L

p(Z|X ,L)p(X ,L) (1.2)

In reality, however, a SLAM framework for a robot needs to deal with raw sensor

measurements. Therefore, typically the system is divided into two parts: front-end

and back-end. The front-end is dedicated to data pre-processing, data association

and feeds into the back-end dedicated to the optimization that results in the best

estimate of robot state and landmarks.
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1. Introduction

1.2 Semantics in SLAM

For autonomous robots in the near future, to work in the real world advanced

interpretation of the environment is necessary. For workloads ranging from semantic

3D reconstruction and path planning to active interaction with the environment

(see Figure 1.1) robotic systems require not only geometric perception including

robot localization and map reconstruction, but also semantic and compositional

understanding of scenes.

Figure 1.1: Boston Dynamics’ Spot Mini robot picking up clothes in a living room.
These types of complex interactions require the robot to have a semantic understanding
of the objects in its environment.

In recent years, geometry-based SLAM has achieved high levels of performance in

experimental setups for localization tasks. Many variants of SLAM algorithms, from

ORB-SLAM [23] to Direct Sparse Odometry (DSO) [11], can now run in real-time

with high trajectory accuracy. However, they are in general limited by the static-world

assumption and low-level scene representation as sparse 3D feature points, and thus

cannot distill high-level information also known as semantic understanding in scenes

and adjust to structured environmental changes.

On the other hand, with progress in deep learning, near real-time semantic

perception is achievable powered by efficient Deep Neural Networks (DNNs). There

has been explosive progress in object detection and instance segmentation over the
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1. Introduction

past 5 years [13, 31, 32] which is underutilized in SLAM. Researchers have started

to switch to semantic SLAM taking advantage of off-the-shelf solutions; pioneering

research includes SLAM++ [35], Fusion++ [21], and MaskFusion [33]. These initial

attempts take into consideration semantic segmentation, but typically simply attach

DNN frontends to existing SLAM frameworks in an ad hoc fashion. Implementation-

wise, they require high-end machines to achieve near real-time performance, or are

not available to the community.

1.3 Contributions

Figure 1.2: Reconstruction of fr2 xyz sequence from tum rgbd dataset. Our pipeline
can reconstruct both camera trajectory and object models in the scene.

In this thesis, I present a Compositional and Scalable Object SLAM system that

represents an environment as a pose graph of persistent objects. I describe a system,

that incrementally improves each associated persistent object landmark through

a RGBD Fusion approach, and optimizes the landmarks and the robot trajectory

3



1. Introduction

simultaneously to accurately represent an environment. (see Figure 1.2).

In implementation, this work fully exploits the power of the modern GPU-based

reconstruction pipeline [9] and object detection frameworks [17], to design an efficient

architecture for data exchange without sacrificing the ease of system configuration

and build.

This document presents the following core contributions:

1. A compositional volumetric rendering method that feeds the most up-to-date

model render for RGBD camera tracking;

2. A hybrid object association method that combines geometric and semantic cues

to enable drift-free tracking without an explicit relocalization module;

3. A scalable, modular, and easy-to-use open source system that runs nearly

realtime.

1.4 Organization

In Chapter 2 we first review some requisite preliminaries and concepts in SLAM, and

dense 3D reconstruction.

In Chapter 3 we introduce the core SLAM system that forms the major contribution

of this thesis. This chapter presents some of the improvements made in the SLAM

system with object landmarks, and delineates each component in the pipeline.

In Chapter 4, we present some qualitative and quantitative experiments and discussion

by comparing against existing state-of-the-art geometric SLAM systems and a few

dense semantic SLAM systems.

Finally, in Chapter 5, we conclude the thesis, with some limitations and future

directions of research work to improve SLAM systems.
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Chapter 2

Background

As eluded to in Chapter 1, SLAM systems that run on real robots can be crudely

divided into front-end and back-end. This chapter is a primer on algorithms and

methods used in the front-end and back-end.

2.1 The Front End

The robotic paradigm describes the relationship of an agent interacting with its

environment through the sense-plan-act control loop. SLAM being in the sense

paradigm, deals with processing the raw environment sensor readings to a structured

representation that can be used in downstream tasks.

The front end deals with data preparation, modeling and data association such

that it is amenable to the underlying optimization. More often than not, the choice of

front-end is sensor dependent. For instance, many visual SLAM systems that utilize

a monocular or stereo camera resort to feature based [20, 30] sparse representations,

while RGBD sensor based systems resort to direct methods [24, 42] that utilize all

the pixels in the input frame.

This distinction in the choice of front-end often influences the choice of map

representation in a SLAM system. A popular choice with visual SLAM system is

to use an explicit map representation as a set of 3D points [23] that is triangulated

from multiple 2D image feature correspondences. On the other hand dense front-end

systems rely on surfel representations or on volumetric representations such as occu-
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2. Background

pancy grids. More recently, after the seminal work [24], implicit map representations

have gained popularity as a candidate representation for RGBD SLAM systems.

In this work, since the focus is on semantic high level object landmarks each

represented with implicit representations such as Truncated Signed Distance Function

(TSDF) grids, the next section provides a short introduction of this representation.

2.1.1 Implicit map representation through TSDFs

Figure 2.1: An example of metric space in 3D discretized on a computer as a voxel
grid.

Implicit map representations are fundamentally different from explicit map repre-

sentations. As opposed to point clouds or landmark collections, an implicit map refers

to one where the environment is defined through a metric space X (see Figure 2.1)

and structures in this space are described through an implicit function f : X→ R.

One example of an implicit function is the log-odds occupancy, resulting directly in

occupancy grids [39] and octree [14] representations. Another is the signed distance

function (SDF) which is relevant for this thesis. Formally, it is defined as follows:

In a metric space X defined with distance d, if the surface defined by ∂Ω demarcates

6



2. Background

this space into subsets Ω and Ωc, the signed distance function f is defined by

f =

 d(x, ∂Ω), if x ∈ Ω

−d(x, ∂Ω), if x ∈ Ωc
(2.1)

In particular, for the 3D environment, we have that X = R3 with d = ‖·, ·‖2, and ∂Ω

corresponds to the zero level set of the signed distance function and represents the

surface of objects as a topological space. In simple words, the signed distance function

returns the shortest distance of a query point in Euclidean space to its closest point

on the surface boundary (see Figure 2.2).

Figure 2.2: An illustration of Signed Distance Function for a 2D metric space
discretized into pixels (query coordinates ’+’) (Courtesy: Wikipedia).

TSDF integration

A TSDF representation requires a metric volume by design, which is implemented

as a volumetric grid V , arbitrarily initialised in the world frame TW = I ∈ SE(3).

Consider a single RGBD frame measurement 〈I,D〉 that consists of a color (I) and

depth (D) image, at a relative camera pose TW
C =

[
RW
C tWC
0 1

]
∈ SE(3) with camera

7



2. Background

intrinsics K. To integrate the measurement into the TSDF volume, we project all

the query points q ∈ R3 of the volume V into the current image as follows:

q̇′ = (TW
C )−1q̇ (2.2)

ṗ = bKq′c (2.3)

where q̇ =
[
q> 1

]>
and similarly ṗ denote the homogeneous coordinates in R2 and

R3 respectively. p ∈ Z2 is the associated 2D pixel coordinate in the image and b·c is

the floor function and finds the greatest integer pixel coordinate less than the pixel

value in the image. For every matched pixel coordinate, we backproject the associated

measurement i.e., the depth value of the pixel D(p) ∈ R into the volume to obtain a

noisy 3D surface in the metric space (see Figure 2.3). This noisy surface is used as

the proxy surface against which all query coordinates (q ∈ Z3) in the volumetric grid

are evaluated against to obtain their corresponding SDF values as follows:

SDF(q) =

∥∥∥∥D(p)− 1

λ
‖tWC − q‖2

∥∥∥∥
2

(2.4)

where ‖tWC − q‖2 is the distance between the query point and the camera center

along the camera optical axis, and λ = K−1p defines the ray direction for the pixel p.

This effectively calculates the shortest distance of the query coordinate to the surface.

Figure 2.3: Back-projection of associated pixels into the 3D volumetric grid to obtain
a noisy surface.
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2. Background

This SDF value is truncated such that only a band of SDF values (+µ to −µ)

around the measured surface are computed, to avoid computation of all the query

coordinates in the volume. Similarly, colors from the image can be associated to the

query coordinates by unprojection uniquely since a depth image is available.

Figure 2.4: On weighted averaging of TSDF values obtained from multiple RGBD
measurements, in the limit we converge to TSDF values of the underlying surface.

Now, when we have multiple RGBD frame measurements {〈I(i),D(i)〉}Ni=1 with

their respective poses {TW
C(i)}Ni=1, we can compute TSDF measurements from each

individual frame. The global fusion of all these TSDF measurements is then done

through weighted average of the TSDF measurements for each query coordinate

q ∈ R3 over the camera frame sequence as follows:

d = φ(SDF(q)) (2.5)

TSDFk(q) =
TSDFk−1(q) + d

W (q) + 1
(2.6)

W (q) = W (q) + 1 (2.7)

where φ truncates the SDF computed for the frame being integrated, and W (q)

corresponds to the maintained weight for every voxel coordinate in the volume grid.

This integration process intuitively results in evaluation of the SDF values for the

query coordinates with the expected surface (mean of the TSDFs) from all the

incorporated RGBD measurements (see Figure 2.4).

In general, the integration process can also be applied to the color values, where

the colors are averages elementwise, with the incoming stream of images.

9



2. Background

TSDF Rendering

TSDF Rendering is the process of generating a virtual depth and color image given a

camera pose TW
C and TSDF volume grid V . The previous subsection assumed access

to camera poses for global TSDF fusion, but in an actual SLAM setting camera

poses are computed in the loop typically through iterative closest point (ICP) [34]

registration. TSDF Rendering is the intermediate step that generates a virtual image

that the incoming camera frame is registered against (also called frame to model

registration [24]). (details in §3.2.3)

Rendering is accomplished by marching a ray per pixel of the virtual frame into

the global TSDF volume which encodes surfaces as the zero level set (zero crossing).

For a given pixel p ∈ Z2, once again the camera ray can be computed as

r = TW
C K−1ṗ.

We then march along the ray from the minimum depth supported by the camera

(usually assumed to be 0.1m) to a max depth value defined by the supported camera

range (around 5m to 8m for Microsoft Kinect), or until we find a zero crossing.

Typically this process is sped up by skipping marching along the ray, and using a

step size < µ, the truncation threshold. Once a zero crossing has been found, the

depth value can be further refined by trilinear interpolation. (details in [24])

2.1.2 TSDF Limitations

Based on the discussion of TSDF for map representation in SLAM, the following

limitations might be apparent to the keen reader.

1. TSDF representation is memory intensive: A naive TSDF representation,

utilizes a 3D volumetric grid to represent the scene – typically a voxel grid of

resolution 5123 covering a bounded volume of about 4m3. This makes the entire

system very memory intensive. Later works such as Voxel Hashing [26] and

OctoMap [14] have tried to ameliorate this issue. In our implementation, we

utilize this spatial hashing based TSDF implementation based on [9] to achieve

memory efficiency.

2. TSDFs are computationally intensive: During integration of an incoming

10
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frame, all pixels that are projectively associated to the 3D query coordinates are

updated requiring about 640× 480 = 307200 operations for a VGA resolution

image. Similarly, during TSDF rendering, each pixel to be rendered requires

at most ‖dmax−dmin‖2
µ

evaluations, where ‖dmax − dmin‖2 is the maximum ray

length, and µ is the TSDF truncation width. Therefore, ray-casting is typically

the most computationally intensive step in any dense RGBD SLAM system.

Observing that each pixel is updated independent of others, a GPU can (and

is) used to parallelize all TSDF operations, to obtain realtime operation.

Figure 2.5: An example of dense high level landmark in our SLAM system.

3. Cannot easily smooth noisy pose estimates: It is not easy to correct noisy

pose estimates with implicit models, and therefore most early systems employed

only a filtering based integration [24]. This is because to correct for a noisy

pose estimate in retrospect requires the expensive operation of subtracting the

weighted TSDF values in the global volume from the appropriate coordinates and

re-integrating the volume with corrected TSDF values [5]. [41] used submaps to

subvert this problem, however with large TSDF volumes as submaps there are

still locally noisy measurements that are not corrected for. In our method, since

we use a TSDF representation only for landmark objects, we reap the benefits

of explicit representation, where the whole landmark pose can be optimized, but

each landmark provides a dense and appealing representation. (see Figure 2.5)

11



2. Background

2.2 The Back End

The back end is responsible for generating a reasonable explanation in the state

variables given the abstract sensor measurements and data associations from the front

end. As opposed to filtering based methods such as Kalman Filter, more recently

smoothing formulations based on matrix factorization have provided exact solutions

in the linear case, and approximate but good solutions in non-linear case by adding

the entire trajectory into the optimization problem while simplifying the solution [15].

In this section, I review the batch smoothing formulation that is quite common in

graph based SLAM back-ends today [8, 12].

2.2.1 SLAM and Non-Linear Least Squares

Figure 2.6: (a) A factor graph typical for SLAM and (b) the explicit Bayes net for
the factor graph in (a). Note the Markovian conditional independences between
measurements, given the state variables.

As introduced in Chapter 1, by treating the robot states and landmarks as random

variables given measurements, the SLAM problem can be treated as the maximum a

posteriori (MAP) estimation of robot and landmark states. Now, consider a collection

of robot state variables X , {xt}Tt=1, and a collection of landmarks L , {`m}Mm=1, and

set of measurements Z , {{zn}Nn=1, {zt}Tt=1} including both landmark and odometry

measurements respectively, then the MAP estimation is given as

X ∗,L∗ = argmax
X ,L

p(X ,L|Z) = argmax
X ,L

p(Z|X ,L)p(X ,L) (2.8)

While MAP estimation is known to be NP-Hard in general, by assuming reasonable

12



2. Background

conditional independences between the associated variables (see Figure 2.6), i.e.,

by making the markovian assumption on the state variables, and observing that

measurements are local, we can write the joint probability in 2.8 as follows:

p(X ,L,Z) = p(x0)
N∏
n=1

p(zn|xαn , `βn)
T∏
t=1

p(zt|xt−1,xt)

log p(X ,L,Z) = log p(x0) +
N∑
n=1

log p(zn|xαn , `βn) +
T∑
t=1

log p(zt|xt−1,xt) (2.9)

Note, that the above problem assumes known data association between measurements

zn of landmark `βn at a robot pose xαnas D := {(αn, βn)}Nn=1 [2]. Now as is typical

in SLAM, we assume Gaussian measurement noise in each of the measurements i.e.,

z0 = x0 + ν0 (2.10)

zn = hn(xαn , `βn) + νn (2.11)

zt = ht(xt−1,xt) + νt (2.12)

Where νn and νt are the intrinsic noise in the respective measurements, each dis-

tributed as zero mean noise with respective covariances Σn and Σt. Also note that

we added a phantom measurement z0 to constrain the first pose with an empirically

chosen small covariance Σ0. On writing down the probability distributions for each

of the Gaussian noise terms we have the following:

p(x0) ∝ exp{‖z0 − x0‖2
Σ0
} (2.13)

p(zn|xαn , `βn) ∝ exp{‖zn − hn(xαn , `βn)‖2
Σn
} (2.14)

p(zt|xt−1, `t) ∝ exp{‖zt − hn(xt−1, `t)‖2
Σt
} (2.15)

Observe that

X ∗,L∗ = argmax
X ,L

p(X ,L,Z) = argmin
X ,L

− log p(X ,L,Z) (2.16)

Now writing the joint probability using the factorized measurement distributions we
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2. Background

have

X ∗,L∗ = argmin
X ,L

{
‖z0 − x0‖2

Σ0
+

N∑
n=1

‖zn − hn(xαn , `βn)‖2
Σt

+

T∑
t=1

‖zt − ht(xt−1,xt)‖2
Σn

}

If we generalize the different types of measurements in the system as hi(Xi), and

subsume the landmarks and state variables into a single state vector X then we may

write the above as:

X ∗ = argmin
X

{
N∑
i=1

‖zi − hi(Xi)‖2
Σi

}
(2.17)

The above minimization is a non-linear least squares optimization which is typically

solved by iteratively linearizing the measurement models and solving a series of linear

approximations to the problem to approach a local minima solution for landmark

and robot latent state variables.

2.2.2 Iterative Linearization and Gauss Newton

Consider a single non-linear measurement hi(·), then by Taylor’s expansion, we can

linearize the measurement at a linearization point X
(0)
i as follows (see Figure 2.7):

hi(Xi) ≈ hi(X
(0)
i ) +

∂hi
∂Xi

∣∣∣∣∣
X

(0)
i

(Xi −X
(0)
i ) (2.18)

If we define the jacobian as Ji ,
∂hi
∂Xi

∣∣∣
X

(0)
i

, and ∆i , (Xi −X
(0)
i ) and substitute in

the general non-linear least squares objective 2.17:

∆∗ = argmin
∆

∑
i

‖{zi − hi(X(0)
i )} − Ji∆i‖2

Σi
(2.19)
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Figure 2.7: Illustration of linearization using Taylor’s expansion.

where qi , zi − hi(X(0)
i ) is the prediction error at the linearization point, and ∆∗ is

the solution to the locally linearized problem. Now we may write the least squares

objective as:

∆∗ = argmin
∆

∑
i

‖qi − Ji∆i‖2
Σi

= argmin
∆

∑
i

(qi − Ji∆i)
>Σ−1

i (qi − Ji∆i) (2.20)

= argmin
∆

∑
i

{
Σ
−1/2
i (qi − Ji∆i)

}> {
Σ
−1/2
i (qi − Ji∆i)

}
(2.21)

= argmin
∆

∑
i

‖bi −Ai∆i‖2
2 = argmin

∆
‖b−A∆‖2

2 (2.22)

By writing bi = Σ
−1/2
i qi and Ai = Σ

−1/2
i Ji and then collecting them in the vector b

and matrix A respectively, we obtain the standard least squares problem, that can

then be solved using normal equations.

The above solution gives us the local update ∆∗ for a linearization point X(0). To

solve a non-linear problem, we solve for local updates iteratively as in Algorithm 1.

A more detailed treatment of sophisticated non-linear optimization algorithms in

the context of SLAM is provided in [8].

2.2.3 Discussion and Limitations

We noted earlier that MAP inference on the factor graph for the SLAM setting is

tractable due to the inherent local structure of the factor graph. This structure
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Algorithm 1 Iterative Non-linear Optimization

1: procedure Gauss Newton(g(X),X(0))
2: d = threshold
3: for t = 0 to N do
4: A,b← Linearize(g(X)) at X(t)

5: ∆∗ ← (A>A)−1A>b . using QR or Cholesky factorization
6: temp← X(t) + ∆∗

7: if g(temp) < g(X(t)) then
8: X(t+1) ← temp
9: if g(X(t+1))− g(X(t)) < d then
10: break
11: end if
12: end if
13: end for
14: return X(t)

15: end procedure

appears in the sparsity of the measurement Jacobian A = Σ−1/2J with number of

rows equal to the number of measurements in the graph (number of factors) and

the number of columns equal to the number of state variables to be solved. The

non-linear least squares optimization is solved efficiently using matrix factorization

methods such as QR factorization and Cholesky factorization (equivalent to variable

elimination on the factor graph [7]). Further improvement in performance can be

gained by reordering the measurements using methods such as COLAMD [6] which

consequently reduces fill in in the matrix during computation.

Nevertheless, for an online system with this formulation matrix factorization needs

to be performed with a new graph when new measurements are added, resulting in

wasted computation to resolve all the entries in the matrix. Later work has made

progress on incremental solvers for SLAM, that are able to update the solution

iteratively for non-linear systems and provide linearization point management, as well

as careful updation of older variables based on the current estimate. As this thesis

does not directly use incremental solvers, the reader is directed to Kaess et al. [16]

For implicit mapping representations, however, it is unclear how they are to be

represented as landmark variables, and how updates to the landmark state variables

are to be propagated in the map. In this thesis, we show that representing the map
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as a collection of high level objects, each represented with implicit representation

and corresponding to a landmark variable in the optimization is a good strategy, and

benefits the SLAM in multiple facets. Each object is represented with a spatially

hashed TSDF volumetric grid [29] [26] [9] that is not updated in the back end

optimization process. Instead, since the object is rigid, optimizing the pose of the

base frame attached to it suffices.

17



2. Background

18



Chapter 3

SLAM with Object Landmarks

In this chapter I present a SLAM formulation with object landmarks, which is scalable

to medium sized indoor scenes and is robust to data association errors through the

use of semantic information. Further I also present a compositional rendering method

to render an accurate model frame at any given time during operation to propagate

updated information to the front end in turn providing better initialization for the

back end. This work is similar in spirit to a line of work started by [35]. In this

thesis however, the focus is on accurate trajectory estimation as well as object

reconstruction. In essence, our work can be regarded as a bridge between feature

based SLAM methods and dense SLAM methods.

3.1 Related Literature

In this section we review relevant literature in two aspects: classical geometry-based

SLAM, and the application of deep semantic object detection in SLAM.

3.1.1 Geometry-based SLAM

Problem formulation and pose optimization

Modern geometry-based SLAM systems can be generally classified into feature-

based and direct methods. Feature-based SLAM systems [18, 23] usually maintain

a collection of sparse 3D point landmarks corresponding to hand-crafted feature
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3. SLAM with Object Landmarks

keypoints detected in 2D images. In order to correct accumulated pose error, i.e., drift,

these methods resort to bundle adjustment [40] that jointly minimizes reprojection

error between landmarks and 2D keypoints via pose optimization. While being

accurate in estimating trajectory, these approaches only come with sparse 3D maps

that are less interpretable for visualization and recognition. Direct SLAM [10, 11]

on the other hand, relies on pixel-wise projective data association between frames

for odometry. Given relative poses between certain keyframes, pose graphs [8] are

formulated and optimized to obtain globally consistent poses without landmark

constraints.

Our approach can be regarded as a bridge between the two approaches. We

replace point landmarks with objects in feature-based SLAM. As a result, since

pose constraints attached to objects can naturally replace reprojection error, we

may directly convert such a landmark-pose constraint optimization to pose graph

optimization (PGO).

Map representation

For dense scene reconstruction, as introduced in Chapter 2 the volumetric Truncated

Signed Distance Function (TSDF) [4] representation has been adopted and improved

in several direct SLAM frameworks. KinectFusion [24] introduced a plain 5123 grid

for small scenes and objects. VoxelHashing [26] designed spatial hashing to scale this

data structure to larger scenes. Similar implementations are available in CPU/GPU

in the modern Open3D framework [9, 44], and we adopt this representation due to

its ease of use.

3.1.2 Object Instance Segmentation and Object based

SLAM

Object instance segmentation

In recent years, Region proposal based Convolutional Neural Networks (R-CNN) [32]

have established themselves as de-facto standards for object instance segmentation

from images. Amongst the literature, Mask-RCNN [13] and PointRend [17] are

the best off-the-shelf solutions. In this work, we use PointRend [17], which shows
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3. SLAM with Object Landmarks

significant improvement over [13] by reformulating the mask generation as a rendering

problem. In essence, this formulation is consistent with our tracking via compositional

rendering module.

Object based SLAM

Applying aforementioned DNNs on 2D images, several works for RGBD and monocular

SLAM have attempted to incorporate object instance detection. CubeSLAM [43]

and QuadricSLAM [25] fit cuboids and quadrics, respectively, to detected objects to

generate parameterized object landmarks. While improving the localization accuracy

compared to baselines, these methods fail to densely map objects. MaskFusion [33]

adds labels to oriented point clouds and supports dense object visualization, but does

not maintain persistent objects globally in a graph. Fusion++ [21], on the other

hand, supports persistent dense reconstruction from fixed size 643 voxel grids, yet

is sensitive to voxel size tuning and may fail to adapt to objects at varying scales.

Our system utilizes scalable voxel grids that do not require much tuning to adjust to

object scales. With a seamless CPU to GPU memory transfer implementation, larger

environments can also be handled on-the-go.

3.2 Compositional and Scalable Object SLAM

3.2.1 System Overview

Our pipeline can be divided into typical SLAM components and a deep perception

module, connected by an object-based semantic map. Figure 3.1 provides an overview.

Our pipeline consists of 5 modules each running in a separate thread: semantic

segmentation, frame-to-model odometry, object data association and map update,

PGO, and compositional rendering. Incoming RGBD frames are initially processed

through semantic segmentation (§3.2.4) to obtain instance masks, labels, and semantic

descriptors, from DNNs for keyframes. Then, odometry between the incoming live

frame and the compositional render from the map (§3.2.6) is estimated via frame-

to-model odometry (§3.2.3) to obtain relative poses. Maintained objects visible in

the frame are rendered given the estimated camera pose, and objects are associated
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3. SLAM with Object Landmarks

with 2D instance detections to either integrate or initialize new objects in the global

map (§3.2.4). Separately, a global factor-graph is updated to optimize the camera

trajectory and object poses (§3.2.5). The optimized object poses are rendered to

generate a compositional model of the scene for subsequent tracking (§3.2.6).

Before we discuss these modules in detail from §3.2.3 to §3.2.6, we introduce core

concepts and notations in §3.2.2.

PointRend

RGBD frames

RGB keyframes

Image transporter Mask interpreter

Frame to Model 
Odometry

Object data  
association 

Compositional 
 rendering

Masked keyframes

Scalable Objects

Semantic Segmentation

SLAM
Pose graph  
optimization

Figure 3.1: System overview: Top shows the deep object segmentation pipeline that
runs asynchronously, Masked keyframes from the segmentation pipeline are used in
Data association and Map update (shown with red lines). Bottom shows the major
stages of the reconstruction system, specifically object models are used in tracking
via compositional raycasting (shown with green lines).

3.2.2 Core concepts and notations

A background volume VB is a spatially-hashed voxel grid on GPU, where small 163

subvolumes are allocated around observed 3D points. It is created and updated

as a temporary instance for stable tracking. An object volume VOi
is akin to the

background volume, but persistently maintains the object label, ID, and corresponding

object descriptors.

A 3D volume V ’s properties, including surface vertex positions, normals, and

colors can be mapped to 2D images given a camera pose T ∈ SE(3) and camera

intrinsics defined as K with ray-casting. We denote such rendered images by 〈N ,V , C〉
for normal, vertex, and color maps respectively. They can be associated with input
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3. SLAM with Object Landmarks

RGBD images 〈I,D〉 that consist of color (I) and depth (D) images via projective

closest points.

We use subscripts and superscripts to indicate multiple coordinate frames used in

our pipeline, including Ci for ith camera, Oj for jth object, and W for background

or world coordinate frame. For instance 〈NCs ,VCs , CCs〉 represents 2D maps rendered

from the volumes in the Cs camera coordinate frame. TW
Oj
∈ SE(3) encodes a rigid

transformation from object j to world. Finally, we denote the respective measurements

between nodes with variable Z.

3.2.3 Hybrid Frame to Model Odometry

In RGBD camera tracking, we seek to estimate the relative camera pose TCt
Cs

given

an incoming RGBD target frame 〈ICt ,DCt〉 and a source model 〈NCs ,VCs , CCs〉 of the

scene rendered by placing a virtual camera at the previous camera frame Cs.

We accomplish this by minimizing the joint weighted dense geometric error residual

rD and the photometric error residual rI . The general energy function is formulated

as in [27] by accumulating residual at every point p ∈ Z2 with a valid data association:

E(TCt
Cs

) =
∑
p

(1− σ)r2
I (T

Ct
Cs
, p) + σr2

D(TCt
Cs
, p) (3.1)

Here, we adapt the geometric ICP residual as the point-to-plane distance between

the incoming depth map D and the rendered vertex and normal map (VCs ,NCs) as

follows, using the formulation in [24]:

rD(TCt
Cs
, p) =

(
TCt
Cs
VCs(p̂)− VCt(p)

)
· NCt(p) (3.2)

where VCt is the vertex map from unprojecting the input depth image DCt . Addi-

tionally, we use a photometric error residual to improve tracking robustness, which is

defined as:

rI(T
Ct
Cs
, p) = CCs(p̂)− ICt(p) (3.3)

In equations (3.2) and (3.3), p̂ is the correspondence of p in the source frame, and is
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computed via warping :

p̂ = KTCt
Cs

−1DCt(p)K
−1[p>, 1]> (3.4)

It must be noted that the points p are a subset of pixels with valid object-level data

associations detailed in §3.2.6.

The energy function in equation 3.1 is minimized using the Gauss-Newton algo-

rithm. We implement the minimization in a coarse to fine scheme using an image

pyramid, on the GPU in parallel since each pixel acts independently in the energy

function using reduction with appropriate thread conflict handling as described in [9].

3.2.4 Object Instance Segmentation and Association

2D instance segmentation: Object detection and instance masks are generated

every nth frame (we choose n = 10) in a separate thread from the PointRend backend.

PointRend uses a Resnet-50-FPN backbone network to generate a convolutional

feature map. In particular, after an empirical evaluation, we found that PointRend

provided better masks over Mask-RCNN.

The semantic segmentation module maps incoming RGB frame I into a set

of object labels [l1, . . . lk], a set of binary object masks M i
n defined over l ∈ L ,

{0, . . . , Lmax − 1} object classes (Lmax = 80 in the MS-COCO dataset), bounding

boxes b ∈ N4, and a probability distribution p(li | I). We also extract the object

feature map for the accepted object proposals, from the penultimate fully connected

layer of the R-CNN from the object classifier head. We observe that these feature

maps provide us with robust data association in ambiguous situations. To obtain

instance segmentation for frames not sent to the DNN, we warp the binary mask

images from the most recent frame with a segmentation and fill the holes in the

warped masks using the flood fill algorithm.

Once the current camera pose and the semantic segmentation information are

available, instance detections are associated with existing objects. Unmatched instance

detections are used to initialize new object volumes.

3D instance generation: When an unmatched object is to be instantiated, the

masked depth frame at Ci is unprojected and transformed into the world frame to
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obtain the object point cloud:

XW = TW
Ci
K−1DCi

(p)[p>, 1]>. (3.5)

To obtain relatively high fidelity reconstruction, we adaptively calculate a conservative

voxel length of

l = γ‖max(XW )−min(XW )‖∞, (3.6)

where min,max operators are applied to all dimensions of X ∈ R3 simultaneously.

We empirically use γ = 1/64
√

2, but due to the scalability of the volume our model

is less sensitive to γ. Finally, the object pose is simply chained by

TW
O = TW

Ci

(
TO
Ci

)−1

, (3.7)

where TO
Ci

= [I | tOCi
] with tOCi

= min(XW )− tWCi
. Each new object is also initialized

with the object feature map from its corresponding instance mask.

2D–3D semantic data association: To associate existing object volumes to

2D instances, visible objects are rendered (in §3.2.6) in the current frame. The

rendered color map C is thresholded to obtain a virtual binary mask. An intersection

over union (IoU) between the virtual binary mask M̂ and the instance masks Mi in

the current frame is used as a scoring metric as defined in [21].

As opposed to computing the argmaxi IoU(Mi,M̂), we associate objects as given

below:

i = argmin
i∈S

(‖fi − f̂‖1), (3.8)

where f̂ and fi denote feature map of the object render (identical to the object in

question), and the instance masks respectively and S , {i : IoU(Mi, M̂) > 0.2}.
Associating object renders to instance masks in this manner prevents incorrectly

fusing object instances between nearby similar objects, in cases where there is large

accumulated drift.

For subsequent fusion of a 2D instance detection to its associated 3D object,
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the instance mask—containing the object foreground—and the bounding box mask—

containing both the foreground and background are used. Similar to [21] we integrate

the object in both the foreground and background through a weighted average

of TSDF, color, and additionally maintain binomial foreground-background count

variables for each voxel. This smoothes out artifacts from integration of 2D instances

with spurious masks (see illustration in Figure 3.2).

Figure 3.2: Each pixel is a binomial trial given a latent foreground probability of the
associated voxel. By maintaining foreground and background counts, we estimate
the expected latent probability required during rendering.

Finally, we update the object feature map by a gated weight average:

ft =
wt−1 · ft−1 +H(ft−1, fin) · fin

wt−1 +H(ft−1, fin)
(3.9)

H(ft−1, fin) =
sgn(λ− ||ft−1 − fin||1) + 1

2
(3.10)

where H is the Heaviside step function that hard-filters outlier input feature map fin

compared to the maintained object feature map ft−1 with weight wt−1 controlled by

the threshold λ.
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3.2.5 Factor Graph Optimization

As we have mentioned before, a background volume is maintained for stable tracking

and to handle objectless frames. The background volume additionally maintains the

ratio (r) of visible volume units in the current camera frustum to the total number

of allocated volume units in the volume. A low ratio implies that the camera may

have moved away from a particular part of the scene. Pose graph optimization is

conditionally triggered when the background volume is reset owing to low ratio of

visible units (r < 0.2) and when there are new objects added into the graph.

Our object factor graph formulation is similar to [21, 35]. The variable nodes

X = {x1, . . .xN} are partitioned into camera pose variables TW
Ci
∈ SE(3) and object

pose variables TW
Oj
∈ SE(3). The first camera pose is initialized as the world frame

W .

Assuming a Gaussian noise model, the MAP inference problem with the above

variable nodes reduces to solving the following non-linear least squares optimization:

X ∗ = argmin
X

( ∑
k∈|C|

‖ZCk
Ck−1
	TCk

Ck−1
‖2

Σk,k−1
+

∑
j∈|O|,k∈|C|

‖ZOj

Ck
	T

Oj

Ck
‖2

Σoj ,k

)
(3.11)

where the operator Y 	 X = Log(X−1Y) expresses the relative error in the local

tangent vector space [36]. Σk,k−1 denotes the covariance between relative camera pose

measurements, Σoj ,k is the covariance in the camera to object measurement. They

can be approximated by information matrices computed from odometry, however,

empirically we found that a constant information matrix can achieve reasonable

results. We obtain the relative camera measurements ZCk
Ck−1

from frame to model

odometry (§3.2.3), and obtain frame to object measurements Z
Oj

Ck
by performing an

additional Gauss Newton iteration with only the object pixels. Finally, the expected

relative camera pose TCk
Ck−1

and expected camera object pose T
Oj

Ck
used in the factors

are calculated as:

TCk
Ck−1

=

(
TW
Ck

)−1

TW
Ck−1

, (3.12)

T
Oj

Ck
=

(
TW
Oj

)−1

TW
Ck
. (3.13)
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We solve the optimization in GTSAM [1] using Levenberg Marquardt. Since

the entire object volume is transformed as a rigid body, the object volumes remain

unchanged in memory after optimization. We note that this circumvents the time-

consuming re-integration that usually takes place in volumetric methods after PGO

[42].

3.2.6 Compositional Rendering

Compositional rendering is a serialized operation that generates normal, vertex, and

color maps by ray-casting 3D objects in the viewing frustum into 2D object instances,

and is illustrated in Figure 3.3.

Figure 3.3: An illustration of compositional rendering.

〈NCi
,VCi

, CCi
〉 is in fact an aggregation of separate renderings from object volumes

〈N
VOj

Ci
,V

VOj

Ci
, C

VOj

Ci
〉 and the background volume 〈N VB

Ci
,VVBCi

, CVBCi
〉, depending on the

masks. In particular, we render the background volume, based on a background mask

that is constructed from the union of existing virtual object masks in the current

frame, and associated instance masks.
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Then, the composed per-pixel map model render can be obtained as follows:

k̂ = argmin
k
Vk(p)[z], k ∈ {O1, · · · , On, B} (3.14)

〈N ∗(p),V∗(p), C∗(p)〉 = 〈Nk̂(p),Vk̂(p), Ck̂(p)〉, (3.15)

where k̂ is the volume index corresponding to the minimum distance to camera center

for pixel p.

Figure 3.4: Compositional rendering during reconstruction on TUM
fr3 long office household dataset. Left shows the background render, and
right shows the composed render. Compositionally rendered objects are shown in
bounding boxes.

Object volumes not currently visible are downloaded from GPU into CPU memory.

Note that downloading the object volume does not affect the optimization problem,

since the object volumes are required only for integration and raycasting.
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Chapter 4

Experiments

In this chapter we demonstrate performance and comparable results of the proposed

Object SLAM system with state of the art online and offline reconstruction systems

in terms of trajectory accuracy and object reconstruction quality. We evaluate on

the RGBD scenes V2 dataset [19] and the TUM RGBD dataset [37], both of which

are established RGBD SLAM benchmarks and compare against baseline methods.

4.1 Architecture and Experimental Setup

To support relatively high frame rate operation in the presence of slow/non-realtime

deep learning components our pipeline is highly parallelized. Our system adopts the

Actor framework, where each component runs asynchronously, and communicates via

thread-safe queues.

We implement the semantic segmentation pipeline as a separate python process

which serializes the outputs using protobuf and communicates with the client thread

via zeromq sockets in the Object SLAM pipeline. Since instance segmentation is

carried out only for keyframes, the asynchronous python process exits early (typically)

freeing GPU memory, which can be used for large reconstructions.

I implement the GPU code in CUDA, and leverage the Open3D GPU framework [9].

In particular, we build on the (in-house) spatially hashed TSDF implementation,

implement an additional frame-to-model tracking module, and also build a back-end
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Figure 4.1: Qualitative foreground object reconstruction results on RGBD Scene 13
sequence.

module for pose graph optimization. We use the optimized spherical ray-casting

method to improve performance.

Our experiments were run on a Linux system (Ubuntu 18.04) with Intel i7-6700

CPU at 4.00 GHz and 32GB of RAM and a NVIDIA GTX1080 with 8GB of GPU

memory.

4.2 Qualitative Results

We first demonstrate qualitative reconstruction results on the RGBD scenes V2

dataset. Fig. 4.1 shows the object mesh extracted from our scalable volumes with a

foreground count threshold. We can see that small objects are clearly reconstructed

with details, and the background is correctly filtered.

At a larger scale, Fig. 1.2 segments teddy bear and computers from the cluttered

scene and ensures a low-drift of the trajectory. Fig. 4.2 compares reconstructions

from MaskFusion [33] and our system for a given sequence. It can be seen that the

object-level reconstruction – specifically for the cap and sofa – is much cleaner in our

system than in MaskFusion.
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Figure 4.2: Reconstructed small indoor scene RGBD Scene 12. We first show an
example input RGB frame (top-left) followed by a top-down view of the reconstruction
from MaskFusion (top right). This is followed by result from our pipeline (bottom).
Note that in our reconstruction background walls and floor are filtered out.
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4.3 Quantitative Results

Table 4.1 presents Absolute Trajectory Error (ATE) of four different methods com-

pared with our system. Note in the table, that we bold the best results of the

object-based systems. We also provide results from geometric SLAM systems for

comparison to present that our trajectory error is comparable to state of the art

systems.

Table 4.1: Trajectory accuracy comparison on real world datasets (Absolute Trajectory
Error in centimeters).

Dataset ElasticFusion Open3D MaskFusion Fusion++ Ours
Online X X X X
Object Models X X X

RGBD Scenes -
Scene 03

1.42 19.37 26.67 - 4.52

RGBD Scenes -
Scene 12

0.64 1.97 10.81 - 2.36

RGBD Scenes -
Scene 14

1.09 1.33 8.26 - 2.37

fr1 xyz 6.33 6.64 8.68 - 7.50
fr1 desk 2.70 5.73 24.05 4.9 5.82
fr1 desk2 7.12 7.65 21.5 15.3 9.57
fr1 room 22.06 5.65 52.4 23.5 21.7
fr2 xyz 1.12 2.18 12.30 2.0 2.27
fr2 desk 7.61 4.72 163.6 11.4 9.94
fr3 long office 2.23 3.54 140.8 10.8 9.68

In general, we achieve comparable results against the state-of-the-art surfel based

online SLAM system ElasticFusion [42] and volumetric offline reconstruction system

Open3D [44]. In the meantime, our method outperforms object-based SLAM systems

MaskFusion [33] and Fusion++ [21] by a large margin. This improvement can be

attributed to the use of semantic data association and scalable voxel grids. It must

be noted that MaskFusion requires 2 high end graphics cards to run it in online

mode, therefore we ran it in offline mode, and stored all the detected object instances

instead of manually selecting objects of interest for a fair comparison with our method.

Additionally, we note that since Fusion++ is not open source, we obtain the results
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(a) (b)

Figure 4.3: Comparison of trajectories between our pipeline and baselines with ground
truth. (a) shows rgbd-scenes-v12 and (b) shows rgbd-scenes-v14 sequences.

from the corresponding paper.

For small scenes in the RGBD scenes V2 dataset, we achieve consistently high

accuracy with ATE below 5cm for all scenes. Figure 4.3 shows detailed trajectory

visualizations.

For larger scenes, although noisy semantic segmentations affect masks and intro-

duce noise for frame-to-model odometry, compositional rendering still ensures reliable

tracking. Trajectory comparisons are provided in Figure 4.4.

4.4 Runtime Analysis

For runtime evaluation of our system we limit the number of initialized objects in

the scene to 10 to ensure – close to – online performance on the aforementioned

scenes. Processing each frame in the absence of any objects i.e., only background

tracking takes about 200ms per frame. The largest computational bottleneck and time

consuming operation is the rendering step, and while there are multiple rendering

operations required (for instance, during object association), we render the objects

and background only once per frame, and reuse the renders. We observe that each

object takes on average about 45ms to render. In the presence of about 5-8 objects in
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(a) (b)

Figure 4.4: Trajectory comparisons on the TUM-RGBD dataset (a)
fr3 long office household and (b) fr2 desk sequences showing that even in the absence
of explicit loop closures, our system maintains comparable accuracy.

the scene, the time taken per frame increases to about 450ms (200ms for background

+ 250ms for object renders) per frame. In comparison, we observed in our tests that

MaskFusion runs at lower than 1FPS with one graphics card and suffers from random

crashes in online mode. Fusion++ reports its results with pre-computed segmentation

masks. Our method runs seamlessly on a single GPU. A detailed runtime analysis is

given in Table 4.2.

Table 4.2: Runtime breakdown component-wise for our pipeline

Component Tracking Segmentation Association Rendering
Time (ms) 13 250 15 45 per object
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Chapter 5

Conclusions and Future Work

5.1 Conclusion

In this thesis, I have investigated and presented a system for SLAM with higher level

object landmarks, that provide both robust data association, and enable accurate

trajectory estimation, and object reconstruction.

In this system, I develop a fast coarse-to-fine ICP to estimate initializations for

the frame poses, I present an efficient method for composing renders as simple alpha

matting between individual object renders, and I present a simple data association

method that uses both geometric (the IoU metric or projective overlap) and semantic

information (the object feature from the segmentation pipeline). Finally, combining

these pieces in a factor graph optimization framework allows us to seamlessly correct

for drift in the object poses – as rigid bodies. Finally, experimental results validated

that our approach is both comparable to existing geometric SLAM methods and

better than existing Object SLAM methods in terms of trajectory accuracy. We also

presented qualitative results of object reconstruction.

5.2 Limitation and Future work

In this work, I have developed a system for scene reconstruction as a pose graph of

objects.

37



5. Conclusions and Future Work

To obtain the object masks and initializations we have resorted to existing

semantic instance segmentation pipelines [17], and utilized geometric TSDF fusion as

the method to integrate these measurements. Current deep learning based semantic

segmentation pipelines introduce different types of errors:

1. Label inaccuracy: Since instance segmentation is trained only on single images,

there exists no notion of temporal consistency of label predictions between

frames. While we have alleviated this issue by comparing the object features

and IoU between frames, this issue is far from solved. If we assume that the

model label output to follows a categorical distribution, we may simply calculate

the label of the fused data as the mode of the distribution. Note that in our

method we use the object label only for pedagogical purposes and not for data

association.

2. Mask inaccuracy: Our method quite heavily relies on the IoU metric for data

association, which consequently assumes that the deep learning model generates

similar masks for objects in temporally close frames. This assumption is violated

in some cases, and results in multiple object landmark initializations. While we

prune these objects by maintaining an existence probability for each object, we

lose the information that was fused into these erroneous objects.

While our system loosely integrates a pre-trained semantic segmentation network,

improvement on incorporating semantic information can be achieved through two

orthogonal approaches:

1. Train networks explicitly for temporal consistency by training for object detec-

tion and instance segmentation on videos

2. Building an embodied agent with tightly coupled semantic pipeline based on self-

supervised learning approaches. Some recent methods such as [3, 38] have shown

promise is learning both motion and depth estimates via learning methods.

In this thesis, we update and integrate objects using geometric TSDF fusion,

and do not utilize inductive biases from the object level inference to inpaint unseen

parts of the object. TSDF fusion does not suffice for applications that lack dense

views of the environment, which is largely the case. A potential direction of future

work is to use a neural mapping representation that is capable of model completion

for the objects. Recent improvements in implicit neural representations for scenes
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such as [22, 28] provide rich avenues to explore. Since neural networks are excellent

function approximators, using them to represent 3D surface manifolds is a reasonable

approach that provides the additional benefit of imbuing object inductive biases.

Finally, we know that object landmarks are a rich description of the environment,

and reduce the computational load in factor graph optimization significantly by

reducing the number of factors in a pose graph. In addition to the proposed research

directions, I am also excited to apply object based SLAM systems for multi-robot

distributed inference, where distributed computation requires minimal factor sharing

between robots.
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