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Abstract— Reconstructing 4D vehicular activity (3D space
and time) from cameras is useful for autonomous vehicles,
commuters and local authorities to plan for smarter and safer
cities. Traffic is inherently repetitious over long periods, yet
current deep learning-based 3D reconstruction methods have
not considered such repetitions and have difficulty generalizing
to new intersection-installed cameras. We present a novel
approach exploiting longitudinal (long-term) repetitious motion
as self-supervision to reconstruct 3D vehicular activity from a
video captured by a single fixed camera. Starting from off-
the-shelf 2D keypoint detections, our algorithm optimizes 3D
vehicle shapes and poses, and then clusters their trajectories in
3D space. The 2D keypoints and trajectory clusters accumulated
over long-term are later used to improve the 2D and 3D
keypoints via self-supervision without any human annotation.
Our method improves reconstruction accuracy over state of
the art on scenes with a significant visual difference from the
keypoint detector’s training data, and has many applications
including velocity estimation, anomaly detection and vehicle
counting. We demonstrate results on traffic videos captured
at multiple city intersections, collected using our smartphones,
YouTube, and other public datasets.

I. INTRODUCTION

Understanding vehicle motion in 3D space is useful for in-
telligent traffic systems. The shapes, positions and velocities
of vehicles in 3D reveal instantaneous traffic information,
which can be aggregated to automate traffic monitoring and
facilitate driver assistance systems. Depth sensors have been
used to reconstruct 3D information, but are too expensive to
deploy at city scale. In contrast, video surveillance cameras
are already widely installed, but most surveillance systems
are only able to collect 2D information such as 2D bound-
ing boxes, re-identification and 2D trajectories. Due to the
ambiguity between 3D location and 2D image projection, it
is impossible to reconstruct 3D vehicles from these cameras
directly without any priors. Recently, many deep learning-
based reconstruction methods [1], [2] have been proposed
to estimate 3D shape and position from visual appearance,
but they are sensitive to training data and hard to transfer
to new scenes. For example, models trained on egocentric
views like KITTI [3] or Argoverse [4] perform poorly on
traffic surveillance cameras because of differences in view
angle and background. Unstable and inaccurate detections
cause 3D trajectory reconstruction to fail over time. Although
many works attempt to enforce temporal consistency in
reconstruction and video analysis [5], [6], [7], [8], [9], they
focus on short intervals such as over a few frames or seconds.
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Fig. 1: Long term repetitious vehicular activity is used as
self-supervision to compute accurate 2D and 3D keypoints,
trajectories and velocities from a single fixed camera. Recon-
struction accuracy improves significantly over 20 minutes
at this intersection as compared to methods that enforce
consistency over short periods (a few frames to seconds).

In this work, we argue that key to accurate vehicular
4D reconstruction (i.e. recovering 3D shape and motion) is
exploiting the consistency in long-term (several minutes or
greater) repetitious activity, i.e. vehicles passing an intersec-
tion clustered into groups with similar motion patterns. Using
longitudinal consistency as self-supervision, we adapt a pre-
trained keypoint detector [10] to new scenes it never saw
before, and obtain higher accuracy 2D and 3D keypoints
without any manual annotation. Starting from off-the-shelf
2D keypoint detections and camera intrinsics, our method
reconstructs 3D keypoints with an active shape model, fits
an analytic trajectory model to each vehicle’s 3D poses over
time, and applies a novel method to cluster the vehicle
trajectories in 3D. Later, the accurate 2D keypoints and
3D mean trajectories of each cluster (denoted as 2D and
3D experts) accumulated over the entire video are used to
improve 2D and 3D keypoints in a self-supervised manner as
shown in Fig.[1] We refer to this process as longitudinal self-
supervision. Our main contributions are summarized below
and the entire framework is shown in Fig. 2}

(a) Joint optimization for longitudinal reconstruction (Sec
[IV-A): Consistent reconstruction of diverse motion and poses
from single-view by joint optimization over all vehicles in
long-term videos. This improves 3D keypoint reconstruction
accuracy by 29% relatively over state of the art [11].

(b) Scene-specific repetitious activity clustering (Sec [[V-B)):


http://www.cs.cmu.edu/~ILIM/projects/IM/TRAFFIC4D/

it

- I g y
Initial 3D Reconstruction

ST L
Accumulated 3D Trajectories

Velocity

» . i

L T
Refined 2D Keypoints
Reproject Reconstruct

Su S S gt e s e
Trajectory Distribution

Traffic Analytics

1 @ scene Specific Clustering
@ 2D Longitudinal Self-Supervision
| @ 3D Longitudinal Self-Supervision

7 Vg
Refined 3D Reconstruction

Fig. 2: Framework for self-supervised 4D reconstruction of repetitious activity. Our method takes off-the-shelf 2D keypoint
detections as input, reconstructs 3D keypoints with an active shape model, fits an analytic trajectory model to each vehicle’s
3D poses along with frames, and accumulates them over time. Then, for 2D self-supervision, good keypoints from initial
detections are selected as “2D experts” to refine bad 2D keypoints. For 3D, the accumulated 3D trajectories are clustered
and the mean trajectories are used as “3D experts” to refine 3D poses. The reconstruction could be applied to traffic analysis

such as velocity estimation and anomaly analysis.

Projecting 3D trajectories to subspaces with strong sep-
arability to suppress noise from imperfect detection and
reconstruction, and then clustering the trajectories into fine-
grained motion groups. This method outperforms the state
of the art clustering algorithm by 25% relatively.

(¢) 2D/3D longitudinal self-supervision (Sec[[V-C): Selecting
and accumulating accurate 2D keypoints via geometry con-
sistency to refine erroneous keypoints; Learning geometric
correspondence between 3D mean trajectories and individual
poses as a posterior to improve 3D reconstruction. The
continuous self-learning framework improves the accuracy of
detection and reconstruction by 16% using self-supervision
over long term videos.

We demonstrate the versatility and generalizability of our
approach using traffic videos of 78k frames captured by 18
single view fixed cameras at city intersections. The datasets
are from a variety of sources: (a) live YouTube cameras, (b)
our iPhone cameras, and (c) the AI City Challenge dataset
[12]. We also apply our method to traffic tasks such as
velocity estimation, anomaly detection and vehicle counting.
See supplementary video and the project webpage for
better visualizations of our results.

II. RELATED WORK

Single View Reconstruction: Many methods utilize Lidar
[13], [14], IMU [15], UAV [16] to acquire 3D information,
or deploy deep networks to infer 3D geometric properties
from RGB images, largely in a supervised manner [17], [18],
[1], [19]. For the pure RGB methods, obtaining 3D ground
truth in the wild is challenging. Further, deep models trained
on the subset of data do not generalize well. To address
these issues, shapes and poses are optimized with stronger
geometrical constraints instead of 3D labels. Works [20],
[2], [11], [21] build active shape models to optimize/retrieve
3D shapes from 2D images. Recent works [11], [20], [22]
enforce coplanar or pairwise distance constraints for short

term or local objects to resolve ambiguity in reconstruction.
All of these methods do not study long term temporal
consistency. As far as we know, our method is the first
to perform trajectory reconstruction using long term self-
supervision from a single 2D view.

Repetitious Activity Analysis: Multiple methods model rep-
etitious activity using dimensionality reduction [23], [24] and
clustering [25], [26]. Specific to modeling repetitious activity,
[27] proposed clustering vehicle trajectories using kernel
shrinkage. However, these previous methods are constrained
to 2D image trajectories and are not robust to noise. In
contrast, our method the first to uplift 2D vehicle trajectories
to 3D, resulting in strong separability of clusters in higher
dimensions and achieving state of the art accuracy.
Self-Supervision in the Wild: Supervised methods require
large amount of labels and are sensitive to training data.
To circumvent these issues, the community has collec-
tively proposed many weakly supervised or self-supervised
methods with automatic supervisory signals such as shape
symmetry [28], [29], [30] and style consistency [31], [32].
In addition, many works [33], [34], [35] utilize alignment
between frames to learn optical flow; [6], [36] detect and
reconstruct objects based on their motion over frames. All
these supervisions come from short intervals such as a few
frames or seconds. But in this paper we argue long term
consistency can be a strong supervisory signal and propose
longitudinal self-supervision to improve the accuracy of
detection and reconstruction simultaneously.

III. BACKGROUND

Here we introduce the notation, 3D shape representation
and motion model as preliminaries to our approach.
Notation used in the paper: We use three coordinate
systems, i.e. camera, world and map coordinates as shown in
Fig.[3] The camera coordinate is defined with origin at focal
point, XY parallel to image plane; while in world coordinate



XY is the ground plane and Z axis points upwards. The two
coordinate systems are associated by a rigid transform. In
world coordinate each object’s trajectory is represented with
X,y as we assume coordinate z to be constant with a planar
ground. Finally, we have a map coordinate system consistent
with Google maps. The transform from world coordinates
to map coordinates involves rotation, translation, and scaling
that are estimated using annotated landmarks on input image
and Google map (represented as yellow crosses in Fig. [3).
Each new camera only needs these annotations for our 4D
automatic self-supervision pipeline.

We refer to each object’s appearance in one frame as an
instance. For a video of M frames, a total of N unique objects
are captured with J keypoints for each instance. Pff,)n ; and
Pnm,j denotes the 3D position (in camera coordinates) and
2D position (in image coordinates) of the j-th keypoint of
the n-th instance in m-th frame, res%)ectively. Each instance’s
rotation and translation vector (r,,%, tslf,)n) are in camera
coordinates, while (r%)l, tﬁm) are in world coordinates. 7(-)
is the 3D-to-2D camera projection and n(") TMx 4Ny +
n3z+ N4 = 0 is the ground plane in camera coordinates.
3D Shape Model: We parameterize the object 3D key-
points by an active shape model [21] to regularize shape
optimization. The mean shape Q of all object models, and
their principle components Qy, ..., Qg are computed from an
object CAD model dataset [37]. Then each object’s actual
shape X, is formulated as linear combination of mean shape
with the top K principal components: X, = Q—i—):,’f:l 0 1 Qx,
where «, is the shape coefficient vector that needs to be
estimated in the later optimization stage. For each object,
we track it over time and enforce the shape parameter «, to
be constant for its instances in different frames.

3D Trajectory Model: We use an /-th order polynomial as
analytic model to fit each object’s 3D motion. For simplicity,
we convert all the poses into world coordinate so only the
motion in x,y direction needs to be considered. The trajectory

of the n-th object £ = [ 7)) is parameterized as

f,(,ffc)(t):ahth+...+a2t2+a1t+ao (D
i) (6) = bt" + ..+ bot> + byt + by )
where ¢, = [ay, . ..,a0,by,...,bo]" denotes the parameters to

solve and ¢ represents the time-stamps in video. t = m —my
for the object in frame m with first appearance in frame my,
so all objects are aligned temporally. We observed that in
most of the experiments, 7 = 3 fits the model well (turns,
including U-turns, and lane changes) but higher order may
be necessary for rare complex motions.

The reconstructed object poses (from Sec [[V-A)) are used

to solve ¢, by minimizing ¢, loss. In frame m, the coordinate
fﬁlw,,), and tangent Vfﬁ,tv,,), predicted by ¢, should be close to the

reconstructed pose (t,(ltv,,)l, rﬁlw,,),) in XY plane. We convert both

Vf,(qfv,,)q, r%l into direction vector denoted as u(-). We also add

regularizing terms for third order coefficients.

3D mean shape@

camera intrinsic 7(-)
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Fig. 3: 3D reconstruction coordinate frames. Vehicle 3D
keypoints are computed in camera coordinates. The world
coordinate is defined with XY as the ground plane, in which
we perform analytic model fitting and repetitious activity
clustering. Map coordinates are defined based on Google
maps, whose XY plane is also the ground. This is used
to estimate real-world location and speed. Yellow cross
landmarks transform world to map coordinates.
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where B, B2, B3 are weight coefficients for the loss terms.

IV. SELE-SUPERVISED 4D RECONSTRUCTION

In this section, we explain our approach to utilize longitu-
dinal consistency in repetitious vehicular activity for accurate
4D reconstruction. Fig. 2] shows the overall pipeline with the
three stages described below.

A. Joint Optimization For Longitudinal Reconstruction

We propose to jointly optimize for the shape and pose
of objects moving in the scene over long durations of time.
We show clear improvement in reconstruction accuracy com-
pared to previous proposed methods, which either optimize
for shape or pose over short durations (few consecutive
frames) [11], [21]. Specifically, exploiting rigidity over con-
secutive frames and a constant ground plane constraint show
that our joint reconstruction outputs are more accurate and
consistent compared to previous state of the art methods.
Pose Initialization: We use HRNet [38] to detect 2D
bounding boxes and keypoints for objects in each frame. We
pass these detections into a Visual Intersection-Over-Union
(V-IOU) multi-object tracker [39]. We enforce each object
is rigid over frames using the tracking ids. Then, the 3D
rotation and translation is initialized using RANSAC based
EPnP to account for inaccurate keypoints from detector.
Joint Optimization over all Objects: The 3D keypoint
locations n at frame m can be computed from the shape

model parameterized by o, with object pose (r;f,)n,t,(f,)n) as:

K
Pl =RO(Q+ Y 0Qp) + 5 )
k=1



where Rﬁfz,, is the rotation matrix from r,(f,)n We need to

optimize the shape coefficients vector o, and pose (r,(f,),,, tﬁ,‘),,)
jointly for all the vehicles in all the frames. We exploit
the following geometric constraints to enforce the joint
consistency in reconstruction over long term.

(1) Reprojection loss: the error between the projection of

each object’s 3D keypoints and its respective 2D detections.

— (c) 2
Z’el’ - Z“l”(Prz,m,j) - pn,m,j” (5)
nm, j

(2) Joint planar loss: This loss constrains all the vehicles
in the long-term video to be as close as possible to a
ground plane. We formulate this error as the squared distance
in camera coordinates between the vehicle’s bottom center
9 =[P ° ©) 1T (center of the rectangle

nmsfp L m x0T num, fip,y? T nam, 2 g
formed by joining wheel centers) and the ground plane 11(").

A S v
ZLpla = Z 2 22 ©)
nm ni+n;+n;

We solve «, rg,c,)n Ef,),, and n(c> by minimizing the

two losses via Levenberg-Marquardt optimization: %, =
Y1Lrep +V2-ZLpia » Where ¥1, 7 are the weights of correspond-
ing loss terms.

B. Scene-Specific Repetitious Activity Clustering

Capturing repetitious motion patterns over a long duration
plays an important role in deciphering higher level semantics
of the environment. We observe and demonstrate using
experiments that such higher order semantics are much more
distinguishable in 3D compared to 2D [40], [27]. Thus, we
first fit a polynomial model to each object’s 3D poses to
suppress noise and reduce data dimension as described in
Section Then, the trajectory parameters are clustered
hierarchically and projected to subspaces with good cluster-
separability using a novel scene-specific clustering approach.
Hierarchical Scene-Specific Clustering: Repetitious activ-
ity, like vehicles moving in the same lanes every day, can
be used as a signal for supervision. The method proposes
using additional scene specific constraints for clustering such
activity. We illustrate this with an example of separating the
vehicles into lane-specific activity as shown in Fig. ] We
face two challenges here: (a) vehicles on different lanes can
be close to each other (see blue and purple lines in Fig. ) and
(b) trajectories of the same lane have different shapes and
positions. The issues are further exaggerated by imperfect
tracklets and keypoints.

We solve these issues with a hierarchical approach. First,
we directly cluster trajectory parameters using a Gaussian
Mixture Model. We observe vehicles in different directions
are in different clusters (orange in Fig. ), but lanes in the
same direction (blue and purple) cannot be distinguished.

Thus, in the second stage of the hierarchy, our observation
is that each sub activity will have a scene-specific dominant
direction that can be used to cluster. For this, we find
a direction to project trajectories belonging to the same
initial cluster from 2D to 1D. We define the direction of a
trajectory as the vector between its starting and ending points

average
direction ™

Fig. 4: Demonstration of our hierarchical clustering in birds-
eye view. Left: First stage clusters and the average direction
of the blue cluster. Right: Second stage clustering. Tra-
jectories are projected along their average direction, max-
imizing the spatial difference between near clusters. The
blue trajectories from left are projected onto axis b and
are distinguished very well into two clusters, while they are
almost overlapped on axis a.

At ing, maxs, = tnmaxi, — Yy ming,» and the average direction
in each cluster i from the first stage is computed among all
N; objects as p; = Nil_):n L [Pix:Piy,0]7. Then
each trajectory is projected along the average direction as:

o O P () piy
hlt) = o]

n

which is still an h-order polynomial with ¢, = [app;. +
bhp,-,y,...,aopi’erbop,-J]T as coefficients. In Fig. axis a
is the average direction. Blue and purple trajectories are
projected along axis a to axis b. We notice the overlapping
between the two lanes is mostly eliminated, so they become
easily distinguishable. Our method is unsupervised and takes
scene-specific information (say, the geometry of traffic lanes)
into account to maximize the separation between similar
clusters (lanes). For each fine-grained cluster, we then save
the average of the parameters of all trajectories.

)

C. 2D and 3D Longitudinal Self-Supervision

Humans generally improve their cognitive skills from
observations and repetitious behaviors generally reinforce
inference. Inspired from human cognition, we propose self-
improvement in detection both in 2D and 3D using the
clustered mean shapes. These mean shapes act as anchors
for any new observation and show a clear improvement in
detection in 2D and 3D over passage of time as shown later
in the results.
2D Longitudinal Self-Supervision: Learning-based detec-
tors produce precise as well as erroneous keypoints. We
would like to use the accurate detections to improve the
badly localized keypoints. We distinguish the good ones from
the erroneous by using a threshold &, on the reprojection
error. All the inliers below the threshold are considered as
2D experts and integrated into a 2D expert pool.

Each instance above the threshold is considered erroneous
and needs to be refined. To refine each erroneous instance,
it is necessary to retrieve a 2D expert from the expert pool
with a similar shape as the instance. Since the camera is



fixed and object motion is constrained, we can assume that
objects with bounding boxes of similar size and location tend
to have similar 3D shapes and pose, so we extract temporal
bounding boxes as the feature for matching. For an instance
at frame m, we concatenate its 2D bounding box’s 4 corner
coordinates from frame m —k to m+k as the feature for
retrieval. Similar features for all 2D experts are stored for
matching. The erroneous instance finds its guiding 2D expert
from the expert pool by minimizing ¢, distance of bounding
box features using the nearest neighbor algorithm.

Two vehicles having similar bounding box features need
not be perfectly aligned in 3D, so we transform the bounding
box and keypoints to overlap between instance and the
2D expert. We optimize for scale sﬁ,% and translation tEf,Z,
from the 2D expert bounding box f)n,m to the instance

bounding box b, ,, = SS,{’,LIA),W +t,(llf,),,. Then the optimized
transformations sgf,)n, tgf,)n are applied to the 2D expert’s

keypoints. If the distance between the transformed expert
keypoint and the instance keypoint is above a threshold, the
instance keypoint is considered as misclassified and updated
with the expert keypoint.

3D Longitudinal Self-Supervision: We use 3D mean tra-
jectories learned from repetitious activity clustering as our
3D experts. Since 3D experts represent the typical motion
over a long duration, they act as a strong regularization to
refine erroneous 3D poses. To refine each 3D pose, we find
a correspondence between the estimated 3D pose and the 3D
experts for supervision.

For each object, we first find out from all the 3D experts,
the one most similar to the object’s motion. Considering
the object’s pose tﬁf,)n, rg,f)n in frame m and the 3D expert
of one specific cluster, we find a point f,(f,)n on the 3D
expert minimizing its distance to the object position tslc,),, We
compute the Chamfer distance from this object’s trajectory
to the 3D expert as the sum of such distance over all frames
where this object appears: d cram = Z,,,Htﬁfr)n - fﬁ,c,)nH From
3D experts of different clusters, we select the one with the
minimal Chamfer distance to the object’s trajectory.

If the selected 3D expert’s Chamfer distance is less than
a threshold &, it is used to refine the object pose. For the
pose tS,Lr),,, rE,L,),, in frame m, we find its closest point fﬁf,),, on
the 3D expert when calculating Chamfer distance. f‘,(f,)n is the
tangent direction of the 3D expert at fﬁf,)n We propose the 3D
longitudinal loss to learn correspondence between individual
pose and 3D experts by minimizing

Lromg = Balltih —h >+ Bs e — B0l (®)

where B4 and P are coefficients. We add this longitudinal
loss term and refine the 3D reconstruction by optimizing
Z‘efine =" ﬂep + y2$pla + YSﬁong-

V. EXPERIMENTAL EVALUATION

We evaluate our approach on two datasets captured at
intersections by stationary cameras with various view angles,
vehicle motions, and scene appearances. A new dataset
captured by us named TRAFFIC4D, and a public dataset Al

City Challenge [12] have been used in all experiments. We
compare our method with other benchmarks and analyze how
2D and 3D longitudinal self-supervision improve reconstruc-
tion accuracy. We compare our repetitious activity clustering
accuracy with the state of the art to show the advantage of
using scene-specific clustering. We also demonstrate appli-
cation to traffic tasks such as velocity estimation, anomaly
analysis and vehicle counting.

A. Datasets

TRAFFIC4D Dataset: This is a novel dataset proposed in
the paper to analyze data at intersections over a long duration.
It includes 10 videos (70k frames) obtained from multiple
sources: 3 live YouTube streams from static cameras and 7
views captured by iPhone 6 fixed on tripods. This dataset
is divided into 3 stereo pairs and 4 single view videos. The
stereo pairs were captured to evaluate the accuracy of 3D
reconstruction. We sampled frames from the stereo pairs
and computed 3D keypoints locations using the triangulation
of manually annotated 2D keypoints. We also annotate the
ground truth trajectory clusters.

Al City Challenge Dataset: There are few public datasets
for fixed camera reconstruction. Track 1 of Al City Challenge
2019 [12] has 5 monocular camera sets, two of them taken
at intersections with enough traffic, so we choose these two
sets having 8 cameras, 8k frames in total, each captured
for around 5 minutes. The ground truth trajectories are
manually annotated and projected on to 3D ground plane
using homography. The reconstructed vehicles should lie on
or close to these annotated trajectories and are used as metric
for evaluating the reconstruction.
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Fig. 5: Accuracy of reconstruction with respect to varying
window size (&) on TRAFFIC4D stereo pairs. Left and right
are keypoints projected to the second view of stereo and
reconstructed in 3D respectively. “Recon” indicates using
our joint optimization for reconstruction. Note that longi-
tudinal self-supervision (denoted L2D, L3D) consistently
outperforms other baselines. Averaging over o = [0.05,0.3],
v2/3D PCK shows 35%/53% relative and 16%/12% absolute
improvement over the nearest baseline.

B. Evaluation Metrics and Baseline Methods

CarFusion dataset [41] is used to pretrain our 2D key-
point detector [38]. Then we run the detector and perform
reconstruction, clustering, and longitudinal self-supervision
on the two evaluation datasets without using any ground truth
annotations. Note that the appearance and view angle of the
evaluation datasets and Carfusion are quite different.
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Fig. 6: Examples of keypoint refinement via 2D longitudinal
self-supervision. First row: Visualization of 2D experts. The
heatmaps show frequency of 2D experts being used to refine
other instances. 2D experts are used mostly at image border,
occluded or far away places. The vehicle patches show
the top three nearest neighbors retrieved from expert pool
(good keypoints predicted by initial detector), which have
very similar shape and pose to the refined instance; Second
row: Initial erroneous keypoints from detector; Third row:
Refined keypoints after 2D longitudinal self-supervision.
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Fig. 7: The plot depicts PCK-a accuracy improving over
time by using longitudinal self-supervision. We observe 11%
absolute and 16% relative improvement in average accuracy
of 3D reconstruction and detections over stereo cameras
(left) in TRAFFIC4D dataset with 18 minutes of continuous
learning. Here, at time zero we use an off-the-shelf detector,
while at 18 minutes we use a retrained detector from longi-
tudinal self-supervision. We observe similar accuracy boost
in the single view cameras (right) of TRAFFIC4D dataset.

We analyze the accuracy of our reconstruction by using
metrics both in 2D and 3D. We use 3D-PCK (Percentage
of Correct Keypoints) [42] between our 3D reconstructed
keypoints and 3D ground truth keypoints for evaluating the
reconstruction. We further evaluate the reconstruction by
comparing the reprojection of keypoints onto the stereo pair
with ground truth using 2D-PCK. According to the PCK
metric, a keypoint is considered correct if it lies within
the radius aL of the ground truth. Here L is defined as
the maximum length and width of the bounding box and
0 < a < 1. For data without stereo, we compare 3D poses

with the annotated ground truth trajectory using the A3DP
metric [11]. For each reconstructed pose, we find its nearest
point on the ground truth trajectory. This nearest point’s
location and the tangent direction are used as ground truth
translation and rotation. As in [11], the criteria for judging
a true positive is that both the rotation and translation
differences lie within a threshold.

For reconstruction comparisons, we use two state of the
art methods i.e. Apollo3D [11] and Occnet [21]. To make
a fair comparison, we use HRNet as the common backbone
for all the approaches. These methods act as strong baselines
to evaluate the 3D and 2D pose reconstruction of objects.

For clustering, we compare with multiple state of the art
2D trajectory clustering methods i.e. AMKS [27], MS [40],
MBMS [43]. We further extend these methods to 3D for a fair
comparison with our method. For 2D we keep the algorithms
unchanged and use each vehicle’s bounding box center
trajectory as input; For 3D we feed 3D trajectories given by
Sec to all the algorithms. We report the proportion of
correctly clustered trajectories metric to evaluate our method
as proposed in [27].

C. Accuracy Analysis

Reconstruction Analysis: Fig. [5| compares reconstruction
on the stereo pairs of TRAFFIC4D. We observe higher
PCK accuracy compared to [21] and [11] in 2D and 3D.
Specifically, when no longitudinal self-supervision is used,
our second view (v2) and 3D PCK are significantly higher
than the others, indicating our reconstruction is more con-
sistent in 3D. We emphasize that the global co-planar loss
contributes to the improvement in reconstruction accuracy as
it regularizes all the vehicles’ poses in the video for better
spatial consistency. Moreover, our method achieves better
accuracy after 2D and 3D longitudinal self-supervision.
Fig. [f] plots keypoint refinement results of 2D longitudinal
self-supervision. The heatmaps illustrate that 2D experts
supervise most frequently at image borders, occluded places,
or positions far from the camera as expected from failures
from the initial detector. For each instance, the three nearest
neighbor experts (vehicles with accurate keypoints predicted
from original detectors) are visualized. We notice the same
vehicle correctly detected at neighbor frames or a different
vehicle with a similar appearance from a different time in-
stance are used as experts. Observe that the retrieved experts
have accurate shape ensuring the success of longitudinal
learning. Table |I] shows improvement on A3DP for our
method compared to baselines on SO1 and SO2 sets of Al
City dataset. Similar to Fig.[5] adding 2D and 3D longitudinal
self-supervision improves A3DP as well.
Accuracy vs. Video Length: The key idea of longitudinal
self-supervision is to accumulate information over time, so
the duration of the video being used is a critical parameter
affecting keypoint accuracy. For each sub-sequence split
based on time specified, we construct the 2D expert pool and
3D experts from it and use them to refine over keypoints
on the complete sequence. Fig. [/| left illustrates the effect
on reconstruction accuracy for varying sub-sequence length



TABLE I: Comparing to state of the art trajectory reconstruc-
tion methods on Al City dataset using A3DP metric. "Mean”,
”c-1”, and c-s” denote mean, loose and strict criteria with
different thresholds relative ("Rel”) to depth [11]. Traffic4D
shows an average improvement of 14.62%(in absolute terms)
and 34.2% (in relative terms) compared to [11] on both
sequences, without any manual supervision.

SOT S02
Method L2D  L3D A3DP-Rel A3DP-Rel
mean(in %) c-I(in %) c-s(in %) mean(in %) c-I(in %) c-s(in %)

OccNet [21] 9.30 45.44 8.90 12.21 51.54 6.98
Apollo [11] 2491 43.14 25.72 31.14 53.72 31.00

Traffic4D 28.03 47.55 24.84 41.04 63.86 44.68

Traffic4D v 33.11 57.49 30.96 44.27 63.90 46.99

Traffic4D v v 3942 63.88 40.16 45.86 65.59 47.11

TABLE II: Comparing the accuracy of TRAFFIC4D clus-
tering algorithm with previous clustering methods MS [40],
MBMS [43], AMKS [27]. The metric used is proportion of
correctly clustered trajectories (higher is better). “2D” means
clustering on trajectories using bounding box centers in im-
age; “3D” means clustering on 3D trajectories reconstructed
by our approach. We observe that using our hierarchical
clustering algorithm improves the accuracy of clustering by
14.79% (in absolute terms) and 19.76% (in relative terms)
with respect to current state of the art (3D AMKS).

Seq 2D 2D 2D 3D 3D 3D

No. MS MBMS  AMKS MS MBMS  AMKS | Traffic4D
001 | 57.32 63.59 66.10 | 75.31 66.10 73.22 90.37
002 | 60.68 59.83 60.68 64.10 76.92 83.76 82.05
003 | 48.18 52.27 4954 | 62.27 61.36 66.81 90.90
004 | 59.32 41.04 66.04 | 68.28 79.85 75.74 93.28
005 | 51.73 53.06 54.40 | 56.00 56.53 68.00 86.67
006 | 68.07 67.60 69.95 64.78 63.85 67.14 85.44
007 | 62.20 64.56 66.14 | 75.59 71.65 84.25 91.34
008 | 41.44 4775 49.55 | 45.05 45.95 58.55 91.89
009 | 57.89 63.90 67.66 | 73.30 78.19 83.08 86.09
010 | 60.16 62.60 65.85 | 75.61 73.17 77.24 85.36

on TRAFFIC4D dataset stereo cameras. We observe a clear
increase in accuracy with an increase in sub-sequence length
illustrating that longitudinal supervision enhances the recon-
struction accuracy. The accuracy converges after a specific
duration of time emphasizing that the activity clustering
for the sequence has been learned. We observe similar
improvements in PCK accuracy on single view cameras as
shown on the right in Fig. [7}

Repetitious Activity Clustering Analysis: Table |lI| reports
the proportion of correctly clustered trajectories in each
video of TRAFFIC4D dataset. Notice that 3D clustering
outperforms 2D in all the videos and our method achieves the
highest accuracy in most sequences. The reason is trajectories
in the same direction but belonging to different lanes look
quite near each other if they are distant or the camera looks
straight forward, while 3D clustering eliminates the view
angle and perspective effect by converting them to 3D.

D. Applications

(1) Vehicle velocity estimation and activity visualization:
Vehicle activity reconstruction provides insights into driving
behavior by estimating real world speeds. Each vehicle’s
velocity vector in world coordinates is obtained from tra-

A(w)
jectory taking time derivative: v%) (t) = dt";i—xl(t), v,(,tvy) (1) =

Mean Traj. Reconstruction Keypoints

Mean Vel.

1w 8o 1w 8o

02 o4 06 o8 10
Normalized Time (Current TimeTotai Time)

AI City S01_c001

02 04 06 o8
Normalized Time (Current Time/Total Time)
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02 o4 06 o8
Normalized Time (Current Time/Total Time)

TRAFFIC4D Seq 009

Fig. 8: The keypoints (first row) and 3D reconstructions
overlaid on Google map (second row) at different times, as
well as 3D mean trajectories (third row) and velocities of
the mean trajectories (fourth row) for three intersections.
These mean trajectories represents typical vehicle motions
and are used for 3D longitudinal self-supervision.
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Fig. 9: Automatic anomaly detection. The plot shows differ-
ent anomalies like vehicles making forbidden left turn (Left
column), sudden stop in near collision (Right column) using
our method. Last row shows the anomaly’s log likelihood
(red/green lines, p represents the probability) is much lower
than the normal trajectories (blue bars) in the cluster.
a0 .

—— Fig. 8| shows the accurate reconstruction results of
individual vehicles, 3D mean trajectories and speed profile
after longitudinal self-supervision.



(2) Anomaly analysis: As an application of our model,
vehicular anomalies can be identified. The log likelihood
of a trajectory belonging to a specific cluster is obtained
by sampling from the corresponding Gaussian component
in the clustering model. The trajectory is considered as an
anomaly if its likelihoods are lower than a threshold in all the
clusters. Compared to previous anomaly detection methods
purely in 2D, the 3D anomaly trajectory also reveals the
anomaly vehicle’s position and velocity in 3D real world.
Fig. O] shows the trajectories and likelihood of anomalies.
(3) Vehicle counting: The number of vehicles in each
direction and lane is counted based on cluster ids. The
supplementary video and webpage show the results.

VI. CONCLUSION AND FUTURE WORK

We proposed a novel approach to reconstruct repetitious
vehicular activity in 4D from a single view using longitudinal
self-supervision. Our algorithm takes as input off-the-shelf
2D keypoint detections, optimizes 3D vehicle poses and
clusters their motion in 3D space. The accumulated 2D
keypoints and trajectory clusters are then used to refine the
2D and 3D keypoints without any human annotation. Ex-
perimental results show our self-learning framework greatly
improves the accuracy of detection and reconstruction on
long term testing videos unseen by the detector. In the future,
longitudinal self-supervision could be extended to people
or robot activity reconstruction with analogous keypoint
detectors and geometric constraints.
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