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Abstract— Multi-robot systems can perform task-related col-
laborative behaviors while maintaining connectivity within the
system. However, some robots may fail to execute tasks or
converge relatively slowly due to connectivity constraints. We
consider the case that some robots may not have tasks assigned
at a certain time frame, and they may help the task robots
to achieve their goals by forming a connectivity graph with
flexible topology. Therefore, we introduce a topology correction
controller to provide flexibility for the task robots to perform
task behaviors by modifying the topology of the connectivity
graph for a faster convergence rate. We propose a distributed
approach of blending weighted rendezvous and weighted flock-
ing to form the correction controller. We prove that this scheme
can guarantee a faster convergence rate and provide flexible
connectivity graph topology. We then present our result of a
system of up to thirty robots in various cluttered environments
and show that our approach of behavior combination is robust
and scalable.

I. INTRODUCTION

Multi-robot systems have been widely studied for their
ability to perform collective behaviors to accomplish compli-
cated tasks [1]-[4]. Each robot within the system usually has
a limited range of communication [5] and can only exchange
information with its neighbors in the connectivity graph.
Maintaining connectivity of the whole system is essential [6]
since collaborative behaviors rely on inter-robot connections
[7], and it takes an extensive amount of work to restore the
connection once it is lost [8]. In this networked robotics
system, distributed algorithms, where each robot reasons and
controls using only the local neighbor information, are also
important for computational efficiency and scalability [7].

Most work focuses on maintaining connectivity based on
existing control laws [7], [9], or studies the connectivity
from a given behavior or state [10], [11]. These are based
on the assumption that every robot is assigned with a set
of behaviors to perform in sequence [12] or in parallel.
However, in some of these situations, part of the robot system
might not complete the given tasks due to connectivity
constraints. An example is shown in Figure [I] The robots
are given preassigned tasks, and the goal is to move to the
assigned locations. However, due to connectivity constraints,
some of the robots within the system might not reach the
designated areas. In this case, it would be beneficial if
more robots who have no assigned active task could be
added to task robots’ system and serve as connecting points
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Fig. 1: Left figures: green robots are assigned to task 1, red robots are
assigned to task 2, and blue robots are not assigned any task. The tasked
robots need to reach their corresponding goal areas while maintaining
connected. Resulting configurations when (a) the blue robots do not actively
move to support the task robots. Two task robots fail to reach the designated
areas due to connectivity constraints; (b) the blue robots actively move to
form connecting points so that the task robots can reach their goal locations.

of maintaining connectivity when there is no active task
assigned to them. It would be desired if those robots could
move to change the topology of the connectivity graph
such that the convergence rate of other robots’ task-related
behaviors is also improved. Therefore, our goal is to design
such a controller for those robots with no active tasks to
help improve other task robots’ behaviors under connectivity
constraints. We define topology correction controller to be
the controller used by these robots that aim at correcting the
topology of the connectivity graph to improve the flexibility
for the task robots. In real-world applications, for example,
exploration in a complicated environment, search and rescue,
where robots need to be equipped with expensive sensing or
other special capabilities, one may explicitly define a group
of robots with correction controller to serve as connecting
robots for the system, where these robots can be equipped
with only communication capabilities to lower the cost of the
whole system. In other cases, the correction controller can
be used implicitly when tasks are allocated dynamically, and
some robots may serve as connecting robots to correct the
topology of the connectivity graph when there is no active
task assigned to them during a specific time frame.

The challenges of designing a correction controller in-
volve 1) best utilizing the non-task robots in favor of the



performance of task robots; 2) formalizing the controller of
non-task robots to influence the topology of connectivity
graph, which determines convergence and performance; 3)
speeding up the convergence rate of the controller for the
whole system.

In this paper, we propose a weighted rendezvous algorithm
where the weights are assigned based on the structure of
the connectivity graph to correct the topology of the graph.
We will also present its variations of weighted behavior
combination to compensate for limitations during execution.
To guarantee connectivity of the whole system, we make
use of Minimum Connectivity Constraint Spanning Tree [13],
[14] to find the optimal connectivity constraints for the
system and provide the final control output based on the
selected constraints. The main contribution is as follows:
1) propose correction controller that gives flexible topology
in favor of improving convergence rate, thus enhancing the
performance of the system; ii) provide a theoretical analysis
of the guaranteed improvement of the task performance and
convergence rate; iii) evaluate with experimental results of
the effectiveness and efficiency of our proposed topology
correction controller.

II. RELATED WORK

Multi-robot systems can accomplish collaborative tasks
with predefined control laws towards the goal region such
as flocking strategy [15], [16] or from a sequence of be-
havior library [12]. Such collaborative performance relies on
communication between neighbors in the connectivity graph
[7] to exchange robot states and information. Maintaining
the system’s connectivity is essential [6] and previous works
[17], [18] have introduced methods on adding more robots
to preserve or restore connectivity or enhance the robustness
of connectivity for the whole system.

Connectivity maintenance in multi-robot systems with
predefined control laws has been extensively studied in the
literature [7], [10], [19]. Various research works [20], [21]
present gradient-based methods and consider connectivity as
attraction forces between robots to maintain flexible connec-
tivity for the system as it executes predefined tasks. Barrier
certificate [22], [23] proposed to achieve collision avoidance
can also be used to formulate connectivity constraints [13],
[14], [24], [25], e.g. [14] provides a way of selecting the opti-
mal active connectivity constraints to minimize the influence
of connectivity constraints on the original robot controller.
This method is extensively used in our approach to guarantee
connectivity within the whole system while minimizing the
influence of connectivity constraints.

To measure the connectivity of the communication graph,
[26] stated the relationship between the second smallest
eigenvalue of the Laplacian matrix of the graph, further
discussed in detail in [11], which also stated the relationship
between the convergence rate and stability of the system.
In [11], [15], it is shown that the convergence rate of
rendezvous and flocking is directly related to the second
smallest eigenvalue of the Laplacian matrix, which is also
determined directly by the degrees of the graph vertices, as

well as other topological properties. We will discuss this in
detail in Section While the influence of connectivity
graph topology on the robot controller has been extensively
studied, it has in general ignored the influence of the robot
control output on the graph topology. Therefore, in this paper,
we discuss how to modify the graph topology with control
output to form a more flexible connectivity graph for the
system.

III. PROBLEM DEFINITION

Consider a robotic team of n robots with positions denoted
as z; € R? where i € {1,2,...,n}, and single integrator
dynamics of ; = w;. This can be mapped to unicycle
dynamics during real-world applications when needed [27].
Velocity limitation exists for the robots as ||u;|| < Umaz-
Each robot can communicate with all robots within a limited
Euclidean distance R, i.e. robot i ids connected and can
communicate with robot j if ||z; — x;|| < R. This forms a
spatially induced connectivity graph G = (V, ) where each
vertex v; € V represents robot 7, and each edge e;; € £
between v; and v; exists when robot ¢ and robot j are
connected as defined above. The connectivity graph G is
undirected, i.e. e;; = e;;. Robot j is considered as a neighbor
of robot 7 if they are connected, i.e. ¢;; € £. We denote the
neighbor set of robot i to be N; C V. Additionally, the
robots maintain a safety distance with each other of d;; > r
where d;; = ||z; — x;||, and r is the safety radius between
robots to avoid collision. Similar to the inter-robot collision
avoidance, the robots also maintain safety distance with the
environment obstacles.

Suppose some robots in the multi-robot system are as-
signed tasks and need to perform specific behaviors. We
denote the set of task robots to be V, C V. Accordingly, we
denote the set of robots that have no task behavior assigned
to be V. C V with V; U)V, = V. We assume the task
allocation for the task robots has been done beforehand, and
we do not consider how these are designed and allocated.
The performance is measured based on the completion of
tasks for V.. Note that in this paper, we assume that the
number of robots with tasks is always less than the total
number of robots within the system, i.e., V.| > 1. Due to
the connectivity constraints, some of the task robots might
not reach the designated location, as shown in the example
in Figure [Ial In this paper, our objective is to design the
controller for robots with no tasks in set V. to provide
flexibility for the task robots in V; to perform the task
behaviors and improve the convergence rate.

IV. PRELIMINARIES
A. Minimum Connectivity Constraint

To guarantee connectivity and avoid collisions, we make
use of the previous work on barrier certificate [22] and behav-
ior mixing with minimum connectivity constraint spanning
tree [14] that distributedly computes the control output of the
robots given safety and connectivity constraints. In particular,
the resulting control output u = [ug,...,u,] € R?*"
is obtained by minimally modifying the given task-related



control input @ = [dy,...,4,] € R?**", ie. minimizing
o Nug — 4 |? subject to collision avoidance and connec-
tivity maintenance constraints. Safety and connectivity con-
straints are enforced on pair-wise distance between robots:
; 2 .2

hi j(x) = ||z — 5" —=r= >0

hi j(x) = R" — ||z — aj||” = 0,1,
Safety and connectivity barrier certificate are define as [22]:

B* = {u € R : h ;(x) +vhi ;(x) > 0,Vi > j}
BS(G°) = {u € R¥*™ 1 hf ;(x) +7hf j(x) > 0,Ve; ; € £}

where 7 is the barrier gain, G¢ = (V¢,£°) is a desired
connectivity graph to maintain, €.g. a spanning tree that in-
vokes minimum connectivity constraints [14] in a distributed
manner [28]. These constraints over controllers ensure the
forward 1nvariance of the condition defined above, i.e. robots

stay collision free and connected at all time. The control
output under constraints is calculated as:

n
u* = argmin Y _ [Ju; — | 0))
Ggc,u i=1
st. G°C G is connected

u € B () B°(°)

This gives us guarantee on the safety and connectivity
constraints with any 1, and serves as a post-processing after
computing the desired control output to be introduced in
later sections. The task-related controller is always assumed
known in [14], [25] and some tasks may not be achieved
due to connectivity constraints. In this paper, we propose
correction controller for those untasked robots, so that the
control deviation defined in (1)) for the task robots is further
minimized and hence improving the tasks performance.

B. Graph Laplacian and Convergence

Here we briefly discuss the relation between Graph Lapla-
cian of the connectivity graph and the convergence rate
of the system. Consider the graph Laplacian matrix L of
the connectivity graph G. The graph Laplacian is defined
as L = D — A where A is the adjacency matrix where
each element a;; = 1 if an edge exists between v; and
v;, and zero otherwise. D = diag(deg(v1),...,deg(vy))
is the degree matrix. Each deg(v;) denotes the degree of
v;, where deg(v;) = 3, ; a;;, and zero for off-diagonal
elements. For V' C V, deg(V') = [deg(vi),...,deg(v;)]
where v;,...,v; € V'. By definition, L is symmetric if
the graph is undirected. Laplacian matrix L is essential for
evaluating the convergence of consensus algorithms [11]. The
second smallest eigenvalue, denoted as A2(L), describes the
algebraic connectivity of the graph and Ao(L) > 0 always
holds when the graph is connected [26]. Let 6 = min deg())
to be the minimum degree of the vertices in graph G with n
vertices. A lower bound for the algebraic connectivity A2 (L)
exists [29]

A2(L) > 20 —n+2 2)

It is known that a continuous-time consensus is globally
exponentially reached with a speed that is faster or equal
to Aa(Ls) where Ly = (L + L) /2 for a strongly connected
balanced digraph [11]. For undirected graph with a symmet-
ric Laplacian matrix, we have L = LT, thus L = L, =

(L + L7)/2. In our setting, the speed of convergence is
directly influenced by A3 (L). Thus, the goal of our correction
controller is to move towards vertices with small degrees so
as to improve the convergence rate of the whole system.

V. METHODOLOGY

In this section, we introduce our method, topology cor-
rection, where the robots with no task assigned will be
able to improve the topology of the connectivity graph to
provide flexibility for the task robots to perform their tasks.
To simplify our description, the controller of the robots
with no task for correcting topology is named as correction
controller. Our method has two steps:

1) Robots with no task will execute the correction con-

troller which will be discussed in detail later;

2) The system is guaranteed connectivity with the min-
imum connectivity constraint spanning tree from sec-
tion [V-Al

As introduced in section increasing the minimum
degree ¢ of the graph can achieve a faster convergence rate
and also provide a better topology of connectivity graph.
The intuition is that to maintain flexible topology of the
connectivity graph, those robots with fewer edges connected
are more likely to get disconnected, thus need more “help”
from the other robots. By controlling the robots with no tasks
to go towards the robots with smaller degrees, we can achieve
better topology that will provide a faster convergence rate of
the whole system. Therefore, the correction controller we
will be discussing aims to correct the connectivity graph’s
topology by maximizing the minimum degree 0.

A. Weighted Rendezvous

To form a better topology in favor of improving the
convergence rate of the system , it is straight forward to think
of rendezvous behavior that non-task robots could keep up
with the task robots. Following the notation introduced in
Section [[II, control law used for rendezvous [11] is

#i(t) = Y ag(;(t) —i(t)) 3)

JEN;
where N; denotes the neighbor set of robot 7 and a;j is
the element in adjacency matrix. Following the discussion in
section [[V-B| we propose the weighted rendezvous as follows

ug (t) = @;(t) = Z w;; (w5 (t) — (1)) ()]
JEN;

where the weight wj; in the weight array w; =

ij
[w{l,...,wfj,...,waNi‘}, where j € N;.

1) Degree-based Weighted Rendezvous: Following the
discussion in section [IV-B| we may set the weights with
respect to the degree of neighboring vertices. The weights
should be larger on vertices with smaller degrees and smaller
on vertices with larger degrees aiming at balancing the
degrees in order to increase the minimum degree of the
graph. Therefore, the desired weights w;; in the weight array

w; are calculated as
w;; = max (deg(N;)) — deg(vj) + €,v; € N; 5)
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Fig. 2: The moment when vertex v; is moving to vy resulting in v; and
v; getting disconnected from each other. We only consider the vertices
involving possible edge changes (get connected or disconnected), while the
grey vertices are other irrelevant vertices whose edges remain unchanged.

€ is a small value of 1 > € > 0 and serves as a correction
factor to guarantee that weights are not all zeros with regular
graph (the graph that every vertex has same degree). The
weight array is then normalized so that jen, wi; = 1. We
will then prove that this controller will correct the topology
of the connectivity graph by modifying the minimum degree
0 of graph G.

As mentioned above, our goal is to increase the minimum
degree § of the connectivity graph. Thus, we are not in-
terested in the cases where the original control output Q1 is
already causing the minimum degree § to increase. Before
we start the proof, we list several cases where ¢ is already
increasing: 1) adding an edge: Consider a situation when
two robots come closer that a new connection is made,
while in the meantime, no edges is disconnected. This will
only cause ¢ to increase; 2) removing an edge e;; where
deg(v;) > 6,deg(v;) > &: when two robots ¢ and j move
away from each other with a distance larger than R, the
connection edge e;; is removed. Notice that degrees are
integers, we have deg(v;) > d+1. Removing an edge e;; will
result in deg(v;) > 4, deg(v;) > 0, which does not change
the value of §.

Thus, the only case that is of interest is shown in Figure 2}
which describes when v; having minimum degree deg(v;) =
0, v; moves towards its other neighbor vy, causing edge e;;
to disconnect. This is the only case that will cause a decrease
of ¢ and in the following proof of Preposition [I] we focus on
this case. Note that with the minimum connectivity guarantee
in section the graph always remain connected. In the
following discussion, we denote §(t) and deg(v;,t) as the &
and deg(v;) at time ¢ respectively.

Preposition 1. With the control law defined in equation
with weights in equation (), the minimum degree § of
connectivity graph increases, i.e. 6(t') > 6(t) with t' > t
where t' is the next time instance that degree of vertices
changes.

Proof. We prove by contradiction. As described above, the
only case that will result in &(¢) > &(¢') is shown in
Figure 2] Without loss of generality, consider the edge that
gets disconnected is e;; € £. When v; moves towards v,
v; disconnects with v; where deg(v;,t) = d(¢) at time ¢.
According to equation (@), robot j moves towards robot k at
zy(t) with velocity @;(t) resulted from wj; > w?,;. Thus
wy, = max(deg(Nj,t)) — deg(vi,t) + €
> max(deg(Nj,t)) — deg(vi, t) + € = wi;
Then we have
deg(vh t) = 5(t) > deg(vkv t) (6)

This violates the initial assumption that v; with deg(v;,t) =
d(t) has the minimum degree. Therefore, the case described
above will not happen and any other scenarios will not result
in decrease of §, thus §(¢') > 6(¢), with ¢/ > ¢. O

2) Distance-based Weighted Rendezvous: The degree-
based approach can trigger edge changes to increase the
convergence rate by gradually modifying ¢ in the graph.
We notice that this degree-based approach will result in a
sudden change of velocity. To further optimize our objective,
we propose the distance-based weighted rendezvous based on
the degree-based approach that provides the same guarantees
and better performance.

We first define a density score of each vertex v; as

c(v;) = deg(v;) + Z R di

T —Th O]
S~ deg(v;)(R—r)

¢(v;) describes the level of density around v;. An intuition
on this is that when the neighboring robots are close to robot
i, the distance d;; is relatively small, then density score of
v; is higher, and vice versa. Similarly, w;; in weight array
w; are calculated as

wfj = max(e(N;)) — e(v;) + €, v; € N; ®)
where € is the same correction factor as in Equation (5).
T is then normalized such that ) jen; Wiy = 1. We will

w; @

then prove that this formulation gives the same guarantee as

equation (B).

Lemma 2. For any two connected vertices v;,v; €V, €;; €

&, if deg(v;) > deg(vj), then c(v;) > c(vj).

Proof. We prove by analyzing the relationship of deg(v;)

and c(v;). With d;; = ||z; — ;|| and e;; € £, we have
r<dij; <R (C)]

where as defined in section [III} r is the safety radius and

R is the connectivity radius. By applying the inequality in

equation (9), we have

c(vi) = deg(vi) + Z

JEN;

Notice that deg(v;) = |NV;|, we also have

R—r
c(v;) < deg(v;) + ]GZM m

R—d;;

Tegw) (B —n) = desv) (10

=deg(v) +1 (1)

Combining the two equations above we get
deg(vi) < c(v) < deg(vi) +1 (12)

Since degree of vertex is integer, the inequality deg(v;) >
deg(v;) is the same as deg(v;) > deg(v;)+ 1. Thus we have

c(vy) > deg(v;) > deg(v;) +1 > ¢(vj) (13)

Then we may conclude that c¢(v;) > c(v;) holds when
deg(v;) > deg(vj). O

Our final statement is as follows. Lemma [2] proves that
density score preserves the inequality of degree values.
Following the same procedure of the proof for Prepostion [I}
we may conclude that § increases similarly for the density
score defined in equation (7). Thus, the following theorem
holds.



Theorem 3. With the control law defined in equation (@)
with weights defined in equation (), the minimum degree &
is increasing, i.e. §(t') > 6(t),t' > t.

The proof is similar with Preposition [I] With this distance-
based weighted rendezvous, the non-task robots will be able
to provide a more flexible topology for the whole system.

B. Weighted Behavior Combination

We noticed that during execution, when task robots need
to reach locations close to each other, non-task robots might
be blocking their way. To solve this problem, we propose
weighted behavior combination that utilizes the combination
of weighted rendezvous and a weighted flocking behavior
introduced below.

1) Weighted Flocking: The control law is as follow:

u{ =; = Z wzfjuj (14)
JEN;

The weights are designed so that the non-task robots flocks
with the neighboring task robots when needed:

W, if ’Uj c Vt

f_
wy; = .
0, otherwise

15)
[Vi N N;]| is the number of task robots in the neighbors of
V;.

2) Weighted Behavior Combination: Denote the output
velocity of weighted rendezvous as ], weighted flocking as
u{ for robot . We then calculate the weights of performing
weighted flocking for each non-task robot

1 1

o = ——— U:—i Z ujll -7, vi € Ve
2umaw th ﬂj\/z| JEVIONG
(16)

where v € (0,1] is an user-defined value that describes the
extent the user would want to avoid the cluttering problem
due to weighted rendezvous. «; describes the amount of
influence that weighted rendezvous has on the neighboring
task robots. For example, if the «; is large, the influence of
the weighted rendezvous behavior of the non-task robot on
the task robot controller is large. In this case, it is preferred
to lower the weighted rendezvous controller’s weight for
the non-task robots. The weighted behavior combination
controller is then designed as

A7)

@; will be passed to Equation (I) and outputs the op-
timized control input wu; that guarantees connectivity of
the whole system. This method is also fully decentralized
since weighted rendezvous and weighted flocking only take
neighbor information to calculate the degree and density
score. This distributed consensus-based method is scalable
with an increasing number of robots in the system, shown
in the next section.

;= (1 — o)l + ogu!

VI. RESULTS
A. Task Robot Controller

In our current scenario, we assume the task robots run
a PD controller to reach designated goals. Note that the

(a) (b) ©

Fig. 3: (a) size 30x36, (b) size 3036, and (c) size 27 %39, are three maps
with the black areas as walls or obstacles, and white areas as the free space.
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Fig. 4: Tasks of Map |3a] and Map |3b| with n = 10 robots. Two red robots
are assigned tasks, others are not assigned tasks in this time frame. Two
sequences of tasks (randomly chosen within an area) are assigned to two
robots.

task robots do not need to be limited to this controller. As
mentioned in Section the robot positions are denoted as
x; with single integrator dynamics &; = wu;. Consider the
goal location for robot ¢ is xf , the controller used by the
task robots is

u; = argmin ||z; — z7||? (18)
B. Experiments

We tested our correction controller with the maps in
Figure 3] In each map, the task robots have a sequence of
locations to visit. The non-task robots execute the correction
controller to correct the topology of the connectivity graph
to provide flexibility for the task robots. We tested and
compared the performance of 1) connectivity constraints only
without any correction controller, 2) weighted rendezvous, 3)
weighted flocking, 4) weighted behavior combination in the
maps shown in Figure |3| Due to space limitation, the result
in Map |3c| will not be included in the paper but only in the
video attachment in the supplementary material. A sequence
of tasks are randomly chosen within an area that is feasible
for the robots and are preassigned to specific robots before
execution. The robots will execute the next task once the
system has converged or the previous location is reached.

Figure [ shows the sequence of tasks given that two of
the robots in the system need to visit the goal locations
in sequence while maintaining connectivity throughout the
process. We tested the performance of the other robots with-
out assigned tasks executing different controllers. Figure [5a|
shows that with only connectivity constraints, the robots
without tasks might move to maintain connectivity but cannot
provide flexible topology for the task robots to execute tasks.
Figure[5c|and [5¢] shows that robots with weighted rendezvous
controller may block the way of the task robots. The robots
with weighted flocking are more likely to leave robots
behind, resulting in failing of some tasks. With weighted
behavior combination, the robots without task assigned can
provide a flexible topology of connectivity graph so that the
task robots can reach all the goal locations.
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Fig. 5: Results of (a) robots without tasks are moving with only connectivity
constraints executing task 3 in Map [3b] (c) robots with weighted rendezvous
controller to execute task 3 in Map [3a} (e) robots with weighted flocking
controller to execute task 2 in Map [3a] . While (b) (d) (e) are executing
the same tasks as in (a) (c) (e) corresponding with weighted behavior
combination.

We also measure the quantitative results of our experi-
ments. The experiments include 15 runs with random initial
locations and various robots in the system, ranging from n =
4 to n = 30. The method is written in python and tested on
Intel Xeon CPU E5-2660 with cores of 2.60GHz. We present
our result on average computation time in Figure [6a] average
eigenvalues representing convergence rate in Figure [6b] vari-
ance of distance in Figure and average distance to goal
locations in Figure [6d] at the time of convergence. Since the
performance is highly related to the tasks and environment,
the last three plots’ variance are relatively large. In Figure [6a]
the variance is too small given the time scale. The computa-
tion time shows our algorithms are scalable to a large number
of robots and can run in real-time. In Figure [6b] weighted
rendezvous and weighted behavior combination outperform
other methods with a larger value of positive eigenvalue As.
This indicates that our method effectively increases network
connectivity and ensures network connectivity (A = 0
equivalent to network disconnection). Note that we do not
show the negative part because the eigenvalue does not go
negative throughout the process. As shown in Figure
we take into account the variance in locations of the robots
after convergence. This is used to measure the robots’ ability
without tasks to keep up with the task robots not to be left
behind, and our approach gives the best performance with
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Fig. 6: (a) Average computation time for each iteration; (b) Average
eigenvalues (c) Variance of the robot locations at each time of convergence;
(d) Average distance to goal for the task robots at each time of convergence

the smallest distance variance. As shown in Figure [6d] we
also compute the average distance to goal locations for the
task robots to measure the performance of task robots and
flexibility given by robots without tasks, where weighted
behavior combination performs the best. Although with a
larger number of robots, the average distance to the goal
of weighted flocking is smaller than the weighted behavior
combination, the distance variance is much larger. To that
end, we conclude that weighted rendezvous can improve
the convergence rate and provide flexibility, and weighted
behavior combination has the best performance overall.

VII. CONCLUSION AND DISCUSSION

In this paper, we considered the system where some robots
are assigned tasks at a specific time frame, and others are
not. We study the problem of controlling those robots without
tasks to maintain a flexible connectivity graph for the robots
with an assigned controller to achieve domain tasks. We
propose weighted rendezvous to reconfigure robots’ motion
with no assigned tasks (i.e., untasked robots) to provide
flexibility for the other tasked robots to reach their goal.
This is achieved by correcting the topology of the current
connectivity graph with those untasked robots that can lead
to a provable faster convergence rate for the tasked robots’
controller in a distributed and scalable fashion. We also
proposed the weighted behavior combination that improves
the performance in general tasks to solve the cluttering
problem due to rendezvous. Results have shown that our
weighted behavior combination gives the best performance
overall. Future work includes experiments on real robots for
verification, examining the number of extra robots needed to
maintain connectivity depends on tasks and environments,
influences of package loss during communication.
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