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Abstract

Generative modeling has recently shown great promise in computer vision,
but it has mostly focused on synthesizing visually realistic images. During
my graduate study and research, motivated by multi-task learning of
shareable feature representations, we consider a novel problem of learning
a shared generative model that can facilitate multi-task visual learning.

We first start with a simple problem setting— learning a generative model
for the joint task of few-shot recognition and novel-view synthesis: given
only one or few images of a novel object from arbitrary views with only
category annotation, we aim to simultaneously learn an object classifier
and generate images of that type of object from new viewpoints. We
focus on the interaction and cooperation between a generative model and
a discriminative model, in a way that facilitates knowledge to flow across
tasks in complementary directions. To this end, we propose bowtie net-
works that jointly learn 3D geometric and semantic representations with a
feedback loop. Experimental evaluation on challenging fine-grained recogni-
tion datasets demonstrates that our synthesized images are realistic from
multiple viewpoints and significantly improve recognition performance as
ways of data augmentation, especially in the low-data regime.

Then, we further extend the bowtie network and propose a general multi-
task oriented generative modeling (MGM) framework, by coupling a
discriminative multi-task network with a generative network. While it is
challenging to synthesize both RGB images and pixel-level annotations
in multi-task scenarios, our framework enables us to use synthesized
images paired with only weak annotations (i.e., image-level scene labels)
to facilitate multiple visual tasks. Experimental evaluation on challenging
multi-task benchmarks, including NYUv2 and Taskonomy, demonstrates
that our MGM framework improves the performance of all the tasks
by large margins, consistently outperforming state-of-the-art multi-task
approaches.
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Chapter 1

Introduction

Seeing with the mind’s eye — creating internal images of objects and scenes not

actually present to the senses, is perhaps one of the hallmarks in human cognition [63].

For humans, this visual imagination integrates learning experience and facilitates

learning by solving different problems [21, 22, 62, 63]. We argue that achieving

similar level of generalization is a crucial but important problem for machine vision.

Therefore, during my graduate research and study, we aim to achieve similar level of

generalization for machine vision— learning a shared generative model that is useful

for different visual tasks. We first start with a simple problem: introducing generative

modeling to facilitate the simple recognition task. Then we further considered learning

a shared generative model for multiple visual tasks. In the following sections, we will

further explain the motivations and our attempts for these two problems.

1.1 Generative Modeling for Joint

View-Synthesis and Recognition

Given a never-before-seen object (e.g., a gadwall in Figure 1.1), humans are able

to generalize even from a single image of this object in different ways, including

recognizing new object instances and imagining what the object would look like

from different viewpoints. Achieving similar levels of generalization for machines is a

fundamental problem in computer vision, and has been actively explored in areas such

1
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𝑇ℎ𝑖𝑠 𝑏𝑖𝑟𝑑 𝑖𝑠
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Figure 1.1: Left: Given a single image of a novel visual concept (e.g., a gadwall), a
person can generalize in various ways, including imagining what this gadwall would
look like from different viewpoints (top) and recognizing new gadwall instances
(bottom). Right: Inspired by this, we introduce a general feedback-based bowtie
network that facilitates the interaction and cooperation between a generative module
and a discriminative module, thus simultaneously addressing few-shot recognition
and novel-view synthesis in the low-data regime.

as few-shot object recognition [24, 25, 80, 89, 90] and novel-view synthesis [54, 60, 79].

However, such exploration is often limited in separate areas with specialized algorithms

but not jointly.

We argue that synthesizing images and recognizing them are inherently inter-

connected with each other. Being able to simultaneously address both tasks with

a single model is a crucial step toward human-level generalization. This requires

learning a richer, shareable internal representation for more comprehensive object

understanding than it could be within individual tasks. Such “cross-task” knowledge

becomes particularly critical in the low-data regime, where identifying 3D geometric

structures of input images facilities recognizing their semantic categories, and vice

versa.

Inspired by this insight, here we propose a novel task of joint few-shot recognition

and novel-view synthesis: given only one or few images of a novel object from arbitrary

views with only category annotation, we aim to simultaneously learn an object classifier

and generate images of that type of object from new viewpoints. This joint task is

challenging, because of its (i) weak supervision, where we do not have access to any

3D supervision, and (ii) few-shot setting, where we need to effectively learn both 3D

geometric and semantic representations from minimal data.

While existing work copes with two or more tasks mainly by multi-task learning

or meta-learning of a shared feature representation [38, 104, 106], we take a different
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CHAPTER 1. INTRODUCTION

perspective in this paper. Motivated by the nature of our problem, we focus on the

interaction and cooperation between a generative model (for view synthesis) and a

discriminative model (for recognition), in a way that facilitates knowledge to flow

across tasks in complementary directions, thus making the tasks help each other. For

example, the synthesized images produced by the generative model provide viewpoint

variations and could be used as additional training data to build a better recognition

model; meanwhile, the recognition model ensures the preservation of the desired

category information and deals with partial occlusions during the synthesis.

To this end, we propose a feedback-based bowtie network (FBNet), as illustrated

in Figure 1.1. The network consists of a view synthesis module and a recognition

module, which are linked through feedback connections in a bowtie fashion. This

is a general architecture that can be used on top of any view synthesis model and

any recognition model. The view synthesis module explicitly learns a 3D geometric

representation from 2D images, which is transformed to target viewpoints, projected

to 2D features, and rendered to generate images. The recognition module then

leverages these synthesized images from different views together with the original

real images to learn a semantic feature representation and produce corresponding

classifiers, leading to the feedback from the output of the view synthesis module to the

input of the recognition module. The semantic features of real images extracted from

the recognition module are further fed into the view synthesis module as conditional

inputs, leading to the feedback from the output of the recognition module to the input

of the view synthesis module.

One potential difficulty, when combining the view synthesis and the recognition

modules, lies in the mismatch in their level of image resolutions. Deep recognition

models can benefit from high-resolution images, and the recognition performance

greatly improves with increased resolution [7, 31, 92]. By contrast, it is still challenging

for modern generative models to synthesize very high-resolution images [52, 69]. To

address this challenge, while operating on a resolution consistent with state-of-the-art

view synthesis models [52], we further introduce resolution distillation to leverage

additional knowledge in a recognition model that is learned from higher-resolution

images.

We further evaluate our method in several standard datasets. The proposed FBNet

significantly improves both view synthesis and recognition performance, especially in

3
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Multi-task 
Model

Semantic
segmentation

Surface
Normal

Depth 
Estimation

(Other Visual Tasks)

Multi-task 
Model

Generative 
Model

(a) Traditional multi-task framework (b) Multi-task oriented generative modeling
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Figure 1.2: Left: Traditional multi-task learning framework (that learns shared
feature representations) vs. Right: our proposed multi-task oriented generative
modeling (that learns a shared generative model across various visual perception
tasks)

the low-data regime, by enabling direct manipulation of view, shape, appearance, and

semantics in generative image modeling.

1.2 Generative Modeling for Multi-Task Visual

Learning

Human beings can generalize from a single image in different ways. Inspired by such

ability, there has been increasing interest in building generative models that can

synthesize images [28]. Yet, most of the effort has focused on generating visually

realistic images [6, 110], which are still far from useful for machine perception

tasks [5, 77, 96]. Even though recent work has started improving the “usefulness”

of synthesized images, this line of investigation is often limited to a single specific

task [54, 79, 81, 113]. Could we guide generative models to benefit multiple visual

tasks?

While similar spirits of shared feature representations have been widely studied

as multi-task learning or meta-learning [25, 106], here we are taking a different

perspective — learning a shared generative model across various tasks (as illustrated

in Figure 1.2). Leveraging multiple tasks allows us to capture the underlying image

generation mechanism for more comprehensive object and scene understanding than

being done within individual tasks. Taking simultaneous semantic segmentation,

depth estimation, and surface normal prediction as an example (Figure 1.1), successful
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generative modeling requires understanding not only the semantics but also the 3D

geometric structure and physical property of the input image. Meanwhile, a learned

common generative model facilitates the flow of knowledge across tasks, so that

they benefit one another. For instance, the synthesized images provide meaningful

variations in existing images and could be used as additional training data to build

better task-specific models.

We thus explore multi-task oriented generative modeling (MGM), by coupling a

discriminative multi-task network with a generative network. To make them cooperate

with each other, a straightforward solution would be to synthesize both RGB images

and corresponding pixel-level annotations (e.g., pixel-wise class labels for semantic

segmentation and depth map for depth estimation). In the single task scenario,

existing work trains a separate generative model to synthesize paired pixel-level

labeled data [13, 73] and produce an augmented set. However, the quality and

distribution of the generated annotations are not guaranteed. Moreover, these models

are still highly task-dependant, and extending them to multi-task scenarios becomes

difficult. A natural question then is: Do we actually need to synthesize paired image

and multi-annotation data to be useful for multi-task visual learning?

Our MGM addresses this question by proposing a general framework that uses

synthesized images paired with only weak annotations (i.e., image-level scene labels) to

facilitate multiple visual tasks. Our key insight is to introduce auxiliary discriminative

tasks that (i) only require image-level annotation or no annotation, and (ii) correlate

with the original multiple tasks of interest. To this end, as additional components

of the discriminative multi-task network, we introduce a refinement network and a

self-supervision network that satisfies these properties. Through joint training, the

discriminative network explicitly guides the image synthesis process. The genera-

tive network also contributes to further refining the shared feature representation.

Meanwhile, the synthesized images of the generative network are used as additional

training data for the discriminative network.

In more detail, the refinement network performs scene classification on the basis

of the multi-task network predictions, which requires only scene labels for images.

The self-supervision network can be operationalized on both real and synthesized

images without reliance on annotations. With these two modules, our MGM is

able to learn from both (pixel-wise) fully-annotated real images and synthesized

5
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(image-level) weakly labeled images. We instantiate MGM with the state-of-the-

art encoder-decoder based multi-task network [106], self-attention GAN [110], and

contrastive learning-based self-supervision network [8]. Note that our framework is

agnostic to the choice of these model components.

We evaluate our approach on standard multi-task benchmarks, including the

NYUv2 [51] and Taskonomy [106] datasets. Consistent with the previous work [82, 85],

we focus on three tasks of great practical importance: semantic segmentation, depth

estimation, and normal prediction. The evaluation shows that our MGM consistently

outperforms state-of-the-art multi-task approaches by large margins, almost reaching

the performance upper-bound that trains with weakly annotated real images. Finally,

we show the scalability of our approach to more visual tasks.

6



Chapter 2

Background

2.1 Few-Shot Recognition

Few-shot recognition is a classic problem in computer vision [24, 86]. Many algorithms

have been proposed to address this problem [25, 80, 89, 90], including the recent

efforts on leveraging generative models [12, 41, 42, 75, 83, 87, 91, 111, 112]. A

hallucinator is introduced to generate additional examples in a pre-trained feature

space as data augmentation to help with low-shot classification [91]. MetaGAN

improves few-shot recognition by producing fake images as a new category [112].

However, these methods either do not synthesize images directly or use a pre-trained

generative model that is not optimized towards the downstream task. By contrast,

our approach performs joint training of recognition and view synthesis, and enables

the two tasks to cooperate through feedback connections. In addition, while there has

been work considering both classification and exemplar generation in the few-shot

regime, such investigation focuses on simple domains like handwritten characters [38]

but we address more realistic scenarios with natural images. Note that our effort is

largely orthogonal to designing the best few-shot recognition or novel-view synthesis

method; instead, we show that the joint model outperforms the original methods

addressing each task in isolation.

7
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2.2 Novel-View Synthesis

Novel-view synthesis aims to generate a target image with an arbitrary camera pose

from one given source image [88]. It is also known as “multiview synthesis.” For

this task, some approaches are able to synthesize lifelike images [35, 54, 60, 79, 94,

95, 102, 103]. However, they heavily rely on pose supervision or 3D annotation,

which is not applicable in our case. An alternative way is to learn a view synthesis

model in an unsupervised manner. Pix2Shape learns an implicit 3D scene representa-

tion by generating a 2.5D surfel based reconstruction [68]. HoloGAN proposes an

unsupervised approach to learn 3D feature representations and render 2D images

accordingly [52]. Nguyen-Phuoc et al. [53] learn scene representations from 2D un-

labeled images through foreground-background fragmenting. Different from them,

not only can our view synthesis module learn from weakly labeled images, but it also

enables conditional synthesis to facilitate recognition.

2.3 Multi-Task Learning and Task Relationship

Multi-task learning (MTL) aims to leverage information coming from signals of

related tasks so that each individual task can gain benefit [18]. A lot of work

have been proposed to tackle this problem [36, 49, 58, 71, 98]. [71] identifies that

most recent works use two clusters of strategies for MTL: hard parameter sharing

techniques [18, 37, 65] and soft parameter sharing techniques [11, 49, 76]. These

strategies have achieved good performance for MTL with similar tasks. Researchers

have also carefully studied the task relationships among different tasks to make the

best cooperations among them.

Task relationships have also been studied [82, 106]. Taskonomy exploits the rela-

tionships among various visual tasks to benefit the transfer or multi-task learning [106].

[58] proposes a meta-learning algorithm to adapt existing models to zero-shot learning

tasks. [82] considers task cooperation and competition, and proposes a method to

assign tasks to a few neural networks to balance all of them. Some other following

works also explores task relationships among different types of tasks [2, 85, 107].

Some recent work investigates the connection between recognition and view

synthesis, and makes some attempt to combine them together [48, 74, 84, 91, 97, 99].

8
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For example, Xiong et al. [99] use multiview images to tackle fine-grained recognition

tasks. However, their method needs strong pose supervision to train the view synthesis

model, while we do not. Also, these approaches do not treat the two tasks of equal

importance, i.e., one task as an auxiliary task to facilitate the other. On the contrary,

our approach targets the joint learning of the two tasks and improves both of their

performance. Importantly, we focus on learning a shared generative model, rather

than a shared feature representation as is normally the case in multi-task learning.

2.4 Generative Modeling for Visual Learning

Besides the initial goal of synthesizing realistic images, some recent work has explored

the potential to leverage generative models to synthesize “usefull” images for other

visual tasks [78]. The most straightforward way is to generate images and the

corresponding annotations as data augmentation for the target visual task [3, 13, 73].

Besides, [91] proposes to generate imaginary latent features rather than images to

better benefit the low-shot classification. Another strategy to leverage generative

models is through well-designed error feedback or adversarial training [14, 46, 50].

There have been works that apply generative models for different visual tasks including

classification [27, 108, 113], semantic segmentation [46, 81] and depth estimation [1,

66]. These methods are limited to a single specific task and have relatively low

generalizability for more tasks. In comparison, MGM is applicable to various multiple

visual tasks and different generative networks.

2.5 Feedback-Based Architectures and Task

Model Learning

Feedback occurs where the full or partial output of a system is routed back into

the input as part of an iterative cause-and-effect process [26], have been recently

introduced into neural networks [4, 101, 105]. Compared with prior work, our FBNet

contains two complete sub-networks, and the output of each module is fed into

the other as one of the inputs. Therefore, FBNet is essentially a bi-directional

feedback-based framework which optimizes the two sub-networks jointly.

9
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Joint data augmentation and task model learning leverage generative networks to

improve other visual tasks [33, 47, 64, 109]. A generative network and a discriminative

pose estimation network are trained jointly through adversarial loss in Peng et al. [64],

where the generative network performs data augmentation to facilitate the downstream

pose estimation task. Luo et al. [47] design a controllable data augmentation method

for robust text recognition, which is achieved by tracking and refining the moving

state of the control points. Zhang et al. [109] study and make use of the relationship

among facial expression recognition, face alignment, and face synthesis to improve

training. Mustikovela et al. [50] leverage a generative model to boost viewpoint

estimation. The main difference from these work and our FBNet is that we focus

on the joint task of synthesis and recognition and achieve bi-directional feedback,

while existing work only considers optimizing the target discriminative task using

adversarial training or with a feedforward network.

2.6 Reduced-Supervision Methods

Recent works take advantage of weakly labeled data by assigning some self-created

labels (e.g.colorization, rotation, reconstruction) [8, 19, 56, 57, 61]. Similar self-

supervised techniques have been proved useful for multi-task learning [18, 40, 44,

70]. Among these techniques, a famous one is the Expectation-Maximization (EM)

algorithm [16], which leverages the information of weakly or unlabelled data by

iteratively estimating and refining their labels. [59] further applies EM algorithm for

semi-supervised semantic segmentation. We adopt a similar spirit and introduce the

refinement network for MGM framework.

10



Chapter 3

Feedback-Based Network

In this Chapter, we mainly describe the problem setting of the joint recognition and

view-synthesis and our approach, FBNet, for this problem. In Chapter 4, we will

further report and discuss our evaluation for this network.

3.1 Our Approach

3.1.1 Joint Task of Few-Shot Recognition and Novel-View

Synthesis

Problem Formulation: Given a dataset D = {(xi, yi)}, where xi ∈ X is an image

of an object and yi ∈ C is the corresponding category label (X and C are the image

space and label space, respectively), we address the following two tasks simultaneously.

(i) Object recognition: learning a discriminative model R : X → C that takes as

input an image xi and predicts its category label. (ii) Novel-view synthesis: learning

a generative model G : X × Θ → X that, given an image xi of category yi and an

arbitrary 3D viewpoint θj ∈ Θ , synthesizes an image in category yi viewed from

θj. Notice that we are more interested in category-level consistency, for which G

is able to generate images of not only the instance xi but also other objects of

the category yi from different viewpoints. This joint-task scenario requires us to

improve the performance of both 2D and 3D tasks under weak supervision without

any ground-truth 3D annotations. Hence, we need to exploit the cooperation between

11
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them.

Few-Shot Setting: The few-shot dataset consists of one or only a few images per

category, which makes our problem even more challenging. To this end, following the

recent work on knowledge transfer and few-shot learning [9, 30], we leverage a set of

“base” classes Cbase with a large-sample datasetDbase = {(xi, yi), yi ∈ Cbase} to train our

initial model. We then fine-tune the pre-trained model on our target “novel” classes

Cnovel (Cbase ∩ Cnovel = 0) with its small-sample dataset Dnovel = {(xi, yi), yi ∈ Cnovel}
(e.g., a K-shot setting corresponds to K images per class).

3.1.2 Feedback-Based Bowtie Networks

To address the joint task, we are interested in learning a generative model that can

synthesize realistic images of different viewpoints, which are also useful for building

a strong recognition model. We propose a feedback-based bowtie network (FBNet)

for this purpose. This model consists of a view synthesis module and a recognition

module, trained in a joint, end-to-end fashion. Our key insight is to explicitly

introduce feedback connections between the two modules, so that they cooperate

with each other, thus enabling the entire model to simultaneously learn 3D geometric

and semantic representations. This general architecture can be used on top of any

view synthesis model and any recognition model. Here we focus on a state-of-the-art

view synthesis model – HoloGAN [52], and a widely adopted few-shot recognition

model – prototypical network [80], as shown in Figure 3.1.

View Synthesis Module

The view synthesis module V is shown in the blue shaded region in Figure 3.1. It is

adapted from HoloGAN [52], a state-of-the-art model for unsupervised view synthesis.

This module consists of a generator G which first generates a 3D feature representation

from a latent constant tensor (initial cube) through 3D convolutions. The feature

representation is then transformed to a certain pose and projected to 2D with a

projector. The final color image is then computed through 2D convolutions. This

module takes two inputs: a latent vector input z and a view input θ. z characterizes

the style of the generated image through adaptive instance normalization (AdaIN) [34]

units. θ = [θx, θy, θz] guides the transformation of the 3D feature representation. This

12
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View Synthesis Module V

Initial Cube

Deconv 3D 3D Transformation Projection Deconv 2D

Generated Images

Real Images

Feature Extraction 
Network F

Latent Features

Prototypical Classification 
Network P

Black-footed 
Albatross

Predicted Label

𝜃 = [𝜃!, 𝜃", 𝜃#]

⊕ Noise Vector 𝑛

AdaIN AdaIN

Recognition Module R Real Features

Images of multiple views

Latent Vector 𝑓

Figure 3.1: Architecture of our feedback-based bowtie network. The whole network
consists of a view synthesis module and a recognition module, which are linked
through feedback connections in a bowtie fashion.

module also contains a discriminator D to detect whether an image is real or fake (not

shown in Figure 3.1). We use the standard GAN loss from DC-GAN [67], LGAN(G,D).

We make the following important modifications to make the architecture applicable

to our joint task.

Latent Vector Formulation: To allow the synthesis module to get feedback

from the recognition module (details are shown in Chapter 3.1.2), we first change

HoloGAN from unconditional to conditional. To this end, we model the latent input

z as: zi = fi ⊕ ni, where fi is the conditional feature input derived from image xi

and ni is a noise vector sampled from Gaussian distribution. ⊕ is the combination

strategy (e.g., concatenation). By doing so, the synthesis module leverages additional

semantic information, and thus maintains the category-level consistency with a target

image and improves the diversity of the generated images.

Identity Regularizer: Inspired by Chen et al. [10], we introduce an identity

regularizer to ensure that the synthesis module simultaneously satisfies two critical

properties: (i) the identity of the generated image remains when we only change the

view input θ; (ii) the orientation of the generated image preserves when we only change

13
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the latent input z, and this orientation should be consistent with the view input θ.

Specifically, we leverage an encoding network H to predict the reconstructed latent

vector z′ and the view input θ′: H(G(z, θ)) = [z′, θ′], where G(z, θ) is the generated

image. Then we minimize the difference between the real and the reconstructed

inputs as

Lidentity(G,H) = Ez‖z − z′‖2 + Eθ‖θ − θ′‖2. (3.1)

Here H shares the majority of the convolution layers of the discriminator D, but uses

an additional fully-connected layer.

Recognition Module

The recognition module R (green shaded region in Fig. 3.1) consists of a feature

extraction network F which transforms images to latent features, and a prototypical

classification network P [80] which performs the final classification. Below we explain

the design of these two components, focusing on how to address the technical challenges

faced by joint training with view synthesis.

Feature Extraction with Resolution Distillation: We use a ResNet [31] as

our feature extraction network F to transform images into latent features for the

recognition module. One of the main obstacles to combining F with the synthesis

module is that state-of-the-art synthesis models and recognition models operate on

different resolutions. Concretely, to the best of our knowledge, current approaches to

unsupervised novel-view synthesis still cannot generate satisfactory high-resolution

images (e.g., 224× 224) [52]. By contrast, the performance of current well-performing

recognition models substantially degrades with low-resolution images [7, 92]. To

reconcile the resolution incompatibility, we introduce a simple distillation technique

inspired by the general concept of knowledge distillation [32]. Specifically, we operate

on the resolution of the synthesis module (e.g., 64 × 64). But we benefit from an

additional auxiliary feature extraction network FhighR that is trained on high-resolution

images (e.g., 224 × 224). We first pre-train FhighR following the standard practice

with a cross-entropy softmax classifier [45]. We then train our feature extraction

network FlowR (the one used in the recognition module), under the guidance of FhighR
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through matching their features:

Lfeature(FlowR) = Ex‖FhighR(x)− FlowR(x)‖2, (3.2)

where x is a training image. With the help of resolution distillation, the feature

extraction network re-captures information in high-resolution images but potentially

missed in low-resolution images.

Prototypical Classification Network: We use the prototypical network P [80]

as our classifier. The network assigns class probabilities p̂ based on distance of the

input feature vector from class centers µ; and µ is calculated by using support images

in the latent feature space:

p̂c(x) =
e−d(P (FlowR(x)),µc)∑
j e
−d(P (FlowR(x)),µj)

, µc =

∑
(xi,yi)∈S P (FlowR(xi))I [yi = c]∑

(xi,yi)∈S I [yi = c]
, (3.3)

where x is a real query image, p̂c is the probability of category c, and d is a distance

metric (e.g., Euclidean distance). S is the support dataset. P operates on top of the

feature extraction network F , and consists of 3 fully-connected layers as additional

feature embedding (the classifier is non-parametric). Another benefit of using the

prototypical network lies in that it enables the recognition module to explicitly

leverage the generated images in a way of data augmentation, i.e., S contains both

real and generated images to compute the class mean. Notice that, though, the

module parameters are updated based on the loss calculated on the real query images,

which is a cross-entropy loss Lrec(R) between their predictions p̂ and ground-truth

labels.

Feedback-Based Bowtie Model

As shown in Figure 3.1, we leverage a bowtie architecture for our full model, where the

output of each module is fed into the other module as one of its inputs. Through joint

training, such connections work as explicit feedback to facilitate the communication

and cooperation between different modules.

Feedback Connections: We introduce two complementary feedback connections

between the view synthesis module and the recognition module: (1) recognition

output → synthesis input (green arrow in Figure 3.1), where the features of the
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real images extracted from the recognition module are fed into the synthesis module

as conditional inputs to generate images from different views; (2) synthesis output

→ recognition input (blue arrow in Figure 3.1), where the generated images are

used to produce an augmented set to train the recognition module.

Categorical Loss for Feedback: The view synthesis module needs to capture

the categorical semantics in order to further encourage the generated images to benefit

the recognition. Therefore, we introduce a categorical loss to update the synthesis

module with the prediction results of the generated images:

Lcat(G) = Eyi‖ − log(R(G(zi, θi)))‖, (3.4)

where yi is the category label for the generated image G(zi, θi). This loss also implicitly

increases the diversity and quality of the generated images.

Final Loss Function: The final loss function is:

LTotal = LGAN + Lrec + Lfeature + λidLidentity + λcatLcat, (3.5)

where λid and λcat are trade-off hyper-parameters.

Training Procedure: We first pre-train FhighR on the high-resolution dataset

and save the computed features. These features are used to help train the feature

extraction network FlowR through Lfeature. Then the entire model is first trained on

Cbase and then fine-tuned on Cnovel. The training on the two sets are similar. During

each iteration, we randomly sample some images per class as a support set and one

image per class as a query set. The images in the support set, together with their

computed features via the entire recognition module, are fed into the view synthesis

module to generate multiple images from different viewpoints. These synthesized

images are used to augment the original support set to compute the prototypes.

Then, the query images are used to update the parameters of the recognition module

through Lrec; the view-synthesis module is updated through LGAN, Lidentity, and Lcat.

The entire model is trained in an end-to-end fashion. Algorithm 1 shows the whole

training process.
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Algorithm 1 Training process of FBNet on base classes.

1: procedure Training on a minibatch
2: Initialization:
3: max it: Maximum iteration for the training
4: R: Recognition module
5: V : View synthesis module
6: F : Feature extraction network
7: Fhigh: Feature extraction network with
8: high-resolution images
9: G: Generator of view synthesis module
10: D: Discriminator of view synthesis module
11: n: Number of support images per class, n = 5
12: for iter ← 1 to max iter do
13: Ssupport = {}, Squery = {}, Saugmented = {}
14: for c ∈ Cbase do
15: support ims ← sample n images in c
16: query ims ← sample 1 image in c
17: Ssupport ← Ssupport∪ support ims
18: Squery ← Squery∪ query ims
19: end for
20: fhigh ← Fhigh(Ssupport ∪ Squery)
21: flow ← F (Ssupport ∪ Squery)
22: for img in Ssupport do
23: f = R(img)
24: z = f ⊕N
25: θ ← sample a view angle
26: img′ ← G(z, θ)
27: y = D(img)
28: [y′, z′, θ′] = D(img′)
29: LGAN(y, img, y′, img′)→ update G, D
30: Lid(z, θ, z′, θ′)→ update D
31: Saugmented ← Saugmented ∪ img′
32: end for
33: Swhole ← Ssupport ∪ Saugmented

34: Lrec(Swhole, Squery)→ update R
35: Lfeature(fhigh, freal)→ update F
36: Lcat(Ssupport, Saugmented)→ update G
37: end for
38: end procedure
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Chapter 4

Experimental Verification for

FBNet

4.1 Experimental Setting

Datasets: We focus on two datasets here: the Caltech-UCSD Birds (CUB) dataset

which contains 200 classes with 11,788 images [93], and the CompCars dataset which

contains 360 classes with 25,519 images [100]. These are challenging fine-grained

recognition datasets for our joint task. The images are resized to 64 × 64. We

randomly split the entire dataset into 75% as the training set and 25% as the test

set. For CUB, 150 classes are selected as base classes and 50 as novel classes. For

CompCars, 240 classes are selected as base classes and 120 as novel classes. Note

that we focus on simultaneous recognition and synthesis over all base or novel classes,

which is significantly more challenging than typical 5-way classification over sampled

classes in most of few-shot classification work [9, 80].

Implementation Details: We set λid = 10 and λcat = 1 via cross-validation.

We use ResNet-18 [31] as the feature extraction network, unless otherwise specified.

To match the resolution of our data, we change the kernel size of the first convolution

layer of ResNet from 7 to 5. The training process requires hundreds of examples

at each iteration, which may not fit in the memory of our device. Hence, inspired

by Wang et al. [91], we make a trade-off to first train the feature extraction network
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through resolution distillation. We then freeze its parameters and train the other

parts of our model.

Compared Methods: Our feedback connections enable the two modules to

cooperate through joint training. Therefore, to evaluate the effectiveness of the

feedback connections, we focus on the following comparisons. (1) For the novel-view

image synthesis task, we compare our approach FBNet with the state-of-the-art

method HoloGAN [52]. We also consider a variant of our approach FBNet-view,

which has the same architecture as our novel-view synthesis module, but takes the

constant features extracted by a pre-trained ResNet-18 as latent input. FBNet-

view can be also viewed as a conditional version of HoloGAN. (2) For the few-shot

recognition task, we compare our full model FBNet with its two variants: FBNet-rec

inherits the architecture of our recognition module, which is essentially a prototypical

network [80]; FBNet-aug uses the synthesized images from individually trained

FBNet-view as data augmentation for the recognition module. Note that, while

conducting comparisons with other few-shot recognition (e.g., Chen et al. [9], Finn

et al. [25]) or view synthesis models (e.g., Wiles et al. [94], Yoon et al. [103]) is

interesting, it is not the main focus of this paper. We aim to validate that the

feedback-based bowtie architecture outperforms the single-task models upon which it

builds, rather than designing the best few-shot recognition or novel-view synthesis

method. All the models are trained following the same few-shot setting described in

Chapter 3.1.1.

4.2 Main Results

4.2.1 View Synthesis Facilitates Recognition

Table 4.1 presents the top-1 recognition accuracy for the base classes and the novel

classes, respectively. We focus on the challenging 1, 5-shot settings, where the number

of training examples per novel class K is 1 or 5. For the novel classes, we run five

trials for each setting of K, and report the average accuracy and standard deviation

for all the approaches. Table 4.1 shows that our FBNet consistently achieves the

best few-shot recognition performance on the two datasets. Moreover, the significant

improvement of FBNet over FBNet-aug (where the recognition model uses additional
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Model Base Novel-K=1 Novel-K=5

CUB
FBNet-rec 57.91 47.53± 0.14 71.26± 0.26
FBNet-aug 58.03 47.20± 0.19 71.51± 0.33
FBNet 59.43 48.39± 0.19 72.76± 0.24

CompCars
FBNet-rec 46.05 20.83± 0.03 50.52± 0.11
FBNet-aug 47.41 21.59± 0.05 51.07± 0.14
FBNet 49.63 23.28± 0.05 53.12± 0.09

Table 4.1: Top-1 (%) recognition accuracy on the CUB and CompCars datasets.
For base classes: 150-way classification on CUB and 240-way classification on
CompCars; for K-shot novel classes: 50-way classification on CUB and 120-way
classification on CompCars. Our FBNet consistently achieves the best performance
for both base and novel classes, and joint training significantly outperforms training
each module individually.

data from the conditional view synthesis model, but they are trained separately)

indicates that the feedback-based joint training is the key to improve the recognition

performance.

4.2.2 Recognition Facilitates View Synthesis

We investigate the novel-view synthesis results under two standard metrics. The

FID score computes the Fréchet distance between two Gaussians fitted to feature

representations of the source (real) images and the target (synthesized) images [20].

The Inception Score (IS) uses an Inception network pre-trained on ImageNet [17]

to predict the label of the generated image and calculate the entropy based on the

predictions. IS seeks to capture both the quality and diversity of a collection of

generated images [72]. A higher IS or a lower FID value indicates better realism

of the generated images. A larger variance of IS indicates more diversity of the

generated images. We generate images of random views in one-to-one correspondence

with the training examples for all the models, and compute the IS and FID values

based on these images. The results are reported in Table 4.2. As a reference, we

also show the results of real images under the two metrics, which are the best results

we could expect from synthesized images. Our FBNet consistently achieves the best

performance under both metrics. Compared with HoloGAN, our method brings up to

18% improvement under FID and 19% under IS. Again, the significant performance
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Model
IS (↑) FID (↓)

Base Novel-K=1 Novel-K=5 Base Novel-K=1 Novel-K=5

CUB

Real Images 4.55± 0.30 3.53± 0.22 3.53± 0.22 0 0 0
HoloGAN 3.55± 0.09 2.44± 0.07 2.58± 0.08 79.01 106.56 94.73
FBNet-view 3.60± 0.12 2.53± 0.03 2.64± 0.05 75.38 107.36 103.25
FBNet 3.69± 0.17 2.79± 0.06 2.83± 0.12 70.86 104.04 92.97

CompCars

Real Images 2.96± 0.12 2.80± 0.13 2.80± 0.13 0 0 0
HoloGAN 1.85± 0.08 1.41± 0.04 1.65± 0.07 51.49 93.48 83.17
FBNet-view 2.03± 0.09 1.44± 0.05 1.71± 0.07 49.94 92.01 83.58
FBNet 2.33± 0.14 1.89± 0.07 1.91± 0.10 44.70 89.39 78.38

Table 4.2: Novel-view synthesis results under the FID and IS metrics. ↑ indicates
that higher is better, and ↓ indicates that lower is better. As a reference, FID and
IS of Real Images represent the best results we could expect. FBNet consistently
outperforms the baselines, achieving 18% improvements for FID and 19% for IS.

gap between FBNet and FBNet-view shows that the feedback-based joint training

substantially improves the synthesis performance.

IS and FID cannot effectively evaluate whether the generated images maintain

the category-level identity and capture different viewpoints. Therefore, Figure 4.1

visualizes the synthesized multiview images. Note that, in our problem setting of

limited training data under weak supervision, we could not expect that the quality

of the synthesized images would match those generated based on large amounts

of training data, e.g. Brock et al. [6]. This demonstrates the general difficulty of

image generation in the few-shot setting, which is worth further exploration in the

community.

Notably, even in this challenging setting, our synthesized images are of significantly

higher visual quality than the state-of-the-art baselines. Specifically, (1) our FBNet

is able to perform controllable conditional generation, while HoloGAN cannot. Such

conditional generation enables FBNet to better capture the shape information of

different car models on CompCars, which is crucial to the recognition task. On CUB,

FBNet captures both the shape and attributes well even in the extremely low-data

regime (1-shot), thus generating images of higher quality and more diversity. (2) Our

FBNet also better maintains the identity of the objects in different viewpoints. For

both HoloGAN and FBNet-view, it is hard to tell whether they keep the identity, but

FBNet synthesizes images well from all the viewpoints while maintaining the main

color and shape. (3) In addition, we notice that there is just a minor improvement for
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HoloGAN

FBNet

FBNet-view

Base K=5 K=1
CUB

Base K=5 K=1
CompCars

Figure 4.1: Synthesized images from multiple viewpoints. Images in the same
row/column are from the same viewpoint/object. Our approach captures the shape
and attributes well even in the extremely low-data regime.

the visual quality of the synthesis results from HoloGAN to FBNet-view, indicating

that simply changing the view synthesis model from unconditional to conditional

versions does not improve the performance. However, through our feedback-based

joint training with recognition, the quality and diversity of the generated images

significantly improve.

4.2.3 Shared Generative Model vs. Shared Feature

Representation

We further compare with a standard multi-task baseline [71], which learns a shared

feature representation across the joint tasks, denoted as ‘Multitask-Feat’ in Table 4.4.

We treat the feature extraction network as a shared component between the recognition

module and the view synthesis module, and update its parameters using both tasks

without feedback connections. Table 4.4 shows that, through the feedback connections,

our shared generative model captures the underlying image generation mechanism

for more comprehensive object understanding, outperforming direct task-level shared

feature representation.
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Setting Model ResNet-10 ResNet-18 ResNet-34 ResNet-50

K=1
FBNet-view 46.28 47.53 46.79 45.68

FBNet 48.85 48.39 47.65 47.03

K=5
FBNet-view 71.66 71.26 70.69 70.00

FBNet 72.49 72.76 71.28 70.95

Table 4.3: Few-shot recognition accuracy consistently improves with different feature
extraction networks.

Setting
K=1 K=5

Acc FID (↓) IS (↑) Acc FID (↓) IS (↑)
Multitask-Feat 34.71 110.03 2.19± 0.03 52.54 99.61 2.44± 0.04
FBNet w/o Dist 22.47 108.73 2.31± 0.05 34.15 97.64 2.42± 0.07
FBNet w/o Proto 44.62 105.81 2.61± 0.07 70.04 95.15 2.76± 0.10
FBNet 48.39 104.04 2.79± 0.06 72.76 92.97 2.83± 0.12

Table 4.4: Ablation studies on CUB regarding (i) learning a shared feature representa-
tion through standard multi-task learning, (ii) FBNet without resolution distillation,
and (iii) FBNet using a regular classification network without prototypical classifica-
tion. Our full model achieves the best performance.

𝜆!"# = 0 𝜆!"# = 0.1 𝜆!"# = 1 𝜆!"# = 5

Top 1 Acc : 68.84 ± 0.29
FID : 103.75
IS : 2.58 ± 0.10

Top 1 Acc : 70.93 ± 0.27
FID : 99.50
IS : 2.75 ± 0.09

Top 1 Acc : 72.76 ± 0.24
FID : 92.97
IS : 2.83 ± 0.12

Top 1 Acc : 73.09 ± 0.21
FID : 114.85
IS : 2.36 ± 0.08

Figure 4.2: Ablation on λcat. Categorical loss trades off the performance between
view synthesis and recognition.

4.3 Ablation Study

4.3.1 Different Recognition Networks

While we used ResNet-18 as the default feature extraction network, our approach is

applicable to different recognition models. Table 4.3 shows that the recognition perfor-

mance with different feature extraction networks consistently improves. Interestingly,

ResNet-10/18 outperform the deeper models, indicating that the deeper models might

suffer from over-fitting in few-shot regimes, consistent with the observation in [9].
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4.3.2 Categorical Loss

In addition to the feedback connections, our synthesis and recognition modules are

linked by the categorical loss. To analyze its effect, we vary λcat among 0 (without

the categorical loss), 0.1, 1, and 5. Figure 4.2 shows the quantitative and qualitative

results on CUB. With λcat increasing, the recognition performance improves gradually.

Meanwhile, a too large λcat reduces the visual quality of the generated images:

checkerboard noise appears. While these images are not visually appealing, they

still benefit the recognition task. This shows that the categorical loss trades off the

performance between the two tasks, and there is a “sweet spot” between them.

4.3.3 esolution Distillation and Prototypical Classification

Our proposed resolution distillation reconciles the resolution inconsistency between

the synthesis and recognition modules, and further benefits from a recognition model

trained on high-resolution images. The prototypical network leverages the synthesized

images, which constitutes one of the feedback connections. We evaluate their effect

by building two variants of our model without these techniques: ‘FBNet w/o Dist’

trains the feature extraction network directly from low-resolution images; ‘FBNet

w/o Proto’ uses a regular classification network instead of the prototypical network.

Table 4.4 shows that the performance of full FBNet significantly outperforms these

variants, verifying the importance of our techniques.

4.4 Qualitative Results on the CelebA-HQ

Dataset

We further show that the visual quality of our synthesized images significantly

gets improved on datasets with better aligned poses. For this purpose, we conduct

experiments on CelebA-HQ [39], which contains 30,000 aligned human face images

regarding 40 attributes in total. We randomly select 35 attributes as training attributes

and 5 as few-shot test attributes. While CelebA-HQ does not provide pose annotation,

the aligned faces mitigate the pose issue to some extent. Figure 4.3 shows that both

the visual quality and diversity of our synthesized images substantially improve, while
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HoloGAN FBNet

Base Novel Base Novel

Figure 4.3: Synthesized images by HoloGAN and FBNet on CelebA-HQ. Few-shot
attributes (left to right): Black Hair, Gray Hair, Bald, Wearing Hat, and Aging.
FBNet synthesizes images of higher quality and diversity.

consistently outperforming HoloGAN.

4.5 Discussion and Future Work

Our experimental evaluation has focused on fine-grained categories, mainly because

state-of-the-art novel-view synthesis models still cannot address image generation

for a wide spectrum of general images [43]. Meanwhile, our feedback-based bowtie

architecture is general. With the advance in novel-view synthesis, such as the recent

work of BlockGAN [53] and RGBD-GAN [55], our framework could be potentially

extended to deal with broader types of images. Additional further investigation

includes exploring more architecture choices and dealing with images with more than

one object.
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Chapter 5

Multi-Task Oriented Generative

Modeling

We propose multi-task oriented generative modeling (MGM) to leverage generative

networks for multi-task visual learning, as summarized in Figure 5.1. In this section,

we first formalize the novel problem setting of MGM. Then, we explain the general

framework and an instantiation of the MGM model with state-of-the-art multi-task

learning and image generation approaches. Finally, we discuss the detailed training

strategy for the framework.

5.1 Problem Setting

Multi-task discriminative learning: Given n visual tasks T = {T1, T2, · · · , Tn},
we aim to learn a discriminative multi-task model M that is able to address all of

these tasks simultaneously: M(x)→ ŷ = (ŷ1, ŷ2, · · · , ŷn), where x is an input image

and ŷi is the prediction for task Ti. Here we focus on the type of per-pixel level

prediction tasks (e.g., semantic segmentation or depth estimation). We treat image

classification as a special task, which provides global semantic description (i.e., scene

labels) of images and only requires image-level category annotation c. Therefore, the

set of fully annotated real data is denoted as Sreal = {(xj, y1
j , y

2
j , · · · , ynj , cj)}.

Generative learning: Meanwhile, we aim to learn a generative model G that

produces a set of synthesized data but with only corresponding image-level scene
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Figure 5.1: Architecture of our proposed multi-task oriented generative modeling
(MGM) framework. There are four main components in the framework: Multi-task
network to address the target multiple pixel-level prediction tasks; self-supervision
network to facilitate representation learning using images without any annotation;
refinement network to perform scene classification using weak annotation; image
generation network to synthesize useful images that benefit multiple tasks.

labels (weak annotation): G(c, z) → x̃, where z is a random input, and x̃ is a

synthesized image. The scene label of x̃ is denoted as c̃ = c. We denote the set of

synthesized images and their corresponding scene labels as S̃syn = {(x̃k, c̃k)}.

Cooperation between discriminative and generative learning: Our objec-

tive is that the discriminative model M and the generative model G cooperate with

each other to improve the performance on the multiple visual tasks T . During the

whole process, the full model only gets access to the real fully-labeled data Sreal, then

the generative network is trained to produce the synthesized set S̃syn. Finally, M

effectively learns from both Sreal and S̃syn. Note that, unlike most of the existing work

on image generation [6, 110], we do not focus on the visual realism of the synthesized

images x̃. Instead, we hope G to capture the underlying mechanism that benefits M.
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5.2 Framework and Architecture

Figure 5.1 shows the architecture of our proposed MGM framework. It contains four

components: the main multi-task discriminative network M, the image generation net-

work G, the refinement network R, and the self-supervision network. By introducing

the refinement network and the self-supervision network, the full model can leverage

both fully-labeled real images and weakly-labeled synthesized images to facilitate

the learning of latent feature representation. These two networks thus allow M and

R to better cooperate with each other. Notice that our MGM is a model-agnostic

framework, and here we instantiate its components with state-of-the-art models. In

the ablation study (Sec. 6.3), we show that our MGM works well with different choices

of the model components.

5.2.1 Multi-task Network (M)

The multi-task network aims to make predictions for multiple target tasks based on

an input image. Consistent with the most recent work on multi-task learning, we

instantiate an encoder-decoder based architecture [85, 106, 110]. Considering the trade-

off between model complexity and performance, we use a shared encoder E to extract

features from input images, and individual decoders for each target task. We adopt a

ResNet-18 [31] for the encoder and symmetric transposed decoders following [106].

For each task, we have its own loss function to update the corresponding decoder

and the shared encoder.

5.2.2 Image Generation Network (G)

The generative model G is a variant of generative adversarial networks (GANs). We

include the generator in our framework, but this module also has a discriminator

during its own training. G takes as input a latent vector z and a category label

c, and synthesizes an image belonging to category c. Considering the trade-off

between performance and training cost, we instantiate G with self-attention generative

adversarial network (SAGAN) [110]. We achieve conditional image generation by
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applying conditional batch normalization (CBN) layers [15]:

CBN (fi,c,h,w | γc, βc) = γc
fi,c,w,h − E [f·,c,·,·]√

Var [f·,c,·,·] + ε
+ βc, (5.1)

where fi,c,h,w is an extracted c-channel 2D feature for the i-th sample, and ε is a

small value to avoid collapse. γc and βc are two parameters to control the mean and

variance of the normalization, which are learned by the model for each class. We use

hinge loss for the adversarial training. Notice that the proposed framework is flexible

with different generative models, and we instantiate with a state-of-the-art module.

5.2.3 Refinement Network (R)

As one of our key contributions, we introduce the refinement network R to further

refine the shared representation using the global scene category labels. R takes the

predictions of the multi-task network as input and predicts the category label of

the input image. Importantly, because R only requires category labels, it can be

effortlessly operationalized on the “weakly-annotated” synthesized images. Meanwhile,

R also enforces the semantic consistency of the synthesized images with G.

We apply an algorithm inspired by Expectation-Maximum (EM) [16] to train the

refinement network R. For the fully-annotated real images (x,y, c), we use the scene

classification loss to update R and refine the encoder E in the multi-task network M.

Then for the synthesized images (x̃, c̃), since their multi-task predictions produced by

M might not be reliable, we only refine E with R frozen using the scene classification

loss. Through refining the share feature representation with the synthesized images,

this process also provides implicit guidance to the image generation network.

More specifically, we model the whole multi-task network and refinement network

as a joint probability graph:

P (x,y, c; θ, θ′) = P (x)

(
n∏
i=1

P
(
yi | x; θ

))
P (c | y; θ′), (5.2)

where x is an input image, y is the vector of multi-task predictions, c is the scene

label, θ is the vector of parameters of the multi-task network, and θ′ is the vector

of parameters of the refinement network. The parameters θ and θ′ are learned to
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maximize the joint probability. For data samples in Sreal, we maximize the joint

probability and update θ′ to train the refinement network.

θ′? = argmax
θ′

P (c̃k | y; θ′). (5.3)

For data samples in S̃syn, we update the parameters of M (θ) in an EM-like manner.

During the E step, we estimate the latent multi-task ground-truth by:

y† = argmax
y

P (y | x̃k; θ)P (c̃k | y; θ′). (5.4)

Then for the M step, we back-propagate the error between y† and ŷ (the multi-task

predictions) to the multi-task encoder.

θ? = argmax
θ

P
(
y† | x̃k; θ

)
. (5.5)

We use cross-entropy as the classification loss function.

5.2.4 Self-supervision Network

The self-supervision network facilitates the representation learning of the encoder

E by performing self-supervised learning tasks on images without any annotation

so that can be operationalized on both real and synthesized images. We modify

SimCLR [8], one of the state-of-the-art approaches, as our self-supervision network.

This network contains an additional embedding network Eself , working on the

output of the multi-task encoder E, to obtain a 1D latent feature of the input image:

µ = Eself(E(x)). Then, it performs contrastive learning with these latent vectors.

Specifically, given a minibatch of N images, this network first randomly samples

two transformed views of each source image as augmented images, resulting in 2N

augmented images. For each augmented image, there is only one pair of positive

augmented examples from the same source image, and other 2(N − 1) negative pairs.

Then the network jointly minimizes the distance of positive pairs and maximizes the

distance of negative pairs in the latent space, through the normalized temperature-

31



CHAPTER 5. MULTI-TASK ORIENTED GENERATIVE MODELING

Multi-task 
Encoder

Embedding
Layer Generator

feature noise

Guidance

Refinement

(𝐄) (𝐆)

Figure 5.2: Joint training of the multi-task network and the image generation network.
The multi-task network provides useful feature representation to guide the image
generation process, while the generation network refines the shared representation
through back-propagation.

scaled cross-entropy (NT-Xent)) loss [8]:

`i,j = − log
exp(dis(µi, µj)/τ)∑2N

k=1 1[k 6=i] exp (dis (µi, µk) /τ)
, (5.6)

where `i,j is the NT-Xent loss for a positive pair of examples in the latent space

(µi, µj). 1[k 6=i] ∈ 0, 1 is an indicator function evaluating to 1 if k 6= i, and τ is a

temperature parameter. dis (µi, µj) is a distance function, and we use cosine distance

following [8]. This loss is further back-propagated to refine the multi-task encoder E.

Notice that other types of self-supervised tasks are applicable as well. To demonstrate

this, in Sec. 6.3 we also report the result with another task — image reconstruction.

5.3 Interaction Among Networks

Cooperation Through Joint Training: We propose a simple but effective joint

training algorithm shown in Figure 5.2. The image generation network G takes the

transferred feature representation of the multi-task encoder E, added with some

Gaussian noise, as the latent input z to conduct conditional image generation. Hence,

the generation network obtains additional, explicit guidance (i.e., extra effective

features) from the multi-task network to facilitate the generation of “better images”—

images that may not look more realistic but are more useful for the multiple target

tasks. Then, the generation error of G will be back-propagated to E to further refine

the shared representation. This process can be also viewed as introducing image
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Algorithm 2 The training procedure of MGM.

1: procedure Training on a minibatch
2: Initialization:
3: max epoch: Maximum epoch for the training
4: M : Multi-task Network, G: Image Generation Network
5: E: Multi-task Encoder, R: the Refinement Network
6: Eself : Self-supervision Network Encoder
7: N : minibatch size
8: for epoch ← 1tomax epoch do
9: Split Sreal into minibatches with size N : Smini

10: for (x,y, c) ∈ Smini do
11: ŷ = M(x)
12: Lmulti(y, ŷ)→ update M
13: ĉ = R(ŷ)
14: LCE(c, ĉ)→ update R, E
15: Sample 2N augmented images xaug

16: LNT−Xent(xaug)→ update E, Eself

17: Use LGAN to train G
18: (x̃, c̃) = G(x, c)
19: LCE(c̃,R(M(x̃)))→ update E
20: Sample 2N augmented images for the synthesized data x̃aug

21: LNT−Xent(x̃aug)→ update E.
22: end for
23: end for
24: end procedure

generation as an additional task in the multi-task learning framework.

5.3.1 Training Procedure:

We summarized the training procedure in Algorithm 2. Here we further explain the

training procedure in more details. Given a minibatch of data in Sreal, we conduct

the following training procedure.

1. For the input images x, we predict ŷ = M(x), and then use the task-specific

losses between y and ŷ to update the multi-task network M.

2. We predict the scene labels by ĉ = R(ŷ), and update the refinement network

R and the multi-task encoding network E using the cross-entropy loss between
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c and ĉ.

3. We randomly sample pairs of augmented images, process them with the self-

supervision network, and then update the self-supervision network and the

multi-task encoder E with the NT-Xent loss in Eqn. (6).

4. We train the image generation network G through adversarial training with

(x, c), and back-propagate the adversarial error and update E at the same time.

5. We sample another minibatch of synthesized data (x̃, c̃), and use these data to

update E by performing both the EM-like algorithm described in Chapter 5.2.3

with R and the self-supervised learning as in step 3.
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Chapter 6

Experimental Verification for

MGM

To evaluate our proposed MGM model and investigate the impact of each component,

we conduct a variety of experiments on two standard multi-task learning datasets.

We also perform detailed analysis and ablation studies here.

6.1 Datasets and Compared Methods

Datasets: Following the work of [85] and [82], we mainly focus on three representative

visual tasks in the main experiments: semantic segmentation (SS), surface normal

prediction (SN), and depth estimation (DE). At the end of this section, we will show

that our approach is scalable to an additional number of tasks. We evaluate all

the models on two widely-benchmarked datasets: NYUv2 [23, 51] containing 1,449

images with 40 types of objects [29]; Tiny-Taskonomy which is the standard tiny

split of the Taskonomy dataset [106]. Since a certain amount of images for each

category is required to train a generative network, we keep the images of the top 35

scene categories on Tiny-Taskonomy, with each one consisting of more than 1,000

images. This resulting dataset contains 358,426 images in total. For NYUv2, we

randomly select 1,049 images as the full training set and 200 images each as the

validation/test set. For Tiny-Taskonomy, we randomly pick 80% of the whole set as

the full training set and 10% each as the validation/test set.
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Compared Methods: We mainly focus on our comparison with two state-of-

the-art discriminative baselines: Single-Task (ST) model follows the architecture of

Taskonomy single task network [106], and address each task individually; Multi-Task

(MT) model refers to the sub-network for the three tasks of interest in [82]. These

two baselines can be viewed as using our multi-task network without the proposed

refinement, self-supervision, and generation networks. Note that our work is the first

that introduces generative modeling for multi-task learning, and there is no existing

baseline in this direction.

Our MGM is the full model trained with both fully-labeled real data and weakly-

labeled synthesized data, which are produced by the generation network through joint

training. In addition, to further validate the effectiveness of our MGM model, we

consider its variant model MGMr that is trained with both fully and weakly labeled

real data. MGMr is used to show the performance upper bound in the semi-supervised

learning scenario, where the synthesized images are replaced by the real images in the

dataset. The resolution is set to 128 for all the experiments. For all the compared

methods, we use a ResNet-18 like architecture to build the encoder and use the

standard decoder architecture of Taskonomy [106].

Data Settings: We conduct experiments with three different data settings: (1)

100% data setting; (2) 50% data setting; and (3) 25% data setting. For each setting,

we use 100%, 50%, or 25% of the entire labeled training set to train the model. For

MGMr, we add another 50% or 25% of weakly-labeled real data in the last two

settings. For MGM, we include the same number of weakly-labeled synthesized data

in all three settings.

Evaluation Metrics: For NYUv2, following the metrics in [23, 85], we measure

the mean Intersection-Over-Union (mIOU) for the semantic segmentation task, the

mean Absolute Error (mABSE) for the depth estimation task, and the mean Angular

Distance (mAD) for the surface normal estimation task. For Tiny-Taskonomy, we

follow the evaluation metrics of previous work [82, 85, 106] and report the averaged

loss values on the test set.
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Data Setting 100% Data Setting 50% Data Setting 25% Data Setting
Models ST MT MGM ST MT MGM MGMr ST MT MGM MGMr

NYU
v2

SS-mIOU(↑) 0.249
± 0.008

0.256
± 0.005

0.264
± 0.005

0.230
± 0.009

0.237
± 0.006

0.251
± 0.005

0.258
± 0.004

0.199
± 0.004

0.207
± 0.007

0.229
± 0.004

0.231
± 0.005

DE-mABSE(↓) 0.748
± 0.019

0.708
± 0.021

0.698
± 0.014

0.837
± 0.017

0.819
± 0.018

0.734
± 0.011

0.723
± 0.010

0.908
± 0.017

0.874
± 0.015

0.844
± 0.011

0.821
± 0.009

SN-mAD(↓) 0.273
± 0.06

0.283
± 0.008

0.255
± 0.010

0.309
± 0.008

0.291
± 0.010

0.273
± 0.009

0.270
± 0.006

0.312
± 0.007

0.296
± 0.007

0.277
± 0.006

0.274
± 0.005

Tiny

Taskonomy

SS-mLoss(↓) 0.111
± 0.002

0.137
± 0.003

0.106
± 0.003

0.120
± 0.003

0.138
± 0.002

0.114
± 0.003

0.112
± 0.002

0.119
± 0.003

0.141
± 0.002

0.117
± 0.002

0.115
± 0.002

DE-mLoss(↓) 1.716
± 0.006

1.584
± 0.008

1.472
± 0.006

1.768
± 0.007

1.595
± 0.009

1.499
± 0.008

1.378
± 0.007

1.795
± 0.010

1.692
± 0.008

1.585
± 0.009

1.580
± 0.008

SN-mLoss(↓) 0.155
± 0.003

0.153
± 0.003

0.145
± 0.002

0.157
± 0.002

0.156
± 0.002

0.147
± 0.002

0.140
± 0.001

0.154
± 0.002

0.152
± 0.002

0.148
± 0.003

0.142
± 0.002

Table 6.1: Main results (mean ± std) on the NYUv2 and Tiny-Taskonomy datasets.
SS: semantic segmentation; DE: depth estimation; SN: surface normal prediction.
↑ means higher is better; ↓ means lower is better. We use different metrics on the
two datasets, following existing protocol. Our MGM consistently and significantly
outperforms both single-task (ST) and multi-task (MT) baselines, even reaching the
performance upper-bound of training with weakly annotated real images (MGMr).

6.2 Main Results

6.2.1 Quantitative Results

We run all the models for 5 times and report the averaged results and the standard

deviation on the two datasets in Table 6.1. From this table, we have the following key

observations that support the effectiveness of our approach which combines generative

learning with discriminative learning. (1) Existing discriminative multi-task learning

approaches may not consistently benefit all the three individual tasks. However, our

MGM consistently and significantly outperforms both the single-task and multi-task

baselines across all the scenarios. (2) By using weakly-labeled synthesized data, the

results of our model in the 50% data setting are even better than those of baselines

in the 100% data setting. (3) More interesting, the performance of our MGM is

close to MGMr, which indicates that our synthesized images are comparably useful

as real images for improving multiple visual perception tasks. The performance gap

is especially minimal in the 25% labeled data setting, suggesting that our proposed

MGM model is, in particular, helpful for low-data regime.
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Figure 6.1: Visualization and error comparison of the multi-task prediction outputs in
the 50% data setting. The prediction results of MGM is quite close to the ground-truth,
significantly outperforming the state-of-the-art results.

6.2.2 Qualitative Results

We also visualize the prediction results on the three tasks for ST, MT, and MGM in

the 50% data setting in Figure 6.1. While obvious defects can be found for all the

baselines, the results of our proposed method are quite close to the ground-truth.

How Does Generative Modeling Benefit Multi-tasks? To have a better

understanding of how the generative modeling and joint learning mechanism benefit

multi-task visual learning, we also consider two variants of our MGM model and

evaluate their performance. MGM/G is the MGM model trained with Sreal only

(without generative modeling), which shows the performance of our proposed multi-

task learning framework in general (with the help from the auxiliary refinement and

self-supervision networks), and helps to understand the gain of leveraging generative

modeling. MGM/j is trained with synthesized images produced by a pre-trained

SAGAN without the joint training mechanism. Table 6.2 shows the results on the

two datasets.

Combining the results of Tables 6.2 and 6.1, we find: (1) MGM outperforms both

ST and MT baseline even without generative modeling, indicating the benefit of

the self-supervised task and the refinement network. (2) By introducing synthesized

images that are trained separately, the multi-task performance slightly improves, which

shows the effectiveness of involving generative modeling into multi-task discriminative

learning, under the assistance of our refinement and self-supervision networks. (3)

The joint learning mechanism further improves the cooperation between generative

modeling and discriminative learning, thus enabling the generative model to better
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Data Setting 100% Data Setting 50% Data Setting 25% Data Setting
Models MGM/G MGM/j MGM MGM/G MGM/j MGM MGM/G MGM/j MGM

NYU
v2

SS-mIOU(↑) 0.261 0.262 0.264 0.243 0.243 0.251 0.215 0.220 0.229
DE-mABSE(↓) 0.707 0.701 0.698 0.799 0.763 0.734 0.868 0.860 0.844
SN-mAD(↓) 0.262 0.259 0.255 0.287 0.281 0.273 0.292 0.286 0.277

Tiny
Taskonomy

SS-mLoss(↓) 0.108 0.108 0.106 0.116 0.115 0.114 0.119 0.121 0.117
DE-mLoss(↓) 1.491 1.488 1.472 1.527 1.523 1.499 1.636 1.616 1.585
SN-mLoss(↓) 0.151 0.151 0.145 0.153 0.152 0.147 0.154 0.152 0.148

Table 6.2: Comparison of our MGM model with its variants. MGM/G: without
generating synthesized images; MGM/j: without joint learning. Our MGM outper-
forms single-task and multi-task baselines even without synthesized data, showing its
effectiveness as a general multi-task learning framework. The model performance
further improves with joint learning.

facilitate multi-task visual learning.

6.3 Ablation Study

For all the experiments in this section, models are trained in the 50% data setting,

unless specifically mentioned.

6.3.1 Impact of Parameters

Introducing the refinement, self-supervision, and image generation networks also leads

to more parameters. To validate that the performance improvements come from

the novel design of our architecture rather than merely increasing the number of

parameters, we provide two model variants as additional baselines: STl and MTl use

ResNet-34 as the encoder network and the corresponding decoder networks. These

two networks have a similar amount of parameters as MGM. The top 4 rows in

Table 6.3 show that simply increasing the number of parameters cannot significantly

boost performance.

6.3.2 Impact of Self-supervision Task and Refinement

Network

Two important components of the proposed framework are the self-supervision task

and the refinement network. We evaluate their impact individually in Table 6.3.
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Model SS-mIOU (↑) DE-mABSE (↓) SN-mAD (↓)
ST 0.230 0.837 0.309
MT 0.237 0.819 0.291
STl 0.232 0.841 0.304
MTl 0.236 0.804 0.288

MGM/self 0.239 0.776 0.279

MGM/refine 0.254 0.808 0.290

MGMrecon 0.241 0.768 0.285
MGM 0.251 0.734 0.273

Table 6.3: Ablation study. (1) STl and MTl: baselines with a larger number of
parameters (with deeper backbones); (2) MGM/self : without self-supervision task;
(3) MGM/refine: without classification refinement network; and (4) MGMrecon: with
a simple reconstruction task as self-supervision. The two proposed components are
complementary and both benefit the multiple tasks. The refinement network works
better for surface normal; the self-supervision network works better for semantic
segmentation. Their combination achieves the best.

MGM/self is the model trained without the self-supervision task; MGM/refine is the

model without the refinement network; for MGMrecon, we replace the SimCLR based

self-supervision method with a weaker reconstruction task, and use Mean Square

Error as the loss function.

We could see that the refinement network works better for the surface normal task,

and the self-supervision task works better for the semantic segmentation task; they

are complementary to each other, and combining them generally achieves the best

performance. In addition, the model could still gain some benefit even when we use

some weak self-supervision tasks like reconstruction, which indicates the generability

and robustness of our MGM model.

6.3.3 Number of Synthesized Images vs. Real images

From the previous results, we have found that the synthesized images could benefit the

target multi-tasks in a way similar to weakly labeled real images. To further investigate

the impact of the number of synthesized images, we vary if from 25% to 125% during

multi-task training on NYUv2 in the 25% real data setting. Figure 6.2 summarizes

the result. First, we can see that the performance gap between MGM/j (without

joint training) and MGM becomes larger for a higher ratio of weakly labeled data,

which indicates the importance of our joint learning mechanism. More importantly,
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Figure 6.2: Performance change with different ratios of weakly labeled data. Joint
learning significantly improves the performance. The performance of MGM keeps
increasing with the number of the weakly labeled synthesized images, achieving results
almost comparable to that of MGMr trained with all the available weakly labeled
real images.

Model SS (↓) DE (↓) SN (↓) ET (↓) Re (↓) PC (↓)
ST 0.120 1.768 0.157 0.228 0.703 0.462
MT 0.112 1.747 0.169 0.241 0.704 0.436
MGM 0.108 1.715 0.152 0.201 0.699 0.417

Table 6.4: Mean test losses for six tasks on Tiny-Taskonomy. Again, our MGM
outperforms the baselines, indicating its flexibility, generability, and scalability.

while the real images are constrained in number due to the human collection effort,

our generation network is able to synthesize unlimited amounts of images. This is

demonstrated in the comparison between MGMr (with real images) and MGM: the

performance of our MGM keeps improving with respect to the number of synthesized

images, achieving results almost comparable to that of MGMr when MGMr uses all

the available weakly labeled real images.

6.4 Extension

Experiments with More Tasks: MGM is also flexible and scalable with different

tasks. In addition to the three tasks addressed in the main experiments, here we

add three extra tasks: Edge Texture (ET), Reshading (Re), and Principal Curvature

(PC), leading to six tasks in total. We evaluate the performance of all the compared

models on Tiny-taskonomy in the 50% data setting, and report the mean test loss for

all the tasks. The result is reported in Table 6.4. Again, our proposed method still

outperforms state-of-the-art baselines.
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Chapter 7

Conclusions

In this thesis paper, we mainly focus on applying generative modeling to facilitate

multi-task visual learning. We first propose a a feedback-based bowtie network for the

joint task of few-shot recognition and novel-view synthesis. This model consistently

improves performance for both tasks, especially with extremely limited data. The

proposed framework could be potentially extended to address more tasks, leading to

a generative model useful and shareable across a wide range of tasks.

Motivated by the benefit of FBNet, we further target at introducing generative

modeling for multi-task visual learning. The main challenge is that it is hard for

generative models to synthesize both RGB images and pixel-level annotations in

multi-task scenarios. We address this problem by proposing multi-task oriented

generative modeling (MGM) framework equipped with the self-supervision network

and the refinement network, which enable us to take advantage of synthesized images

paired with image-level scene labels to facilitate multiple visual tasks. Experimental

results indicate our MGM model consistently outperforms state-of-the-art multi-task

approaches.
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