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Abstract

The central theme in robotic manipulation is that of the robot interacting with
the world through physical contact. We tend to describe that physical contact using
specific words that capture the nature of the contact and the action, such as grasp,
roll, pivot, push, pull, tilt, close, open etc. We refer to these situation-specific actions
as manipulation primitives. Due to the nonlinear and nonsmooth nature of physical
interaction, roboticists have devoted significant efforts towards studying individual
manipulation primitives.

This thesis begins with the study of pulling and pushing primitives. First, we
derive exact bounds on the motion of a pulling object and use these bounds to
plan pulling trajectories which guarantee convergence. Second, we show that large-
scale multi-object rearrangement is achievable using only simple pushing primitives.
However, in spite of the close relation between pushing and pulling, the required
engineering effort within each project limited our ability to generalize across projects
or to new scenarios.

This limitation motivates the main contribution of this thesis. We contribute a
complete and general framework to autogenerate manipulation primitives. To do so,
we develop the theory and computation of contact modes as a means to classify and
enumerate manipulation primitives. The contact modes form a graph, specifically
a lattice. Our algorithm to autogenerate manipulation primitives performs graph-
search on the contact mode lattice and solves a quadratic program to generate each
primitive. We hope that our contributions will lead to more general approaches for
robotic manipulation.

Thesis Supervisor: Matthew T. Mason
Title: Professor
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Chapter 1

Introduction

A central theme in robotics is that of robots interacting with the world through
physical contact. We tend to describe that physical contact using specific words that
capture the nature of the contact and the action. Reaching into a sink full of dishes
and utensils, a robotic manipulator could choose to cage a fork against the corner
and scoop it out. In warehouse automation, robots grasp items out of a bin and move
them to their next destination. In a home environment, a robot may need to push
chairs out of the way in order to navigate the dining room. A legged robot that has
slipped on an icy surface needs to stand-up to regain its footing. Within the parlance
of robotics research, we often refer to these situation-specific actions as behaviors,
actions, skills, or primitives, the term favored in this thesis.

We desire a robot which can replicate the entire range of human skills. However,
the reality is that physical interaction is difficult. Frictional contacts are non-linear
and discontinuous in both theory and practice [82]. Coefficients of friction are usu-
ally not known beforehand, and even if they were, the pressure distributions at the
location of contact are indeterminant [77]. It is also hard to even estimate the set of
manipulation skills used by humans or animals. Byrne [15] documented 72 function-
ally distinct manipulation primitives used by foraging mountain gorillas. Nakamura
[85] studied human grasping behaviors in grocery stores and noticed that existing
taxonomies cannot categorize all the observed behaviors.

Within the taxonomy of physical interaction, this thesis is primarily focused on
manipulation. Researchers have devoted significant efforts towards studying and
recreating various manipulation primitives. Mechanics-based approaches to creating
manipulation primitives have a long history. Mason’s thesis was the first to study
robotic pushing. A detailed analysis of the mechanics involved in robotic pushing
has lead to multiple force-motion models [118, 52, 38] and motion bounds [91, 5,
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78]. These results have been used to derive primitives such as two-point stable
pushing [73] and uncertainty reducing grasping [120]. Researchers have also studied
tumbling [99, 74] and pivoting primitives [4, 47, 49]. Peg-in-hole is a classic problem
in robotic manipulation. There are still variants of peg-in-hole being studied today,
such as the work on shallow depth insertion from Kim [61]. Extrinsic dexterity refers
to robotic manipulation using external resources such as gravity or environmental
contacts [20]. Hou developed a manipulation technique known as shared grasping
which uses external contacts as secondary “hand” [50]. Chavan-Dafle a prehensile
pushing primitive which uses external contacts to repositions objects with the hand
[21, 19]. Ultimately, there are more research papers analyzing robotic manipulation
primitives than can be reasonably listed.

Numerical optimization is another way to solve robotic manipulation problems.
Stewart and Trinkle [101] published a contact-implicit time-stepping framework which
forms the basis for much of the algorithms in this area. Posa et al. [93] proposed
a direct method for solving contact-implicity trajectory optimization (CITO) prob-
lems leveraging Sequential Quadratic Programming (SQP). A key source of difficult
is the hardness of contact constraints, i.e. a contact can only generate a force if
the distance is zero. Tassa et al. [104] developed a soft contact model which was
easier to optimize and used it to animate various manipulation tasks. Önol et al.
[87] proposed a direct contact-implicit trajectory optimization method based on a
variable smooth contact model and successive convexification. This is a challenging
area of research which is undergoing active development.

Machine learning is an important tool for robotic manipulation. Learning from
demonstration (LfD) is an area which aims to enable robots to learn manipulation
primitives from human teachers [23]. Dynamical movement primitives (DMP) [56]
are a well-known interaction model for learning dynamic tasks from demonstrations,
such as swinging a racquet. Robots are also well-suited for learning through self-
supervision. Learning grasping through repeated interactions has lead to spectacular
breakthroughs in automated bin picking [92]. Probablistic models of grasping can
adapt to outcomes which mechanics models fail to predict [90, 89]. However, for this
approach to succeed, the robot requires strong priors to bias it towards meaningful
interactions.

Manipulation primitives are the building blocks which enable robots to accom-
plish more complex tasks. Researchers combine action models with search-based
planning methods to generate manipulation motions for a wide range of tasks. In
the early work of in-hand regrasping [69], grasp gaits are obtained from searching on
a grasp map developed from the force closure model. For nonprehensible two-palm
manipulation, Erdmann [34] proposed get the set of possible motions by partitioning
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ℒ𝑐𝑠 ℒ𝑐𝑠 ℒ𝑐𝑠 ℒ𝑐𝑠

Figure 1-1: Manipulation sequence comprised of autogenerated manipulation primi-
tives with contacting-separating mode lattices visualized.

the configuration space through primitive operations under different contact modes,
and generate motion plans by searching. More recently, Chavan-Dafle et al. [21]
combined high-level sampling based planning with the motion cones to achieve pre-
hensible in-hand manipulation with external pushes. Hou et al. [49] proposed a fast
planning framework using two reorientation motion primitives for object reoritation
problems. All these works adopt the structure of combining high-level planning
methods with handwritten low-level task models, which is difficult to generalize and
scale.

1.1 Contributions
This thesis explores a primitive-based approach to robotic manipulation. Our method-
ology is grounded in the mechanics of robotic manipulation. We apply mathematical
tools, ranging from variational analysis to computational geometry, to derive novel
insights into the behavior, structure and, ultimately, automatic generation of robotic
manipulation primitives. We use these primitives to create planning algorithms which
solve difficult manipulation problems. We summarize each individual contribution
below.

Robotic Pulling with Exact Convergence Bounds: We studied the quasi-
static motion of a planar slider being pushed or pulled through a single contact point
assumed not to slip [53]. The main contribution is to derive a method for computing
exact bounds on the object’s motion for classes of pressure distributions where the
center of pressure is known but the distribution of support forces is unknown. The
second contribution is to show that the exact motion bounds can be used to plan
robotic pulling trajectories that guarantee convergence to the final pose. The planner
was tested on the task of pulling an acrylic rectangle to random locations within the
robot workspace. The generated plans were accurate to 4.00mm ± 3.02mm of the
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target position and 4.35 degrees ± 3.14 degrees of the target orientation.
Robotic Pushing for Large-Scale Rearrangement: We also studied large-

scale, multi-object pushing [54]. We introduced a new robotic tabletop rearrange-
ment system, and presented experimental results. The system searches through pol-
icy rollouts of simulated pushing actions, using an Iterated Local Search technique
to escape local minima. In real world execution, the system executes just one action
from a policy, then uses a vision system to update the estimated task state, and
replans. The system accepts a fully general description of task goals, which means
it can solve the singulation and separation problems addressed in prior work, but
can also solve sorting problems and spell out words, among other things. The tasks
involve rearranging as many as 30 to 100 blocks, sometimes packed with a density
of up to 40%. The high packing factor forces the system to push several objects
at a time, making accurate simulation difficult, if not impossible. Nonetheless, the
system achieves goals specifying the pose of every object, with an average precision
of ±1 mm and ±2∘.

Autogenerated Manipulation Primitives: These previous attempts demon-
strated the value different primitives can bring to different scenarios and motivated
the preeminent contribution of this thesis: a general method for autogenerating
manipulation primitives. We believe this approach will be widely useful. First, au-
togeneration of a manipulation primitive library adds robustness to failure. A single
primitive may fail, but a library gives the robot multiple options to try until success.
Second, autogeneration removes the burden of writing task specific code.

In order to automatically generate manipulation primitives, we develop the theory
of contact modes as a mathematically precise method for classifying and distinguish-
ing between different manipulation primitives [55]. In a hybrid dynamical system
with multiple rigid bodies, the relative motions of the contact points on two col-
liding bodies may be classified as separating, sticking (moving together), or sliding.
Given a physical contact model, the active contact modes determine the dynamic
equations of motion. Analogously, the set of all possible (valid) contact mode as-
signments enumerates the set of all possible dynamical flows of the hybrid dynamical
system at a given state. Naturally, queries about the kinematics or dynamics of the
system can be framed as computations over the set of possible contact modes. This
motivated us to investigate efficient ways to compute the set of contact modes. To
that end, we developed the first efficient 3D contact mode enumeration algorithm
[55]. The algorithm is exponential in the degrees of freedom of the system and
polynomial in the number of contacts. The exponential term is unavoidable and an
example is provided. Prior work in this area has only demonstrated efficient contact
mode enumeration in 2D for a single rigid body [77, 41].
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We then used our contact mode enumeration algorithm to create a novel method
for automatically generating robotic manipulation primitives [22]. Given a desired
object velocity, the current state, and the dynamic equations of motion, our method
generates a partially ordered list of manipulation primitives which would best ap-
proximate the object motion while satisfying contact dynamics. The generated ma-
nipulation primitives are uniquely specified by their contact mode. Our method is
based on two key observations. First, specifying the contact mode reduces contact
and friction force constraints into equality and inequality constraints. This in turn
allows us to solve for the controls using quadratic programming. Second, the contact
mode lattice is effectively a graph data structure. This allows us to use graph search
techniques when designing our algorithm. Our algorithm walks along the contact
mode lattice and solves a quadratic program at each visited node. In this way, we
iteratively build a library of distinct manipulation primitives. Finally, we demon-
strated our autogenerated manipulation primitives in various manipulation planning
problems.

1.2 Thesis Outline
The rest of the thesis is organized as follows. Chapter 2 analyzes the mechanics of
pulling an object with a single point of contact. Chapter 3 studies robotic push-
ing applied to large-scale, multi-object rearrangement. Autogenerated manipulation
primitives are introduced in two parts, Chapters 4 and 5. The former chapter estab-
lishes the theory and computation of contact modes. The latter chapter discusses
how to autogenerate manipulation primitives from the graph (lattice) formed by the
contact modes. Chapter 6 summarizes the contributions of this thesis.
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Chapter 2

Robotic Pulling with Exact
Convergence Bounds

2.1 Introduction

Pushing (or pulling) planar objects with fixed contact is difficult to model in both
theory and practice. First, pressure distributions of objects are statically indetermi-
nant (barring the case of three-point support with known center of mass). Second,
surface imperfections lead to spatial variability in both the pressure distribution and
coefficient of friction [114]. Though several force-motion models for pushing exist
[118, 52, 38], the above sources of indeterminacy ultimately lead to errors in the
predicted velocity of the pushed object.

If the motion cannot be predicted, then another option is to find bounds on
the velocity of the pushed object. This problem was first raised in Mason’s thesis
on robotic pushing [76]. In the case of fixed contact pushing, this is equivalent to
finding bounds on angular velocity of the object as it is pushed through the contact
point. To this end, we develop the first algorithm that finds exact angular velocity
bounds on the object’s motion over all pressure distributions with shared center of
pressure. Moreover, the bounds are exact for many additional classes of pressure
distributions that have not been considered before.

Dealing with uncertainty is a fundamental challenge in robotics [107]. We demon-
strate how our bounds can be applied to planning for robotic pulling under action
uncertainty. Robotic pulling is a general-purpose manipulation skill for positioning
and orienting objects. The proposed planner uses the angular velocity bounds to find
actions that reduce the uncertainty in the system, i.e. close the distance between the
integrated orientation bounds. Moreover, given a suitable initialization, the planner
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finds trajectories that guarantee the uncertainty at the final pose converges to a very
small value.

The rest of this chapter is organized as follows. Section 2.2 discusses related
work. Section 2.3 summarizes the relevant background on planar pushing needed to
understand our work. Section 2.4 develops several theoretical results needed to prove
the correctness of our algorithmic contributions. Section 2.5 introduces the exact
angular velocity bound algorithm and the algorithm for planning pulling trajectories
under action uncertainty. Section 2.6 presents our experimental results. Section 2.7
gives concluding remarks.

2.2 Related Work

We can categorize prior work bounding the motion of a pushed object according to
the tightness of the bounds and the basic assumptions from which those bounds are
deduced, such as knowledge of the center of pressure location. The bisector bound
restricts the feasible rotation centers to a half-space delimited by the perpendicu-
lar bisector between the contact point and center of pressure [78]. Alexander and
Maddocks bounded the set of feasible rotation centers to lie within the minimum
object-enclosing vertical strip perpendicular to the wrench applied by the pusher [5].
Peshkin and Sanderson bounded the motion of a pushed object by computing the
set of feasible rotation centers of the minimum object-enclosing disk centered at the
object’s center of pressure [91]. In all prior work, the bounds are conservative but not
exact. That is, the bounds include every feasible motion, but also include infeasible
motions.

To the extent of our knowledge, prior work has used robotic pulling significantly
less compared to its counterpart, robotic pushing. The stable equilibrium that occurs
when pulling along a straight line was recognized, without proof, by Mason [75],
Lynch and Mason [72], and Berretty et al. [11]. For completeness, we provide a
proof in Subsection 2.4.1. To the best of our knowledge, Berretty et al. is the only
work, apart from ours, to explicitly take advantage of this stability [11]. However, the
method of Berretty et al. is limited to orienting asymmetrical convex polygons. In
contrast, our method can both position and orient any pullable object, regardless of
its geometry. Our planner is also related to the work of Lynch and Mason [73]. They
invented an algorithm that plans stable pushes using two contact points. However,
their use of weaker bounds [91, 5, 78] leads to more conservative strategies.
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Figure 2-1: Coordinate frame associated with a press-pulled slider, where v𝑐 is the
contact point velocity, 𝜔 is the angular velocity of the slider, 𝜌 is the angular deviation
from the stable pulling configuration.

2.3 Background

This section provides the relevant background needed to understand our contribu-
tions. Subsection 2.3.1 serves two purposes. First, it defines the notation and termi-
nology used throughout this chapter. Second, it frames our work in the context of
the quasi-static theory of planar pushing. Subsection 2.3.2 summarizes the moment
envelope construct used to jointly reason about pressure and frictional torques. This
construct is particularly relevant for Subsection 2.5.2, which introduces an algorithm
that computes the feasibility of a given pushed object velocity.

2.3.1 Planar Pushing Subject to Friction

In this work, we treat planar pushing as the manipulation skill where the robot
contacts a rigid body at a point and pushes (or pulls) that fixed contact point along
a trajectory. Our following presentation of the quasi-static analysis of planar pushing
follows that of [5, 78]. A quasi-static analysis seeks to balance contact forces, gravity,
and other applied forces while neglecting inertial forces [78].

Let the generalized velocity, or twist, of a planar rigid body be v+ = [𝑣𝑥, 𝑣𝑦, 𝜔]𝑇 ,
where 𝑣𝑥 and 𝑣𝑦 are the linear velocities of a reference point and 𝜔 is the angular
velocity about that point. Taking the origin as the reference point, the velocity of
a point x = [𝑥1, 𝑥2]

𝑇 on the body is then given by v(x) = [𝑣𝑥, 𝑣𝑦]
𝑇 + 𝜔k̂ × x with
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k̂ = [0, 0, 1]𝑇 , and can be written in matrix notation as

v(x) = 𝐴(x)v+, (2.1)

where
𝐴(x) =

[︂
1 0 −𝑥2

0 1 𝑥1

]︂
. (2.2)

Where convenient, we will convert freely between twists and their equivalent formu-
lation, rotation centers. The mappings

[𝑣𝑥, 𝑣𝑦, 𝜔]→ [−𝑣𝑦
𝜔
,
𝑣𝑥
𝜔
, 𝜔] (2.3)

[𝑟𝑥, 𝑟𝑦, 𝜔]→ [𝑟𝑦𝜔,−𝑟𝑥𝜔, 𝜔] (2.4)

map a twist at the origin to a rotation center and angular velocity about that rotation
center and vice versa.

We define the contact frame to be the coordinate frame where the origin is the
contact point and the 𝑦-axis aligns with the contact point velocity (see Figure 2-1 for
an example). Let 𝜌 be the angular deviation from the stable pulling configuration to
the rigid body’s center of pressure. The stable pulling configuration occurs when the
center of pressure is collinear with and behind the direction of the pulling motion
(proof in Subsection 2.4.1). The contact point is assumed to be pushed with unit
speed, yielding a body twist v+ = [0, 1, 𝜔]𝑇 . Assuming Coulomb’s law of sliding
friction, the total frictional force and moment of the body at the origin are

f𝑓 = −𝜇
∫︁
𝑅

𝐴(r)v+

‖𝐴(r)v+‖
𝑝(r)𝑑𝐴 (2.5)

m𝑓 = −𝜇
∫︁
𝑅

r× 𝐴(r)v+

‖𝐴(r)v+‖
𝑝(r)𝑑𝐴, , (2.6)

where 𝜇 is the coefficient of friction (static and dynamic), 𝑅 is the region of the rigid
body in contact with the plane, r is a point in 𝑅, v(r) is the body point velocity
given by (2.1) and 𝑝(r) is a pressure distribution over 𝑅.

When the contact point is pushed at constant velocity, the quasi-static assump-
tion states that the total moment at the contact point is zero. Because a point
contact cannot generate any torque, this implies the total frictional moment (2.6)
must also be zero. This leads to the following constraint on the possible motions of
an object.

2.1 Definition. An angular velocity 𝜔 and its corresponding twist v+ = [0, 1, 𝜔]𝑇
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are said to be feasible if there exists a pressure distribution 𝑝(r) such that the
resulting total frictional moment is zero.

Note that both the angular velocity and its corresponding twist are taken with
respect to the contact point frame. However, using equations (2.5) and (2.6) di-
rectly to check feasibility can lead to difficulties when the integrand’s denominator
‖𝐴(r)v+‖ is zero. The next formulation obviates that difficulty.

The principle of minimal dissipation states that the motion of the pushed body
minimizes the instantaneous work dissipated by friction [5]. That is, the motion
minimizes the following:

minimize
v+

𝜇

∫︁
𝑅

‖𝐴(r)v+‖𝑝(r)𝑑𝐴

subject to v+ ∈ 𝒞.
(2.7)

We take 𝒞 = {[0, 1, 𝜔]𝑇 , 𝜔 ∈ R} so that the contact point motion is aligned with
the coordinate frame. We call the objective in (2.7) the frictional dissipation func-
tion, P(v+). The principle of minimal dissipation is equivalent to the quasi-static
model of planar sliding with friction [5]. In fact, the quasi-static motion constraints
are identical to the first order optimality conditions of (2.7). To see this, take the
Lagrangian of (2.7)

L(v+, 𝜆) = P(v+) + 𝜆𝑥𝑣
+
𝑥 + 𝜆𝑦(𝑣

+
𝑦 − 1), (2.8)

where 𝜆𝑥 and 𝜆𝑦 are Lagrangian multipliers, and set gradient of L with respect to
v+,

∇L(v+, 𝜆) = 𝜇

∫︁
𝑅

𝐴(r)𝑇𝐴(r)v+

‖𝐴(r)v+‖
𝑝(r)𝑑𝐴 +

[︀
𝜆1, 𝜆2, 0

]︀𝑇
, (2.9)

to zero. When equation 2.9 is written out element-wise, we end up with the following
first order conditions on the force and the moment

f𝑓 =
[︀
𝜆𝑥, 𝜆𝑦

]︀𝑇 (2.10)
m𝑓 = 0, (2.11)

that is, the quasi-static motion model.
In addition to avoiding the zero denominator issue of equations (2.5) and (2.6),

we prefer using the principle of minimal dissipation in the proofs of our main re-
sults (Section 2.4) because the frictional dissipation equation (2.7) is continuous and
convex in v+.
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(a) (b) (c) (d)

Figure 2-2: Example moment envelope for a trigonal 2D object with rotation center
𝑥IC = 0.75. (a) Support region 𝑅. (b) Normalized-moment surface 𝐺(𝑅). (c) Convex
moment envelope of 𝐺(𝑅). (d) Intersection of the moment envelope and the 𝑥𝑦-plane.
The intersection bounds the set of feasible centers of pressure with zero moment.

2.3.2 Frictional Moment Envelopes

The frictional moment envelope provides a nice geometric model of the constraints
between the center of pressure and moment at the contact point [78]. In this sub-
section, we show that the moment envelope is important because it reduces the
feasibility test of a particular angular velocity to a point-in-convex-hull test. An
example frictional moment envelope is illustrated step-by-step in Figure 2-2.

A frictional moment envelope has as its parameters the support region 𝑅 and
twist v+. Let 𝑓0 be the total normal force. Then the function

𝑔(x) = −𝜇𝑓0 x×
𝐴(x)v+

‖𝐴(x)v+‖
(2.12)

evaluates the frictional torque that would result from a unit normalized pressure
at x. Let 𝐺 map 𝑅 into a surface in R3 by associating each point x ∈ 𝑅 with its
maximum potential moment 𝑔(x), i.e.

𝐺(x) =

⎡⎣ 𝑥
𝑦

𝑔(x)

⎤⎦ , (2.13)

and let 𝑝 = 𝑝/𝑓0 be the normalized pressure. Then the set {
∫︀
𝑅
𝐺(r)𝑝(r)𝑑𝐴 |

∫︀
𝑅
𝑝(r)𝑑𝐴 =

1} is the convex hull of the surface 𝐺(𝑅). Moreover, any point in the convex hull of
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𝐺(𝑅) satisfies

∫︁
𝑅

𝐺(r)𝑝(r)𝑑𝐴 =

∫︁
𝑅

⎡⎣ 𝑥
𝑦

𝑔(x)

⎤⎦ 𝑝(r)𝑑𝐴

=

⎡⎣ 𝑥0

𝑦0∫︀
𝑅
𝑔(x)𝑝(r)𝑑𝐴

⎤⎦ . (2.14)

Thus, the convex hull of 𝐺(𝑅) is the set of all feasible centers of pressure and frictional
moments for a given support region 𝑅 and twist v+. We refer to the convex hull
of 𝐺(𝑅) as the moment envelope generated by v+. Therefore, given a center of
pressure [𝑥0, 𝑦0]

𝑇 , an angular velocity 𝜔 is feasible if and only if the point [𝑥0, 𝑦0, 0]𝑇

is contained in the moment envelope generated by 𝜔.

2.4 Theory
This section covers our theoretical contributions. Subsection 2.4.1 proves the exis-
tence and uniqueness of the stable equilibrium during pulling. This result motivates
our main contributions. Subsection 2.4.2 lays the theoretical groundwork necessary
for proving the correctness of the exact angular velocity bound algorithm introduced
in 2.5.1. Subsection 2.4.3 extends the angular velocity bounds to orientation bounds.
This subsection completes the theoretical tools needed in Subsection 2.5.3 to generate
robotic pulling trajectories that guarantee convergence to the final pose.

2.4.1 Stable Equilibrium When Pulling

For completeness, we prove the existence and uniqueness of the stable equilibrium
that occurs when pulling a rigid body. The existence of the stable equilibrium was
observed, without proof, in Mason [75], Lynch and Mason [72], and Berretty et al.
[11]. The robotic pulling trajectories generated in Subsection 2.5.3 automatically use
the stable equilibrium to reduce pose uncertainty.

2.2 Theorem. For pulling of a rigid body in the plane, the rigid body converges to
the state where its center of pressure is collinear with the pulling direction.

Proof. We know from Theorem 7.4 in [78] that the rigid body translates when the
center of pressure is already collinear with the pulling direction. Now, suppose the
center of pressure is strictly to the right of the pulling direction (as in Figure 2-1).
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Figure 2-3: Example angular velocity bounds for the trigonal 2D object from Figure
2-2. The object is oriented such that the stable pulling configuration corresponds to
𝜃 = 0. The orange curve is the upper bound 𝛼. The blue curve is the lower bound
𝛽.

Then by Theorem 7.4 in [78], the rigid body rotates clockwise about the contact
point, i.e. has angular velocity 𝜔 < 0. Let 𝜌 ∈ (𝜋, 0) be the angular deviation of
the rigid body. Since 𝜌 is monotonically decreasing and 𝜔 = 0 if 𝜌 = 0 or 𝜋, we see
that 𝜌 converges to 0 in the limit as 𝑡→∞. The case when the center of pressure is
strictly to the left of the line of motion follows from symmetry.

2.4.2 Properties of Angular Velocities Bounds

We prove that the set of feasible angular velocities for an object with known center of
pressure is connected and bounded. These two properties justify the use of a bisection
search to locate the minimum and maximum angular velocities in Subsection 2.5.1.

We begin by citing a proposition from variational analysis used in our proofs of
the main results.

2.3 Proposition. Suppose 𝑃 (𝑢) := arg min𝑥 𝑓(𝑥, 𝑢) with 𝑓 : 𝒳 ×𝒰 → R continuous
and level-bounded in 𝑥 locally uniformly in 𝑢. Then the set-valued mapping 𝑃 (𝑢) is
outer-semicontinuous and locally bounded.
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Proof. Proposition adapted from Corollary 7.42 and Theorem 1.17 in [97].

2.4 Theorem. For pulling of a planar rigid body with known center of pressure, the
set of all feasible angular velocities is connected.

Proof. Let Ω be the set of feasible angular velocities, w.r.t. (2.7), for a given support
region 𝑅 with known center of pressure. Suppose Ω is non-empty. Let 𝜔1, 𝜔2 ∈ Ω and
let 𝑝1, 𝑝2 be their corresponding pressure distributions. Then the new distribution
𝑝𝑡 = 𝑡𝑝1+(1−𝑡)𝑝2, with 𝑡 ∈ [0, 1], shares the same center of pressure as 𝑝1, 𝑝2. Define
the function

𝑓(𝜔, 𝑡) = 𝜇

∫︁
𝑅

‖𝐴(r)v+(𝜔)‖𝑝𝑡(r)𝑑𝐴, (2.15)

where v+ : 𝜔 → [0, 1, 𝜔]𝑇 and dom 𝑓 := R × [0, 1]. By inspection, 𝑓 is continuous.
For all 𝑡 ∈ [0, 1] and 𝛼 ∈ R, the set {(𝜔, 𝑡) | 𝑓(𝜔, 𝑡) ≤ 𝛼} is bounded because 𝑓 →∞
as |𝑥| → ∞. Hence, 𝑓 is level-bounded in 𝜔 locally uniformly in 𝑡, and 𝑓 satisfies
the conditions of Proposition 2.3.

The image of a connected set by an outer-semicontinuous set-valued mapping
whose values are nonempty and connected is connected [46]. Let 𝑃 (𝑡) := arg min𝜔 𝑓(𝜔, 𝑡).
For a given 𝑡, the set 𝑃 (𝑡) is convex-valued and therefore connected. Since 𝑓 is con-
tinuous and level-bounded, the set is also nonempty (Theorem 1.9 [97]). Therefore,
the image 𝑃 ([0, 1]) contains the interval connecting 𝜔1 and 𝜔2. Because the choice
of 𝜔1, 𝜔2 was arbitrary, Ω is connected.

In general, Theorem 2.4 holds for any convex set of pressure distributions with
known center of pressure.

2.5 Corollary. For pulling of a planar rigid body with known center of pressure,
the set of all feasible angular velocities is bounded.

Proof. We prove Corollary 2.5 separately for the cases when the rigid body’s center
of pressure lies strictly in the right-half plane, left-half plane, or on the 𝑦-axis.

Suppose the center of pressure lies in the right-half plane of the contact frame.
Then by Theorem 7.4 of [78] the angular velocity of the pulled body is strictly
negative and hence, 0 bounds Ω from above. To establish a lower bound, we appeal
to the following two properties about the set of feasible rotation centers when pushing
or pulling with sticking contact. First, the rotation center must lie on the 𝑥-axis.
Second, the rotation center must lie behind the line bisecting the contact point and
the center of pressure [78]. We observe that any feasible rotation center must have
the form [𝑥, 0] with 𝑥 > 𝑥* > 0, where 𝑥* is the intersection of the bisecting line
and the 𝑥-axis. Recall that, by convention, we fix the contact point velocity to
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v𝑐 = [0, 1]𝑇 . We compute the angular velocity 𝜔* at [0, 𝑥*] using v𝑐 and see that Ω
is bounded from below by

𝜔* = −‖v𝑐‖
𝑥* . (2.16)

Thus, Ω is bounded. The case when the center of pressure lies in the left-half plane
follows from a symmetrical argument.

When the center of pressure is collinear with the pulling direction, the rigid body
translates and Ω = {0} [78].

2.4.3 Integrated Orientation Bounds

We prove that the angular velocity bounds derived in Subsection 2.4.2 integrate into
bounds on the orientation of the pulled body.

Let 𝜃 be the orientation of the rigid body in the world frame and let 𝑢 and 𝑙 be
upper and lower bounds on the orientation in the world frame. Let the function 𝜔(𝜌)
map from the angular deviation to the angular velocity of the rigid body. Likewise,
let the functions 𝛼(𝜌) and 𝛽(𝜌) map from the angular deviation to the upper and
lower angular velocity bounds. An example phase-plot of 𝛼(𝜌) and 𝛽(𝜌) is illustrated
in Figure 2-3. Note the stable equilibrium at 𝜃 = 0.

We assume that the pulling trajectory 𝛾 : R→ R2 can be approximated by a finite
number of straight line segments of equal length. Given such a 𝛾, the pulling angle
𝜑(𝑡) = tan−1(𝛾̇𝑦(𝑡), 𝛾̇𝑥(𝑡)) is a piece-wise constant (step) function. Let 𝑣(𝑡) = ‖𝛾̇(𝑡)‖.
As the planar rigid body is pulled along 𝛾 with unit velocity, the state and bounds
change according to the dynamical system

𝑥̇ = cos(𝜑(𝑡)) (2.17)
𝑦̇ = sin(𝜑(𝑡)) (2.18)

𝜃 = 𝜔(𝜃 − 𝜑(𝑡) + 𝜋) (2.19)
𝑢̇ = 𝛼(𝑢− 𝜑(𝑡) + 𝜋) (2.20)

ℓ̇ = 𝛽(ℓ− 𝜑(𝑡) + 𝜋), (2.21)

where the expression 𝑧 − 𝜑(𝑡) + 𝜋 maps an orientation 𝑧 in the global frame to the
angular deviation.

2.6 Proposition. For pulling of a rigid body with known initial pose, the orientation
of the body is bounded above and below by 𝑢 and ℓ.

Proof. Suppose the proposition is false and 𝜃 crosses the bound 𝑢 at time 𝑡0, i.e.
𝑢(𝑡0) = 𝜃(𝑡0) and 𝜃(𝑡) > 𝑢(𝑡) immediately afterwards. Let the line segment of 𝛾
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at 𝑡0 be indexed by 𝑖 and have length 𝜀. Then 𝜑(𝑡) is constant for 𝑡 in the range
[𝑡0, (𝑖 + 1)𝜀). Pick 𝑡1 from said range such that 𝜃(𝑡1) > 𝑢(𝑡1). Because 𝜑 is constant
in [𝑡0, 𝑡1], we can apply separation of variables to solve differential equation (2.20)
and get ∫︁ 𝑢(𝑡1)

𝑢(𝑡0)

1

𝛼(𝑥− 𝜑(𝑡0))
𝑑𝑥 =

∫︁ 𝑡1

𝑡0

𝑑𝑡. (2.22)

This result shows that we can integrate the inverse of an angular velocity function
to compute the amount of time required to reach a particular orientation. However,
we can also apply separation of variables to the function 𝜔. Observe that because 𝛼
is an upper bound on 𝜔

𝛼(𝑥− 𝜑(𝑡0)) ≥ 𝜔(𝑥− 𝜑(𝑡0)), (2.23)

the resulting integral of 𝜔 satisfies∫︁ 𝑢(𝑡1)

𝑢(𝑡0)

1

𝛼(𝑥− 𝜑(𝑡0))
𝑑𝑥 ≤

∫︁ 𝑢(𝑡1)

𝑢(𝑡0)

1

𝜔(𝑥− 𝜑(𝑡0))
𝑑𝑥. (2.24)

This indicates that it takes less time for 𝑢 to reach 𝑢(𝑡1) compared to 𝜃, and therefore,
𝜃(𝑡1) ≤ 𝑢(𝑡1), a contradiction. Therefore, the upper bound holds and the lower bound
follows from a similar argument.

2.5 Methods
In this section, we synthesize the materials in Sections 2.3 and 2.4 into an algorithm
for computing exact angular velocity bounds and a method for planning convergent
trajectories using the computed bounds. The former is detailed in Subsection 2.5.1
and extended in Subsection 2.5.2 and the latter is detailed in Subsection 2.5.3.

2.5.1 Exact Angular Velocity Bound Algorithm

Algorithm 1 finds exact angular velocity bounds for a given support region 𝑅 and
center of pressure [𝑥0, 𝑦0]

𝑇 . It uses bisection search to estimate the end-points of Ω.
This choice is justified because Ω is connected and bounded by Theorem 2.4 and
Corollary 2.5.

To initialize the bisection search, we need an angular velocity in Ω and two angular
velocities above and below the bounds of Ω. First, we compute an angular velocity
𝜔 in Ω. We find a feasible assignment of pressures 𝑃 such that the center of pressure
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Algorithm 1 Exact Angular Velocity Bounds
1: function Find Extrema(𝑅, 𝑥0, 𝑦0)
2: if 𝑥0 is 0 then return [0, 0]

3: 𝑃 ← minx 0 s.t. 𝑅x = [𝑥0, 𝑦0]
𝑇 , 𝐿 ≤ x ≤ 𝑈

4: 𝑥𝑟 ← Compute Rotation Center(𝑅,𝑃 )
5: 𝜔 ← −‖v𝑐‖/𝑥𝑟

6: 𝑙← 0
7: 𝜔1 ← Bisection Search(𝑅, 𝑥0, 𝑦0, 𝑙, 𝜔)
8: 𝑢← 𝜔
9: do

10: 𝑢← 2𝑢
11: v+ ← [v𝑇

𝑐 , 𝑢]𝑇

12: 𝐺← {−x× 𝐴(x)v+/‖𝐴(x)v+‖ | x ∈ 𝑅}
13: while [𝑥0, 𝑦0, 0]𝑇 ∈ ConvHull(𝐺)
14: 𝜔2 ← Bisection Search(𝑅, 𝑥0, 𝑦0, 𝑢, 𝜔)
15: 𝑙←Min(𝜔1, 𝜔2)
16: 𝑢←Max(𝜔1, 𝜔2)
17: return [𝑙, 𝑢]

18: function Bisection Search(𝑅, 𝑥0, 𝑦0, 𝛼, 𝛽)
19: while 𝜀 < |𝛼− 𝛽| do
20: 𝜔 ← (𝛼 + 𝛽)/2
21: v+ ← [v𝑇

𝑐 , 𝜔]𝑇

22: 𝐺← {−x× 𝐴(x)v+/‖𝐴(x)v+‖ | x ∈ 𝑅}
23: if [𝑥0, 𝑦0, 0]𝑇 ∈ ConvHull(𝐺) then
24: 𝛽 ← 𝜔
25: else
26: 𝛼← 𝜔
27: return (𝛼 + 𝛽)/2

is [𝑥0, 𝑦0] (line 3). From 𝑃 , the resultant rotation center [𝑥𝑟, 0] can be computed
using the root-finding method in [76] (line 4). Lastly, we convert the rotation center
into the angular velocity 𝜔 ∈ Ω (line 5). Of the two out-of-bound angular velocities
𝑙 and 𝑢, we can set 𝑙 to 0 (line 6). The other can be found by repeatedly doubling 𝜔
until the resulting angular velocity is no longer feasible (lines 8-13). As a reminder,
we test the feasibility of a given angular velocity 𝜔′ by checking whether the point
[𝑥0, 𝑦0, 0]𝑇 is contained in the associated frictional moment envelope (see Section
2.3.2). Now that 𝜔, 𝑢, and 𝑙 have been computed, we pass them into the bisection

32



search to compute the boundary points of Ω (lines 7 and 14).
The run-time of the algorithm is 𝒪(𝑑 𝑛 log 𝑛), where 𝑑 is the number of signifi-

cant digits returned and 𝑛 is the number of points in the discretization of 𝑅. This
computation is relatively expensive to perform online. In Section 2.5.3, we avoid re-
computing angular velocity bounds by fitting Fourier series to a set of pre-computed
orientation-bound pairs.

2.5.2 Improving on Exact Angular Velocity Bounds

The exact angular velocity bounds computed in Section 2.5.1 result in slow conver-
gence towards the stable pulling equilibrium point (for experimental measurements,
see Subsection 2.6.1). Consequently, wide bounds cause our planner to generate long
trajectories that exceed the robot’s workspace in order to satisfy tolerances on the
final pose uncertainty.

In this subsection, we show how to modify the constraints on the pressure distri-
butions from which the bounds were computed. This allows us to restrict pressure
distributions to smaller subclasses and thus achieve tighter angular velocity bounds.
Let 𝒞 be the class of normalized pressure distributions over a region 𝑅 with center of
pressure [𝑥0, 𝑦0]. Now, suppose we had a convex subclass 𝒦 of pressure distributions
such that 𝒦 ⊂ 𝒞. Regrettably, the point-in-convex-hull feasibility test only works for
𝒞. However, we can setup an alternative feasibility test with respect to 𝒦 by solving
the linear program

minimize
𝑝

⃦⃦⃦⃦
⃦∑︁

𝑅

𝑔(r)𝑝(r)

⃦⃦⃦⃦
⃦

subject to 𝑝 ∈ 𝒦,
(2.25)

where 𝑝 is a discretized pressure distribution, 𝑔(r) is the unit-torque function from
equation (2.12), and the summation is over points r ∈ 𝑅. A given angular velocity
𝜔 is feasible if and only if the linear program (2.25) finds a pressure distribution 𝑝
such that the objective ‖

∑︀
𝑅 𝑔(r)𝑝(r)‖ is 0 and 𝑝 ∈ 𝒦.

Several options exists for the choice of 𝒦. In our experiments, we use

𝒦 = {𝑝 | 0 ≤ 𝑝𝑖 ≤ 𝑈, 𝑝 ∈ 𝒞}, (2.26)

where 𝑈 ≤ 1 is an upper bound on the discretized pressures. The upper bound 𝑈
controls the percentage of 𝑅 guaranteed to be in contact with the surface, i.e. has
non-zero pressure. For example, if we set 𝑈 = 2/𝑁 , where 𝑁 is the number of points
in the discretization of 𝑅, then, by the pigeon-hole principle, at least 50% of 𝑅 is
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always in contact with the surface. Our implementation solves linear program (2.25)
using Gurobi [40].

2.5.3 Planning Convergent Trajectories for Robotic Pulling

We use control-limited Differential Dynamic Programming (DDP) [106] to plan con-
vergent trajectories for robotic pulling. At a high level, DDP solves a trajectory
optimization problem where the objective is to reach a target pose [𝑥𝑇 , 𝑦𝑇 , 𝜔𝑇 ]𝑇 with
small uncertainty, i.e. the integrated orientation bounds are within 𝜖 of 𝜔𝑇 .

Let the discretized state be x𝑖 = [𝑥𝑖, 𝑦𝑖, 𝑢𝑖, 𝑙𝑖]
𝑇 , 𝑖 ∈ [1, 𝑁 ]. Let the discretized

controls be u𝑖 = [𝑑𝑖, 𝜑𝑖]
𝑇 , 𝑖 ∈ [1, 𝑁 ], where 𝑑𝑖 is the distance to travel and 𝜑𝑖 is the

heading in the global frame. We use the following first order approximation of the
discretized dynamics in our trajectory optimizer

𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖 · cos(𝜑𝑖) (2.27)
𝑦𝑖+1 = 𝑦𝑖 + 𝑑𝑖 · sin(𝜑𝑖) (2.28)
𝑢𝑖+1 = 𝑢𝑖 + 𝑑𝑖 · 𝛼̂(𝑢𝑖 − 𝜑𝑖 + 𝜋) (2.29)

𝑙𝑖+1 = ℓ𝑖 + 𝑑𝑖 · 𝛽(𝑙𝑖 − 𝜑𝑖 + 𝜋) (2.30)
ℎ𝑖+1 = ℎ𝑖 + 𝑑𝑖, (2.31)

where the functions 𝛼̂ and 𝛽 are Fourier series approximations of the upper and lower
angular velocity bounds (to avoid costly in-loop computations) and the additional
state ℎ𝑖 measures the cumulative distance pulled.

We use the following cost functions to bias the trajectory optimizer towards
finding convergent trajectories. We set the running cost ℒ(x𝑖,u𝑖), 𝑖 ∈ [1, 𝑁 − 1] to
zero. We set the final cost to be

ℒ𝐹 (x𝑁 , ℎ𝑁) = k𝑇ℒ𝛿(x𝑁 − x𝐹 ) + 𝜆ℎ2
𝑁 , (2.32)

where ℒ𝛿 is the vectorized version of the Pseudo-Huber loss function1

ℒ𝛿(𝑎) =
√
𝑎2 + 𝛿2 − 𝛿, (2.33)

x𝐹 = [𝑥𝑇 , 𝑦𝑇 , 𝜔𝑇 , 𝜔𝑇 ]𝑇 is the target state, k and 𝛿 are the slope and width, respec-
tively, of the vectorized Pseudo-Huber loss function, and 𝜆 is the distance penalty
coefficient. Note that the target upper and lower orientation bounds are equal to 𝜔𝑇

in the target state x𝐹 . This ensures the generated trajectory minimizes uncertainty
1This function approximates an ℓ1 norm for 𝑎 > 𝛿.
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in the final orientation (due to Proposition 2.6). Finally, we initialize our trajectory
optimizer using paths generated from Dubins’ curves. Pushing with sticking contact
shares similar dynamics with the simple car [29, 117].

2.6 Experiments

2.6.1 Comparison of Angular Velocity Bounds

In this experiment, we compare distance-to-convergence for our exact angular ve-
locity bounds and the previous best bound, i.e. the Peshkin bound [91]. We test
the bounds over the objects in the MIT Pushing Dataset [114] and randomly gen-
erated bipods, tripods, and quadrapods. The generated 𝑛-pods were chosen to have
circumcircle diameters similar to the MIT objects, roughly 0.16m.

For each MIT object, we pick 10 even spaced contact points on the boundary of
the object. We generate 30 random 𝑛-pods for each category and took the contact
point to be the center of a random pod (similar to pulling the leg of a chair). We com-
pute distance-to-convergence in the following manner. Let 𝛾 be an angular velocity
bound (can be upper or lower). We orient the object such that the center of pressure
is 90 degrees away from the stable configuration. Next, we simulate a pulling trajec-
tory while integrating 𝛾 and stop when the integral converges to within 1 degree of
the stable configuration. The distance travelled is the distance-to-convergence2.

The experimental results are collected in Table 2.1. The Peshkin bound computes
the feasible angular velocities for the circumcircle enclosing the object. As a result,
it underestimates the slowest angular velocity bound and its distance-to-convergence
can be twice are far as compared to the exact bound. When feasible pressure dis-
tribution are restricted such that at least 50% of the object is in contact with the
surface, the distance-to-convergence of the exact bound is reduced by another factor
of two. Because the exact bound converges within 3/4 a meter, it is serviceable for
manipulating the MIT objects on a large table. Naturally, smaller objects or tighter
bounds are required for smaller tables.

2.6.2 Robotic Pulling on a Tabletop

Figure 2-4 shows the experimental setup that we used to test the robotic pulling
trajectories generated by the planning algorithm in Subsection 2.5.3.

2Note that this distance is independent of the pulling velocity, see Equation (2.16).
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Exact Exact-50% Peshkin

MIT 0.670
0.172

±
±

0.141
0.047

0.362
0.243

±
±

0.073
0.053

1.354
0.162

±
±

0.501
0.041

Bipod 0.762
0.516

±
±

0.210
0.218

0.692
0.574

±
±

0.213
0.216

0.899
0.273

±
±

0.239
0.095

Tripod 0.765
0.522

±
±

0.133
0.162

0.688
0.576

±
±

0.143
0.157

1.180
0.340

±
±

0.244
0.108

Quadrapod 0.880
0.417

±
±

0.120
0.099

0.749
0.489

±
±

0.114
0.098

1.207
0.329

±
±

0.235
0.096

Table 2.1: Comparison of distance-to-convergence (in meters) for different objects
and angular velocity bounds. The top and bottom values in each cell correspond
to distances from the upper and lower angular velocity bounds, respectively. See
Section 2.6.1 for the experimental setup.

Experimental data was collected using an ABB 140 manipulator equipped with a
conical finger. The test object was a laser-cut acrylic rectangle (75mmx50mmx6.35mm)
with 8 holes at the edges and corners. The conical finger moved the acrylic rectangle
by pulling inside the holes. A 5 camera OptiTrack motion capture system was set
up to record ground truth position of the object in 2D with a accuracy of 2mm. To
compensate sensing error, the holes on the rectangle were oversized to have a 3mm
radius. We used MDF board as our surface material.

We computed angular velocity bounds for the acrylic rectangle over pressure
distributions restricted to have at least 25% of the object is in contact with the
surface. The slope k of the Pseudo-Huber Loss function for the DDP planner was
set to [5000, 5000, 1000, 1000] and the width 𝛿 was set to [0.01, 0.01, 0.02, 0.02]. The
distance penalty 𝜆 was set to 40. For each pulling trial, we generated random start
and end poses within the vision system’s field of view. The planner was evaluated
for all eight contact points and the lowest cost trajectory that remained within the
robot workspace was executed on the robot at 25mm/s linear speed. The final pose
was then recorded by the motion capture system.

We collected eighty trials of robotic pulling. Of those eighty, we discarded the
four trials where our planner failed to find trajectories that satisfied workspace con-
straints. The average absolute displacement from the target pose was 4.00mm ±
3.02mm. The average absolute angular displacement from the target pose was 4.35
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Figure 2-4: Hardware setup for robotic pulling experiments.

Figure 2-5: The top and bottom view of the acrylic rectangle with motion capture
markers and 8 holes for pulling.
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Figure 2-6: (Dashed red line) The planned robotic pulling trajectory. (Dashed black
line) The area swept by the possible poses computed by our bounds during the
planned trajectory. (Grey rectangles) The measured poses of the object when the
trajectory was executed on a real robot.

degrees ± 3.14 degrees. Note the hole radius introduces a systematic error of 3mm to
the final pose because the puller contacts the edge of the hole, not the center. Over-
all, our experimental results support the claim that the planner finds convergent
pulling trajectories. An example trial is visualized in Figure 2-6.

2.7 Conclusion
In this chapter, we derive a method for computing exact bounds on the object’s
motion for classes of pressure distributions where the center of pressure is known
but the distribution of support forces is unknown. We also show these exact motion
bounds can be used to plan robotic pulling trajectories that guarantee the pulled
object converges to the final pose. We validate our planner on a real robotic system
and show that the generated trajectories obtain low errors on the final pose of the
object.
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Chapter 3

Robotic Pushing for Large-Scale
Rearrangement

3.1 Introduction

Past robotics research has identified certain scenarios in which robots need to re-
arrange multiple objects in their environment in order to accomplish a goal. One
early example of such a scenario is the problem of navigation among moveable ob-
stacles (NAMO) introduced by Wilfong [113]. Later on, Stilman and Kuffner [102]
demonstrated the possibility of real-time NAMO in tight household spaces contain-
ing upwards of 90 pieces of furniture, despite NAMO problems being fundamentally
NP-hard to solve [27]. Home environments are also a natural setting for scenarios
involving pick-and-place rearrangement planning. The most difficult problems in
this domain are non-monotone, i.e. the solutions require moving objects more than
once. Recently, Krontiris and Bekris [65] and Han et al. [42] presented algorithms
which handle non-monotonicity during pick-and-place rearrangement on shelves and
tabletops, respectively; however, finding optimal solutions is often NP-hard [42].

This chapter focuses on non-prehensile rearrangement planning, a type of rear-
rangement which emphasizes the need for multi-contact manipulation. For the rest
of this thesis, the term rearrangement planning implies the non-prehensile variant.
We categorize non-prehensile rearrangement planning problems based on whether
the objective is to singulate, separate, reposition, arrange, or sort objects. We define
singulate as isolating a single object for grasping [45, 66, 25, 81, 28, 2, 116], separate
as acheiving a minimum separating distance between all objects [17, 31], reposition
as moving a subset of the objects into target positions (no orientation constraints)
[62, 63, 64, 43, 44, 115, 10], arrange as moving the objects into a target configura-

39



(a) Action 5 (b) Action 83 (c) Action 133

Figure 3-1: Example pushes generated by our algorithm as it sorts 24 blocks by color.

tion (with position and orientation constraints) [6], sort as grouping objects based
on some similarity metric.

Prior work has been limited to solving a large-scale local rearrangement problem,
i.e. singulation where the behaviors of non-target objects (obstacles) are largely
inconsequential, or a small-scale global rearrangement problem, such as separating
a maximum of 12 objects [18] or repositioning 2 out of 6 objects max [43, 44]. We
define a local rearrangement problem as one whose solution only requires the robot
to interact with a small neighborhood around the object(s) of interest. Likewise, a
rearrangement problem is global if the solution requires interaction with all objects
in the scene. Historically, global problems are harder. For instance, Zeng et al. [116]
could singulate 1 object out of 30 (1/30) from a random initial configuration but
only 1/6 from a packed initial configuration. Table 3.1 provides an extensive list of
prior results.

Our work introduces the first algorithm capable of solving large-scale global rear-
rangement planning problems. We validate our algorithm on rearrangement problems
which contain up to 100 objects and packing factors of up to 40%. We believe this
result is impressive (and surprising) for a number of reasons. First, the planner must
reason about complex multi-object, multi-contact dynamics. Second, the problem is
strongly non-monotonic. In the tightly packed environments we study, objects clump
together and must be acted upon en masse. Finally, the search space is large. The
continuous action space and large number of objects generates very high branching
factors.

This chapter introduces Iterated Local Search (ILS) with an annealing 𝜀-greedy
policy as the first known algorithm for solving large-scale global rearrangement plan-
ning problems. The ILS algorithm consists of two components, the inner the local
search, i.e. the annealing 𝜀-greedy policy, and the outer loop with iterates over local
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searches. The 𝜀-greedy policy starts from the current state, and randomly selects and
rolls out pushing actions. If the action is greedy, then the rollout terminates when
the distance to goal is minimized. A non-greedy action would continue to some pre-
determined maximum. By repeating the random selection of mostly greedy actions,
the policy rollout would produce a sequence of actions and a corresponding system
trajectory. This local search would tend to descend the gradient, but might get stuck
in a local minimum. We solve this issue using an iterated local search. Two depar-
tures are used to define the iterated local search. First, each local search selectively
uses non-greedy actions – actions which will proceed a considerable distance without
regard to distance-to-goal. These non-greedy actions are employed according to an
annealing schedule. They appear frequently at the beginning of the local search, and
less frequently later on. Second, the local search is repeated several times until a
sequence of actions which improves the overall cost-to-goal is found. The result is a
plan that might be kicked out of local minima several times but always moves closer
to the goal.

Our results have effectively shown that a simple greedy heuristic search can solve
non-prehensile rearrangement planning problems which are more difficult than those
previously considered. Our algorithm and results suggest that this problem space is
approximately convex. We believe this novel insight will be important for any future
work in this domain. Moreover, our algorithm transfers from simulation to real-world
experiments without any parameter tuning, uncertainty modeling, or learning.

The rest of this chapter is organized as follows. Section 3.2 discusses related
work in more depth and quantitatively compares past results in Table 3.1. Section
3.3 provides a background for our algorithm by formally defining non-prehensile
rearrangement problems and Markov Decision Processes. Section 3.4 describes our
algorithm by first introducing ILS and then the annealing 𝜀-greedy policy. Section
3.6 presents our simulated and real-world experimental results. Section 3.7 discusses
the reasons behind our algorithm’s performance. Section 3.8 reviews our algorithm’s
limitations and proposes future work, while Section 3.9 gives concluding remarks.

3.2 Related Work
Chang et al. [17] and Hermans et al. [45] both proposed a pushing policy for sin-
gulating objects based on visual boundary information. Laskey et al. [66] learned a
deep grasping policy which pushes clutter away to achieve a grasp on a target object.
King et al. [62, 63, 64] published a number of different planning methods which used
pushing primitives to reposition a single object in the presence of limited clutter. Ei-
tel et al. [31] learned a push proposal network for separating objects. Haustein et al.
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[44] solve non-prehensile rearrangement planning problems by employing a variant of
Rapidly-Exploring Random Trees (RRTs) augmented with a learned state generator
and a learned policy (action generator). Similar to their previous work [43], Haustein
et al. [44] restricted the pusher motion to lie in-plane, which likely makes their prob-
lems as difficult as NAMO1. Danielczuk et al. [25] proposed two novel deterministic
pushing policies for singulating objects in a bin using only one push. Unfortunately,
their results lacked any post-push grasping success rates. Yuan et al. [115] adopted
Deep Q-Learning (DQN) to rearrangement planning, noting how both Atari games
and tabletop pushing tasks are essentially 2D; however, their results were limited to
repositioning 1 out of 2-4 objects. Muhayyuddin et al. [81] generated plans for non-
prehensile reach-to-grasp tasks using Kinodynamic Motion Planning by Interior and
Exterior Cell Exploration (KPIECE) with uncertainty propagation and safe motion
biases. Dogar and Srinivasa [28] introduced push-grasping, i.e. singulating an object
for grasping using non-prehensile actions, and described an action library approach to
generating push-grasp trajectories. Agboh and Dogar [2] formulate push-grasping as
an online stochastic trajectory optimization problem. Bejjani et al. [10] also applied
Deep Q-Learning to rearrangement planning problems but were only able reposition
3 out of 3 objects. Anders et al. [6] placed and then pushed individual blocks one
at a time into a packed configuration using forward search through in belief space
with a learned transition model. Though they demonstrated the ability to rearrange
objects into target positions and orientations, they were only able to handle a very
specific type of goal configuration, i.e. a corner-pyramid configuration supported
by the bottom and right walls. Zeng et al. [116] used Q-learning to train a fully
convolutional network which labeled pixels as potential pushing or grasping actions
locations. They tested on scenes with 30 randomly placed objects and scenes with 6
tightly-packed objects.

To the best of our knowledge, all related papers (see Table 3.1) only address a
single category at a time. Moreover, no prior work has demonstrated the capability to
arrange objects to arbitrary configurations or sort objects. Though Anders et al. [6]
demonstrated arranging, they were only able to handle a very specific corner-pyramid
configuration, whereas our algorithm can arrange blocks into any character or word
(Section 3.6). This limitation indicates the lack of a general approach. With the sole
exception of singulation problems, Table 3.1 shows that our algorithm outperforms
all prior work with respect to the number of objects and packing factors they can
handle.

1In our opinion, this restriction is unnecessary given that the target task is tabletop rearrange-
ment
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max packing factor
max # objects success

singulate separate reposition rearrange sorting

Chang et al. [17] - 12/12†, 0.22* - - - 12/12, 0.22* 98%
Hermans et al. [45] 1/6, 0.07* - - - - 1/6, 0.07* 72%
Laskey et al. [66] 1/4, 0.20* - - - - 1/4, 0.20* 65%

King et al. [62, 63, 64] - - 1/6‡, 0.09* - - 1/6‡, 0.09* 100%
Eitel et al. [31] - 8/8, 0.10* - - - 8/8, 0.10* 57%

Haustein et al. [43, 44] - - 2/6‡, 0.04* - - 2/6‡, 0.04* 99%
Danielczuk et al. [25] 1/10, 0.21* - - - - 1/10, 0.21 ?%

Yuan et al. [115] - - 1/4, 0.02* - - 1/4, 0.02* 70%
Muhayyuddin et al. [81] 1/40‡, 0.25* - - - - 1/40‡, 0.25* 90%
Dogar et al. [28, 2, 10] 1/16‡, 0.17 - 3/3‡, 0.07* - - 1/16‡, 0.17 93%

Anders et al. [6] - - - 9/9†, 0.20* - 9/9†, 0.20* 96%
Zeng et al. [116] 1/30†, 0.47* - - - - 1/30†, 0.47* 81%

Our work 1/33, 0.41 25/25, 0.31 32/32, 0.20 32/32, 0.20 24/24, 0.31 100/100, 0.10 91%

Table 3.1: Comparison of prior work with ours in non-prehensile rearrangement planning. Authors are ordered by latest publication
date. All numbers are given in terms of the max achieved. †Grasping included as a action primitive. ‡Pusher motion restricted to be
in-plane. *Packing factor estimated from images in paper.
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3.3 Background

3.3.1 Push Planning for Rearrangement Tasks

We take the definition of table-top rearrangement planning from King et al. [62]. Let
there be 𝑛 (not necessarily unique) moveable objects on a flat surface. Assuming the
objects do not roll or topple, the 𝑛 objects form the state space 𝑆 = R3𝑛. Given a
start state 𝑠 ∈ 𝑆, the goal of table-top rearrangement planning is to find a sequence
of non-prehensile actions 𝑎1, . . . , 𝑎𝑛 which rearrange the objects into any state 𝑔 in
the goal set 𝐺 ⊂ 𝑆.

Similar to prior work, we restrict non-prehensile actions to pushes. We define a
pushing action as the tuple 𝑎 = ⟨ℎ, 𝑣, 𝑡𝑣, 𝑔𝑟𝑒𝑒𝑑𝑦⟩, where ℎ ∈ R3 is the pre-push pose
of the pusher, 𝑣 ∈ R2 is the pusher velocity (no rotation, i.e. a straight line push),
𝑡𝑣 is the pushing duration, and 𝑔𝑟𝑒𝑒𝑑𝑦 ∈ {0, 1} determines whether the action is
evaluated greedily or not. In practice, we also fix a maximum greedy distance 𝑑𝑔 and
a maximum random distance 𝑑𝑟 at which to stop evaluating the action. We assume
the pushing actions are evaluated in a quasi-static environment, i.e. inertial forces
are negligible [78].

3.3.2 Markov Decision Processes

In this work, we model the rearrangement planning problem as a Markov Decision
Process (MDP) with continuous state and action spaces [103]. Recall that an MDP
ℳ is described by a five-tuple ⟨𝑆,𝐴, 𝑇,𝑅, 𝛾⟩, where 𝑆 ⊆ R𝑁 is an 𝑁 -dimensional
state space, 𝐴 ⊆ R𝐷 is an 𝐷-dimensional action space, 𝑇 (𝑠, 𝑎, 𝑠′) is the probability
that action 𝑎 applied to state 𝑠 will lead to state 𝑠′ in the next time step, 𝑅(𝑠, 𝑎, 𝑠′)
is the immediate reward received after transitioning from state 𝑠 to state 𝑠′ due to
action 𝑎, and 𝛾 ∈ [0, 1] is the discount factor on future rewards. A non-deterministic
policy 𝜋(𝑠, 𝑎) specifies the probability that the agent, or robot, chooses action 𝑎 in
state 𝑠. The expected value of a policy 𝑉 𝜋(𝑠) =

∑︀∞
𝑡=0 𝛾

𝑡𝑅𝑡 is the discounted sum
over the expected rewards starting at state 𝑠 and following policy 𝜋. The solution
to an MDP is an optimal policy 𝜋* which maximizes 𝑉 𝜋(𝑠),∀𝑠 ∈ 𝑆.

3.3.3 Policy Rollouts

A policy rollout generates a solution sequence 𝑎1, . . . , 𝑎𝑛 to an MDP ⟨𝑆,𝐴, 𝑇,𝑅, 𝛾⟩
with start 𝑠 and goals 𝐺 by sampling and rolling out actions from a policy 𝜋(𝑠, 𝑎)
until a terminal state is reached. Not unexpected, the policies themselves determine
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the effectiveness of this solution method. Thus, Subsection 3.4.1 describes a policy
suitable for non-prehensile rearrangement planning.

3.4 Methods

3.4.1 𝜀-greedy Pushing Policy

This section adopts the classic 𝜀-greedy policy formulation to continuous, non-prehensile
action spaces [103]. Given a probability 𝜀, an 𝜀-greedy policy 𝜋𝜀 selects random ac-
tions with probability 𝜀 and greedy actions with probability 1− 𝜀. To extend 𝜋𝜀 to
continuous action spaces, we have 𝜋𝜀 execute greedy actions using a steering func-
tion [67]. To increase sample efficiency, we have 𝜋𝜀 sample pushing actions from an
object-centric action space [63].

Steering Functions

We adopted the steering function from a class of sample-based planning algorithms
known as Rapidly-Exploring Random Trees (RRT) [67]. Let 𝑎 be a greedy action and
suppose taking action 𝑎 at state 𝑠 generates the trajectory 𝒯 (𝑡), 𝑡 ∈ [0, 𝜏 ]. Given a
goal set 𝐺, the steering function returns the state 𝑠′ along the trajectory 𝒯 (𝑡) which
minimizes the cost-to-goal, that is

𝑠′ = arg min
𝑥∈𝒯

{‖𝑥− 𝑔‖ | 𝑔 ∈ 𝐺} . (3.1)

Greedy execution using a steering function means action 𝑎 is only applied up until
we reach state 𝑠′, or up to time 𝒯 −1(𝑠′). If 𝑎 is random (not greedy) then the action
is taken in full, i.e. 𝑠′ = 𝒯 (𝜏). Note, examples of distance functions are given in
Subsections 3.5.1 and 3.5.2.

Object-Centric Sampling

An action is said to be object-centric if it interacts in a targeted way with a single
object [63]. In this work, we sample an object-centric action in two phases. First,
select an object not at its goal, i.e. ‖𝑝−𝑔‖ > 𝛿, where 𝑝 is the object pose, 𝑔 is the goal
pose, and 𝛿 is the goal tolerance. Next, we sample a pusher velocity 𝑣 from a velocity
set 𝑉 ⊆ R2 and a collision-free pre-push pose ℎ such that the pusher motion from ℎ
with velocity 𝑣 intersects the selected object. Furthermore, if the action is greedy,
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Algorithm 2 Iterated Local Search
1: function Iterated-Local-Search(𝑠, 𝑔)
2: 𝑥← 𝑠
3: 𝒯 ← [ ]
4: for 𝑖 ∈ Range(𝑁𝑚𝑎𝑥) do
5: 𝒯 ′ ← Local-Search(𝑥, 𝑔)
6: if Dist(𝒯 ′) < Dist(𝒯 ) then
7: 𝒯 ← 𝒯 ∪ 𝒯 ′

8: 𝑥← Final-State(𝒯 )

9: if Terminal(𝑥) then
10: return 𝒯
11: return 𝒯

we sample velocities from the positive half-space 𝑉 + = {𝑣|𝑣 · (𝑔 − 𝑥) ≥ 0, 𝑣 ∈ 𝑉 }
instead of 𝑉 (for efficiency).

Examples of 𝑉 include 𝑉𝑐𝑜𝑚 = {𝑣 | ‖𝑣‖ = 1}, the set of unit velocities which pass
through the object center, 𝑉𝑁𝐸𝑆𝑊 = {(cos 𝜃, sin 𝜃) | 𝜃 = 𝑛𝜋/2, 𝑛 ∈ Z}, the set of
cardinal directions, and 𝑉𝑂𝐶𝑇 = {(cos 𝜃, sin 𝜃) | 𝜃 = 𝑛𝜋/4, 𝑛 ∈ Z}, the set of principal
directions.

3.4.2 Iterated Local Search

The Iterated Local Search (ILS) meta-algorithm iteratively builds a sequence of
solutions generated by the embedded local search heuristic [71]. At each iteration,
ILS runs the heuristic once and saves the returned sequence only if it reduces the
cost to goal. Algorithm 2 lists ILS pseudo-code.

In this work, we use an annealing 𝜀-greedy policy rollout as the embedded heuris-
tic. We schedule 𝜀 according to a temperature-controlled acceptance function (lines 5
and 6). This raises the chance of a non-greedy action significantly when the number
of search iterations is very small, which helps kick the system out of local minima.

3.5 Implementation

Recall that the steering function applies an action 𝑎 up to the point where a distance
function between the rolled out state and the goal is minimized. Subsections (3.5.1
and 3.5.2) describe the two distance functions used in our algorithm.
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Algorithm 3 Annealing 𝜀-greedy Policy Rollouts
1: function Local-Search(𝑠, 𝑔)
2: 𝑥← 𝑠
3: 𝒯 ← [ ]
4: for 𝑖 ∈ Range(𝑁𝑠𝑒𝑎𝑟𝑐ℎ) do
5: 𝜌← 𝜌0/𝑖

6: 𝜀← 1 /
(︁

1 + exp 1
𝜌

)︁
7: 𝑎← 𝜋𝜀(𝑥)
8: 𝒯 ← 𝒯 ∪Rollout(𝑥, 𝑎)
9: 𝑥← Final-State(𝒯 )

10: if Terminal(𝑥) then
11: return 𝒯
12: return 𝒯

3.5.1 Weighted Euclidean Distance Function

Given a set of object poses 𝑝1, . . . , 𝑝𝑛, corresponding goal poses 𝑔1, . . . , 𝑔𝑛, and non-
negative weights 𝑤1, . . . , 𝑤𝑛, the weighted Euclidean distance function returns

𝐷𝑖𝑠𝑡 =
𝑛∑︁

𝑖=1

‖𝑝𝑖 − 𝑔𝑖‖𝑤𝑖
. (3.2)

Note, we first wrap the angular component of 𝑝𝑖 and 𝑔𝑖 to be within [0, 2𝜋/𝑚𝑖), where
𝑚𝑖 is the number of radial symmetries of object 𝑖.

3.5.2 Linear Assignment Distance Function

Suppose that some objects are not unique. Because non-unique objects can be as-
signed to their corresponding goals in any permutation, we must modify the distance
function to additionally solve the assignment problem [59].

Let each set of identical objects 𝑂𝑘 be assigned an index 𝑘. Then we can write the
set of object poses and goal poses for 𝑂𝑘 as 𝑝𝑘1, . . . , 𝑝

𝑘
𝑛𝑘

and 𝑔𝑘1 , . . . , 𝑔
𝑘
𝑛𝑘

, respectively,
where 𝑛𝑘 = ‖𝑂𝑘‖. Let a 𝑛×𝑛 cost matrix 𝐶 be comprised of the weighted Euclidean
distances between all pairs of object poses 𝑝𝑘𝑖 and goals 𝑔𝑘𝑗 . The linear assignment
problem is to find an bijective assignment 𝐴𝑘 : {1, . . . , 𝑛𝑘} → {1, . . . , 𝑛𝑘} such that
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(a) Singulate (b) Separate (c) Character (d) Sorting-24 (e) Sorting-100

Figure 3-2: Top: Example final states for each problem. Bottom: Plots of the
percentage of problems solved over time for ILS (solid-blue) and 𝜀-greedy policy
rollouts (solid-red) and the percentage of objects at goal over time for ILS (dotted-
blue) and 𝜀-greedy policy rollouts (dotted-red).

the cost function
𝑛𝑘∑︁
𝑖=1

𝐶𝑖,𝐴𝑘(𝑖) (3.3)

is minimized. This problem can be solved in 𝑂(𝑛3) time using the Jonker-Volgenant
algorithm [59]. The total distance across all sets of identical objects is given by

𝑛𝑜∑︁
𝑘=1

𝑛𝑘∑︁
𝑖=1

𝐶𝑖,𝐴𝑘(𝑖), (3.4)

where 𝑛𝑜 is the number of object sets.

3.6 Experiments

3.6.1 Simulation Problem Setups

We used the following simulation environment setup in our experiments. The objects
consisted of 4× 4 colored blocks. The workspace was restricted to a 40× 40 square
with a virtual out-of-bounds region with thickness 2. We introduced the virtual
out-of-bounds region to give the robot enough space to push blocks out from edges
and corners. For an example workspace, see Figure 3-1. Unless otherwise specified,
the robot was equipped with a 3 × 0.5 fence pusher. All algorithms were run on a
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computer with an Intel i7-7820x CPU (3.5 MHz, 16 threads). The simulation envi-
ronment was implemented in Box2D [16]. Note, we have limited our presented results
to the hardest problems in each category. We have also validated our algorithm on
smaller versions of these problems.

Singulate

This problem required the robot to singulate the block nearest to the center of
the work space away from the 32 other blocks (total 33 blocks). For the target
block, we used a weighted euclidean distance function with goal 𝑔𝑡 = [0, 0, 0], weights
𝑤𝑡 = [1, 1, 0], and goal tolerance 𝛿𝑡 = 0.5. For all other blocks, we used a linear
assignment distance function with 𝑔𝑖 ∈ [±9,±9, 0], 𝑤𝑖 = [1, 1, 0], and 𝛿𝑖 = 9. Packing
factor ≈ 0.41.

Separate

This problem required the robot to separate 25 blocks into a 5× 5 grid. We used a
linear assignment distance function with 𝑔𝑖,𝑗 = [15−7.5𝑖, 15−7.5𝑗, 0], 𝑤𝑖,𝑗 = [1, 1, 0],
𝛿𝑖,𝑗 = 0.1, and 𝑖, 𝑗 ∈ [0, 5). The robot was equipped with a 0.5 × 0.5 square pusher
to help it squeeze between tightly packed blocks.

Character

This problem required the robot to rearrange 4× 4-sized blocks into characters from
the alphabet. The number of blocks in each character ranged from 3 to 13. We
used a linear assignment distance function with 𝑔𝑖 as the 𝑖-th block’s location in the
character, 𝑤𝑖 = [1, 1, 5], and 𝛿𝑖 = 0.1. Max packing factor ≈ 0.16.

Sorting-24

This problem required the robot to sort 4 sets of 6 blocks by color (red, blue, yellow,
and green). We used a weighted Euclidean distance function for each color 𝑐 with
each goal 𝑔𝑐 being one of [±9,±9, 0], 𝑤𝑐 = [1, 1, 0], and 𝛿𝑐 = 9. Packing factor ≈ 0.30.

Sorting-100

This problem is the same as Sorting-24 except with 25 blocks in each set (total 100),
a workspace of size 125 × 125, 𝑔𝑐 ∈ [±30.25,±30.25, 0], and 𝛿𝑐 = 30.25. Packing
factor ≈ 10%.
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3.6.2 Simulation Results

Both ILS and 𝜀-greedy policy rollouts were used to solve the above problems. Both
algorithms used the velocity set 𝑉𝑁𝐸𝑆𝑊 , as we found it to have good performance
across all problems. ILS used an initial temperature of 𝜌0 = 1.7 for all problems.
The following parameters are given in the order of problem numbering. For both
algorithms, we set 𝑑𝑔 = 20, 20, 20, 20, 50 and 𝑑𝑟 = 8, 4, 4, 4, 25. For 𝜀-greedy policy
rollouts, we set 𝜀 to 0.85, 0.999, 0.999, 0.85, and 0.75. We set time limits for both
algorithms to 20 s, 20 s, 20 s, 30 s, and 600 s, and ran trials of size 100, 100, 100, 100,
and 10. We collected our results in Tables 3.2 and 3.3.

# objects, pf % objects at goal successes

Singulate 1/33, 0.41 99.73% 95%± 2%
Separate 25/25, 0.31 100% 100%± 0%
Character 13/13, 0.16 99.42% 96%± 2%
Sorting-24 24/24, 0.30 99.66% 97%± 2%
Sorting-100 100/100, 0.10 100% 100%± 0%

Table 3.2: ILS results

# objects, pf % objects at goal successes

Singulate 1/33, 0.41 99.81% 96%± 2%
Separate 25/25, 0.31 100% 100%± 0%
Character 13/13, 0.16 90.56% 54%± 5%
Sorting-24 24/24, 0.30 95.585% 89%± 3%
Sorting-100 100/100, 0.10 96.7% 60%± 5%

Table 3.3: 𝜀-greedy results

We observed that ILS statistically outperforms 𝜀-greedy policy rollouts on Char-
acter, Sorting-24, and Sorting-100. Character problems required a large number of
actions to solve, which can make the wrong non-greedy action very costly. The main
advantage of ILS over 𝜀-greedy is that ILS can erase mistakes by throwing away
bad sequences. This feature also translates into better search efficiency, which ex-
plains the higher success rate in Sorting-100. ILS uses the time saved from undoing
mistakes to search for better actions.
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3.6.3 Real-World Problem Setups

We used the following hardware setup in our physical experiments. The objects
consisted of 25.4 mm (1 inch) square blocks of various colors. The workspace was
restricted to a 420 mm by 310 mm rectangle with a virtual out-of-bounds region
of thickness 20 mm. The workspace surface was made from transparent, scratch
resistant acrylic so that the objects could be tracked using AprilTags [112] from
underneath. The robot was equipped with a 19.05 mm flat fence pusher (Figure 3-
3a). The pusher was mounted on a linear potentiometer with spring return. The
potentiometer was used to detect contact of the fence pusher against the top of the
blocks, typically resulting from errors in sensing. On top-contact, the pusher was
repositioned 3 mm behind and the action retried. We tested our algorithm on the
following problems.

Sorting-32

The goal of this problem is to sort 4 sets of 8 blocks by color. We used a weighted Eu-
clidean distance function with 𝑔𝑐 ∈ [±95 mm,−495 mm ±67.5 mm, 0], 𝑤𝑐 = [1, 1, 0],
and 𝛿𝑐 = 60 mm. Similar to [116], the blocks are adversarially packed to increase the
problem difficulty. Initial and final configurations are shown in Figure 3-3b.

Word-IcRa

The goal of this problem is to simultaneously rearrange 9 blue, 6 yellow, 10 red,
and 7 green blocks into the letters “IcRa”, respectively. We used a linear assignment
distance function for each letter with 𝑔𝑘𝑖 as the 𝑖-th block’s location in the 𝑘-th letter,
𝑤𝑘

𝑖 = [1, 1, 31.75], and 𝛿𝑘𝑖 = 3. We mixed upper/lower case letters due to constraints
on the workspace and total available numbers of blocks of each color. Initial and
final configurations are shown in Figure 3-3c.

3.6.4 Real-World Results

The 𝜀-greedy pushing policy was used to solve the Sorting-32 and Word-IcRa prob-
lems 5 times each. We did not use ILS in our real world experiments because execut-
ing an open-loop sequence of actions quickly leads to divergent states. We propose a
method to overcome this difficulty in Section 3.8. For both problems, execution time
was capped to 30 minutes. We set 𝜀 to 0.75 and 0.9999, 𝑑𝑔 = 100, 100, 𝑑𝑟 = 50, 25,
and the velocity set to 𝑉𝑁𝐸𝑆𝑊 . Our results are presented in Table 3.4.
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(a) Fence pusher (b) Sorting-32 (c) Word-IcRa

Figure 3-3: Images of our experimental setup for physical experiments. (a) Fence
pusher with linear potentiometer. (b) Initial and final configurations for the Sorting-
32 problem. (c) Initial and final configurations for the Word-IcRa problem. The
blue corner tape in (b) and (c) denote the workspace limits of the robot.

# objects, pf % objects at goal successes

Sorting-32 32/32, 0.20 100% 5/5
Word-IcRa 32/32, 0.20 98.75% 3/5

Table 3.4: Real-world experimental results

The 𝜀-greedy policy failed twice on the Word-ICRA problem. In one failure, the
policy cycled between dislodging a yellow block from the counter-space (hole) in “R”
and trapping the yellow block back in “R”. In the other failure, the policy alternated
between fixing the legs of “R” and fixing the counter-space of “a”.

3.7 Discussion

3.7.1 Simulation to Reality

Notably, we transferred the pushing policies from simulation to the real world without
any tuning or system identification. We hope the following discussion of pushing
dynamics can elucidate why this works. By using a fence pusher, our system is
designed to take advantage of two-point stable pushing [73]. Moreover, the turning
direction easily maps from simulation to reality given low measurement error. Lastly,
running our algorithm online allows the robot to iteratively correct errors between
simulation and reality.
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3.7.2 Parameter Selection

In our experience, the most effective method for tuning parameters consisted of visu-
alizing the difficult scenarios and then tweaking the various algorithmic components
to raise the probability of overcoming these scenarios. For instance, we observed
that longer fence pushers, e.g. length 8, struggled to separate blocks because the
pusher tended to make sticking contact with more than one block. Using a smaller
pusher with length 3 opened up the action space significantly more. During sorting,
we observed off-color blocks would get trapped in a group of similarly colored blocks.
To free the off-color block, we had to make sure the policy could sample non-greedy
actions for the off-color block which started from the other side of the on-color blocks.
The character rearrangement problem required long sequences of small corrections,
hence the high 𝜀 and low 𝑑𝑟.

3.7.3 Computational Complexity

We conjecture that NP-complete sliding puzzles, such as the 𝑛-puzzle, can be re-
duced to an instance of non-prehensile rearrangement [96]. While we abstain from
a proof here, this conjecture suggests the following parallels. Like the 𝑛-puzzle,
non-prehensile rearrangement planning problems can be solved in polynomial time;
however, finding an optimal solution is NP-hard [96].

3.8 Limitations & Future Work
We did not validate our algorithm on problems with non-convex objects as this work
was primarily intended to demonstrate large-scale global rearrangement. In addition,
the presented algorithm does not provide any theoretical guarantees on probabilistic
completeness or solvability.

3.9 Conclusion
This chapter provided algorithmic insight into the nature of pushing multiple objects
in clutter. Specifically, we demonstrated that policy rollouts with a greedy action
space are sufficient for push planning on table-top rearrangement tasks. We also
showed that using an iterated local search technique can help escape local minima and
improve results. We successfully applied this algorithm to singulating, separating,
arranging, and sorting large-scale clutter in simulated and physical experiments.
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Chapter 4

Autogenerated Manipulation
Primitives I

4.1 Introduction
When a moving robot contacts its environment, the points of the resulting contact
manifold may be sliding, sticking, or separating. Under the Coulomb model of fric-
tion, the frictional force is either opposite to the velocity of a sliding contact point,
oriented in any direction for a sticking contact point, or zero for a separating contact
point. As each individual contact mode imparts complementary dynamic equations,
the set of all (valid) contact mode assignments enumerates the set of all possible flows
for the system [58]. (Here, by valid we mean kinematically feasible, i.e. there exists a
generalized velocity 𝑞 that generates the correct mode at each contact point.) Given
the one-to-one mapping between contact modes and dynamics, we advocate that
efficient contact mode enumeration will be a useful tool for the simulation, analysis,
and control of robotic systems that make and break contact with the environment.

Our main contribution is to report the first efficient algorithm for contact mode
enumeration in 3D which is exponential in the number of degrees of freedoms of the
system and polynomial in the number of contact points. Letting 𝑑 and 𝑛 be those
two numbers, respectively, then our algorithm enumerates all feasible contact modes
in 𝑂(𝑛𝑑) time. By efficient, we mean the first algorithm that is polynomial in the
number of contact points. The exponent in 𝑑 is unavoidable (see Section 4.8 for an
example). Our algorithm can enumerate all of the following:

∙ contact modes that are contacting or separating,

∙ contact modes that are sticking or sliding in some set of directions,
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∙ contact modes for linear and nonlinear friction cones,

∙ contact modes involving multiple objects.

In this chapter, we address the contact mode enumeration problem as a com-
binatorial geometry problem, and the key concern is to compute the combinatorial
structure of convex hulls and hyperplane arrangements. Leveraging the rigid body
kinematics, our method performs faster enumeration by dividing the problem into
two steps: contacting/separating enumeration and sliding/sticking enumeration. The
results obtained after the two steps are regions of valid object motions and their cor-
responding contact modes.

4.2 Related Work

This section discusses related work specific to contact mode enumeration and our
algorithm (for related work with respect to application areas refer to Section 4.9).
Mason [79] sketched an algorithm for contact mode enumeration in 2D for a single
rigid body which intersects the positive (negative) rotation centers on the positive
(negative) oriented plane and intersects the rotation centers at infinity on the equa-
tor. Though Mason [79] upper-bounded the number of modes at 𝑂(𝑛2), by our
analysis, the algorithm’s runtime is actually 𝑂(𝑛 log 𝑛) and the correct number of
modes is Θ(𝑛). Unfortunately, the oriented plane technique does not generalize
to contact mode enumeration in 3D. Later, Haas-Heger et al. [41] independently
published an algorithm for partial contact mode enumeration in 2D. There, they
interpret the feasible modes as the regions of an arrangement of hyperplanes in 3D.
However, Haas-Heger et al. [41]’s algorithm is at least Ω(𝑛4) and does not enumerate
separating modes. Disregarding these issues, Haas-Heger et al. [41]’s work inspired
us to investigate hyperplane arrangements in higher dimensions for our algorithm.
To the best of our knowledge, our algorithm is the first method for contact mode
enumeration in 3D.

The existence of an efficient contact mode enumeration algorithm in 2D does not
appear to wide-spread knowledge. For instance, Greenfield et al. [39] used the expo-
nential time algorithm for contact mode enumeration in 2D. Johnson and Koditschek
[57] published a optimization-based technique for legged robot leaping which searched
along the contacting-separating mode graph for a sequence of foot takeoffs. Their
application was sufficiently simple that they could enumerate the modes by hand. Re-
cently, Hou et al. [51] published a controller for robotic manipulation which achieves
robustness by analyzing the adjacent contact modes. It used a variety of metrics to
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determine the most stable (contact) mode of execution. Recently, Cheng et al. have
developed an algorithm for contact-mode guided planning for robotic manipulation.
The contact modes serve to enumerate the different possible ways a robot can move
the object at a given state, thereby removing the need to manually construct manip-
ulation primitives such as grasping, pushing, pulling, or flipping etc. [22]. The main
goal of this work is to enable further development of analysis, planning, and control
algorithms based on contact modes.

It is well known that frictional contact problems can be modeled as a complemen-
tarity problem or equivalently, a variational inequality [35]. Within that theory, it is
known that the normal manifold (which is a linear hyperplane arrangement) divides
the solution space of an affine variational inequality [35]. Not surprisingly, we found
related papers in other fields containing problems that can be modeled as variational
inequalities [37, 94]. For example, in the study of digital controllers and power elec-
tronics, Geyer et al. [37] proposed a mode enumeration algorithm for compositional
hybrid systems based on the reverse search technique of Avis and Fukuda [7]. The
contribution of our work (and theirs) is in presenting the theory in an understandable
manner for our field and optimizing the relevant algorithms for our specific problem
formulation.

4.3 Background

This chapter establishes the background required to understand contact modes. Sec-
tion 4.3.1 covers the kinematics of contact. Section 4.3.2 reviews the geometry of
hyperplanes. This topic includes convex polyhedra, hyperplane arrangements, face
lattices, and other important geometric objects used on our enumeration algorithm.
Section 4.3.3 covers basic ideas from matroid theory, which will be used to preprocess
the contact constraints.

4.3.1 Contact Kinematics

This section reviews the theory behind contact kinematics. We introduce the normal
and tangent velocity constraints generated by rigid contacts and describe how they
partition the space of generalized velocities into discrete contact modes. To concisely
explain these concepts, we assume the reader is familiar with spatial transforms and
robot kinematics [82]. The concepts in this section are illustrated in Figure 4-6.
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Normal Velocity Constraints

In a rigid body model of the world, two rigid bodies in collision cannot penetrate one
another. To a first-order approximation, this generates a linear constraint on their
relative velocities with respect to the contact normal.

This normal velocity constraint can be derived as follows. Let 𝛼 and 𝛽 be two
rigid bodies in collision at a point 𝑐 ∈ R3. Let 𝑔𝑤𝑐 ∈ 𝑆𝐸(3) be the contact frame
at a contact point 𝑐 with 𝑧-axis pointing along 𝛽’s surface normal towards 𝛼. Let
𝜑 ∈ R≥0 be the contact distance as measured along the contact normal. Taking the
derivative of 𝜑, we obtain the constraint 𝜑 + 𝜑̇ ≥ 0. We can rewrite this in terms of
the generalized (system) velocity 𝑞 ∈ R𝑑

𝜑 + 𝐵𝑇 (𝐽 𝑏
𝛼𝑐 + 𝐽 𝑏

𝛽𝑐)𝑞 ≥ 0, (4.1)

where 𝐵 is the wrench basis [0, 0, 1, 0, 0, 0]𝑇 , 𝐽 𝑏
𝛼𝑐 ∈ R6×𝑑 is the body Jacobian of 𝛼 to

the contact frame, and 𝐽 𝑏
𝛽𝑐 ∈ R6×𝑑 is the body Jacobian of 𝛽 to the contact frame.

We define a contact to be separating if (4.1) is positive and contacting if (4.1) is equal
to zero. We refer to this classification as the contacting-separating mode (cs-mode)
at that contact. For a system with 𝑛 contacts, we can concatenate (4.1) into a set
of linear inequalities

𝑁𝑞 ≤ 𝜑, 𝑁 ∈ R𝑛×𝑑. (4.2)

Tangent Velocity Constraints

Coulomb friction is a simple model of dry friction which characterizes frictional forces
based on the relative velocity of the contact point. The tangent velocity constraints
are a set of hyperplanes which help us classify the relative velocity of the contact
point.

We approximate the infinite tangent velocity directions by dividing the tangent
plane into sectors of equal angles. Let 𝑘 be the number of dividing planes (which
generate 2𝑘 sectors). We define a basis matrix 𝐷 such that its 𝑖-th column equals
[cos 𝑖𝜋

𝑘
, sin 𝑖𝜋

𝑘
, 0, 0, 0, 0]𝑇 . Given a generalized velocity 𝑞, we can use the following

equation to determine the discretized tangent velocity direction

𝐷𝑇 (𝐽 𝑏
𝛼𝑐 + 𝐽 𝑏

𝛽𝑐)𝑞, (4.3)

where 𝐽 𝑏
𝛼𝑐 and 𝐽 𝑏

𝛽𝑐 are the body Jacobians from before. We define a contact to
be right-sliding with respect to a tangent direction if its row in (4.3) is positive,
left-sliding if its row is negative, and sticking if all rows are zero. We refer to this
classification as the sliding-sticking mode (ss-mode) at that contact. For a system
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Figure 4-1: Examples of polytope faces.

with 𝑛 contacts, we can concatenate (4.3) into the tangent velocity constraints

𝑇𝑞, 𝑇 ∈ R(𝑛𝑘)×𝑑. (4.4)

4.3.2 Hyperplane Geometry

This section covers the background necessary for understanding convex polytopes,
hyperplane arrangements, and face lattices. The former two geometric structures
describe the topology of the space partitioned by the normal velocity and tangent
velocity constraints. The latter describes the combinatorial structure of the contact
mode graph. For a more complete introduction, one can refer to [121] and [30]. We
highly recommend looking at Figure 4-6 while reading this section.

Convex Polyhedra

Convex polyhedra describe the region of space enclosed by normal velocity con-
straints. A hyperplane ℎ = (𝑎, 𝑧) is the set ℎ = (𝑎, 𝑧) = {𝑥 ∈ R : 𝑎𝑇𝑥 = 𝑧}.
Associated with each hyperplane ℎ are the positive and negative halfspaces, ℎ+ and
ℎ−. An ℋ-polyhedron 𝑃 ⊆ R𝑑 is the intersection of closed negative halfspaces in the
form 𝑃 = ℋ(𝐴, 𝑧) = {𝑥 ∈ R𝑑 : 𝐴𝑥 ≤ 𝑧}, for some 𝐴 ∈ R𝑛×𝑑, 𝑧 ∈ R𝑛. A 𝒱-polytope
𝑃 ⊆ R𝑑 is a convex combination of points, i.e. 𝑃 = 𝒱(𝐴) = {𝐴𝑡 : 𝑡 ≥ 0,

∑︀
𝑡 = 1}

for some 𝐴 ∈ R𝑛×𝑑. A face 𝐹 of a polyhedron 𝑃 is any set of the form 𝐹 = {𝑥 ∈ 𝑃 :
𝑐𝑇𝑥 = 𝑐0} with 𝑐 ∈ R𝑑, 𝑐0 ∈ R, where 𝑐𝑇𝑥 ≤ 𝑐0 is true for all 𝑥 ∈ 𝑃 . The sign of a
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Figure 4-2: Examples of a hyperplane arrangement in R2 and a linear hyperplane
arrangement in R3 (visualized on a sphere). Some faces are labeled with their signed
vectors.

face 𝐹 ⊆ R𝑑 with respect to a hyperplane ℎ of 𝑃 is defined as

signℎ(𝐹 ) =

⎧⎪⎨⎪⎩
+ if 𝐹 ⊆ ℎ+

0 if 𝐹 ⊆ ℎ

− if 𝐹 ⊆ ℎ−
(4.5)

and the signed vector of a face 𝐹 with respect to 𝑃 is the vector

sign(𝐹 ) =
[︀
signℎ1

(𝐹 ) · · · signℎ𝑛
(𝐹 )

]︀
,

where ℎ𝑖 is the 𝑖-th hyperplane of 𝑃 .

Hyperplane Arrangements

Hyperplane arrangements describe the regions of space partitioned by tangent veloc-
ity constraints. A hyperplane arrangement 𝒜(𝐻) is a set of hyperplanes 𝐻 = (𝐴, 𝑧),
for some 𝐴 ∈ R𝑛×𝑑, 𝑧 ∈ R𝑛 which dissect R𝑑 into different regions of space. The
arrangement is linear when 𝑧 = 0. The signed vector of a point 𝑝 with respect
to a hyperplane arrangement 𝒜(𝐻) is sign𝒜(𝑝) =

[︀
signℎ1

(𝑝) · · · signℎ𝑛
(𝑝)

]︀
. The

signed vectors of the points in R𝑑 define equivalence classes known as the faces of 𝒜.
That is, given a signed vector 𝑠 ∈ {+, 0,−}𝑛, the associated face is 𝐹 = {𝑝 ∈ R𝑑 :
sign𝒜(𝑝) = 𝑠}.
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𝑃 ℒ(𝑃 )

Figure 4-3: Left: Some signed vectors of a cube. Right: The face lattice of the cube.

Face Lattice

The face lattice describes the hierarchical structure of the faces of convex polyhedra
and hyperplane arrangements. Consequently, it describes the hierarchical structure
of contact modes and their adjacencies, i.e. it is the contact mode graph. A partially
ordered set is a set 𝐿 and a binary relation ≤ such that for all 𝑢, 𝑣, 𝑤 ∈ 𝐿

𝑢 ≤ 𝑢 (reflexivity)

𝑢 ≤ 𝑣 ∧ 𝑣 ≤ 𝑤 ⇒ 𝑢 ≤ 𝑤 (transitivity)

𝑢 ≤ 𝑣 ∧ 𝑣 ≤ 𝑤 ⇒ 𝑢 ≤ 𝑤 (anti-symmetry).

Moreover, a pair of elements 𝑢, 𝑣 are comparable if 𝑢 ≤ 𝑣 or 𝑣 ≤ 𝑢; otherwise, they
are incomparable. The faces of a polyhedra or arrangement form a partially ordered
set over their signed vectors. Signed vectors 𝑢, 𝑣 satisfy 𝑢 ≤ 𝑣 if and only if 𝑢𝑖 ≤ 𝑣𝑖,
for all indices 𝑖, where individual signs are compared according to 0 < +, 0 < −,
and + and − incomparable. A lattice is a partially ordered set ℒ such that for any
elements 𝑥, 𝑦 ∈ ℒ, there exists elements 𝑥 ∧ 𝑦 and 𝑥 ∨ 𝑦 in ℒ satisfying

𝑥 ∧ 𝑦 ≥ 𝑥, 𝑦 and if 𝑧 ≥ 𝑥, 𝑦 then 𝑧 ≥ 𝑥 ∧ 𝑦 (4.6)
𝑥 ∨ 𝑦 ≤ 𝑥, 𝑦 and if 𝑧 ≤ 𝑥, 𝑦 then 𝑧 ≤ 𝑥 ∧ 𝑦. (4.7)

The faces of a polyhedra or arrangement in ℛ𝑑 form a lattice ℒ known as the face
lattice. The face lattice is bounded by unique minimal and maximal elements which
we denote {0} and {1}, respectively. The face lattice ℒ contains 𝑑+ 1 proper ranks.
The 𝑘-th rank contains the faces of dimension 𝑘. The dimension of a face is defined
as the dimension of its affine hull. The faces of dimensions 0, 1, 𝑑− 2, and 𝑑− 1 are
called vertices, edges, ridges, and facets, respectively.
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Polar Polytope

When designing computational geometry algorithms, it is important to base the al-
gorithm on the appropriate mathematical object. The polar transformation allows us
to easily convert between combinatorially equivalent ℋ-polytopes and 𝒱-polytopes.
Without loss of generality, let 𝑃 ⊆ R𝑑 be a polytope with 0 ∈ 𝑃 . Its polar polytope
𝑃△ ⊆ R𝑑 is the set

𝑃△ = {𝑐 ∈ R𝑑 : 𝑐𝑇𝑥 ≤ 1,∀𝑥 ∈ 𝑃}. (4.8)

The polar polytope can be specified in closed form for ℋ and 𝒱 polytopes. If 𝑃 is a
𝒱-polytope with 0 ∈ int(𝑃 ) and 𝑃 = 𝒱(𝐴) then

𝑃△ = ℋ(𝐴, 1) = {𝑥 : 𝐴𝑥 ≤ 1}. (4.9)

If 𝑃 is a ℋ-polytope with 0 ∈ int(𝑃 ) and 𝑃 = ℋ(𝐴, 1) then

𝑃△ = 𝒱(𝐴𝑇 ) = {𝐴𝑇 𝑡 : 𝑡 ≥ 0,
∑︁

𝑡 = 1}. (4.10)

Polar polytopes are useful because 𝑃 and 𝑃Δ share the same combinatorial structure.
Specifically, the face lattice of the polar polytope 𝑃△ is the opposite of the face lattice
of 𝑃 :

𝐿(𝑃△) = 𝐿(𝑃 )𝑜𝑝 (4.11)

and there is a bijection between the faces

∅ ←→ 𝑃

𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠←→ 𝑓𝑎𝑐𝑒𝑡𝑠

𝑒𝑑𝑔𝑒𝑠←→ 𝑟𝑖𝑑𝑔𝑒𝑠

...←→ ...

(4.12)

Zonotopes

Zonotopes are a special type of convex polytope which are combinatorially equivalent
to linear hyperplane arrangements. Recall that the Minkowski sum of sets 𝑋 and
𝑌 is given by 𝑋 ⊕ 𝑌 = {𝑥 + 𝑦 : 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 }. We can define a zonotope as the
Minkowski sum of a set of line segments

𝑍(𝑉 ) = [−𝑣1, 𝑣1]⊕ · · · ⊕ [−𝑣𝑘, 𝑣𝑘], (4.13)
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Figure 4-4: Example of an ℋ-polytope 𝑃 and its polar 𝒱-polytope 𝑃△.

where 𝑉 = [𝑣1, . . . , 𝑣𝑘] ∈ R𝑑×𝑘. We can map each face 𝐹 of a zonotope to an unique
signed vector. Let 𝑝 =

∑︀
𝜆𝑖𝑣𝑖 ∈ int𝐹 be an interior point of 𝐹 . Then the signed

vector with respect to 𝑣𝑖 is

sign𝑣𝑖
(𝐹 ) =

⎧⎪⎨⎪⎩
+1 if 𝜆𝑖 = +1

0 if − 1 < 𝜆𝑖 < 1

−1 if 𝜆𝑖 = −1,

(4.14)

and the signed vector is sign𝑍(𝐹 ) =
[︀
sign𝑣1(𝐹 ), . . . , sign𝑣𝑘

(𝐹 )
]︀
. From Corollary

7.17 in Ziegler [121], there is a bijection between the signed vectors of 𝒜(𝑉 ) and
𝑍(𝑉 ). We have the identification of face lattices

𝐿(𝑍(𝑉 ))←→ 𝐿(𝑍(𝑉 )△)←→ 𝐿(𝒜(𝑉 )). (4.15)

For example, there is a correspondence between the facets of 𝑍(𝑉 ), the vertices of
𝑍(𝑉 )△, and the rays (unbounded edges) of 𝒜(𝑉 ).

4.3.3 Matroid Theory

This section provides the pertinent details of matroid theory which will help us
preprocess the input normal and tangent velocity constraints. Specifically, it will help
us remove degenerate hyperplanes and reduce problem dimensionality. A matroid is
the pair (𝐸, ℐ) of a finite set 𝐸 and a collection ℐ of subsets of 𝐸 such that
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𝒜(𝑉 ) 𝑍(𝑉 ) 𝑍(𝑉 )Δ

Figure 4-5: Example of a combinatorially equivalent linear hyperplane arrangement,
zonotope, and polar zonotope.

(I1) ∅ ∈ ℐ.

(I2) If 𝐼 ∈ ℐ and 𝐼 ′ ⊆ 𝐼, then 𝐼 ′ ∈ ℐ.

(I3) If 𝐼1 and 𝐼2 are in ℐ and |𝐼1| < |𝐼2|, then there is an element 𝑒 of 𝐼2 − 𝐼1 such
that 𝐼1 ∪ 𝑒 ∈ ℐ.

Let 𝐴 ∈ R𝑑×𝑛 be a matrix. Let 𝐸 be the set of column vector indices of 𝐴 and ℐ
the collection of subsets 𝐼 ⊆ 𝐸 such that the corresponding vectors in 𝐴 are linearly
independent. This matroid 𝑀 [𝐴] is known as a vector matroid. The signed covectors
of 𝑀 [𝐴] are the elements of the set 𝒱*(𝐴) = {sign(𝑐𝑇𝐴) : 𝑐 ∈ R𝑑}. The signed
covectors are one of several sets of data which uniquely define a matroid. If we
interpret 𝑐 as a point in R𝑑, then the signed covectors of 𝑀 [𝐴] are the signed vectors
of the arrangement 𝒜(𝐴𝑇 ).

The matroid 𝑀 [𝐴] is unchanged if one performs any of the following operations
on 𝐴.

(E1) Interchange two rows.

(E2) Multiply a row by a non-zero member of R.

(E3) Replace a row by the sum of that row and another.

(E4) Adjoin or remove a zero row.

(E5) Interchange two columns (moving their labels with their columns).

(E6) Multiply a column by a non-zero member of R.
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(a) (b) (c) (d)

1 2

3

𝑡1, 𝑡2
𝑛3

𝑡3

𝑛1

𝑛2

𝑡1, 𝑡2𝑡3
𝑛1

𝑛3

𝑛2

Figure 4-6: From velocity constraints to contact modes (left to right): (a) Input 2D
scene with a parallelogram against the wall. The normals and tangents are depicted
in red and blue, respectively. (b) The normal and tangent velocity constraints visu-
alized as a hyperplane arrangement 𝒜([𝑁 ;𝑇 ]) in velocity space. Each feasible face
of the arrangement is marked with a black dot. The gray sphere serves as a visual
aid. (c) The constraints visualized again as their projected geodesics on the visible
hemisphere. The region of feasible velocities ℋ(𝑁, 0) is shaded light gray-blue. (d)
The face lattice ℒ over the feasible faces, i.e. the graph of contact modes.

(E7) Replace each matrix entry by its image under some automorphism of R.

Using operations (E1)-(E5), one can always reduce a matrix 𝐴 into the form [𝐼|𝐷].
The only automorphism of the real numbers is the identity map. Therefore, ignoring
(E7), we arrive at the following notion of projective equivalence. Matrices 𝐴1, 𝐴2 ∈
R𝑑×𝑛 are projectively equivalent representations of a matroid if and only if there exists
a non-singular matrix 𝑋 ∈ R𝑑×𝑑 and non-singular diagonal matrix 𝑌 ∈ R𝑛×𝑛 such
that 𝐴2 = 𝑋𝐴1𝑌. For further reading, the books by Oxley and Bjorner are excellent
references [88, 14].

4.4 Geometry of Contact Modes

4.4.1 Contacting-Separating Modes

4.1 Theorem. For a system at a given state, let 𝑁 ∈ R𝑛×𝑑, 𝜑 ∈ R𝑛 be its normal
velocity constraints. The contacting-separating modes of this system are the faces
of the convex polyhedra ℋ(𝑁, 𝜑).

Proof. Let 𝑚𝑐𝑠 be a contacting-separating mode and let 𝑞𝑐𝑠 be a velocity which
realizes this mode. Since ℋ(𝑁, 𝜑) is the disjoint union of the relative interiors of its
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faces, 𝑞𝑐𝑠 must be contained in the relative interior of a single face. The sign vector
of this face is unique and it is 𝑚𝑐𝑠.

4.4.2 Sliding-Sticking Modes

4.2 Theorem. For a system at a given state with cs-mode 𝑚𝑐𝑠, let 𝑁𝑐 ∈ R𝑛𝑐×𝑑,
𝜑𝑐 ∈ R𝑛𝑐 be the normal velocity constraints which are maintaining contact, let 𝑁𝑠 ∈
R𝑛𝑠×𝑑, 𝜑𝑠 ∈ R𝑛𝑠 be the normal velocity constraints which are separating, and let
𝑇𝑐 ∈ R(𝑛𝑐𝑘)×𝑑 be the active tangent velocity constraints. The sliding-sticking modes
are the faces of the hyperplane arrangement𝒜(𝑇𝑐) which intersect the relative interior
of the convex polyhedra 𝐻𝑐𝑠 = {𝑁𝑐𝑞 = 𝜑𝑐, 𝑁𝑠𝑞 ≥ 𝜑𝑠}.

Proof. Let 𝑚𝑠𝑠 be a sliding-sticking mode for a given contacting-separating mode 𝑚𝑐𝑠

and let 𝑞𝑠𝑠 be a velocity which realizes these modes. Since R𝑑 is the disjoint union
of the relative interiors of the faces of 𝒜(𝑇𝑐), we know that the relative interior of
𝐻𝑐𝑠 can be written as the disjoint union of the non-empty intersections of the faces
of 𝒜(𝑇𝑐) and 𝐻𝑐𝑠. As before, 𝑞𝑠𝑠 must be contained in an unique face of 𝒜(𝑇𝑐) with
sign vector 𝑚𝑠𝑠.

4.3 Corollary. For a system at a given state, let 𝑁 ∈ R𝑛×𝑑, 𝜑 ∈ R𝑛 be its normal
velocity constraints and let 𝑇 ∈ R(𝑛𝑘)×𝑑 be its tangent velocity constraints. The
sliding-sticking modes of this system are contained in the faces of the hyperplane
arrangement 𝒜(𝑇 ) which intersect the boundary of the convex polyhedra ℋ(𝑁, 𝜑).

4.5 Contacting-Separating Mode Enumeration
The first task in contact mode enumeration is to determine the contacting-separating
modes. Once the contacting-separating modes are obtained, the sliding-sticking
modes may also be enumerated.

4.5.1 Convex Hull Method

The contacting/separating mode enumeration algorithm, or CS-Enumerate, takes as
input the normal velocity constraint equations 𝐴 ∈ R𝑛×𝑑 (see Section 4.3.1) and
generates a list of valid contacting/separating sign vectors of the form 𝑚 ∈ {0,+}𝑛.
The algorithm presented in this subsection is based on taking the convex hull in
polar form of the polytope associated with the normal velocity constraints. The
pseudo-code is listed in Algorithm 4 and we provide explanations for each of the
steps below.
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Figure 4-7: Example of contacting-separating mode enumeration using the convex
hull method.

Find an interior point: The polar form 𝑃Δ of a polyhedron 𝑃 is defined only
when 0 ∈ relint(𝑃 ). However, 0 is on the boundary of the polyhedral cone ℋ(𝐴, 0)
defined by our normal velocity constraints. Therefore, our first step is to find a point
𝑟 ∈ relint(ℋ(𝐴, 0)). This is a classical problem in linear programming, and for our
implementation, it amounts to solving the following linear program

min
𝑟,𝑐

[︀
0 −1

]︀
·
[︂
𝑟
𝑐

]︂
(4.16)

s.t. 𝐴𝑟 + 𝑐 ≤ 0, 𝑐 ≥ 0 (4.17)
‖𝑟‖∞ ≤ 1, (4.18)

where ‖𝑟‖∞ ≤ 1 constrains 𝑟 to be within the hypercube in R𝑑. Note that if the
solution to the linear program is 𝑟 = 0, then the only valid mode is all-contacting
and the algorithm can terminate early. The above method was adapted from [95] to
handle cones.

Project to contact planes: If the interior point is on the boundary for a subset
of the normal velocity constraints, then that subset of contact points must always
be in contact (for example, a box sandwiched between two walls). Let 𝐴𝑐 be the
contacting normal velocity constraints and 𝐴𝑜 = 𝐴/𝐴𝑐. Then we map 𝐴𝑜 into the
nullspace of 𝐴𝑐, like so 𝐴𝑜 = 𝐴𝑜 ·Null(𝐴𝑐), to reduce the dimension of the problem.
We also express the interior point as coordinates in the null space.

Convert to polar form: Given a strictly interior point 𝑟, we translate the origin
to 𝑟, resulting in the new ℋ-polyhedron 𝑃 = ℋ(𝐴,−𝐴𝑟). Next we normalize the
inequalities so that 𝑃 = ℋ(𝐴, 1) and obtain the polar polytope 𝑃Δ = 𝒱(𝐴𝑇 ).

Project to affine subspace: The affine dimension of the polar polytope dim aff 𝑃Δ
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Algorithm 4 CS Mode Enumeration
Require:Contact points: 𝑝1, . . . , 𝑝𝑘; Contact normals: 𝑛1, . . . , 𝑛𝑘

Ensure:Contacting/Separating Modes: 𝑀𝑐𝑠

1: function CS-Enum(𝑃 , 𝑁)
2: 𝐴← Add-Hyperplanes([𝑛𝑖,−𝑛𝑖𝑝𝑖]) for all contacts 𝑖 ∈ [1, . . . , 𝑘]
3: 𝑟 ← Interior-Point(ℋ(𝐴, 0))
4: 𝐴, 𝑟 ← Project-To-Nullspace(𝐴, 𝑟)
5: 𝒱(𝐴𝑇 )← Polar(ℋ(𝐴, 0), 𝑟)
6: 𝐴𝑇 ← Project-To-Affine-Subspace(𝐴𝑇 )
7: 𝑀 ← Conv-Hull(𝒱(𝐴𝑇 ))
8: 𝐿← Face-Lattice(𝑀)
9: 𝑀𝑐𝑠, 𝑚← ∅, []

10: for 𝑘 ∈ {0, . . . , 𝑑− 1} do ◁ The face lattice has 𝑑 proper ranks.
11: for 𝑓 ∈ 𝐿[𝑘] do ◁ Each face in 𝐿[𝑘] as defined by its vertex (= constraint)

set.
12: 𝑚[𝑓 ]← 0 ◁ A vertex 𝑣 ∈ 𝑓 ⇒ sign of normal vel at that contact is 0
13: 𝑚[𝐴𝑇 ∖ 𝑓 ]← 1 ◁ A vertex 𝑣 /∈ 𝑓 ⇒ sign of normal vel at that contact is +1
14: 𝑀𝑐𝑠 ←𝑀𝑐𝑠 ∪ {𝑚}
15: return 𝑀𝑐𝑠

may not necessarily be equal to the dimension of the ambient space R𝑑. In this situ-
ation, we project 𝑃Δ into its affine subspace aff 𝑃Δ = {𝐴𝑇𝑣 : 1𝑇𝑣 = 1} and further
reduce the dimensionality of convex hull. Recall that an affine space can also be
expressed as a linear space plus a translate, i.e. aff 𝑃Δ = {𝑉 𝑥 + 𝑧} for some 𝑉 and
𝑧. If 0 /∈ aff 𝑃Δ, then 𝑧 ̸= 0 and we translate the affine space until it contains the
origin. Now that 0 ∈ aff 𝑃Δ, aff 𝑃Δ is a linear subspace and we project each point
(column vector) in 𝐴𝑇 to coordinates on the column space of 𝐴𝑇 .

Get facet-vertex incidence matrix: Next, the algorithm constructs the vertex-
facet incidence matrix 𝑀 of 𝑃Δ = 𝒱(𝐴𝑇 ) by using a convex-hull algorithm. The
vertex-facet incidence matrix is a matrix 𝑀 ∈ {0, 1}𝑛𝑣×𝑛𝑓 , where 𝑛𝑣 and 𝑛𝑓 are the
number of vertices and facets, respectively. We associate the vertices and facets with
the index sets 𝐼𝑉 = {1, . . . , 𝑛𝑣} and 𝐼𝐹 = {1, . . . , 𝑛𝑓}, so that 𝑚𝑣𝑓 = 1 if facet 𝑓
contains 𝑣 and 𝑚𝑓𝑣 = 0 otherwise. The vertex-facet incidence matrix is a standard
return value from convex hull algorithms such as qhull [9].

Build face lattice: Given the facet-vertex incidence matrix 𝑀 of 𝑃Δ, we can
construct the face lattice 𝐿(𝑃Δ) using the algorithm of Kaibel and Pfetsch [60].
Their method is based on find the closed sets (= faces) with respect to a closure map
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defined over vertex sets. Obviously, each face is uniquely represented by its vertex
set.

Convert faces to mode strings: Finally, we construct contacting/separating
mode strings using the vertex sets associated with each face 𝑓 in 𝐿(𝑃Δ). By polarity,
each vertex in 𝑓 corresponds to the hyperplane {𝑥 : 𝑎𝑥 = 0} defined by a normal ve-
locity constraint. Therefore, we can read off the mode string by assigning contacting
modes to every vertex in 𝑓 and separating modes to every vertex not in 𝑓 .

4.4 Theorem. For a set of 𝑛 contacts in a system of colliding bodies with 𝑑 degrees
of freedom, Algorithm 4 enumerates the possible contacting and separating modes
in 𝑂(𝑑 · 𝑛𝑑+1 + 𝑙(𝑛, 𝑑)) time.

Proof. We analyze correctness first before complexity. The proof is simple and relies
on the combinatorial equivalences between

CS-MODES↔ 𝐿(ℋ(𝐴, 0))↔ 𝐿(ℋ(𝐴int, 1))↔ 𝐿(𝒱(𝐴𝑇
int)). (4.19)

First, we show that ℋ(𝐴, 0) and ℋ(𝐴int, 1) are affinely isomorphic and thus, combi-
natorially equivalent [121]. Two polytopes 𝑃 and 𝑄 are affinely isomorphic if there
exists an affine map 𝑓 : R𝑑 → R𝑒 that is a bijection between the vertices of the two
polytopes. By inspection, the operations 𝑃 ∩aff(𝑃 ) and 𝑃 + 𝑟 preserve the extremal
points (vertices). Finally, re-scaling the inequalities does not affect the underlying
polytope.

For this next paragraph, let us define 𝑃 = ℋ(𝐴int, 1) and 𝑃Δ = 𝒱(𝐴𝑇
int). Our

aim is to show the first and third bijections in (4.19). Let 𝐹 ∈ 𝐿(𝑃Δ) be identified
by its vertex set 𝑉 (𝐹 ) = {𝑎 : 𝑎 ∩ 𝐹 ̸= ∅, 𝑎 ∈ vert(𝑃Δ)} and recall that vert(𝑃Δ) ⊆
col(𝐴𝑇

int) = row(𝐴int). (That is, each vertex of 𝑃Δ corresponds to a facet of 𝑃 , i.e.
a normal velocity constraint.) Then by Corollary 2.13 of Ziegler [121], there is a
bijection 𝐿(𝑃Δ)↔ 𝐿(𝑃 ) from 𝐹 to 𝐹 ◇ such that

𝐹 ◇ = {𝑥 : 𝐴int𝑥 ≤ 1, 𝑎𝑥 = 1,∀𝑎 ∈ 𝑉 (𝐹 )} (4.20)

is a non-empty face of 𝑃 . Because face lattice of a polytope is coatomic, we can
uniquely specify its proper elements as meets (intersections) 𝑎1∧. . .∧𝑎𝑘 of its coatoms
(facets). Therefore, for each 𝐹 ∈ 𝐿(𝑃Δ), the vertex set 𝑉 (𝐹 ) maps bijectively to a
valid contacting/separating mode string, and 𝐿(𝑃Δ) enumerates the set of all valid
contacting/separating modes.

The normal velocity constraint matrix 𝐴 can be constructed in 𝑂(𝑛 ·𝑑) time. The
orthonormal basis and null space can be computed in 𝑂(min{𝑛 · 𝑑2, 𝑛2 · 𝑑}) using
SVD. An interior point can be computed in time 𝑂(𝑙(𝑛, 𝑑)), where 𝑙(𝑛, 𝑑) is the cost
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Figure 4-8: Combinatorially equivalent representations of sliding-sticking modes.

of linear programming. For a balanced problem like this one (every input point is
extremal), quick hull runs in 𝑂(𝑓𝑑−1) = 𝑂(𝑛𝑑/2). The number of 𝑘-faces in 𝐿(𝑃 )
is bound by 𝑂(𝑛𝑑/2). The combinatorial face enumeration algorithm runs in time
𝑂(𝑛 ·

∑︀𝑑
𝑘=0 𝑓

2
𝑘 ) = 𝑂(𝑑 ·𝑛𝑑+1). Therefore, the total runtime is 𝑂(𝑑 ·𝑛𝑑+1 + 𝑙(𝑛, 𝑑)).

4.6 Sliding-Sticking Mode Enumeration

This section derives two algorithms for sliding-sticking mode enumeration. Recall
that the sliding-sticking modes are contained in the faces of the arrangement gener-
ated by the normal and tangent velocity equations. Therefore, the first algorithmic
desigin is the combinatorially equivalent geometric object to base the algorithm on.
The two choices, zonotopes or hyperplane arrangements, used in this work are illus-
trated in Figure 4-8. The zonotope algorithm is based on computing the zonotope
using an iterative Minkowski sum. The (partial) hyperplane arrangement algorithm
iteratively builds the arrangement directly in the space of hyperplanes. We begin
with the former algorithm.

4.6.1 Zonotope/Minkowski Sum Method

The algorithm, SS-Enumerate, generates a list of sliding/sticking sign vectors of
the form 𝑚𝑠𝑠 ∈ {−1, 0,+1}𝑛𝑡 , where 𝑛𝑡 is the total number of tangent velocity
hyperplanes. As before we provide explanations for each of the steps below.

Partition the hyperplanes: The goal of our algorithm is to enumerate sliding/
sticking modes for the “contacting” contacts. Given a contacting/separating mode
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Algorithm 5 Zonotope/Minkowski Sum Method
Require:Contact points: 𝑝1, . . . , 𝑝𝑘; Contact normals: 𝑛1, . . . , 𝑛𝑘; Contact tangent
dividing planes: 𝑇1, . . . , 𝑇𝑘; Contact/Separating Mode: 𝑚𝑐𝑠

Ensure:Sliding Modes: 𝑀𝑠𝑠

1: function SS-Enum-Zono(𝑃 , 𝑁 , 𝑇 , 𝑚)
2: 𝐻 ← ∅
3: 𝐻 ← Add-Hyperplanes([𝑛𝑖,−𝑛𝑖𝑝𝑖]) for all separating contacts 𝑚

(𝑖)
𝑐𝑠 = 1

4: 𝐻 ← Add-Hyperplanes([𝑇𝑗,−𝑇𝑗𝑝𝑗]) for all contacting contacts 𝑚
(𝑗)
𝑐𝑠 = 0

5: 𝐻 ← Project-to-Nullspace([𝑛𝑗,−𝑛𝑗𝑝𝑗]) for all contacting contacts 𝑚(𝑗)
𝑐𝑠 =

0
6: 𝑉, 𝑆 ← Get-Zonotope-Vertices(𝐻)
7: 𝐿← Face-Lattice(𝒱(𝑉 ))
8: ℱ ← 𝐹 ∈ 𝐿 with positive signs {+1} for all separating contact hyperplanes
9: 𝑀𝑠𝑠 ← Get-Sign-Vector(ℱ , 𝑆)

10: return 𝑀𝑠𝑠

11: function Get-Zonotope-Vertices(H)
12: 𝑉, 𝑆 ← [0], ∅
13: for ℎ ∈ 𝐻 do
14: 𝑉 ′, 𝑆 ′ ← [ ], ∅
15: for 𝑣 ∈ 𝑉 do
16: 𝑉 ′ ← Add-Points(𝑣 + ℎ, 𝑣 − ℎ)
17: 𝑆 ′ ← Add-Sign-Vectors((𝑆(𝑣),+1), (𝑆(𝑣),−1))

18: 𝑉 ← Convex-Hull(𝑉 ′)
19: 𝑆 ← 𝑆 ′(𝑉 )

20: return V, S

𝑚𝑐𝑠, the normal velocity constraints on the object velocity 𝑥 are

𝐻𝑐𝑥 = 0, 𝐻𝑠𝑒𝑝𝑥 > 0 (4.21)

where 𝐻𝑠𝑒𝑝 =
[︀
𝑛𝑖, −𝑛𝑖̂︀𝑝𝑖]︀ for all separating contacts 𝑚

(𝑖)
𝑐𝑠 = 1, 𝐻𝑐 =

[︀
𝑛𝑗, −𝑛𝑗̂︀𝑝𝑗]︀

for all contacting contacts 𝑚
(𝑗)
𝑐𝑠 = 0. We have hyperplanes 𝐻𝑠𝑠 =

[︀
𝑇𝑗,−𝑇𝑗𝑝𝑗

]︀
for all

contacting contacts 𝑚
(𝑗)
𝑐𝑠 = 0. If we let 𝐻𝑜 = [𝐻𝑠𝑒𝑝, 𝐻𝑠𝑠], all valid sliding/sticking

modes can be written as

𝑀𝑠𝑠 = {sign(𝐻𝑜𝑥) : 𝑥 ∈ R𝑑, 𝐻𝑠𝑒𝑝𝑥 > 0, 𝐻𝑐𝑥 = 0}. (4.22)
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Our algorithm computes the combinatorial structure of the hyperplane arrangement
𝐻𝑜 to get the sliding/sticking modes 𝑀𝑠𝑠. To decrease the zonotope construction
cost, one may omit some separating hyperplanes from 𝐻𝑜 at the expense of allowing
some invalid sliding/sticking modes to slip through.

Project to contact planes: We project 𝐻𝑜 into halfspaces on the coordinate of
the null space 𝐻𝑐 to speed up computation. In Algorithm 5 step 3-5, the projected
hyperplanes are obtained by 𝐻 =

[︀
𝐻𝑠𝑒𝑝 ·Null(𝐻𝑐), 𝐻𝑠𝑠 ·Null(𝐻𝑐)

]︀
.

Construct the zonotope: From the set of hyperplanes 𝐻, we can identify the
vertices of its associated zonotope 𝑍(𝐻). From Equation 4.13, zonotopes can be
represented by the minkowski sum of line segments, which in this case are

[︀
ℎ𝑖,−ℎ𝑖

]︀
for ℎ𝑖 ∈ 𝐻. Algorithm 5 Function Get-Zonotope-Vertices obtains zonotope
vertices 𝑉 through computing the minkowski sum iteratively for every ℎ𝑖 ∈ 𝐻. We
initialize the vertex set 𝑉 = [0], and at the 𝑖-th iteration we update 𝑉 with the
convex hull of ∪𝑣∈𝑉 {𝑣 + ℎ𝑖, 𝑣− ℎ𝑖}. We are also able to get the sign vector for every
vertex: sign(𝑣 + ℎ𝑖) = [sign(𝑣),+], sign(𝑣 − ℎ𝑖) = [sign(𝑣),−].

Build the face lattice Using the same method as describe in Section 4.5.1, we
construct the face lattice 𝐿(𝑉 ) from the vertices 𝑉 . Not every 𝐹 ∈ 𝐿(𝑉 ) corresponds
to a valid sliding/sticking contact mode. Only the faces that have positive signs
+1 with respect to normal velocity constraints for all separating contacts are valid
sliding/sticking contact modes. After building the face lattice 𝐿(𝑉 ), valid faces ℱ
are selected by ensuring their sign vectors with respect to 𝐻𝑠𝑒𝑝 are all {+1}s:

ℱ = {𝐹 ∈ 𝐿(𝑉 ) : sign𝐻𝑠𝑒𝑝
(𝐹 ) = [+1, . . . ,+1]} (4.23)

The sign vectors of all faces in ℱ with respect to 𝐻 represent all valid sliding/sticking
contact modes for the given contact/separating mode.

4.5 Theorem. For a set of 𝑛 contacts (modeled with 𝑘 tangent planes) in a system
of colliding bodies with 𝑑 degrees of freedom, Algorithm 5 enumerates the possible
sliding/sticking modes in 𝑂(𝑛𝑑2/2+2𝑑) time for a given contacting/separating mode.

Proof. As before, we first proceed with a proof of correctness. For a given contact-
ing/separating mode string 𝑚𝑐𝑠, let 𝐻 = [ℎ𝑠1 , · · · , ℎ𝑠𝑘 , ℎ𝑡1 , · · · , ℎ𝑡𝑚 ] be the input
hyperplanes to our zonotope construction algorithm, where 𝑘 is the number of sepa-
rating hyperplanes and 𝑚 is the number of tangent hyperplanes. We incrementally
construct the zonotope by using the fact that the Minkowski sum of two polytopes
is the convex hull of the sums of their vertices [26]. By Corollary 7.18 of [121], the
face lattice of the zonotope constructed above is the opposite of the face lattice of
the hyperplane arrangement.
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Next we analyze the complexity of our algorithm. The maximum number of
hyperplanes is 𝑘𝑛. The number of vertices, i.e. 𝑓0, for a 𝑑-zonotope that is the pro-
jection of a 𝑝-cube is of the order 𝑂(𝑝𝑑−1) [30]. Therefore, our zonotope construction
algorithm takes time

𝑂(
𝑘𝑛∑︁
𝑝=1

(𝑝𝑑−1)
𝑑+1
2 ) ≈ 𝑂(

𝑘𝑛∑︁
𝑝=1

𝑝
𝑑2

2 ) ≈ 𝑂((𝑘𝑛)
𝑑2

2 ). (4.24)

We use Kaibel and Pfetsch [60] to construct the face lattice of the resulting zonotope.
As before, their algorithm runs in

𝑂(𝑘𝑛 · 𝑑 · 𝛼 · (𝑘𝑛)𝑑−1) ≈ 𝑂(𝑑(𝑘𝑛)2𝑑), (4.25)

where 𝛼 = 𝑘𝑛 · (𝑘𝑛)𝑑−1 in the worst case (when the zonotope is simple) [121]. The
full complexity of SS-Enumerate is therefore 𝑂((𝑘𝑛)

𝑑2

2
+2𝑑).

The zonotope algorithm’s strength is its ease of implementation. However, it has
two major drawbacks. First, the iterative Minkoski sum is very inefficient. It requires
𝑑 orders of magnitude more computation than there are faces in 𝒜. Second, the
algorithm computes the full arrangement, including invalid modes (faces) that have
− signs with respect to the separating normals. In the next section, we will address
both those of those issues and derive the partial hyperplane arrangement algorithm
that has runtime nearly proportional to the number of valid sliding-sticking modes.

4.6.2 Partial Hyperplane Arrangement Method

The Edelsbrunner’s [30] incremental hyperplane arrangement algorithm is a natural
choice for this method as it achieves runtime proportional to the number of faces
in the arrangement, 𝑂(𝑛𝑑). We further improve the method with a “partial” hy-
perplane arrangement technique based on the following observation. The normal
velocity equations define one-sided constraints, and as such, the algorithm should
avoid enumerating modes representing invalid, penetrating velocities. Figure 4-9
illustrates the key idea. The ideal location to enforce one-sided hyperplanes is in
initialization phase of Edelsbrunner’s algorithm. During initialization, the partial
variant of the algorithm either initializes using a convex hull of the one-sided hyper-
planes or a mixed initialization of 𝑑eff one-sided and two-sided hyperplanes, where
𝑑eff is the effective dimension of the arrangement. (The mixed method is used when
a convex hull of rank 𝑑eff is not possible.) The next paragraphs describes in more
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Figure 4-9: Partial hyperplane arrangement representation of sliding-sticking modes.

detail each bold commented step of the pseudo-code, Algorithm 6, for the partial
hyperplane arrangement method.

1. Partition hyperplanes based on cs-mode: The normal and tangent ve-
locity equations, 𝑁𝑥 = 𝑑, and 𝑇𝑥 = 0 are partitioned into contacting and separating
sub-matrices and sub-vectors. The 𝑐 subscript denotes contacting and the 𝑠 separat-
ing.

2. Project into null space of Nc and row space of [Ns;Tc]: As before,
both these operations reduce the problem dimension without changing the topology
of the underlying geometric object. Note, the arrangement will be built from the
hyperplanes in [𝑁𝑠;𝑇𝑐].

3. Initialize the hyperplane arrangement: The initialization is broken down
into two cases. If the degree of the separating hyperplanes, 𝑑𝑠 = Rank(𝑁𝑠), is
equal to the degree of the system 𝑑eff = Rank([𝑁𝑠;𝑇𝑐]) and number of separating
hyperplanes, 𝑛𝑠, is greater than 𝑑𝑠, then we may initialize the arrangement with a
convex hull of separating hyperplanes. Under the hood, the convex hull function
computes ℋ(𝑁𝑠, 𝑑𝑠) in polar form. Otherwise, an initial arrangement is generated
from a set of 𝑑eff linearly independent hyperplanes. If all the chosen hyperplanes are
two-sided, this initial arrangement has 3𝑑eff proper faces. But, we can choose a set of
𝑑𝑠 separating hyperplanes and 𝑑eff − 𝑑𝑠 tangent hyperplanes, for a total of 2𝑑𝑠3𝑑eff−𝑑𝑠

proper faces. To construct the initial arrangement, the faces are trivially enumerated
in lexicographical order and the arcs are determined by finding the covers of each
face.
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Algorithm 6 Partial Hyperplane Arrangement Method
Require: Normal velocity equations: 𝑁, 𝑑; Tangent velocity equations: 𝑇 ; CS-mode:
𝑚𝑐𝑠; Tolerance: 𝜖.
Ensure: Sliding Modes: 𝑀𝑠𝑠

1: function SS-Enum-Partial(𝑁, 𝑑, 𝑇,𝑚𝑐𝑠, 𝜖)
2: ◁ 1. Partition hyperplanes based on cs-mode.
3: 𝑁𝑐, 𝑁𝑠, 𝑑𝑐, 𝑑𝑠 ← Partition(𝑁, 𝑑,𝑚𝑐𝑠)
4: 𝑇𝑐, 𝑇𝑠 ← Partition(𝑇,𝑚𝑐𝑠)
5: ◁ 2. Project into null space of Nc and row space of [Ns;Tc].
6: 𝐾 ← Kernel(𝑁𝑐, 𝜖)
7: [𝑁𝑠;𝑇𝑐]← [𝑁𝑠;𝑇𝑐]𝐾
8: 𝑅← Row-Space([𝑁𝑠;𝑇𝑐], 𝜖)
9: [𝑁𝑠;𝑇𝑐]← [𝑁𝑠;𝑇𝑐]𝑅

10: ◁ 3. Initialize the hyperplane arrangement
11: 𝑑eff ← Rank([𝑁𝑠;𝑇𝑐], 𝜖)
12: 𝑛𝑠, 𝑑𝑠 ← Num-Rows(𝑁𝑠),Rank(𝑁𝑠, 𝜖)
13: if 𝑛𝑠 > 𝑑𝑠 And 𝑑𝑠 = 𝑑eff then
14: 𝒜 ← Convex-Hull(𝑁𝑠, 𝑑𝑠, 𝜖)
15: else
16: 𝒜 ← Initial-Arrangement([𝑁𝑠;𝑇𝑐], [𝑑𝑠; 0], 𝜖)

17: ◁ 4. Incrementally add the remaining hyperplanes.
18: for ℎ ∈ [𝑁𝑠;𝑇𝑐], 𝑧 ∈ [𝑑𝑠; 0], (ℎ, 𝑧) /∈ ℐ do
19: 𝒜 ← Increment-Arrangemnt(ℎ, 𝑧,𝒜, 𝜖)
20: ◁ 5. Update sign vectors.
21: 𝑁 ← 𝑁𝐾𝑅
22: 𝒜 ← Set-Hyperplanes(𝒜, [𝑁 ;𝑇𝑐], [𝑑; 0])
23: return 𝑀𝑠𝑠 ← Sign-Vectors(𝒜, 𝜖)

4. Incrementally add the remaining hyperplanes: For each hyperplane not
in the arrangement 𝒜, incrementally add it to 𝒜 using Edelsbrunner’s method. This
technique is fairly robust as it only uses floating point operations, i.e. dot products,
to color vertices and edges with respect to the incoming hyperplane. The rest of the
lattice is updated purely based on that coloring.

5. Update sign vectors: Internally, each face in the lattice stores an interior
point. To calculate the sign vectors with respect to the original hyperplane ordering
of [𝑁 ;𝑇𝑐], it is as simple as reading off the signs of a dot product between the interior
point and the hyperplanes. This trick makes implementing the rest of the algorithm
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Algorithm 7 Preprocess Hyperplanes
1: function Preprocess(𝐴𝑇 )
2: 𝐶 ← Column-Space(𝐴)
3: 𝐴← 𝐶𝑇𝐴
4: 𝐴← Remove-Zeros(𝐴)
5: 𝐴[:, 𝑖]← 𝐴[:, 𝑖]/‖𝐴[:, 𝑖]‖
6: 𝐴← Remove-Parallel(𝐴)
7: return 𝐴𝑇

easier as it removes need for bookkeeping during initialization and incrementation.

4.6 Theorem. The partial hyperplane arrangement computes the sliding-sticking
modes in 𝑂(𝑛𝑑) time.

We present a sketch of a proof. To recap, we are using an incremental hyper-
plane arrangement algorithm on a partial hyperplane arrangement instead of a full
hyperplane arrangement. First, we argue the correctness of the algorithm. The key
idea is that faces of the partial hyperplane arrangement are faces in the full hyper-
plane arrangement. The correctness of Edelsbrunner’s algorithm is solely based on
the properties of faces outlined in Table 7.3, Observation 7.2, Observation 7.3 and
Observation 7.4 [30]. It is straightforward to verify each property holds for the faces
in the partial hyperplane arrangement using proof by contradiction.

The runtime analysis is based on the Section 7.6 of [30]. The key result is that
a new hyperplane ℎ can be inserted into an existing arrangement with time propor-
tional to the number of faces properly intersecting ℎ. However, it is outside the scope
of this work to derive bounds on the number of 𝑘-faces intersecting ℎ, as is done in
Theorem 5.4 of [30]. A conservative bound on the runtime is 𝑂(𝑛𝑑) which is the cost
of constructing the full hyperplane arrangement.

4.7 Preprocessing Hyperplanes

The preprocessing routine is an important step which removes degeneracies from the
input hyperplanes and reduces problem dimensionality. Recall from Section 4.3.3
that a linear hyperplane arrangement 𝒜(𝐴𝑇 ) is combinatorially equivalent to the
vector matroid 𝑀 [𝐴]. This section outlines a matroid-based preprocessing routine
for reducing the set of normal and tangent velocity hyperplanes into a minimal set of
projectively equivalent hyperplanes. For simplicity, we first present our preprocessing
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Convex Hull Zonotope Partial

Test Case cs-modes ss-modes ss-modes

Box-1 0.3 ms 18.5 ms 0.6 ms
Box-2 0.7 ms 83.0 ms 4.8 ms
Box-3 2.5 ms 191.8 ms 42.5 ms

Quadraped 0.4 ms 106 582.2 ms 26.0 ms
Arm-Box 0.5 ms 629.1 ms 9.8 ms

Humanoid 0.4 ms 107 764.0 ms 37.4 ms

Table 4.1: Timing benchmarks for contact mode enumeration algorithms.

routine for the zero offset case, i.e. 𝑁𝑞 ≤ 0. Afterwards, we will describe how to
extend this test to non-zero offsets.

Let 𝐴 = [𝑁 ;𝑇 ]𝑇 ∈ R𝑑×𝑚 be the input hyperplane normals in column vector
form. We want to find invertible matrices 𝑋 and 𝑌 , with 𝑌 diagonal, such that
𝑋𝐴𝑌 = 𝐴′ = [𝑁 ′;𝑇 ′]𝑇 ∈ R𝑑′×𝑚′ has minimal dimensions. We can accomplish this in
two steps.

1. Reduce dimension: To minimize the dimension 𝑑, we can choose 𝑋 =
[𝐶𝑇 ;𝐿𝑇 ] where 𝐶 ∈ R𝑑′×𝑑 is the an orthonormal basis for the column space of 𝐴 and
𝐿 ∈ R(𝑑−𝑑′)×𝑑 is a basis of the left nullspace of 𝐴. After multiplying 𝑋 and 𝐴, we
can remove the bottom 𝑑− 𝑑′ rows (E4). Note that this operation does not change
the orientation of the hyperplanes.

2. Remove duplicate/zero hyperplanes: First, we remove any hyperplanes
with zero magnitude. Next, we use 𝑌 to normalize each hyperplane and remove any
hyperplanes that are parallel to a previous column in 𝐴. This operation maintains
projective equivalence because 𝑀 [𝐴] is defined over the set of column vectors in 𝐴.

We can extend the above test to handle non-zero offsets by lifting the hyperplanes
into dimension 𝑑 + 1. Given a hyperplane ℎ = {𝑥 ∈ R𝑑 : 𝑎𝑥 = 𝑏}, observe that ℎ
is the orthogonal projection of a 𝑑 + 1 dimensional linear hyperplane onto the unit
vertical plane

{𝑦 : [𝑎,−𝑏]𝑦 = 0} ∩ {𝑦 : 𝑦𝑑+1 = 1}, 𝑦 ∈ R𝑑+1. (4.26)

Therefore, we can extend this test to the non-zero offset case by changing the inputs
to 𝑁 ′ = [𝑁, 𝜑] and 𝑇 ′ = [𝑇, 0], where 𝜑 is the offset.
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contacting/separating 
modes

Figure 4-10: Visualization of some contact modes of a box enclosed by 2 walls. Given
a contact mode, we sampled object velocity and rendered it in the simulation. Yellow
arrows: velocities of contacting contacts. Purple arrows: velocities of separating
contacts.

contacting/separating 
modes

sliding/sticking modes

contacting/separating 
modesFigure 4-11: The contacting/separating
modes and sliding/sticking modes of a
box on the table case.

contacting/separating 
modes
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Figure 4-12: A ball in a hand. There are
too many contacting/separating modes so
we only visualize them by layers.

4.8 Results

This section collects the results of running our algorithms (cs-mode-enum, ss-mode-
enum, all-modes) on the example scenarios described below. The examples were run
on a computer with an Intel i7-7820x CPU (3.5 MHz, 16 threads).

Box-#: This example simulates a box enclosed by # walls, 1 ≤ # ≤ 3. The
face contact between the box and a wall is modeled as four point contacts on the
corresponding vertices of the box. Constrained by one wall (the ground), the box is
free to separate with or move along the wall. As the constraints grow to 6 walls, the
box becomes progressively more constrained. Figure 4-10 and 4-11 visualize some of
our results.

Quadraped: This example consists of a MIT Mini-Cheetah standing on the
ground. There are three DoFs in each leg for a total of 18 DoFs.

Arm-Box: This example consists of a KUKA arm making a point contact on a
box on the ground. There are a total of 13 DoFs.

Humanoid: This example consists of a humanoid figure standing on the ground
with two contacts at each foot. There are a total of 24 DoFs.
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The above examples can be replicated ad infinitum (by adding more boxes or
fingers) to generate contact modes which grow exponentially with the system di-
mension. Table 4.1 aggregates the results of running our algorithm on the above
examples. Selected videos of the examples are also provided as supplementary mate-
rial. From the results, it is clear that the zonotope algorithm is inferior to the partial
hyperplane arrangement algorithm.

4.9 Related Applications & Future Work

Simulation: Friction contact dynamics have been modeled as complementarity
problems by many researchers [8, 101]. Approaches for solving complementarity
problems may be broken into direct methods, such as Lemke’s algorithm, and it-
erative methods, such as Projected Gauss Siedel [84, 24]. The simulation research
community has focused on issues such as proving finite termination [111, 101], sat-
isfying physical realism [100, 109], and improving convergence speed [70]. By design
these algorithms find a single solution, when in reality, multiple solutions may exist
[101]. Moreover, users are not aware of this additional source of divergence. How-
ever, our algorithm can allow the user to enumerate all possible solutions. We believe
this capability will be important for robotic systems which use simulation to reason
about future actions.

Grasping and Dexterous Manipulation: Most grasping synthesis algorithms
[13] [82] [80] are designed to plan force-closure graspings. However, due to the static
indeterminacy problem, a force closure grasp does not imply a stable grasp [79]. A
typical way to address this problem is to enumerate all adjacent contact modes and
make sure they don’t have the same solution to the desired contact mode. Our 3D
contact enumeration method could provide fast computation tools for stable grasps
in 3D, which may help with real-time grasp planning for large scale objects. Similar
approach can also be extended to dexterous manipulation tasks, like pushing [73]
and grasping using environment contacts [50], where certain contact mode is desired
during the task.

4.10 Conclusion

This chapter introduced the first known algorithm for efficient contact mode enumer-
ation in 3D. The algorithm partitions the problem into contacting/separating mode
enumeration and sliding/sticking mode enumeration. The algorithms are based on
convex hull and hyperplane arrangements, respectively. This paper also presented
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results demonstrating real-time enumeration for small problems. Finally, we high-
lighted related research areas to show that contact mode enumeration can be a useful
tool for the simulation, analysis, and control of robotic systems which make and break
contact with the environment.
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Chapter 5

Autogenerated Manipulation
Primitives II

5.1 Introduction

It is hard to estimate the set of manipulation skills used by humans or animals, and
even harder to reproduce all of those skills. Byrne [15] documented 72 function-
ally distinct manipulation primitives used by foraging mountain gorillas. Nakamura
[85] studied human grasping behaviors in grocery stores and noticed that existing
taxonomies cannot categorize all the observed behaviors. Within robotics, many
researchers have explored individual skills at depth, including pushing [77][73], piv-
oting [3, 47, 49], tumbling [74], whole-body manipulation [98], extrinsic dexterity
[20], grasping [33][32], shared grasping [51], etc. Clearly, designing a high-quality
robotic manipulation skill for a specific task takes significant human labor. When
planning for robotic manipulation tasks, it is therefore desirable to find an approach
that reduces the programming effort required and creates skills that generalize to
many scenarios.

In this chapter, we propose a novel method for automatically generating robotic
manipulation primitives. Given a desired object velocity, the current state, and the
dynamic equations of motion, our method generates a partially ordered list of manip-
ulation primitives which would best approximate the object motion while satisfying
contact dynamics. The generated manipulation primitives are uniquely specified by
their contact mode (see Chapter 4). Our method is based on two key observations.
First, specifying the contact mode reduces contact and friction force constraints into
equality and inequality constraints. This in turn allows us to solve for the controls
using quadratic programming. Second, the contact mode lattice is effectively a graph
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data structure. This allows us to use graph search techniques when designing our al-
gorithm. Our algorithm walks along the contact mode lattice and solves a quadratic
program at each visited node. In this way, we iteratively build a library of distinct
manipulation primitives. A library of manipulation primitives is useful for several
reasons.

1. A library of manipulation actions adds robustness to failure. A single type of
action may fail, such as grasping in a specific location, however a library gives
the robot multiple opportunities to try until success.

2. Automatic primitive generation removes the burden of writing task specific
code.

We envision this method having applications in dexterous manipulation ranging from
planning to closed-loop control and more. See Figure 5-5 for an example where
our method could be applied. For the scope of this project, we focus on solving
inverse task mechanics within the quasi-static hybrid dynamical systems introduced
in Trinkle et al. [110]. We test our algorithm on 3D examples. We validate the
usefulness of autogenerated manipulation primitives on both planar and vertical 2D
manipulation problems. These manipulation problems include peg-in-hole and force-
limited scenarios.

5.2 Related Work

Past works have modeled contact dynamics as a complementarity problem [101].
Several methods exist for solving complementarity problems, which we categorize
as iterative or direct solution methods. A popular iterative method is projected
Gauss-Seidel (PGS) [83]. Stewart and Trinkle [101] used a direct pivoting method,
Lemke’s algorithm, for solving contacts modeled as linear complementarity problems.
The mathematical framework used in our work is based on the direct quasi-static
implicit time-stepping scheme of Trinkle et al. [110], sometimes with an ellipsoidal
limit surface model of sliding friction included from Zhou et al. [119].

This work uses the linear complementarity formulation of frictional contact. Ho-
rak and Trinkle [48] compared various popular frictional contact models used in rigid
body simulation, including the linear complementarity formulation and the convex
relaxation of Todorov [108], and concluded that, apart from some minor artifacts,
the qualitative behaviors of the different models were very similar.
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5.2.1 Inverse Dynamics

The inverse dynamics problem seeks motor torques given desired joint angle velocities
[86]. While this may sound closely related to our work, inverse dynamics is primarily
studied and applied in continuous articulated rigid body dynamics and does not
tackle the challenges of hybrid dynamics which involves the choice of discrete modes.

5.2.2 Action Models and Search-Based Planning

Researchers combine action models with search-based planning methods to generate
manipulation motions for a wide range of tasks. In the early work of in-hand regrasp-
ing [69], grasp gaits are obtained from searching on a grasp map developed from the
force closure model. For nonprehensible two-palm manipulation, Erdmann [34] pro-
posed get the set of possible motions by partitioning the configuration space through
primitive operations under different contact modes, and generate motion plans by
searching. More recently, Chavan-Dafle et al. [21] combined high-level sampling
based planning with the motion cones to achieve prehensible in-hand manipulation
with external pushes. Hou et al. [49] proposed a fast planning framework using two
reorientation motion primitives for object reoritation problems. At the higher level
of task and motion planning, complicated sequences of tool-use and manipulation
motions are planned through path optimization given defined relations and action
operators.

All these works and our work adopt the hierarchical structure of combining low-
level task models and high-level planning methods to decrease the amount of required
search. Previous works require user-defined action models for different tasks. In
contrast, our method doesn’t need hand-written motion primitives and thus can be
used for a wide range of applications.

5.2.3 Contact-Implicit Trajectory Optimization

The goal of contact-implicit trajectory optimization (CITO) is to simultaneously
optimize states, controls, and contact modes. Prior work in contact-implicit trajec-
tory optimization (CITO) can be divided into direct and shooting methods. For
example, Önol et al. [87] proposed a direct contact-implicit trajectory optimization
method based on a variable smooth contact model and successive convexification.
Posa et al. [93] proposed a direct method for solving CITO problems leveraging Se-
quential Quadratic Programming (SQP). An example of a shooting method, Tassa
et al. [105] uses differential dynamic programming (DDP) with a smoothing function
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on contact constraints to solve CITO problems. Though they share many common-
alities, our work and CITO differ in intended purposes. The goal of our work is to
automatically generate a library of contact-rich actions. This distinction allows us
to explore solution techniques which may not be useful for CITO algorithms.

5.3 Background

This section reviews basic frictional contact models and their relation to the equa-
tions of motion. First, we describe the Coulomb friction model and formulate it
as a set of nonlinear complementarity constraints. Next, we introduce the polyhe-
dral approximation to Coulomb friction. Lastly, we conclude by showing how these
frictional contact models fit into the equations of motion of a system.

5.3.1 Coulomb Friction Model

Coulomb friction is a familiar friction model with the property that the frictional
force is both proportional in magnitude to the normal force and anti-parallel to the
sliding direction. The Coulomb model of friction can be succinctly represented using
the friction cone and the principle of maximal dissipation. Given a contact force, we
define the friction cone to be the convex set

ℱ = {𝜆𝑡𝑥 , 𝜆𝑡𝑦 : 𝜇𝜆2
𝑛 − 𝜆2

𝑡𝑥 − 𝜆2
𝑡𝑦 ≥ 0}, (5.1)

where 𝜇 is the coefficient of friction and 𝜆𝑡𝑥 , 𝜆𝑡𝑦 are the components of the frictional
force in the tangent directions 𝑡𝑥, 𝑡𝑦. The principle of maximal dissipation states
that for a tangential sliding velocity 𝑣 = [𝑣𝑡𝑥 , 𝑣𝑡𝑦 ], the direction of the frictional force
maximizes the dissipated energy, i.e.

𝜆𝑡𝑥 , 𝜆𝑡𝑦 ∈ arg max
𝜆𝑡𝑥 ,𝜆𝑡𝑦∈ℱ

−𝜆𝑡𝑥𝑣𝑡𝑥 − 𝜆𝑡𝑦𝑣𝑡𝑦 . (5.2)

Note when 𝑣 = 0, any 𝜆𝑡𝑥 , 𝜆𝑡𝑦 ∈ ℱ satisfies equation (5.2), but when 𝑣 ̸= 0, [𝜆𝑡𝑥 , 𝜆𝑡𝑦 ]
is anti-parallel to 𝑣.

We can express Coulomb friction as the solution to a system of equations com-
prised of (nonlinear) complementarity constraints. This technique is used to encode
Coulomb friction into a form suitable for simulation and optimization.

5.1 Definition. A complementarity constraint is a constraint on two variables 𝑎, 𝑏 ∈
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R such that

𝑎 ≥ 0 (5.3)
𝑏 ≥ 0 (5.4)

𝑎𝑏 = 0. (5.5)

Under this constraint, either 𝑎 > 0 and 𝑏 = 0, or 𝑏 > 0 and 𝑎 = 0, or 𝑎 = 𝑏 = 0. We
also write the constraint as 0 ≤ 𝑎 ⊥ 𝑏 ≥ 0.

We describe how to encode Coulomb friction as complementarity constraints.
Let 𝜑 be a function which returns the minimum separating distance between two
(potentially) colliding surfaces. The contact normal force 𝜆𝑛 ∈ R≥0 is zero if and
only if the distance is trending positive 𝜑 ⪰ 0. We can approximate this as the
complementarity constraint

0 ≤ 𝜆𝑛 ⊥ 𝜑 + 𝜑̇ ≥ 0, (5.6)

where 𝜑̇ = 𝑑𝜑
𝑑𝑡

is the separating velocity. Next, we show how to extend this comple-
mentarity formulation to Coulomb friction. Similar to normal force, we can write
Coulomb friction as a set of equality and complementarity constraints

0 = 𝜇𝜆𝑛𝑣𝑥 + 𝜆𝑥𝜎 (5.7)
0 = 𝜇𝜆𝑛𝑣𝑦 + 𝜆𝑦𝜎 (5.8)
0 ≤ 𝜎 ⊥ 𝜇𝜆2

𝑛 − 𝜆2
𝑥 − 𝜆2

𝑦 ≥ 0. (5.9)

When the sliding velocity is non-zero, 𝜎 evaluates to
√︀

𝑣2𝑡 + 𝑣2𝑜 . However, the use of
equation (5.9) leads to a nonlinear complementarity problem (NCP).

5.3.2 Polyhedral Friction Model

We can linearize the Coulomb model of friction by approximating the friction cone
with the polyhedral convex cone

ℱ𝐷 = {𝐷𝜆𝑓 : 𝜇𝜆𝑛 − 𝑒𝑇𝜆𝑓 ≥ 0, 𝜆𝑓 ≥ 0}, (5.10)

where 𝐷 = [𝑑1, . . . , 𝑑𝑛𝑑
] ∈ R3×𝑛𝑑 is a matrix whose columns are normalized polygonal

basis vectors, 𝜆𝑓 ∈ R𝑛𝑑 are the components of frictional force along each basis, and
𝑒 = [1, . . . , 1]𝑇 ∈ R𝑛𝑑 is a vector of ones. The principle of maximal dissipation can
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Figure 5-1: (Left) Coulomb friction cone. (Right) Polyhedral friction cone.

be rewritten
𝐷𝜆𝑓 = arg max

𝐷𝜆𝑓∈ℱ𝐷

−𝑣𝑇𝐷𝜆𝑓 , (5.11)

where 𝑣 = [𝑣𝑡, 𝑣𝑜, 0]𝑇 is the sliding velocity. When the sliding velocity is non-zero,
the resultant frictional force is almost always located at the polygon vertex 𝜇𝑑𝑖𝜆𝑓

most anti-parallel to 𝑣. We can cast the linearized model as the following linear
complementarity problem (LCP)

0 ≤ 𝜆𝑓 ⊥ 𝐷𝑇𝑣 + 𝑒𝜎 ≥ 0 (5.12)
0 ≤ 𝜎 ⊥ 𝜇𝜆𝑛 − 𝑒𝑇𝜆𝑓 ≥ 0, (5.13)

where the inequalities are evaluated element-wise. This time, 𝜎 = −max−𝑣𝑇𝑑𝑖 when
𝑣 is non-zero.

5.3.3 Equations of Motion

Consider a system consisting of an object and a manipulator. To properly model this
system, we need to define the contact frames and their velocities, and integrate the
contact and frictional forces into the dynamic equations of motion. Let the set 𝒦 ⊂ Z
of order |𝒦| = 𝑘 enumerate all possible contact pairs between the rigid bodies in our
simulation. We can define a minimum seperating distance function 𝜑(𝑞𝑜, 𝑞𝑚) ∈ R𝑘,
where 𝑞𝑜 ∈ R6 is the object pose, 𝑞𝑚 ∈ R𝑛𝑚 is the manipulator’s state, and the
𝑖-th element 𝜑𝑖 of returns the distance between the rigid bodies in the 𝑖-th contact
pair. Let us define a contact frame 𝑐𝑖 for each contact pair such that its origin is at
the point of contact 𝑝𝑖 and its 𝑧-axis is pointed along the surface normal 𝜑̇𝑖. When
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a contact pair involves the object, we further require that 𝑐𝑖 is rigidly attached to
the object and that its 𝑧-axis points into the object. Finally, each contact frame 𝑐𝑖
has a wrench basis 𝐵𝑐𝑖 = [𝑛𝑐𝑖𝐷𝑐𝑖 ] with normal component 𝑛𝑐𝑖 = [0, 0, 1, 0, 0, 0]𝑇 and
tangential component 𝐷𝑐𝑖 = [𝐷; 0] ∈ R𝑛𝑑×6.

Let 𝑉𝑜 ∈ R6 be the object’s body velocity and 𝑞𝑚 ∈ R𝑛𝑚 be the manipulator’s
generalized velocity. Let 𝑔𝑜𝑐𝑖 ∈ 𝑆𝐸(3) be the transform from the object frame to the
𝑖-th contact frame and 𝑔𝑠𝑐𝑖 ∈ 𝑆𝐸(3) be the transform from the manipulator’s base
frame 𝑠 to the 𝑖-th contact frame. We can write the normal and tangential velocities
of the contact frame using the following matrices

𝑁𝑜 =

⎡⎢⎢⎢⎣
𝑛𝑇
𝑐1

Ad−1
𝑔𝑜𝑐1...

𝑛𝑇
𝑐𝑗

Ad−1
𝑔𝑜𝑐𝑗

0

⎤⎥⎥⎥⎦ , 𝑁𝑚 =

⎡⎢⎢⎢⎣
0

𝑛𝑇
𝑐1

Ad−1
𝑔𝑠𝑐1

𝐽𝑠
𝑠𝑓1

...
𝑛𝑇
𝑐𝑙

Ad−1
𝑔𝑠𝑐𝑙

𝐽𝑠
𝑠𝑓𝑙

⎤⎥⎥⎥⎦ (5.14)

𝑇𝑜 =

⎡⎢⎢⎢⎣
𝐷𝑇

𝑐1
Ad−1

𝑔𝑜𝑐1...
𝐷𝑇

𝑐𝑗
Ad−1

𝑔𝑜𝑐𝑗

0

⎤⎥⎥⎥⎦ , 𝑇𝑚 =

⎡⎢⎢⎢⎣
0

𝐷𝑇
𝑐1

Ad−1
𝑔𝑠𝑐1

𝐽𝑠
𝑠𝑓1

...
𝐷𝑇

𝑐𝑙
Ad−1

𝑔𝑠𝑐𝑙
𝐽𝑠
𝑠𝑓𝑙

⎤⎥⎥⎥⎦ , (5.15)

where the matrices 𝑁𝑜, 𝑇𝑜 and 𝑁𝑚, 𝑇𝑚 map 𝑉𝑜 and 𝑞𝑚, respectively, to the normal
and sliding velocities of the contact frame. The matrices have dimensions 𝑁𝑜 ∈ R𝑘×6,
𝑁𝑚 ∈ R𝑘×𝑛𝑚 , 𝑇𝑜 ∈ R𝑘𝑛𝑑×6, 𝑇𝑚 ∈ R𝑘𝑛𝑑×𝑛𝑚 .

Following the velocity-impulse formulation of [101], we can write the dynamic
equations of motion as

𝜏 = 𝑀(𝑞 − 𝑞0) + 𝑁𝑇𝜆𝑛 + 𝑇 𝑇𝜆𝑓 + ℎ(𝐶 + 𝑔) (5.16)
𝑞 = 𝑞0 + ℎ𝑞, (5.17)

where 𝑁 = [𝑁𝑜,−𝑁𝑚], 𝑇 = [𝑇𝑜,−𝑇𝑚], 𝐶 are the Coriolis forces, 𝑔 is the wrench
imparted by gravity, and ℎ is the timestep. Combining equations (5.16) with the
multi-contact form of the complementarity constraints (5.12-5.13), we arrive at the
following mixed LCP (MLCP) for time-stepping dynamical systems with frictional
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contact

𝜏 = 𝑀(𝑞 − 𝑞0) + 𝑁𝑇𝜆𝑛 + 𝑇 𝑇𝜆𝑓 + ℎ(𝐶 + 𝑔) (5.18)
𝑞 = 𝑞0 + ℎ𝑞 (5.19)

0 ≤ 𝜆𝑛 ⊥ 𝑁(ℎ𝑞)− 𝑑 ≥ 0 (5.20)
0 ≤ 𝜆𝑓 ⊥ 𝑇 (ℎ𝑞) + 𝐸𝜎 ≥ 0 (5.21)
0 ≤ 𝜎 ⊥ 𝑈𝜆𝑛 − 𝐸𝑇𝜆𝑓 ≥ 0 (5.22)

Note, this time-stepping program assumes the controls 𝜏 are known beforehand.

5.4 Autogenerated Manipulation Primitives

This section describes our approach to autogenerating manipulation primitives. The
first step is to establish how to classify manipulation primitives and distinguish them
from one another. This is accomplished through the framework of contact modes
(Chapter 4). Next we describe how to solve for a manipulation primitive which falls
under this classification. We define the manipulation primitive as the solution to
an optimization problem. Finally we introduce multiple algorithms for enumerating
manipulation primitives, depending on the number of primitives the user desires.

5.4.1 Classification of Primitives

In past research, manipulation primitives are named and defined by the research
community studying them. For instance, we can identify papers which study push-
ing [77][73], pivoting [3, 47, 49], tumbling [74], and whole-body manipulation [98].
However, the labels assigned by researchers, while evocative, are ultimately impre-
cise. In order to automatically generate manipulation primitives, we first need a
mathematically precise method for classifying manipulation primitives. Otherwise,
we would not be able to distinguish between different manipulation primitives. This
work proposes the use of contact modes (Chapter 4) as programmatic labels for
classifying manipulation primitives. Our proposed framework allows us to program-
matically generate manipulation primitives by searching the space of contact modes.
There are several benefits from the contact mode based classification.

1. Contact modes are partially ordered and have a geometric lattice structure.
This allows us to make statements about the primitives (contact modes) such
as less than, greater than, equals, or incomparable. If an object is difficult to
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𝐵 ∈ R𝑏×𝑑 − Contact force generators.
𝜆 ∈ R𝑏 − Contact forces.

𝜆𝑧𝜎 ∈ R𝑡𝑧+𝑡𝜎 − Active contact forces.
𝜆0 ∈ R𝑏−𝑡𝑧−𝑡𝜎 − Inactive contact forces.
𝑁𝑐 ∈ R𝑛𝑐×𝑑 − Contacting normal velocity constraints.
𝑁𝑠 ∈ R𝑛𝑠×𝑑 − Separating normal velocity constraints.
𝑇𝑧 ∈ R𝑡𝑧×𝑑 − Sticking tangent velocity constraints.
𝑇𝜎 ∈ R𝑡𝜎×𝑑 − Sliding tangent velocity constraints.

Table 5.1: Additional notation used in Problem 5.3.

manipulation, trying incomparable primitives could be a good way to ensure
the robot explores the space of possible actions.

2. Contact modes are complete in the sense that every possible primitive can be
described in this framework. Grasping, pushing, throwing, pivoting, peg-in-
hole, etc. can all be distinctly labeled according to their contact mode.

3. Contact modes can be programmatically enumerated. In Chapter 4, we intro-
duced an algorithm for efficient contact mode enumeration in 3D.

5.4.2 Optimization of Primitives

We stated before that we classify manipulation primitives based on their contact
mode. Given an initial state, target object velocity, and target contact mode, we
can define the corresponding primitive as the controls (and trajectory) which best
approximate the target object velocity while staying in the target contact mode.
Therefore, we need a method to solve for the controls given the target object velocity
and target contact mode. We will formulate this as an optimization problem which
will be solved at every timestep, i.e. our primitives are generated using a shooting
method.

First, we observe that if the contact mode constraint is ignored, then the instan-
taneous controls which best approximate the target object velocity are the solution
to the following mathematical program with complementarity constraints (MPCC),
which is in effect, the optimization problem of contact implicit trajectory optimiza-
tion (CITO) reduced to a single timestep.
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5.2 Problem. We can generate a single manipulation primitive by solving the fol-
lowing MPCC

min
𝑥

1

2
𝑥𝑇𝐻𝑥 + 𝑔𝑇𝑥 (5.23)

s.t. 𝑞 = 𝑞0 + ℎ𝑞 (5.24)
0 = ℎ(𝑁𝑇𝜆𝑛 + 𝑇 𝑇𝜆𝑓 + 𝑔 + 𝜏) (5.25)

0 ≤ 𝜆𝑛 ⊥ ℎ𝑁𝑞 + 𝑑 ≥ 0 (5.26)
0 ≤ 𝜆𝑓 ⊥ ℎ𝑇𝑞 + 𝐸𝜎 ≥ 0 (5.27)
0 ≤ 𝜎 ⊥ 𝑈𝜆𝑛 − 𝐸𝑇𝜆𝑓 ≥ 0, (5.28)

where the complementarity constraint 0 ≤ 𝑎 ⊥ 𝑏 ≥ 0 holds iff 𝑎, 𝑏 are non-negative
and 𝑎𝑏 = 0 and equation (5.23) is a quadratic cost on the desired object motion
(with additional normalization terms) and equations (5.24-5.28) are the equations of
motion under a polyhedral friction cone approximation.

However, our goal is to autogenerate a library of manipulation primitives, la-
beled by contact mode. When the contact mode is specified, the complementarity
constraints in Problem 5.2 are reduced to linear equality and linear inequality con-
straints. Contact modes partition the nonlinear, discontinuous contact dynamics into
regions of smooth dynamical flows. The contact mode determines which contacts
are separating, which contacts are maintaining and thus generate normal forces, and
which contacts are sliding or sticking and thus the direction of the frictional forces.
We use the generator form of the contact dynamics to rewrite Problem 5.2 as a
quadratic program.

5.3 Problem. When the contact mode is specified, the MPCC in Problem 5.2 re-
duces to the following Quadratic Program (QP)

min
𝑥

1

2
𝑥𝑇𝐻𝑥 + 𝑔𝑇𝑥 (5.29)

s.t. 𝑞 = 𝑞0 + ℎ𝑞 (5.30)
0 = ℎ(𝐵𝑇𝜆 + 𝑔 + 𝜏) (5.31)
0 = ℎ𝑁𝑐𝑞 + 𝑑 (5.32)
0 ≤ ℎ𝑁𝑠𝑞 + 𝑑 (5.33)
0 = ℎ𝑇𝑧𝑞 (5.34)
0 ≤ ℎ𝑇𝜎𝑞 (5.35)
0 ≤ 𝜆𝑧𝜎, 0 = 𝜆0 (5.36)
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where the contact forces 𝜆𝑛, 𝜆𝑓 are replaced with contact force generators 𝐵, 𝜆 to re-
move the need for the slack variable 𝜎 and additional constraints. The new equations
state that the

(5.32) contacting normal velocities maintain contact,

(5.33) separating normal velocities do not penetrate,

(5.34) sticking tangent velocities are zero,

(5.35) sliding tangent velocities are in the correct direction,

(5.36) contact force generators are non-negative.

The solution 𝑥* contains the joint torque commands 𝜏 * for achieving the target
object motion as closely as possible while staying within the target contact mode.
The MPCC in Problem 5.2 and QP in Problem 5.3 are based on linearized frictional
dynamics from [101]. There are many other frictional dynamics models in the lit-
erature [1]. The method proposed in this paper can be extended to other friction
models given an appropriate subsolver.

5.4.3 Full Enumeration Algorithm

Our first proposed algorithm solves a quadratic program for each contact mode.
Despite being a brute force approach, this algorithm takes advantage of the lattice
structure of the contact modes. A QP solver with good restart capabilities can take
advantage of the fact that adjacent contact modes differ by a minimal number of
constraints. Rather than solving Problem 5.2, we can reduce the number of variables
by solving the QP with the dynamics in contact force generator form.

5.4.4 Adjacent Enumeration Algorithm

Our second proposed algorithm performs a local search on the contact mode lattice to
find a locally optimal solution. It traverses the lattice in a depth-first manner using
adjacency information until it finds a locally optimal contact mode. In a simulated
world, an object can transition instantaneously from one contact mode to another.
A viewpoint raised by the adjacent mode algorithm is what if, in reality, an object
can only discretely transition through adjacent modes, i.e. transition through the
minimal number of constraint changes.

If the adjacent mode algorithm were used to solve for a single optimal contact
mode, then we could say that its solution path is most similar to an MPCC active-set
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Algorithm 8 The Full Mode Algorithm
1: function Full-Mode-Alg(𝑃 , ℒ)
2: 𝑄← {Zero(ℒ)}
3: while ¬Empty(𝑄) do
4: 𝑢← Pop(𝑄)
5: 𝑚← Get-Contact-Mode(𝑢)
6: 𝑞𝑝← Get-QP(𝑃,𝑚)
7: 𝑢.𝑠𝑜𝑙← Solve-QP(𝑞𝑝)
8: for 𝑣 ∈ Super-Faces(𝑢) do
9: 𝑄← 𝑄 ∪ {𝑣}

10: return Min-Cost-Elem(ℒ)

method [36]. The lattice structure also suggests that a branch-and-bound technique
[12] could be applied to this problem, though we were unable to fully explore this
approach. There are some ideas which may be useful in constructing such an algo-
rithm. First, given a child contact mode and its parent contact mode, the feasible
velocity space of the parent is strictly larger than that of the child’s. Second, the
active frictional force bases of the parent are strictly a subset of the child’s active
frictional force bases. A branch-and-bound approach could start at the top-most
mode, explore branches using the velocity cost, and terminate each branch when a
dynamically feasible contact mode was found.

5.5 Planning with Autogenerated Manipulation Prim-
itives

We use autogenerated manipulation primitives within the rapidly-exploring random
tree (RRT) algorithm to plan manipulation sequences [67]. Autogenerated manip-
ulation primitives are a natural candidate for the connect function within a kino-
dynamic RRT [68]. We have written pseudo-code describing our RRT planner with
autogenerated manipulation primitives (AMP) in Algorithm 10.

The key component of the algorithm is the Extend-AMP function. This func-
tion takes a target object state, autogenerates a set of manipulation primitives which
move the object closer to the target state, and rolls out each primitive towards that
state. Each rollout is stored as a new node in the RRT tree. The rollouts are stopped
at the nearest state (up to a max distance) which remains statically stable. If multiple
hands/fingers are used, then the static stability test can include the hands/fingers.
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Algorithm 9 The Adjacent Mode Algorithm
1: function Adj-Mode-Alg(𝑃 , ℒ)
2: 𝑢← Zero(ℒ)
3: while True do
4: 𝑢𝑝𝑟𝑒𝑣 ← 𝑢
5: for 𝑣 ∈ Super-Faces(𝑢) do
6: 𝑚← Get-Contact-Mode(𝑣)
7: 𝑞𝑝← Get-QP(𝑃,𝑚)
8: 𝑣.𝑠𝑜𝑙← Solve-QP(𝑞𝑝)
9: if Cost(𝑣) ≤ Cost(𝑢) then

10: 𝑢← 𝑣
11: if 𝑢 = 𝑢𝑝𝑟𝑒𝑣 then
12: break
13: return 𝑢

5.6 Results

5.6.1 Autogenerated Manipulation Primitives in 3D

We tested our algorithms for autogenerating manipulation primitives on various ex-
amples in 3D. The results are displayed in Figure 5-2. Similar to the test cases in
Chapter 4, we label the test cases as “Box 1” when the target object is a box resting
on the ground and we label test cases as “Box 2” when the target object is a box on
the ground against the wall. The test cases are labeled as “Point X/Z” if there is a
point finger contact on the positive X/Z face. Likewise, the test cases are labeled as
“Palm X/Z” if there is a palmar contact (represented as four point contacts) on the
positive X/Z face. The case “Palm XX” indicates palmar contacts on both positive
and negative X faces.

Our algorithm takes as input a target velocity for the manipulated object. For
both “Box 1” and “Box 2”, we generated a list of target velocities which represented
all the different contact modes of the box. This amounted to 196 target velocities
for “Box 1” and 228 target velocities for “Box 2”. We then ran our algorithm on each
target velocity to autogenerate the manipulation primitives which best approximated
the target velocity. We plot the runtimes of each algorithm in Figure 5-2.

From the results, it is clear that the adjacent mode algorithm is around 3x faster
than the full mode algorithm. We did not observe a difference in optimal cost of
the lowest cost primitive generated by either algorithm. Further improvements in
runtime can be easily obtained by using techniques from active set methods. For
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Algorithm 10 Rapidly-Exploring Random Tree
1: function RRT-AMP(𝑥, 𝒢)
2: 𝑉, 𝐸 ← {𝑥}, ∅
3: for 𝑖 ∈ [0, . . . , 𝑁 ] do
4: 𝑥′ ← Sample-State(𝒢)
5: 𝑋, 𝑉,𝐸 ← Extend-AMP(𝑥′, 𝑉, 𝐸)
6: if At-Goal(𝑋,𝒢) then
7: break
8: return Path(𝒢, 𝑉, 𝐸)

9: function Extend-AMP(𝑥′, 𝑉 , 𝐸)
10: 𝑥← Nearest(𝑥′, 𝑉 )
11: ℎ← Sample-Hand-Location(𝑥)
12: 𝑃 ← Autogenerate-Manipulation-Primitives(𝑥, ℎ, 𝑥′)
13: 𝑋 ← ∅
14: for 𝑖 ∈ [0, . . . ,Length(𝑃 )] do
15: 𝑥′′ ← Rollout(𝑃 [𝑖])
16: 𝑋 ← 𝑋 ∪ {𝑥′′}
17: 𝑉,𝐸 ← Add-Node(𝑥′′, 𝑥, 𝑉, 𝐸)

18: return 𝑋, 𝑉,𝐸

instance, the values of the langrange multipliers can be used to select the adjacent
mode to expand. This would allow the algorithm to on average only solve 1 QP
instead of 𝑑 when hill climbing to an adjacent mode.

5.6.2 Dexterous Manipulation Planning in 2D

We validate the usefulness of our method in three manipulation problems. For sim-
plicity, we abstract the manipulators as free-floating point contacts in these experi-
ments. For all three problems, we adopt the structure of combining high-level sam-
pling based planning with low-level task models. For high-level planning, we adopt
the rapidly exploring random tree (RRT) algorithm [67]. For the problems with
top-down 2D (gravity points into the scene), we used the quasi-static motion model
from [119].

5.4 Problem. The manipulation primitives in top-down 2D scenes are based on the
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Figure 5-2: Time to enumerate manipulation primitives for various examples.

following MPCC over contact constraints

min
𝑣

‖𝑣 − 𝑣𝑑‖2 (5.37)

s.t.

⎡⎢⎢⎣
𝑓𝑔
𝛼
𝛽
𝛾

⎤⎥⎥⎦ =

⎡⎢⎢⎣
𝐴 0 𝑁𝑇

𝑜 𝑇 𝑇
𝑜 0

𝑁𝑜 −𝑁𝑚 0 0 0
𝑇𝑜 −𝑇𝑚 0 0 𝐸
0 0 𝑈 −𝐸𝑇 0

⎤⎥⎥⎦
⎡⎢⎢⎢⎢⎣
𝑣
𝑞𝑚
𝜆𝑛

𝜆𝑓

𝜎

⎤⎥⎥⎥⎥⎦ (5.38)

0 ≤

⎡⎣𝛼𝛽
𝛾

⎤⎦⊥
⎡⎣𝜆𝑛

𝜆𝑓

𝜎

⎤⎦ ≥ 0. (5.39)

The key difference is the inclusion of 𝐴 in the force-balance. 𝐴 is the limit-surface
model which maps frictional forces to velocities during planar sliding.

This QP uses quasi-static dynamics instead of velocity-impulse dynamics. The
connect function samples several finger contact locations and incrementally computes
the object motions by iteratively feeding desired object velocity to the QPCC. In the
experiements, we used the exponential time version of contact enumeration in 2D.

95



Figure 5-3: The planned trajectory for a maze problem. The red boxes mark the de-
sired goal position; green boxes highlight some actions that exploit external contacts.
The blue points are planned finger contact positions; the yellow points are external
contacts from collision detection. Right: the pusher uses one external contact to
pivot the object; left: after pivoting, the pusher pushes the object along the wall.

5.6.3 Maze

In the Maze example, the goal is to push the block from its start position to the
goal position using a single contact pusher. We have no prior knowledge about the
shape of the maze. The coefficient of frictions between manipulator/object is 0.8
and wall/object is 0.3. The coefficient matrix for the limit surface is a diagonal
matrix diag(1, 1, 0.2). In Figure 5-3, we show our planned object trajectory which
is achievable by a single contact for one maze. As highlighted by the green boxes,
when the object is in contact with the environment, our planner exploits the external
contacts to get a more stable motion of pivoting-and-pushing to move towards the
goal.

We tested our method on randomly initialized 3 × 3 mazes. Our method solved
27 out of 31 trials where the final positions are within a small threshold of distance
to the goal positions. The median of the planning time for all successful trials is
127.15 seconds.
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Figure 5-4: The planned trajectory for the narrow passage problem. The red boxes
mark the desired goal position; green boxes highlight some actions that exploit ex-
ternal contacts. Blue points are planned finger contact positions; yellow points are
external contacts from collision detection.

5.6.4 Narrow Passage

In the Narrow Passage problem, a single contact pusher need to push a rectangle-
shaped object to pass a narrow hallway. This problem is like the planar pushing
version of peg-in-hole. The shape of the object is 3.5×2 and the width of the hallway
is 3. The coefficient of frictions between manipulator/object is 0.8 and wall/object
is 0.3. The coefficient matrix for the limit surface is a diagonal matrix diag(1, 1, 0.2).
As highlighted in the green boxes in Figure 5-4, our method generates a pivoting
action to reorient the object to get in the narrow gap, and a sliding-along-the wall
action to get closer to the goal. The method also generates a wedging motion which
is often used in peg-in-hole. The planning time is 14.95 s.

5.6.5 Lift and Flip

The Lift and Flip problem tests the usefulness of our method in scenarios with dy-
namic (i.e. force) constraints on the capabilities of the robot. In this problem, the
objective is to lift a narrow rectangle with unit mass and flip it over 180∘. The
robot is allowed to make contact at any two collision-free points along the rect-
angle’s long edges. The coefficient of frictions between manipulator/object is 0.5
and ground/object is 1.0. Each manipulator contact can exert a maximum of 4.5 N
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Figure 5-5: Example solution to the Lift and Flip problem generated using RRT +
QPCC. Manipulator contact points are blue and environment contacts are yellow.
The goal pose (red) is equal to the start pose with a 180∘ rotation. A few contact
transition states are high-lighted in green. The middle, vertical green rectangle is
a statically stable state where one manipulator contact switches from the "lifting"
edge to the "lowering" edge. In this state, the rectangle is precariously balanced,
with the center-of-mass directly above the single ground contact. At the lowest,
horizontal green rectangle the planner moves the contacts closer to the rectangles
center-of-mass. This enables the manipulator to carry more of the rectangle’s weight
and reduce the frictional force from the ground, thereby enabling a right sliding
motion of the rectangle towards the goal.

in the normal direction. The robot is allowed move contact points only when the
rectangle is statically stable (supported by the ground or the other contact). This
problem is challenging because the robot must lift using both contact points when
the rectangle is nearly horizontal, stably transition contacts from the lifting edge to
the lowering edge, and overcome the high ground friction, all while staying within
force constraints.

Our method was able to solve 30 out of 30 trials of Lift and Flip, with an average
run-time of 5.43 s. Figure 5-5 illustrates an example Lift and Flip solution generated
by our method.
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5.7 Conclusion
In this chapter, we proposed a method to automatically generate manipulation prim-
itives. Our method focuses on solving for the object velocity, contact modes, contact
forces and velocities in a single time-step. Combined with high-leveling sampling
based planning algorithms, our method can generate motion plans for different ma-
nipulation tasks without any predefined motion primitives. Moreover, in our gen-
erated motion plans, several manipulator behaviors are observed: pivoting, sliding,
wedging and finger-contact-transition. These kinds of behaviors are often prede-
fined as motion primitives in most manipulation planning work. We believe that our
method can be applied to different manipulation tasks and open up opportunities
for reactive manipulation in contact-rich environments.
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Chapter 6

Conclusion

6.1 Summary

Manipulation primitives have long been studied within the robotics research commu-
nity. This thesis makes several contributions towards a primitive-centric approach
to robotic manipulation.

We studied the quasi-static motion of a planar slider being pushed or pulled
through a single contact point assumed not to slip [53]. The main contribution is to
derive a method for computing exact bounds on the object’s motion for classes of
pressure distributions where the center of pressure is known but the distribution of
support forces is unknown. The second contribution is to show that the exact motion
bounds can be used to plan robotic pulling trajectories that guarantee convergence
to the final pose. The planner was tested on the task of pulling an acrylic rectangle
to random locations within the robot workspace. The generated plans were accurate
to 4.00mm ± 3.02mm of the target position and 4.35 degrees ± 3.14 degrees of the
target orientation.

We also studied large-scale, multi-object pushing [54]. We introduced a new
robotic tabletop rearrangement system, and presented experimental results. The
tasks involve rearranging as many as 30 to 100 blocks, sometimes packed with a den-
sity of up to 40%. The high packing factor forces the system to push several objects
at a time, making accurate simulation difficult, if not impossible. Nonetheless, the
system achieves goals specifying the pose of every object, with an average precision
of ±1 mm and ±2∘. The system searches through policy rollouts of simulated push-
ing actions, using an Iterated Local Search technique to escape local minima. In
real world execution, the system executes just one action from a policy, then uses a
vision system to update the estimated task state, and replans. The system accepts a
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fully general description of task goals, which means it can solve the singulation and
separation problems addressed in prior work, but can also solve sorting problems and
spell out words, among other things.

These previous attempts demonstrated the value different primitives can bring to
different scenarios and motivated the preeminent contribution of this thesis: a general
method for autogenerating a manipulation primitive library. Our method is based
on the mathematical framework of contact modes. In a hybrid dynamical system
with multiple rigid bodies, the relative motions of the contact points on two colliding
bodies may be classified as separating, sticking (moving together), or sliding. Given a
physical contact model, the active contact modes determine the dynamic equations
of motion. Analogously, the set of all possible (valid) contact mode assignments
enumerates the set of all possible dynamical flows of the hybrid dynamical system
at a given state. Naturally, queries about the kinematics or dynamics of the system
can be framed as computations over the set of possible contact modes.

In order to automatically generate manipulation primitives, we developed the
theory of contact modes as a mathematically precise method for classifying and dis-
tinguishing between different manipulation primitives. This motivated us to investi-
gate efficient ways to compute the set of contact modes. To that end, we developed
the first efficient 3D contact mode enumeration algorithm [55]. The algorithm is
exponential in the degrees of freedom of the system and polynomial in the number
of contacts. The exponential term is unavoidable and an example is provided. Prior
work in this area has only demonstrated efficient contact mode enumeration in 2D
for a single rigid body [77, 41].

We then used our contact mode enumeration algorithm to create a novel method
for automatically generating robotic manipulation primitives. Given a desired object
velocity, the current state, and the dynamic equations of motion, our method gener-
ates a partially ordered list of manipulation primitives which would best approximate
the object motion while satisfying contact dynamics. The generated manipulation
primitives are uniquely specified by their contact mode. Our method is based on two
key observations. First, specifying the contact mode reduces contact and friction
force constraints into equality and inequality constraints. This in turn allows us to
solve for the controls using quadratic programming. Second, the contact mode lattice
is effectively a graph data structure. This allows us to use graph search techniques
when designing our algorithm. Our algorithm walks along the contact mode lattice
and solves a quadratic program at each visited node. In this way, we iteratively
build a library of distinct manipulation primitives. Finally, we demonstrated our
autogenerated manipulation primitives in various manipulation planning problems.
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