
Multi-Session Periodic SLAM for Legged Robots

Hans Kumar

CMU-RI-TR-21-04

The Robotics Institute
School of Computer Science
Carnegie Mellon University
Pittsburgh, Pennsylvania

Thesis Committee
Prof. Howie Choset (Co-Advisor)

Prof. Matthew Travers (Co-Advisor)
Prof. Michael Kaess

Shuo Yang

In Partial Fulfillment of the Requirements for the
Degree of Master of Science in Robotics

© Hans Kumar April 2021

ii

ACKNOWLEDGEMENTS

I would like to first thank my advisors Matthew Travers and Howie Choset for their
invaluable support and guidance each week throughout my research journey. They
always encouraged me to look at my research through a critical lens and become the
best researcher that I could be.

Next, I would like to thank all the members of the Biorobotics Lab for making
the lab an enjoyable and constructive place to work. All of the thought-provoking
discussions in the lab helped me to think of my best ideas. A list of my peers
whom I would especially like to thank includes Shuo Yang, John Payne, Raunaq
Bhirangi, Benjamin Freed, Roshan Pradhan, Daniel Vedova, Johnathan Cassady,
and Abhimanyu.

Finally, I would like to thank my parents Rakesh and Manpreet for their constant
support and guidance. Without them, I would not be where I am today.

iii

ABSTRACT

Methods for state estimation that rely on visual information are challenging on
dynamic robots because of rapid changes in the viewing angle of onboard cameras.
In this thesis, we show that by leveraging structure in the way that dynamic robots
locomote, we can increase the feasibility of performing state estimation despite
these challenges. We present a method that takes advantage of the underlying
periodic predictability that is often present in the motion of legged robots to improve
the performance of the feature tracking module within a visual-inertial SLAM
system. Inspired by previous work on coordinated mapping with multiple robots,
our method performs multi-session SLAM on a single robot, where each session
is responsible for mapping during a distinct portion of the robot’s gait cycle. Our
method outperforms several state-of-the-art methods for visual and visual-inertial
SLAM in both a simulated environment and on data collected from a real-world
quadrupedal robot.

iv

TABLE OF CONTENTS

Acknowledgements . ii
Abstract . iii
Table of Contents . iv
List of Illustrations . v
List of Tables . ix
Chapter I: Introduction . 1
Chapter II: Background . 4

2.1 Introduction to SLAM . 4
2.2 Factor Graphs for SLAM . 5
2.3 Front-End of SLAM and Visual Data Association 9
2.4 Survey of State-of-the-Art SLAM Implementations 12

Chapter III: Why Dynamic Motion Causes SLAM to Fail 14
3.1 Simulation Environment . 14
3.2 Performance of Different SLAM Implementations in Simulation . . . 16
3.3 Feature Tracking Performance . 18

Chapter IV: SLAM for Dynamic Legged Robots: Multi-Session Periodic SLAM 21
4.1 Periodically Mapping Different Portions of the Gait Cycle 21
4.2 Building a Periodic Factor Graph 23
4.3 Deconstructing the Form of Each Factor 26
4.4 MAP Inference with Robust Cost Functions 31
4.5 Determining the Number of SLAM Sessions 33
4.6 Fixed Lag Smoothing and Incremental SLAM 34

Chapter V: Results . 36
5.1 Implementation . 36
5.2 Metric for SLAM Performance . 37
5.3 Results in Simulated Environment 37
5.4 Results in Real World . 45

Chapter VI: Conclusions and Future Work 53
Bibliography . 54
Appendix A: Proof that Using Multiple Estimators is Beneficial 57

v

LIST OF ILLUSTRATIONS

Number Page
1.1 Periodicity in legged locomotion. Different colors in this diagram

represent different portions of the robot’s periodic gait cycle. As
the robot moves through different phases of its gait cycle (left), the
visual measurements of the world that it receives (right) also follow
a periodic pattern. 1

1.2 An overview of our proposed method that introduces multiple SLAM
sessions to track a periodically moving legged robot 2

2.1 An overview of the SLAM problem. In SLAM, the robot must use
sensor measurements to deduce its location while simultaneously
building a map of the world. 4

2.2 Factor graph for an example SLAM problem. Unknown variable
nodes are in red and and known factors nodes are smaller black
dots. Sequential robot states (B8) are connected with odometry factors
(q>
8
), and visual measurement factors (qE

8
) constraint the robot to two

different landmarks (;8) Lastly, a prior factor (q?1) is included to
constrain the robot’s initial location in the world. 5

2.3 Responsibilities of the front-end and the back-end of SLAM. In the
case of factor graph basedmethods, the front-end of SLAMassociates
factors with different variable nodes. Then, the back-end of SLAM
optimizes the graph constructed by the front-end to output a MAP
estimate of the robot and map states. 9

2.4 Detecting Harris corner features (red) in an image. The image is
collected from a simulation environment with lines painted along the
walls. 10

2.5 Tracking features using Lucas-KanadeMethod. Red circles represent
features from the previous frame, and blue circles represent tracked
features in the current frame. 10

2.6 The stereo visual SLAM pipeline with a focus on the front-end 11

vi

3.1 Simulated hallway environment in Gazebo. On the left the full hall-
way is shown with arbitrary drawings on the walls to add visual
features. On the right the simulated robot is shown collecting camera
and IMU data as it moves down the hallway. 14

3.2 Simulated stereo image pair taken from the camera on top of the robot 15
3.3 Schematic of simulated robot. The subscript "w" represents the

world coordinate frame and the subscript "c" represents the camera
coordinate frame. The IMU frame is aligned with the camera frame
on top of the robot. The red dotted line shows the trajectory that the
camera and IMU follow as the robot moves forwards. 15

3.4 Distance Traveled (m) before failure of different SLAM algorithms
vs gait frequency of robot. In this box and whiskers plot, each
box represents the first to third quartile of the data. The horizontal
line inside each box represents the median of the data. Finally, the
whiskers show the minimum and maximum of the data. 17

3.5 Frame-to-frame VINS-Fusion feature tracking output for three dif-
ferent gait frequencies. Red circles represent features detected at the
first time step (t), and light blue circles represent features detected
at the next time step (t+1). If feature tracking were possible, green
arrows are drawn to indicate the change in position from features in
one frame to the next. Quantitative results are shown in Figure 3.6. . 18

3.6 Feature tracking performance of different SLAM algorithms vs gait
frequency of robot . 19

4.1 In this figure, when the robot shifts its focus from looking downward
to upwards, it is unable to track any visual cues from the environment.
However, if the robot is able to remember how the floor looks each
time it is looking downwards and compare these periodic viewpoints,
it can estimate its relative motion. 21

4.2 Three SLAM sessions performing estimation periodically when a
robot is looking upwards, forwards, and downwards. The dial repre-
sents which part of the robot’s gait cycle images were taken from. The
left column of images shows the result of periodic feature tracking
in simulation. The right column of images shows the correspond-
ing three-dimensional map of landmarks that each SLAM session
maintains using these features. 22

vii

4.3 Schematic for our method as a factor graph. We use (8 to denote
the 8Cℎ state of the robot in time. Each cycle around the circular
graph represents one period of the robot’s gait cycle. Robot states
positioned along a spoke of the graph have a similar gait cycle phase. 24

4.4 Sequential Factor Graph vs. Periodic Factor Graph 25
4.5 A single prior factor on the initial state of the robot 26
4.6 Visual factors mapping landmarks at periodic robot states 27
4.7 IMU factors connecting sequential robot states 29
4.8 The effect of different cost functions on weighting measurement

residuals. The Geman-McClure robust cost functions gives the least
weight to large residuals when compared to the other cost functions. 32

4.9 The effect of gait frequency on camera frame availability. Using
the parameterized gait from Chapter 2, this figure shows a periodic
robot’s trajectory for two different gait frequencies with blue lines.
Red dots along the lines represent instances along the robot’s trajec-
tory when an image is available to be tracked. The yellow shaded area
in each plot shows a portion of the robot’s gait cycle which we argue
does not have frames consistently available at higher frequencies. . . 33

4.10 Periodic SLAM tracking three different gait phases in simulation. In
this figure, we show a three-spoke factor graph (left) combining maps
from three different periodic visual SLAM sessions (middle column
of images) to get a unified SLAM Result (right). 34

5.1 Block diagram of major modules in our code. We used a modified
version of VINS-Fusion for our SLAM front-end and GTSAM for
our SLAM back-end. 36

5.2 Simulated hallway environment . 37
5.3 Comparing the performance of SLAM front-ends in simulation . . . 39
5.4 XZ trajectories for simulated robot trials 40
5.5 RMSE of ATE for different SLAM methods as a function of gait

frequency in the simulated environment 41
5.6 RMSE of ATE of state-of-the-art methods given only upwards frames

vs. full Periodic SLAM in a simulated environment 42
5.7 RMSE of ATE of individual SLAM sessions vs. full Periodic SLAM

in a simulated environment . 43
5.8 Minitaur robotwith theRealsenseD435i visual-inertial cameramounted

to its body . 45

viii

5.9 Testing area with motion capture setup. We added some strips of
black and blue tape to the otherwise featureless floor. 45

5.10 XZ trajectories for Minitaur robot trials 47
5.11 Comparing the RMSE of ATE of different state-of-the-art methods

vs. Periodic SLAM on data collected from on the Minitaur robot . . . 48
5.12 Comparing the RMSE of ATE of different state-of-the-art methods

given only upwards frames vs. Periodic SLAM on data collected on
the Minitaur robot . 50

5.13 Comparing the RMSE of ATE of Individual SLAM Sessions vs. full
Periodic SLAM on data collected on the Minitaur robot 51

A.1 Visualizing Different Measurement Rates 58

ix

LIST OF TABLES

Number Page
3.1 Simulation Gait Parameters . 16
5.1 Median of the RMSE of ATE of different SLAM systems onMinitaur

robot . 48
5.2 Median of the RMSE of ATE of modified state-of-the-art SLAM

systems vs. Periodic SLAM on Minitaur robot 50
5.3 Median of the RMSE of ATE of Individual SLAM Sessions vs. Full

Periodic SLAM on Minitaur robot 52

1

C h a p t e r 1

INTRODUCTION

While there has been tremendous progress in the development of state estimation and
SLAMalgorithms in the last several decades, dynamicmotion can still induce failure
on even the most robust systems [2]. More specifically, we find that methods for
state estimation and SLAM that rely on visual information experience a significant
decrease in the performance of visual feature tracking when there are rapid changes
in the viewing angle of cameras on-board a robot. To combat this issue, our
approach brings together the often decoupled areas of SLAM and nonlinear analysis
of dynamical systems. In this thesis, we present a method that leverages the periodic
stability of a dynamical system to introduce beneficial structure within an existing
approach to solving SLAM.

Legged robots are of particular interest to us in this work because they are examples
of dynamical systems thatmaintain periodic structure in theirmotionwhen executing
gait-like behaviors. When locomotingwith dynamically stable gaits, such aswalking
or running on flat ground, legged robots exhibit patterns in their footfall and resulting
body orientation. Although periodic, nonlinear impact events and rapid orientation
changes have typically been thought of as hindrances to performing SLAMon legged
systems, our method proposes using the predictability in these events to improve the
performance of estimation compared to an otherwise naive approach.

Figure 1.1: Periodicity in legged locomotion. Different colors in this diagram
represent different portions of the robot’s periodic gait cycle. As the robot moves
through different phases of its gait cycle (left), the visual measurements of the world
that it receives (right) also follow a periodic pattern.

2

In this thesis, we present a novel framework for visual-inertial SLAM that exploits
the periodic predictability in the visual information obtained by the robot, shown in
Figure 1.1, to perform estimation despite rapid changes in the viewpoint of on-board
cameras. Our approach explicitly differentiates between visual features detected
during each unique section of the robot’s gait cycle, when visual information is
more likely to be similar. By performing visual SLAM separately on each portion
of the robot’s gait cycle, we are able to improve the performance of the feature
tracking module that is critical to the success of visual SLAM.

Figure 1.2: An overview of our proposed method that introduces multiple SLAM
sessions to track a periodically moving legged robot

In Figure 1.2 we show an example of how our method might introduce two different
SLAM sessions on a legged robot: one for when the robot is looking upwards and
one for when the robot is looking downwards. Our approach produces a unified
SLAM estimate from these individual visual SLAM sessions by incorporating mea-
surements from an IMU sensor attached to the robot. By tightly coupling visual and
inertial measurements in a factor graph based optimization framework, our approach
achieves a greater combined performance than any individual SLAM session.

We implement our method on a dynamic robot in simulation and on a real-world
quadrupedal robot. Furthermore, we compare the performance of our approach
against several different state-of-the-art implementations of visual and visual-inertial
SLAM. Our experimental results show that when compared to the baseline methods,
our approach has clear improvement in estimation accuracy especially when the
speed of the robot’s motion becomes faster. Lastly, we conclude by noting future
directions for using periodicity to improve the performance of SLAM and the
applicability of this work to non-periodic systems.

3

The main contributions of this work are as follows:

1. An evaluation of the shortcomings of several state-of-the-art visual and visual-
inertial SLAM methods when dealing with periodic, dynamic motion;

2. a unique formulation of the state estimation problem on dynamic robots as
a multi-session SLAM problem, where each session tracks a section of the
robot’s gait cycle; and,

3. an experimental validation of the above approach on both a simulated and a
real-world robot.

4

C h a p t e r 2

BACKGROUND

In this chapter, we introduce the fundamentals of representing and solving the
problem of SLAM. We begin by providing an overview of the SLAM problem.
Next, we introduce factor graphs as a popular optimization-based approach for
solving SLAM. Then, we explain the front-end of visual methods for SLAM, and
we discuss the problem of data association. Finally, we end this chapter with a
survey of three state-of-the-art algorithms for visual and visual-inertial SLAM that
we reference throughout our work.

2.1 Introduction to SLAM
When mobile robots do not have access to their ground truth position, they must
rely on measurements from sensors to build an estimate for where they are in the
world. Estimating the position is especially challenging when the robot is operating
in an unknown environment. In such cases, the robot must estimate both its position
and a map of external landmarks in a process called simultaneously localization and
mapping (SLAM) [2].

Figure 2.1: An overview of the SLAM problem. In SLAM, the robot must use
sensor measurements to deduce its location while simultaneously building a map of
the world.

To capture the inherent uncertainty of events in the world, many implementations
of SLAMmodel the robot and landmark locations in the world as a joint probability
distribution [20]. We can write the conditional distribution of the unknown robot
states (() and landmark states (!) given a set of known sensor measurements (/) as

5

%((, ! |/). Here, we define (= [B1, B2 . . . BC] to represent the set of all robot poses
over time, and we define ! = [;1, ;2, . . . ;=] to represent the positions of mapped
landmarks. Likewise, we define / = [I1, I2 . . . IC] to represent the set of all sensor
measurements that the robot receives over time.

The goal of SLAM is to obtain an estimate for the unknown variables ((and !) by
performing optimization-based probabilistic inference. Specifically, many SLAM
methods look to maximize the conditional probability density of the set of unknown
random variables, the robot and map state, given the set of known random variables,
the sensor measurements [6]. The values that maximize this probability density and
the solution to SLAM are called the maximum a posteriori (MAP) estimate:

("�%, !"�% = argmax
(,!

%((, ! |/) (2.1)

2.2 Factor Graphs for SLAM
Contemporary approaches for solving the problem of SLAM rely on sparse factor
graph based optimization [13]. Factor graphs are a class of graphical models that are
useful in representing sparsity within the distribution, %((, ! |/), in order to enable
efficient MAP inference. More precisely, factor graphs are a type of bipartite graph
that consists of two types of nodes: factors and variables [6]. In the context of SLAM,
variable nodes are used to represent the unknown, latent robot and landmark states
we wish to estimate: ((, !), and factors are used to represent constraints (specified
by sensor measurements) between states: q(·) : ((, !) → R. A factor graph for an
example SLAM problem in which a robot receives relative odometry measurements
and visual measurements to two landmarks in the world is shown in Figure 2.2:

Figure 2.2: Factor graph for an example SLAM problem. Unknown variable nodes
are in red and and known factors nodes are smaller black dots. Sequential robot
states (B8) are connected with odometry factors (q>

8
), and visual measurement factors

(qE
8
) constraint the robot to two different landmarks (;8) Lastly, a prior factor (q?1) is

included to constrain the robot’s initial location in the world.

6

Factor Graphs are useful because they model the sparse structure inherent to SLAM
by specifying conditional independence relationships between variables. Using
these assumptions of conditional independence, factor graphs succinctly specify the
complex joint probability density %((, ! |/) as the product ofmore easily computable
factors. Each factor represents a smaller probability density that is only a function
of the variables to which it is connected in the graphical model. Below, we show
the corresponding factorization of the example factor graph in Figure 2.2 after using
Bayes rule [6]:

%((, ! |/) ∝ %(/ |(, !)%((, !) = ?(B1)

× ?(I>1 |B1, B2)?(I>2 |B2, B3)?(I>3 |B3, B4)

× ?(IE1 |B2, ;1)?(IE2 |B3, ;1)?(IE3 |B3, ;2)?(IE4 |B4, ;2)
(2.2)

Here we introduce IE
8
to represent a visual measurement between the robot and a

landmark, and we use I>
8
to represent an odometry measurement for the robot. Each

of the terms in the factorization of Equation 2.2 correspond to the factors q8 in the
graphical model. To make this relationship more explicit, we provide a line by line
explanation below:

1. Line 1 contains a prior on the robot state:

q
?

1 ∝ ?(B1)

2. Line 2 contains odometry factors between sequential robot states

q>1 ∝ ?(I>1 |B1, B2), q>2 ∝ ?(I>2 |B2, B3), q>3 ∝ ?(I>3 |B3, B4)

3. Line 3 contains visual measurement factors between robot states and land-
marks:

qE1 ∝ ?(IE1 |B2, ;1), qE2 ∝ ?(IE2 |B3, ;1), qE3 ∝ ?(IE3 |B3, ;2), qE4 ∝ ?(IE4 |B4, ;2)

We use ∝ instead of = in our factorization above because in general factors do
not have to be proper probability densities; they can be any local function of the
variables they are connected to. In practice, we usually use factors to represent
likelihood functions, which are proportional to but not equal to proper probability
density functions. More background on this can be found in [6].

7

2.2.1 Nonlinear MAP Inference
Using the newly factored joint probability distribution, we can now efficiently solve
for the MAP estimate of the robot and landmark states. Below, we adapt Equation
2.1 by using the factorized probability density.

("�%, !"�% = argmax
(,!

∏
8

q8((, !) (2.3)

In order to solve this equation, we must now specify the form for each of our factors.
It is convenient to specify that the probability density functions for our factored
probabilities be multivariate Gaussian distributions. Using this specification, the
visual measurement factor qE1 from Figure 2.2 with measurement covariance ΣE

would have the following probability density:

?(IE1 |B2, ;1) ∼ N (ℎ(B2, ;1), ΣE)

qI1 ∝ 4G?(−1
2
‖ℎ(B2, ;1) − I1‖2ΣE)

where the Mahalanobis norm is calculated as[6]: ‖4‖2Σ = 4)Σ−14

(2.4)

For the visual measurement factor above, we note that the measurement function, ℎ,
could be a camera projection function. However, in general ℎ could be a dynamics
function for an odometry factor or the identity function for a prior factor. Plugging in
Gaussian densities in the form of Equation 2.4 into the MAP optimization problem
and simplifying by taking the negative logarithm we get the following:

("�%, !"�% = argmax
(,!

∏
8

4G?(−1
2
‖ℎ8((, !) − I8‖2Σ8)

("�%, !"�% = argmin
(,!

∑
8

‖ℎ8((, !) − I8‖2Σ8
(2.5)

Since the measurement functions ℎ8 are typically nonlinear, we must perform a
linearization of them and do iterative optimization to solve for the MAP estimate.
Using a Taylor expansion and following the derivation from [6] closely, we are able
to arrive at an update equation which is linear with respect to a state update vector,
Δ . We can then solve for an optimal update to an initial guess of the robot and
landmark states, (0 and !0, as follows:

Δ∗ = argmin
Δ

∑
8

�8Δ 8 + ℎ8((0, !0) − I8

2
Σ8 (2.6)

8

In the Equation 2.6, we use �8 to denote the Jacobian of the measurement function
ℎ8. With some more simplification of this expression, we are able to arrive at the
standard least squares problem:

Δ∗ = argmin
Δ

∑
8

‖�Δ 8 − 1‖22

where:

� = Σ
−1/2
8

�8

1 = Σ
−1/2
8

(I8 − ℎ8((0, !0))

(2.7)

To obtain a MAP estimate, we can solve this least squares problem iteratively for
Δ∗ and update the initial guess of the robot and landmark state ((0 and !0) at
each iteration. In practice, performing this nonlinear optimization is done using the
Gauss-Newton or Levenberg-Marquardt [23] techniques. Furthermore, because we
built up this problem using a factor graph, there exist a number of efficient methods
to solve this least-squares problem by exploiting the sparse matrix structure of the
measurement Jacobian, � [6].

9

2.3 Front-End of SLAM and Visual Data Association
In the past, SLAM was often performed on mobile robots with laser range sen-
sors, sonar sensors, and wheel encoders [6]. More recently, however, researchers
have shown interest in developing camera-only or camera-and-IMU-only algorithms
because of their simplicity of sensor configuration [43]. Visual-inertial SLAM
methods use images, usually from one (mono) or two (stereo) cameras, as well as
gyroscope and accelerometer data from an inertial measurement unit (IMU) sensor
to estimate robot motion and maintain a map of the environment. Combining the
rich visual information from images with high-frequency IMU measurements has
been shown to promise robustness in challenging situations [25]. Because of the
simplicity and complementary properties of cameras and IMUs, the rest of our work
is focused on performing SLAM specifically with this set of sensors.

In this section, we introduce the front-end of SLAM as it pertains to methods that
rely on visual information. We discuss the problem of visual data association,
which involves determining how to specify the measurements used in the back-end
of SLAM from raw visual data.

Figure 2.3: Responsibilities of the front-end and the back-end of SLAM. In the
case of factor graph based methods, the front-end of SLAM associates factors
with different variable nodes. Then, the back-end of SLAM optimizes the graph
constructed by the front-end to output a MAP estimate of the robot and map states.

2.3.1 Feature Detection and Tracking
The front-end of visual SLAM methods can broadly be categorized into two cat-
egories: direct and indirect [32]. As their name implies, direct methods perform
SLAM by directly measuring the change in the pixel intensities from incoming im-
ages. In this work, we instead focus on indirect methods for visual SLAMwhich are
are characterized by an image pre-processing step, in which typically hand-crafted
features are first detected in images [30]. The first step when doing visual data as-

10

sociation in indirect methods is to detect salient feature points in an image. Feature
detection is typically done by identifying image primitives such as points, lines, and
regions that can be used as visual cues [18].

Figure 2.4: Detecting Harris corner features (red) in an image. The image is
collected from a simulation environment with lines painted along the walls.

After performing feature detection on a single image, the next part of the data asso-
ciation pipeline is to track these features in another image received from the camera.
Feature tracking usually involves performing a local search to track the detected
features from the first image in a successive image [20]. The most commonly used
method for doing feature tracking, proposed by [19], is the Lucas-Kanade method.
This method tries to transform the positions of features in one image towards the
positions of the features in the second image. While the Lucas-Kanade method is
an efficient method of performing data association, it makes a key assumption that
the motion between frames must not be too large. We will see in Chapter 3 that this
assumption is one of the reasons visual methods for SLAM are difficult on dynamic
robots.

Figure 2.5: Tracking features using Lucas-Kanade Method. Red circles represent
features from the previous frame, and blue circles represent tracked features in the
current frame.

In this work, we focus on performing the front-end of visual SLAM exclusively
with a stereo camera. While monocular camera configurations are cheaper and

11

more compact, it has been shown that depth is not observable from just one camera
[20]. Due to this, monocular methods for SLAM are vulnerable to scale drift over
time, and they may fail in the case of pure rotation [25]. Stereo methods for visual
SLAM, on the other hand, are able easily to recover the depth of map points through
triangulation given a known distance between two cameras. When performing visual
SLAMwith a stereo camera, in addition to finding feature correspondences between
sequential frames, we must also track features across the images received from the
left and right cameras.

After successfully executing the front-end visual SLAM by doing feature detection
and feature tracking, we are able to add these correspondences as measurements
in the back-end of SLAM. We summarize the pipeline for the front-end of visual
SLAM in the context of the full SLAM problem in Figure 2.6:

Figure 2.6: The stereo visual SLAM pipeline with a focus on the front-end

12

2.4 Survey of State-of-the-Art SLAM Implementations
We chose to evaluate the effect of dynamic motion on three different state-of-
the-art methods for indirect visual and visual-inertial SLAM. The first method,
ORB-SLAM2, provides a robust camera-only solution with multiple levels of data
association. The second method, VINS-Fusion, combines camera and IMU infor-
mation to perform tightly coupled visual-inertial SLAM. The last methodwe look at,
MSCKF-VIO, also performs visual-inertial estimation, but it uses a more classical
filtering-based approach as its back-end. In the rest of this section, we describe
some of the notable characteristics of each of these three algorithms.

2.4.1 ORB-SLAM2
ORB-SLAM2 is one of the bestmodern-day implementations of feature-based visual
SLAM [25] that uses ORB features for all tasks. Even though ORB-SLAM2 does
not use inertial information, we include it as a baseline because of how robust its
performance has been shown to be [28] [16]. Moreover, because our work focuses
on how dynamic motion affects SLAM systems that rely on using visual features,
we believe it is fair to include.

The implementation of ORB-SLAM2 is a sophisticated optimization-based algo-
rithm that contains three main modules working in parallel [12]:

• a tracking thread that does frame to frame visual odometry and also adds a
new keyframe when needed

• a local mapping thread that processes new keyframes and performs local
optimization to achieve an optimal space reconstruction

• a loop closure thread that searches for large loops when a new keyframe is
available

By using three tiers of visual data association, ORB-SLAM2 can maintain robust
and accurate tracking even over long distances. Instead of doing optimization over
every frame received by the camera, ORB-SLAM2 only uses a subset of frames,
called keyframes, to perform optimization over. This technique of keyframing is
very common to visual SLAM because it reduces the computational burden of
graph-based optimization. Additionally, it should be noted that ORB-SLAM2 can
detect loop closure events and re-localize when tracking is lost in real-time.

13

2.4.2 VINS-Fusion
In situations where there is agile camera movement, visual-inertial SLAM has
shown great success [17]. VINS-Fusion is one of the current popular state-of-the-
art implementations of stereo visual-inertial SLAM. It tightly couples visual and
inertial measurements in an optimization-based estimator and runs a parallel thread
for loop closures as well [27].

The authors of VINS-Fusion talk extensively about their method of IMU preinte-
gration that can accurately summarize hundreds of inertial measurements into one
single relative motion constraint to be used during optimization [8]. By preintegrat-
ing IMU information between camera frames, VINS-Fusion is able to efficiently
seed the next estimated camera pose more accurately.

Another key idea used in VINS-Fusion is the use of a sliding optimization window.
By only maintaining a small window of states from the past and marginalizing out
the rest, VINS-Fusion can perform real-time estimation at the cost of drift due to
linearization error [26].

2.4.3 MSCKF-VIO
The work presented in [24] and [29] introduces the Multi-State Constraint Kalman
Filter, which performs visual-inertial odometry using an extended Kalman filter
(EKF) as its back-end. Filtering-based approaches are how researchers have classi-
cally approached the problems of state estimation and SLAM. Unlike VINS-Fusion
and ORB-SLAM2 which rely on graph-based optimization over a history of robot
states, filtering-based approaches typically work by incrementally updating only the
most current state estimate.

The MSCKF-VIO algorithm uses a two-step EKF to combine data from IMU and
stereo camera sensors. In the first step, an EKF process model is used to integrate
information from the IMU sensor to predict the next pose of the robot. Then, in the
second step, an EKF measurement model corrects the estimate for the pose of the
robot by tracking visual features from previous frames. Unlike most Kalman Filters,
MSCKF-VIO maintains a brief history of previous robot states by appending robot
poses to the state matrix. Once the state matrix becomes too large, this method then
performs a batch marginalization step over some of the previous poses. While this
method is unable to perform SLAM at as large of a scale as the other two methods
in this section, we find that it is still useful to include in our comparison.

14

C h a p t e r 3

WHY DYNAMIC MOTION CAUSES SLAM TO FAIL

In this chapter, we evaluate the performance of the three previously surveyed state-
of-the-art algorithms for visual and visual-inertial SLAM in the presence of dynamic
motion. We start by introducing a simulation environment that we created to test
the performance of each of these algorithms. Then, we look at the limits of each of
the surveyed algorithms in our simulation environment and hypothesize reasons for
failure.

3.1 Simulation Environment
To evaluate the performance of these different SLAMapproaches, we create a simple
hallway environment in Gazebo. Lines of different colors are drawn onto the walls
of the hallway to ensure that an abundance of visual features is available to perform
feature detection and tracking.

Figure 3.1: Simulated hallway environment in Gazebo. On the left the full hallway
is shown with arbitrary drawings on the walls to add visual features. On the right
the simulated robot is shown collecting camera and IMU data as it moves down the
hallway.

While it might seem counter-intuitive at first, we use a wheeled robot in our sim-
ulation instead of a legged robot. We attach a camera and an IMU sensor to the
top of this robot via a rotational and a prismatic joint to approximate a hopping and
pitching motion. Using these two well-controlled degrees of freedom, the robot is
able to approximate the motion of a camera and IMU sensor attached to a legged
robot undergoing gait-like motion.

15

As the robot moves down the simulated hallway, we collect time-synchronized stereo
image pairs at 30 Hz and IMU data at 250 Hz from the simulated sensors that are
attached to the top of the robot. Additionally, we corrupt all of the measurements
with additive Gaussian noise.

Figure 3.2: Simulated stereo image pair taken from the camera on top of the robot

We describe the motion of the robot with a set of simple periodic functions that take
four parameters as input: max pitch angle (qmax) in radians, max heave distance
(Xmax) in meters, frequency of gait cycle (l) in Hz, and forward velocity of the
robot (¤G) in meters/second. By doing this, we can modulate different parameters
of the "robot’s gait" to achieve varying periodic camera trajectories. We include
the periodic functions used to describe the robot’s motion and a schematic of the
simulated robot below:

qC = qmax sin(l2cC)

XC = Xmax sin(l2cC)
(3.1)

Figure 3.3: Schematic of simulated robot. The subscript "w" represents the world
coordinate frame and the subscript "c" represents the camera coordinate frame. The
IMU frame is aligned with the camera frame on top of the robot. The red dotted line
shows the trajectory that the camera and IMU follow as the robot moves forwards.

16

3.2 Performance of Different SLAM Implementations in Simulation
To evaluate the performance of the state-of-the-art SLAMmethods that we surveyed
in Chapter 2, we used open-source implementations of these algorithms on the
simulated robot. We tuned each algorithm individually and maintained the same
camera and IMU parameters across each algorithm. As expected, we observed
that as the simulated robot’s motion became faster and more dynamic, each of the
surveyed SLAM methods began to experience failure.

We validated this observation by conducting an experiment in which we measured
how changing the frequency in which the robot executes a cycle of its gait, l,
affects the performance of each state-of-the-art SLAMmethod. We ran each SLAM
algorithm on the robot as it moved forward 10 meters in the simulated hallway
environment, and we modulated the robot’s gait frequency from .125 Hz to 2.5 Hz.
We selected some nominal parameters for the max pitch angle, max heave height,
and forward velocity of the robot that we estimate would roughly correspond to a
dynamic legged robot moving in the real world.

l (Hz) q<0G (deg) X<0G (m) ¤G (m/s)
0.125 - 2.5 25 0.05 0.2

Table 3.1: Simulation Gait Parameters

In our experiment, we ran 50 trials at each gait frequency to account for variance
between trials. In each of the trials, we recorded the estimated position of the robot
outputted by each SLAM system and the ground truth position of the robot given
by the simulation. To measure the performance of each SLAM system, we recorded
the distance the robot traveled before losing track of where it was. Since the overall
trajectory was 10 meters, we decided that if the difference between the estimated
robot position and the ground truth robot position was greater than .5 meters or
5 percent of the entire trajectory, we would deem the trial a failure. While we
could have had the simulated robot move over a longer distance (e.g., a 20-meter
trajectory), we found that 10 meters were sufficient. We found that in most cases if
the robot experienced failure, it did so within the first 5 meters of its trajectory.

Figure 3.4 shows the result of our experiment. We observe a clear trend for each
algorithm showing that an increase in robot gait frequency leads to a decrease in
SLAM performance. Our results show that once gait frequency exceeds 1.25 Hz, all
three methods experience failure. Furthermore, each method ends up failing earlier
in the robot’s trajectory as gait frequency (l) is increased.

17

Figure 3.4: Distance Traveled (m) before failure of different SLAM algorithms vs
gait frequency of robot. In this box and whiskers plot, each box represents the first to
third quartile of the data. The horizontal line inside each box represents the median
of the data. Finally, the whiskers show the minimum and maximum of the data.

18

3.3 Feature Tracking Performance
In the previous section, we established that there was a significant decrease in the
performance of all three of the surveyed SLAM implementations as robot motion
became faster. In this section, we hypothesize that the front-end of each of the
surveyed algorithms is the common failure point. We hypothesize that the feature
tracking performance of each of these algorithms directly suffers as a result of rapid
motion between sequential camera frames. Furthermore, we believe that without
adequate feature tracking, each algorithm is induced to fail. In Figure 3.5 below,
we show a visualization of VINS-Fusion’s feature tracking for three different gait
frequencies.

Figure 3.5: Frame-to-frame VINS-Fusion feature tracking output for three different
gait frequencies. Red circles represent features detected at the first time step (t), and
light blue circles represent features detected at the next time step (t+1). If feature
tracking were possible, green arrows are drawn to indicate the change in position
from features in one frame to the next. Quantitative results are shown in Figure 3.6.

19

In Figure 3.5 we can see that that as gait frequency increases, the distance that visual
features move from frame to frame becomes larger. This increase in feature dis-
placement naturally makes the problem of feature tracking more difficult, especially
in the case of algorithms that track features using local search methods such as
Lucas Kanade tracking [19]. Once the change in camera viewpoint from one frame
to the next becomes too large, it becomes difficult or in some cases impossible to
find accurate feature correspondences between frames.

We conducted another experiment to quantify the relationship between feature track-
ing performance and gait frequency. We ran the simulated robot in the hallway
environment with the same setup as the experiment whose results are shown in Fig-
ure 3.4 using the gait parameters from Table 3.1. In this experiment, for each of the
50 trials at each gait frequency, we recorded the number of tracked features present
in each image. Since each SLAM method uses a different number of features, we
divided this number by the maximum number of potential candidate features that
could have been tracked. We show the distribution for this metric across all of the
image frames used for each gait frequency in the box plot below:

C
a
n
d
id
a
te

Figure 3.6: Feature tracking performance of different SLAM algorithms vs gait
frequency of robot

The above figure validates our hypothesis that the performance of feature tracking
decreases as the robot’s gait frequency increases for each of the surveyed methods.
Intuitively this makes a lot of sense: as camera viewpoint changes more dramat-

20

ically, it is more difficult to find common visual cues between images taken at
successive viewpoints. One caveat about our experiment is that we only look at the
performance of short-term data associations. More specifically, we do not evaluate
the performance of long-term data associations such as loop closure. Because loop
closures generally occur infrequently, we do not believe that including data on them
would noticeably change the outcome of any of our feature tracking results.

Reflecting on the results from the two experiments in this chapter, we believe that the
decrease in feature tracking performance is one of the primary reasons that visual
and visual-inertial methods for SLAM fail when robot motion becomes dynamic. In
stereo visual SLAM, it is only possible to estimate the change in the camera’s pose, if
we can track three features at minimum [11]. This requirement also assumes that the
three features that we track and triangulate are not in a degenerate configuration (i.e.
a straight line). In practice, however, much more than 3 tracked features are needed
to obtain robust visual estimation. While the addition of IMU information allows
algorithms such as VINS-Fusion and MSCKF-VIO to avoid complete failure when
the minimum number of tracked features is not available, low-cost IMU sensors are
generally extremely noisy and lead to large amounts of estimation drift. In the next
chapter, motivated to avoid SLAM failure, we describe our method for leveraging
the periodicity present in legged locomotion to increase the performance of visual
feature tracking.

21

C h a p t e r 4

SLAM FOR DYNAMIC LEGGED ROBOTS: MULTI-SESSION
PERIODIC SLAM

In the previous chapter, we were able to show that sequential feature tracking is
not robust against fast, periodic trajectories like those experienced on some legged
robots. To combat this, Figure 4.1 highlights the intuition behind the approach of
periodic feature tracking:

Figure 4.1: In this figure, when the robot shifts its focus from looking downward
to upwards, it is unable to track any visual cues from the environment. However, if
the robot is able to remember how the floor looks each time it is looking downwards
and compare these periodic viewpoints, it can estimate its relative motion.

Because specific visual features seem to persist at certain portions of the gait cycle,
tracking features that have similar phase values can lead to improved performance. In
this chapter, we present the main contribution of our work: a method for leveraging
this intuition by integrating periodic feature tracking into a visual-inertial SLAM
system.

4.1 Periodically Mapping Different Portions of the Gait Cycle
In order to perform periodic feature tracking, our method relies on being able to
consistently extract and track features from images collected during an interval in
which the phase of the robot’s gait cycle is similar. Thus, our method makes two
key assumptions about the robotic system for which it is being used on:

1. Periodic tracking has a global clock indicating the phase of the robot’s gait.

22

2. Images taken at similar gait phases contain mutual visual features.

Given a set of images with similar gait phases and mutual visual features, feature
tracking begins with an initialization step and then a tracking step. After initializing
visual features in the first image, the tracking step persists for as long as there are
enough features to track. If at any point the system "loses" too many features to
track, the approach re-initializes to add new visual features. While this approach
is general to any feature detector, keeping efficiency in mind, we use Harris corner
detection [22] to initialize features and the Lucas-Kanade method [19] to track them.

Our method initializes multiple periodic feature trackers to track different intervals
of the robot’s gait cycle. For each periodic feature tracker, our method introduces
a visual SLAM session, which is responsible for using the tracked features to build
a sparse map of three-dimensional visual landmarks and to estimate the location of
the robot during a certain phase interval.

Figure 4.2: Three SLAM sessions performing estimation periodically when a robot
is looking upwards, forwards, and downwards. The dial represents which part of
the robot’s gait cycle images were taken from. The left column of images shows the
result of periodic feature tracking in simulation. The right column of images shows
the corresponding three-dimensional map of landmarks that each SLAM session
maintains using these features.

23

Each individual SLAM session periodically updates its estimate of the robot and
the map at a lower rate but is more successful due to periodic rather than sequential
feature tracking. While in general this methodology can be extended to any number
of SLAM sessions, Figure 4.2 shows an example for a situation in which there are
three SLAM sessions to track three different sections of the robot’s gait cycle, each
characterized by a distinct robot body orientation.

When performing multi-session SLAM, we must address the problem of fusing
different state estimates from each visual SLAM session. While a naive approach
to this problem might take the average of the output from the different SLAM
sessions, it would be advantageous if these sessions tightly shared information with
one another to achieve a more robust combined performance. The idea of fusing
the result from different SLAM sessions is not new, and our method is inspired by
previous work on multi-session visual SLAM for coordinated mapping. In [21], the
authors propose connecting different SLAM sessions with visual anchor constraints,
which they define to be pose constraints that are created when the visual front-end
recognizes that the robot is in the same location.

In our work, we adapt the idea from [21] to the problem of constraining multiple
periodically updating SLAM sessions running on a single robot. Because a fun-
damental challenge we have is that we cannot use visual information to constrain
individual SLAM sessions (otherwise we would not need multiple sessions in the
first place), we instead choose to take advantage of measurements from an IMU on-
board the robot. IMU sensors can be used to provide measurements of the robot’s
acceleration and angular velocity between different SLAM sessions when feature
tracking is not reliable. By performing Euler integration of the IMU measurements
(described further in Section 4.3.3), our method is able to introduce relative pose
constraints between each of the different SLAM sessions running on the robot.

4.2 Building a Periodic Factor Graph
We choose to solve the periodic multi-session SLAM problem that we have posed
using the techniques for factor graph optimization that we described in Chapter 2.
The primary reason that we use factor graphs is that they provide an economical
representation of the SLAM problem as a system of unknown states, which we wish
to solve for, and the relationships or constraints between these states. Furthermore,
factor graphs are inherently amendable to adding constraints between sequential
and non-sequential states, which is necessary for our method. Figure 4.3 illustrates

24

a schematic that is useful in thinking about representing this problem as a factor
graph:

Figure 4.3: Schematic for our method as a factor graph. We use (8 to denote the
8Cℎ state of the robot in time. Each cycle around the circular graph represents one
period of the robot’s gait cycle. Robot states positioned along a spoke of the graph
have a similar gait cycle phase.

To convert the schematic in Figure 4.3 into an actual factor graph, we must introduce
factors between each of the different robot states denoted by (8. Ourmethod proposes
that we add visual factors between the stateswith similar gait phases positioned along
each spoke of the graph. Each spoke of the graph, therefore, represents an individual
visual SLAM session performing feature tracking periodically on one portion of the
robot’s gait cycle. Then, to connect the different visual SLAM sessions running on
each spoke, our method introduces inertial factors between every sequential state.
Each of the inertial factors uses IMU measurements to estimate the relative change
in pose of the robot when feature tracking is not possible. We show a factor graph
representation for both the sequential visual-inertial SLAM problem and our novel
periodic visual-inertial SLAM problem in Figure 4.4:

25

Figure 4.4: Sequential Factor Graph vs. Periodic Factor Graph

In Figure 4.4 blue dots represent factors that provide visual constraints between
periodic states, red dots represent factors that provide inertial constraints between
sequential states, and green dots represent factors that constrain the robot to a prior
location. In this figure, we also introduce landmark nodes, marked with an L, to
represent the sparse map that each SLAM session maintains. Each of the landmark
nodes in the graph has an associated color that represents the section of the robot’s
gait cycle in which it was tracked.

We show that compared to the sequential factor graph which includes all landmarks
in a single map, our periodic factor graph separates landmarks into individual maps
corresponding to their gait phase. While the periodic factor graph in Figure 4.4
only shows SLAM being performed periodically on three portions of the gait cycle,
we want to reemphasize that running additional SLAM sessions would simply
correspond to adding more spokes to the factor graph. In the next few sections, we
show how we can use the periodic factor graph to set up a nonlinear optimization
problem to estimate the state of the robot its map.

26

4.3 Deconstructing the Form of Each Factor
In this section, we rely on the background material from Chapter 2 to explain the
mathematics behind the periodic factor graph shown in Figure 4.4. To represent the
state of the robot and each visual landmark, we use two types of variable nodes: B8
and ;8. We represent the state of the robot with B8 = [?8, '8, E8], where ?8, '8, and E8
represent the position, rotation, and velocity of the robot, and we represent the state
of a landmark with ;8, where each landmark is a three-dimensional point.

We assume that each of the factors we use is corrupted with zero-mean, additive
Gaussian noise. Given this assumption, each Gaussian factor can be written in a
form similar to Equation 4.1, where F can be thought of as a constraint or cost
function which is dependent on the robot and landmark states as well as a sensor
measurement I8.

q8 ∝ 4G?(−1
2
‖�(B8, ;8, I8)‖2Σ) (4.1)

In the rest of this section, we explain how each of the factors in Figure 4.4 can be
written similar to this general form. We begin with the prior factor which describes
the distribution of the robot’s initial state. Then, we explain the visual factor which
constrains the robot to visual landmarks in periodic robot states. Finally, we detail
the IMU factor which provides odometry between sequential robot states.

4.3.1 The Prior Factor
The prior factor is the simplest factor in the full periodic factor graph shown in
Figure 4.4. While all other factors are useful in estimating the robot’s relative
motion, the prior factor grounds the estimated state of the robot to a global reference
frame.

Figure 4.5: A single prior factor on the initial state of the robot

Given a prior measurement of the initial location of the robot, I?, with covariance
Σ?, we define a Gaussian prior factor on the initial robot state as:

27

q%A8>A ∝ 4G?(−1
2

(ℎ%A8>A(B1) − I?)

2
Σ?

)

where ℎ%A8>A is trivially the identity function
(4.2)

4.3.2 The Visual Factor
Blue visual factors represent constraints between the state of the robot and every
landmark that the robot observes while in that state. We show an example of visual
factors along one spoke of the periodic factor graph in Figure 4.6 below:

Figure 4.6: Visual factors mapping landmarks at periodic robot states

Each visual factor in Figure 4.6 represents a cost between its connected landmark and
robot nodes that is dependent on a visual measurement, IE

8
. Visual measurements

in our method are periodically tracked stereo features from the front-end of SLAM
with the form IE

8
= [D!

8
, D'
8
, E8]. Here, D!8 and D'

8
are the x coordinates of the tracked

feature in the left and right stereo images and E8 is the y coordinate of the tracked
feature in both images.

To calculate the cost for a particular visual measurement, the visual factor transforms
a three-dimensional landmark into an estimated stereo feature, ÎE

8
, at a corresponding

robot state. We introduce the following visual measurement function, ℎE8BD0; , which
performs this transformation in two steps: coordinate frame transformation (6) and
projection (c):

ℎ+8BD0;(B8, ;8) = c(6(B8, ;8)) = ÎE8 (4.3)

28

In the first step, the inner function, 6, transforms the landmark, ;8, from world
coordinates to camera coordinates, [-2, .2, /2]. In Equation 4.5, 6 uses the extracted
position and rotation components from the robot’s state, ?8 and '8, to perform this
transformation:

6(B8, ;8) = 6(?8, '8, ;8) = ('8)) (;8 − ?8) = [-2, .2, /2] (4.4)

Next, the outer function in Equation 4.4, c, is used to project the three-dimensional
landmark point from camera coordinates to estimated stereo image coordinates:

c(-2, .2, /2) =
[
-2 5G
/2

(-2−1) 5G
/2

.2 5H
/2

]
= [D̂! , D̂', Ê]

where 5G and 5H are camera focal lengths

and 1 is the baseline or distance between the camera centers

(4.5)

After transforming the 3D landmark ;8 into a stereo feature point, we can calculate a
cost, commonly known as re-projection error, by taking the difference between the
estimated stereo feature and the measured stereo feature. The visual factor computes
the re-projection error for a visual measurement with covariance ΣE as follows:

q+8BD0; ∝ 4G?(−1
2

ℎ+8BD0;(B8, ;8) − IE8

2
ΣE

) (4.6)

Because the visual measurement function is nonlinear, when performing optimiza-
tion we must calculate its Jacobian with respect to the robot state B8 and the corre-
sponding measured landmark ;8. For the sake of brevity, we omit the derivation for
this Jacobian which can be found in [5].

29

4.3.3 The IMU Factor
The periodic factor graph in Figure 4.4 has IMU factors that provide relative odom-
etry constraints between the two robot states to which the factor is connected.

Figure 4.7: IMU factors connecting sequential robot states

Each IMU factor uses measurements from the two sensors that make up the IMU:
the gyroscope and the accelerometer. With respect to the robot’s inertial frame, the
gyroscope sensor outputs the angular velocity of the robot,l8, and the accelerometer
sensor outputs the acceleration of the robot, U8. We assume that each sensor’s
measurements are corrupted with additive white noise given by [6 and [0.

Using the measurements from the accelerometer and gyroscope, it is possible to
describe the dynamics of the robot’s position (?8), orientation ('8), and velocity
(E8) between two sequential time instances. Equation 4.7 uses the method of Euler
integration to describe these dynamics over a fixed time interval ΔC [7].

?8+1 = ?8 + ΔCE8 +
ΔC2

2
[6 + '8(U8 − [0)]

E8+1 = E8 + ΔC [6 + '8(U8 − [0)]
'8+1 = '8 4G?

(
ΔC [lC − [6]∧

) (4.7)

In Equation 4.7, we use the ∧ operator to convert an element of R3 to a skew-
symmetric matrix.


l1

l2

l3


∧

=


0 l3 l2

−l3 0 −l1

−l2 l1 0

 (4.8)

30

To group some of the quantities from the Euler integration step together, we use I�"*
8

to represent the angular velocity and acceleration measurements from the IMU, and
Σ�"* to represent the covariance of these measurements:

I�"*8 = [l8, U8]

Σ�"* = 3806([6, [0)
(4.9)

.

Then, we introduce an IMUprocess function, ℎ�"* , to succinctly represent the Euler
integration step from Equation 4.7. We note that unlike the previous measurement
functions in this section, ℎ�"* is a function of the sensor measurement, and it
represents the robot’s dynamics.

B̂8+1 = ℎ�"*(B8, I�"*8) (4.10)

Using this IMU process function, we can write each IMU factor as an error between
the predicted and estimated next state of the robot:

q�"* ∝ 4G?(−1
2

B8+1 − ℎ�"*(B8, I�"*8)

2
Σ�"*

) (4.11)

One way to connect consecutive states with an IMU factor would be to create a new
factor and robot state node for each measurement from the IMU. To avoid adding
states to our graph at such a high rate, in our implementation we instead use the
idea of IMU preintegration from [3] and [7], where many IMU measurements are
accurately summarized into a single motion constraint between frames of interest.
These preintegrated IMU factors also take into account time-varying biases in the
measurements from the IMU, which are important in getting our method to work
on a real-world robot. Due to complexity, we point the reader interested in details
about the preintegrated IMU factors and biases that we use to [7].

31

4.4 MAP Inference with Robust Cost Functions
After specifying the form for each of the factors, we can maximize their product to
calculate a MAP estimate for the robot and landmark states. We adapt the equations
from Section 2.4 by plugging in each of the factors to arrive at the following
optimization problem:

("�%, !"�% = argmax
B,;

)∏
8=0

q%A8>A8 q+8BD0;8 q�"*8

= argmin
B,;

(ℎ%A8>A(B1) − I?1)

2
Σ?

+
)∑
8=0

{

ℎ+8BD0;(B8, ;8) − IE8

2
ΣE

+

(B8+1 − ℎ�"*(B8, I�"*8))

2
Σ�"*

} (4.12)

To solve this optimization problem we use the equations from Section 2.4 describ-
ing nonlinear MAP inference. The general approach we follow is that we first use
a Taylor series expansion to linearize Equation 4.12, and then we iteratively solve
this linearized equation using the Gauss-Newton or Levenberg-Marquardt [23] tech-
niques to compute a SLAM solution.

In the current optimization objective, all measurements of a specific type are mod-
eled with the same uncertainty. Moreover, we find that without explicitly pruning
erroneous measurements, our method is largely affected by outliers. To combat
this issue, we incorporate a robust error model into our optimization to weight
each measurement based on its residual value A8 (e.g. for a visual measurement:
A8 = ℎ+8BD0;(B8, ;8) − IE8). While a number of different robust error models exist [1],
in our implementation we choose to use the Geman-McClure cost function (d):

d(A8) =
A2
8

2

1 + A2
8

(4.13)

We choose the Geman-McClure instead of other popular robust cost functions, such
as the Huber cost function, because of its strong bias against large outliers. We
show a comparison of the standard squared residual cost function along with the
Geman-McClure cost function and the popular Huber cost function in Figure 4.8.
Compared to the standard least squares cost function, the tails of theGeman-McClure
and Huber cost functions neglect the influence of large residuals. We find that by
using the Geman-McClure cost function to implicitly remove the effect of outliers,
our method has significant improvement.

32

Figure 4.8: The effect of different cost functions on weighting measurement resid-
uals. The Geman-McClure robust cost functions gives the least weight to large
residuals when compared to the other cost functions.

33

4.5 Determining the Number of SLAM Sessions
The number of SLAM sessions and the portion of the gait cycle that each SLAM
session tracks are currently hand-tuned based on a few important considerations.
In determining which portions of the robot’s gait cycle to track, we find that it
is important to track parts of the gait cycle in which camera frames are readily
available. In Figure 4.9 below, we show that as robot gait frequency increases it is
harder to sample images consistently during some portions of the gait cycle.

Figure 4.9: The effect of gait frequency on camera frame availability. Using the
parameterized gait from Chapter 2, this figure shows a periodic robot’s trajectory
for two different gait frequencies with blue lines. Red dots along the lines represent
instances along the robot’s trajectory when an image is available to be tracked. The
yellow shaded area in each plot shows a portion of the robot’s gait cycle which we
argue does not have frames consistently available at higher frequencies.

In Figure 4.9, as the robot’s gait frequency increases it becomes more difficult to
sample images during the "middle" portion of the robot’s gait cycle highlighted in
yellow. Because the velocity of the robot is highest when the robot is executing this
part of its gait cycle, performing SLAM using images collected from this part of the
robot’s trajectory is especially inconsistent. Furthermore, if the gait frequency of
the robot continues to increase, without a high enough frame-rate, sampling images

34

during any portion of the robot’s gait cycle will become inconsistent and our method
will fail.

In picking the number of SLAM sessions, the main consideration that wemake is the
trade-off between computational efficiency and accuracy. While using more SLAM
sessions can lead to higher estimation accuracy by using more information, it comes
at the price of maintaining additional maps of the environment. For the case of the
simulated robot and the real-world legged robot that we perform experiments on in
Chapter 5, we believe that three SLAM sessions evenly spread out across the robot’s
gait cycle work well. We find that using three SLAM sessions for a periodically
pitching robot sufficiently captures features from different viewpoints without being
too much of a computational burden. In Figure 4.10, we show how a three-spoke
periodic factor graph performs estimation in our simulated environment by main-
taining separate maps for when the robot is looking up, forwards, and downwards.
We also show that by combining the results from each of these estimators tightly we
can calculate unified SLAM output.

Figure 4.10: Periodic SLAM tracking three different gait phases in simulation. In
this figure, we show a three-spoke factor graph (left) combining maps from three
different periodic visual SLAM sessions (middle column of images) to get a unified
SLAM Result (right).

4.6 Fixed Lag Smoothing and Incremental SLAM
When performing SLAM with a large number of visual landmarks for an extended
period of time, we experienced that our method reached its computational perfor-

35

mance limit. Moreover, optimizing continuously growing factor graphs, was not
feasible in real-time. To keep the computational complexity of SLAM bounded, we
choose to marginalize over robot states and landmarks that are sufficiently old. Our
method uses a technique called fixed lag smoothing which only keeps a fixed lag
of previous factors (e.g. last five seconds) and marginalizes out all factors before
this time. The process of marginalization effectively summarizes all factors cre-
ated before the fixed lag into a more succinct marginal factor. We find that fixed
lag smoothing improves the real-time performance of our method at the cost of
sub-optimal performance due to the inability to relinearize older factors.

To further enable the ability of real-time performance, our method also incorporates
an incremental smoothing approach called iSAM2 [14]. Using this incremental
approach, our method is able to reuse parts of previously computed SLAM solutions
to perform SLAM more efficiently. [14] explains this algorithm in much further
detail. We rely on an implementation of this algorithm from the commonly used
Georgia Tech smoothing and mapping (GTSAM) library [4].

36

C h a p t e r 5

RESULTS

In this chapter, we present the results of our proposed method. We begin by
briefly introducing some of the details for the implementation of our algorithm.
Then, we compare the performance of our algorithm to several state-of-the-art
implementations of SLAM in both a simulated and a real-world environment.

5.1 Implementation
We implemented our multi-session periodic SLAM algorithm in C++ relying on
different open-source libraries, such as GTSAM, Open CV, and Eigen. All the code
for this project can be found at https://github.com/kumarhans/periodic_
slam. All the experiments were run on an AMD® Ryzen 7 2700x processor at
3.7GHz with 16GB of memory. A high-level block diagram of the main parts of
our code is shown in Figure 5.1.

Figure 5.1: Block diagram of major modules in our code. We used a modified
version of VINS-Fusion for our SLAM front-end and GTSAM for our SLAM back-
end.

37

While we tried implementing our own SLAM front-end from scratch, for our final
implementation we opted to use a modified version of the front-end from VINS-
Fusion [26] to achieve more consistent results. Specifically, we found that the front-
end of VINS-Fusion did a good job pruning unreliable features during tracking.

5.2 Metric for SLAM Performance
We evaluate the performance of different SLAM systems by comparing the com-
monly used Absolute Trajectory Error (ATE) metric. We follow the conventions
used in [9] and use %4BC,8 and %6C,8 to represent the estimated and ground-truth pose
of the robot at time step i, respectively. Below we introduce the formula for ATE,
and we show how to calculate the Root Mean Square Error (RMSE) as a metric for
average error along a trajectory.

1. ATE: This type of error measures the global drift in the estimated poses
compared to the ground truth poses. Unlike absolute pose error (APE), this
type of error only takes into account the translational component of the drift.

�8 = %−1
6C,8%4BC,8

�)�8 = ‖CA0=B(�8)‖

'"(��)� =

√
1
#

#∑
8=1

�)�2
8

(5.1)

5.3 Results in Simulated Environment

Figure 5.2: Simulated hallway
environment

Using the simulation environment that we intro-
duced in Chapter 3, we were able to thoroughly
evaluate the performance of our method for per-
forming SLAM periodically. For all of our ex-
periments in this section, we compared the per-
formance of our method, which we call Periodic
SLAM, against the performance of the same three
state-of-the-art algorithms for visual and visual-
inertial SLAM that we surveyed in Chapter 2:
VINS-Fusion, ORB-SLAM2, and MSCKF-VIO.
We implemented our method to use three different SLAM sessions to track three
distinct portions of the robot’s gait cycle. Our method used one session for when

38

the robot was looking upwards, one session for when the robot was looking down
the middle, and one session for when the robot was looking downwards.

We conducted a set of experiments in which we used the same set of robot gait
parameters from Table 3.1, and we once again ran the robot forward in the simulated
hallway for 10 meters. We modulated the robot’s gait frequency parameter, l,
from .125 Hz to 2.5 Hz to see how increasingly dynamic motion would affect the
performance of our method. We also performed 50 trials at each gait frequency to
account for variance between trials. We show the median values over these trials for
all of the performance metrics in this chapter.

5.3.1 Comparing Front-End Performance
Before evaluating the performance of our full periodic SLAM system, we chose to
compare the performance of the front-end (feature tracking) of our method against
the surveyed methods in simulation. We perform this experiment first because the
front-end of SLAM is the core module that we claim our method improves upon.
We came up with two metrics that we believed were useful in evaluating visual
front-end performance:

1. Average Percent of candidate features tracked = 1
�−1

∑�−1
8=1

�8
'8

• F-1 = total number of camera frameswe perform tracking on (impossible
to track features in first frame)

• �8 = number of tracked features in current frame

• '8 = number of detected features in reference frame

2. Average Feature lifetime = 1
#

∑#
8=1(C8,;0BC − C8, 5 8ABC)

• # = total number of features tracked over robot’s trajectory

• C8,;0BC = timestamp in seconds that we last tracked feature

• C8, 5 8ABC = timestamp in seconds that we first detected feature

Unfortunately, because of ORB-SLAM2’s complicated, multi-tier data association
scheme, we were unable to extract a meaningful metric for its feature lifetime, and
for that reason we do not include it. Aside from that, we show a performance
comparison between the front-end of each method below in Figure 5.3:

39

Figure 5.3: Comparing the performance of SLAM front-ends in simulation

From the above plots in Figure 5.3, we see that our method shows a significant
increase in the performance of feature tracking and feature lifetime in the simulation
environment. Looking at the first plot above, we see that by performing feature
tracking periodically rather than sequentially, our method can consistently track over
75% of candidate features even as robot motion becomes more dynamic. Notably,
our method has a similar performance to VINS-Fusion at low gait frequencies
because our implementation uses a modified version of VINS-Fusion’s front-end.

In the second plot of Figure 5.3 showing feature lifetime, we see an even bigger
difference in performance. We see that our system can remember features for roughly
4x longer than the other two methods when the robot’s gait frequency exceeds 1.0
Hz. Making longer-term data associations is beneficial in reducing overall drift in
SLAM. These results serve as a great validation for our previous hypothesis that
tracking features periodically on a periodic, dynamic system is more effective than
tracking features sequentially.

40

5.3.2 Comparing Full SLAM Performance Against State-of-the-Art Methods
To begin evaluating the accuracy of our full SLAM system, we first show the
estimated XZ trajectories of the robot outputted by our SLAM method compared
to the state-of-the-art methods. Below we include the trajectories from one of our
trials at three different gait frequencies:

Figure 5.4: XZ trajectories for simulated robot trials

In Figure 5.4 above, the qualitative performance of each method for three different
"levels" of dynamic motion can be observed. When the simulated robot is moving
at .125 Hz per second, the output from our method (purple) and the three surveyed
methods all follow the ground truth trajectory (black) closely. However, in themiddle
and bottom plots of Figure 5.4, when the robot executes larger gait frequencies, our
method follows the ground truth trajectory much more closely than the surveyed
methods, which end up diverging.

To quantitatively summarize the performance of each of the simulation methods, we
show plots for the median RMSE of ATE over the set of 50 trials in Figure 5.5. The
shaded regions for each plot represent the 25th and 75th percentiles for the RMSE
values. We cut off the maximum error for each curve at .5 for ATE to make the plot
more readable.

41

Figure 5.5: RMSE of ATE for different SLAM methods as a function of gait
frequency in the simulated environment

Figure 5.5 shows that at the lowest gait frequencies (.5 Hz and below) the state-of-
the-art methods have lower global drift (ATE) than our proposedmethod. This result
shows that when the robot is moving slowly, sequential feature tracking can achieve
higher accuracy than periodic feature tracking because it uses information from all
of the images received. We believe that, at the cost of computational resources, our
method can perform better at these lower gait frequencies if it uses more than three
periodic SLAM sessions.

However, as the gait frequency of the simulated robot increases, Figure 5.5 shows
that our method outperforms the surveyed methods in terms of ATE. Because of a
decrease in the performance of feature tracking, all of the state-of-the-art methods
end up diverging as gait frequency increases, while our method maintains accurate
state estimation.

5.3.3 Comparing Our Approach Against Modified State-of-the-Art Methods
Wedecided to additionally compare our approach to amodified version of each of the
state-of-the-art methods surveyed. In this section we make a simple modification to
each of state-of-the-art methods that removes all camera frames besides frames taken

42

when the robot is pitching upwards. By doing this, each of the surveyed methods
can be thought of as an periodically updating upwards facing SLAM session. We
perform the same experiment as before in which we vary the gait frequency of the
simulated robot, and we show the results in Figure 5.6.

Figure 5.6: RMSE of ATE of state-of-the-art methods given only upwards frames
vs. full Periodic SLAM in a simulated environment

Figure 5.6 shows that by only using frames from when the robot is looking upwards,
VINS-Fusion andMSCKF-VIO are both able to avoid divergence even as the robot’s
gait frequency is increased. ORB-SLAM2, however, still experiences divergence
because it does not utilize IMU measurements. In addition to the median RMSE,
the variances of VINS-Fusion and MSCKF-VIO are also both consistently higher
than our approach. We believe that by only using information from one camera
viewpoint, these modified approaches are vulnerable to outlier measurements. Out-
lier measurements can cause small local jumps in the estimated robot’s pose that
end up having large effects on the robot’s global drift. This result further validates
our approach to combine multiple different periodically updating SLAM sessions.

43

5.3.4 Comparing Our Approach Against Individual SLAM Sessions
To further analyze the performance of our method, we decided to compare the
performance of each individual SLAM session against our full combined multi-
session Periodic SLAM method. In Figure 5.7 below, we show the performance for
individual SLAM sessions tracking the robot’s motion when it is looking upwards,
down the middle, and downwards along with our combined method.

Figure 5.7: RMSE of ATE of individual SLAM sessions vs. full Periodic SLAM in
a simulated environment

In Figure 5.7, it can be seen that using three combined SLAM sessions strictly has a
lower ATE than using any individual SLAM session at all robot gait frequencies that
were tested. We find that by incorporating visual measurements at a higher rate, our
combined method can decrease the amount of drift due to noisy IMU measurement
propagation. More specifically, at faster gait frequencies above 1.5 Hz our combined
approach has at most 65% of the global drift (ATE) of any individual SLAM session.

Our results show that the middle SLAM session performs poorly at each gait fre-
quency. This is because when the robot is moving through the middle portion of
its gait cycle, it is moving at its highest angular velocity. The high angular velocity
in the middle portion of the gait cycle leads to increased difficulty in sampling
images at a consistent viewpoint, and it results in low feature tracking performance.

44

Without a sufficient camera frame-rate, if the gait frequency of the robot were to
keep increasing, the other SLAM sessions would also perform worse for the same
reasoning.

45

5.4 Results in Real World
The platform which we selected for our real-world experiments is the Minitaur robot
made by Ghost Robotics [10]. The robot is propelled by two direct-drive actuators
[15] on each of its four legs. We chose this platform because of its ability to execute
highly dynamic gaits such as bounding. To perform visual-inertial SLAM, we
mounted an Intel Realsense d435i camera on top of the Minitaur robot. The d435i
camera captured stereo image pairs from two global shutter cameras at 30 Hz and
IMU data at 300 Hz.

Figure 5.8: Minitaur robot with the Realsense D435i visual-inertial cameramounted
to its body

We collected data from the Minitaur robot in an indoor lab space. We relied on a
system of 20 Optitack Prime 41 cameras arranged across the room to provide the
robot’s ground truth pose at 180 Hz.

Figure 5.9: Testing area with motion capture setup. We added some strips of black
and blue tape to the otherwise featureless floor.

46

We tested the performance of our Periodic SLAM algorithm against the same three
state-of-the-art algorithms for SLAM that we used in our simulated environment:
VINS-Fusion, ORB-SLAM2, and MSCKF-VIO. We collected data from the Mini-
taur robot in three different situations. In the first situation, which we refer to as
Easy Gait, the robot executed a slow walking gait forwards for about 7.5 meters.
In the second situation, which we refer to as Hard Gait 1, the robot executed a
dynamic bounding gait forwards for about 7.5 meters. In the last situation, which
we refer to as Hard Gait 2, the robot executed the same gait as in Hard Gait 1 moving
forwards for about 7.5 meters, but it was facing the opposite direction. We make
this choice because we find that in the opposite direction the robot can track more
visual features. For each of these three situations, we recorded 7 trials of the robot
moving forward, and we recorded the SLAM output from each algorithm as well the
ground truth trajectory from the Mocap setup. Our method once again tracked three
portions of the robot’s gait cycle: when the robot was looking upwards, when the
robot was looking down the middle, and when the robot was looking downwards.

To easily tune the parameters for each of the algorithms we used, we decided to only
record raw data from the Minitaur robot and perform SLAM offline. Additionally,
in the data we collected we were unable to record phase information from the robot’s
onboard controller, so we instead hand labeled the phase information for the data that
we collected. We realize that this might not be possible outside of the lab setting, but
we think that our results still provide a good proof of concept for our method. Lastly,
we used Umeyama method’s [31] to align the SLAM output from each surveyed
SLAM system to best match the ground truth trajectory. This algorithm rotated and
translated the output trajectories from each SLAM system to be aligned with the
ground truth trajectory for easier comparison.

47

5.4.1 Comparing Full SLAM Performance Against State-of-the-Art Methods
To begin evaluating the accuracy of our SLAM system on real-world data, we first
show the estimated XZ trajectories of the robot outputted from our SLAMmethod as
well as from each of the state-of-the-art methods. Below we include the trajectories
from one of our 7 trials at three different gait frequencies:

Figure 5.10: XZ trajectories for Minitaur robot trials

In Figure 5.10 above, we are able to see the qualitative performance of each method
in three different scenarios. In the easy gait scenario, when the robot is walking
slowly, each of the SLAM algorithms outputs a trajectory that is very close to the
ground truth trajectory (black). This result shows that each of the SLAM algorithms
works on the legged robot when motion is not dynamic. However, for both of the

48

hard gaits, the performance of all of the SLAM systems severely decreases. While
the performance of ourmethod, Periodic SLAM, also decreases it follows the ground
truth trajectory most closely.

To quantitatively summarize the performance of each of themethods on theMinitaur
robot, we show plots for the RMSE of ATE over the set of 7 trials below in
Figure 5.11. We use box plots to show the first to third quartile of RMSE from the
distribution of 7 trials. We cut off the maximum error for each plot at 1.0 for ATE
to make the figures more readable.

Figure 5.11: Comparing the RMSE of ATE of different state-of-the-art methods vs.
Periodic SLAM on data collected from on the Minitaur robot

SLAM Method Easy Gait Hard Gait 1 Hard Gait 2
Periodic SLAM 0.053 0.173 0.084
VINS-Fusion 0.062 1.061 .280
ORB-SLAM2 0.042 1.750 1.627
MSCKF-VIO 0.147 53.931 105.258

Table 5.1: Median of the RMSE of ATE of different SLAM systems on Minitaur
robot

In Figure 5.11 above, we were surprised to see that ORB-SLAM2, a visual-only
method, performed the best on the easy gait scenario. We believe that because
of ORB-SLAM2’s multi-tier data association scheme, it was able to produce the
most accurate results when motion was slow. However, for the two difficult gaits,

49

periodic SLAMoutperforms all three of the state-of-the-art SLAM implementations.
In terms of ATE, our method performs roughly 6x better than the next best method
(VINS-Fusion) on hard gait 1 and roughly 3x better than the next best method
(VINS-Fusion again) on hard gait 2.

While these results show that periodic feature tracking helps improve the perfor-
mance of our visual-inertial SLAMmethod, we believe that there is still considerable
room to go. Our method still has a high average ATE of .173 meters for hard gait
1. We believe that one of the main reasons for this drift is additional sensor noise
that we have not accounted for in this work. As the robot makes large impacts with
the ground, the onboard IMU sensor sometimes becomes saturated and unreliable.
Moreover, even though the robot is equipped with global shutter cameras, we ob-
serve that a small amount of motion blur is still present in the images captured from
the camera. We believe that unaccounted IMU saturation and motion blur are two
phenomena that negatively affect the performance of our method and still make the
problem of SLAM on dynamic systems difficult.

50

5.4.2 Comparing Our Approach on Difficult Bounding Gaits Against Modi-
fied State-of-the-Art Methods

Similar to our experiments in simulation, we additionally compare our approach to a
modified version of each of the state-of-the-art methods surveyed on real-world data.
Bymaking a simple modification to each of state-of-the-art methods that removes all
camera frames besides frames taken when the robot is pitching upwards, we are able
to improve the performance of the baseline methods. We only compare to the two
difficult bounding gaits in this section and the next section because these are the only
gaits in which the robot’s camera has a distinct upwards facing viewpoint. We show
a comparison between the ATE of our approach and the modified state-of-the-art
methods in Figure 5.12.

Figure 5.12: Comparing the RMSE of ATE of different state-of-the-art methods
given only upwards frames vs. Periodic SLAM on data collected on the Minitaur
robot

SLAM Method Hard Gait 1 Hard Gait 2
Periodic SLAM .173 .084
VINS-Fusion .273 .170
ORB-SLAM2 .936 .358
MSCKF-VIO 71.648 2.270

Table 5.2: Median of the RMSE of ATE of modified state-of-the-art SLAM systems
vs. Periodic SLAM on Minitaur robot

51

Figure 5.12 shows that by only using frames from when the robot is looking up-
wards, VINS-Fusion and ORB-SLAM2 both have much better performance than
when using all available camera frames. Although our modification improved the
performance ofMSCKF-VIO in simulation, this method diverges on real-world data.
We believe that because of its filtering-based back-end, MSCKF-VIO is particularly
susceptible to linearization errors caused by the robot’s nonlinear impact events.
For both of the difficult bounding gaits, our Periodic SLAM approach still performs
better in terms of ATE than all of the modified state-of-the-art methods. We believe
that on real-world data, with an abundance of sensor measurement noise, incor-
porating visual information from more than one viewpoint allows our approach to
achieve more robust estimation.

5.4.3 Comparing Our Approach on Difficult Bounding Gaits Against Individ-
ual SLAM Sessions

In addition to comparing the performance of our Periodic SLAM implementation
to each of the state-of-the-art SLAM implementations, we also compared it against
each of the different visual SLAM sessions that make up our method. In the graphs
belowwe compare the performance of using three combined SLAM sessions against
using only an individual session on the data that we collected from the Minitaur
robot.

Figure 5.13: Comparing the RMSE of ATE of Individual SLAM Sessions vs. full
Periodic SLAM on data collected on the Minitaur robot

52

SLAM Method Hard Gait 1 Hard Gait 2
Periodic SLAM 0.173 0.084
Down Only 0.327 0.223
Middle Only 2.421 2.224
Up Only 0.338 0.280

Table 5.3: Median of the RMSE of ATE of Individual SLAM Sessions vs. Full
Periodic SLAM on Minitaur robot

In Figure 5.13, it can be observed that in the two difficult gaits our combined multi-
session SLAM method has a lower ATE when compared to any individual SLAM
session. Moreover, by connecting the different SLAM sessions our approach is
able to achieve 55% less global drift (ATE) than any individual SLAM session. We
believe that by usingmultiple SLAMsessions ourmethod ismore resistant to outliers
because it has more visual measurements. Similar to the simulated environment, the
middle SLAM session once again performs poorly because of difficulty sampling
images consistently when the robot is pitching at its highest velocity. We also
observe that the middle SLAM session receives images that are affected by motion
blur, making estimation even more of a challenge.

53

C h a p t e r 6

CONCLUSIONS AND FUTURE WORK

In this thesis, we present a method for performing visual-inertial SLAM on a robot
with highly dynamic motion. We show that on legged systems when motion is
periodic, we can perform the front-end of visual SLAM, feature tracking, with
higher fidelity if we track features periodically rather than sequentially. Using this
knowledge, we present an algorithm that maintains multiple different visual SLAM
sessions that each track features periodically across separate sections of the robot’s
gait cycle. We also show that if we combine these estimators with an IMU, we can
achieve a better combined result than using any individual SLAM session.

In getting our approach to work robustly on a real, legged robot, dealing with
large impacts between the robot and the ground is a challenge that we do not
address. These impacts can cause IMU sensors to saturate and cause images to
become blurry. Fortunately, these impacts are periodic and predictable. Future work
includes leveraging the periodicity in legged robot gaits to increase the covariance of
measurements received during predictable impact events. Another future direction
could be assigning a different weight to each SLAM session in our approach to
account for known sections of the robot’s gait cycle that are more or less noisy.

Another limitation of our work is that it assumes that the phase of a legged robot’s
gaits is correlated to the viewpoint of an onboard camera. While this correlation
might be reasonable to assume on flat ground, on rough terrain it would definitely not
exist. To combat this issue, future work includes incorporating multiple hypotheses
for each landmark observed by the robot. By doing this, the visual SLAMsession that
each landmark is assigned to could be a variable that is optimized over. Moreover,
exact phase information may not be an explicit requirement.

Currently, our method is limited to only periodically moving robots that experi-
ence dynamic changes in camera viewpoint. However, the general idea of using
multiple SLAM sessions connected with an IMU on a single robot can be applied
to any scenario in which there is a predictable change in viewpoint. This work
could potentially be extended to non-legged robots maintaining multiple maps of an
environment in which there is predictability in when to use which map.

54

BIBLIOGRAPHY

[1] Michael J Black and Paul Anandan. “The robust estimation of multiple mo-
tions: Parametric and piecewise-smooth flow fields”. In:Computer vision and
image understanding 63.1 (1996), pp. 75–104.

[2] Cesar Cadena et al. “Past, present, and future of simultaneous localization
and mapping: Toward the robust-perception age”. In: IEEE Transactions on
robotics 32.6 (2016), pp. 1309–1332.

[3] Luca Carlone et al. “Eliminating conditionally independent sets in factor
graphs: A unifying perspective based on smart factors”. In: 2014 IEEE In-
ternational Conference on Robotics and Automation (ICRA). IEEE. 2014,
pp. 4290–4297.

[4] Frank Dellaert. Factor graphs and GTSAM: A hands-on introduction. Tech.
rep. Georgia Institute of Technology, 2012.

[5] Frank Dellaert. Visual SLAM Tutorial: Bundle Adjustment. 2017. url: http:
//www.cs.cmu.edu/~kaess/vslam_cvpr14/media/VSLAM-Tutorial-
CVPR14-A13-BundleAdjustment-handout.pdf.

[6] Frank Dellaert, Michael Kaess, et al. “Factor graphs for robot perception”.
In: Foundations and Trends® in Robotics 6.1-2 (2017), pp. 1–139.

[7] Christian Forster et al. “IMU preintegration on manifold for efficient visual-
inertial maximum-a-posteriori estimation”. In: Georgia Institute of Technol-
ogy. 2015.

[8] Christian Forster et al. “On-Manifold Preintegration for Real-Time Visual–
Inertial Odometry”. In: IEEE Transactions on Robotics 33.1 (2016), pp. 1–
21.

[9] Michael Grupp. evo: Python package for the evaluation of odometry and
SLAM. https://github.com/MichaelGrupp/evo. 2017.

[10] Home:Philadelphia:Ghost Robotics. url:https://www.ghostrobotics.
io/.

[11] Andrew Howard. “Real-time stereo visual odometry for autonomous ground
vehicles”. In: 2008 IEEE/RSJ International Conference on Intelligent Robots
and Systems. IEEE. 2008, pp. 3946–3952.

[12] Arthur Huletski, Dmitriy Kartashov, and Kirill Krinkin. “Evaluation of the
modern visual slam methods”. In: 2015 Artificial Intelligence and Natural
Language and Information Extraction, Social Media andWeb Search FRUCT
Conference (AINL-ISMW FRUCT). IEEE. 2015, pp. 19–25.

55

[13] Vadim Indelman et al. “Factor graph based incremental smoothing in inertial
navigation systems”. In: 2012 15th International Conference on Information
Fusion. IEEE. 2012, pp. 2154–2161.

[14] Michael Kaess et al. “iSAM2: Incremental smoothing and mapping using the
Bayes tree”. In: The International Journal of Robotics Research 31.2 (2012),
pp. 216–235.

[15] Gavin Kenneally, Avik De, and Daniel E Koditschek. “Design principles for
a family of direct-drive legged robots”. In: IEEE Robotics and Automation
Letters 1.2 (2016), pp. 900–907.

[16] Patrick Latcham and Clark N Taylor. “Comparison of Visual Simultaneous
Localization and Mapping Methods for Fixed-Wing Aircraft Using SLAM-
Bench2”. In: 2020 IEEE/ION Position, Location and Navigation Symposium
(PLANS). 2020, pp. 1578–1586.

[17] Stefan Leutenegger et al. “Keyframe-based visual–inertial odometry using
nonlinear optimization”. In: The International Journal of Robotics Research
34.3 (2015), pp. 314–334.

[18] Yali Li et al. “A survey of recent advances in visual feature detection”. In:
Neurocomputing 149 (2015), pp. 736–751.

[19] Bruce D Lucas, Takeo Kanade, et al. “An iterative image registration tech-
nique with an application to stereo vision”. In: (1981).

[20] John McDonald. “Multi-session Visual Simultaneous Localisation and Map-
ping”. PhD thesis. National University of Ireland Maynooth, 2013.

[21] John Mcdonald et al. “6-DOF Multi-session Visual SLAM using Anchor
Nodes”. In: Proc. European Conference on Mobile Robots (Jan. 2011).

[22] Hans P Moravec. Obstacle avoidance and navigation in the real world by a
seeing robot rover. Tech. rep. Stanford Univ CA Dept of Computer Science,
1980.

[23] Jorge J Moré. “The Levenberg-Marquardt algorithm: implementation and
theory”. In: Numerical analysis. Springer, 1978, pp. 105–116.

[24] Anastasios I Mourikis and Stergios I Roumeliotis. “A multi-state constraint
Kalman filter for vision-aided inertial navigation”. In: Proceedings 2007
IEEE International Conference on Robotics and Automation. IEEE. 2007,
pp. 3565–3572.

[25] RaulMur-Artal and Juan D Tardós. “Orb-slam2: An open-source slam system
for monocular, stereo, and rgb-d cameras”. In: IEEE Transactions on Robotics
33.5 (2017), pp. 1255–1262.

[26] Tong Qin, Peiliang Li, and Shaojie Shen. “Vins-mono: A robust and versatile
monocular visual-inertial state estimator”. In: IEEE Transactions on Robotics
34.4 (2018), pp. 1004–1020.

56

[27] Tong Qin et al. A General Optimization-based Framework for Global Pose
Estimation with Multiple Sensors. 2019. eprint: arXiv:1901.03642.

[28] Nicolas Ragot et al. “Benchmark of visual slam algorithms: Orb-slam2 vs
rtab-map”. In: 2019 Eighth International Conference on Emerging Security
Technologies (EST). IEEE. 2019, pp. 1–6.

[29] Ke Sun et al. “Robust stereo visual inertial odometry for fast autonomous
flight”. In: IEEE Robotics and Automation Letters 3.2 (2018), pp. 965–972.

[30] Takafumi Taketomi, Hideaki Uchiyama, and Sei Ikeda. “Visual SLAM al-
gorithms: a survey from 2010 to 2016”. In: IPSJ Transactions on Computer
Vision and Applications 9.1 (2017), p. 16.

[31] Shinji Umeyama. “Least-squares estimation of transformation parameters
between two point patterns”. In: IEEE Computer Architecture Letters 13.04
(1991), pp. 376–380.

[32] Georges Younes, Daniel Asmar, and Elie Shammas. “A survey on non-filter-
basedmonocular visual SLAMsystems”. In: arXiv preprint arXiv:1607.00470
413 (2016), p. 414.

57

A p p e n d i x A

PROOF THAT USING MULTIPLE ESTIMATORS IS
BENEFICIAL

In state estimation, assuming that we have accurately modeled our measurements
and their noise, more measurements can only be beneficial. At the worst case, if a
measurement gives us no information, our belief of the state will remain the same.
We show a proof that the use of measurements can only improve our estimate below:

%(-̂ = G) ≤ E
I∼%(/ | -̂=G)

%(-̂ = G |/ = I)

;=(%(-̂ = G)) ≤ ;=(E
I∼%(/ | -̂=G)

%(-̂ = G |/ = I))

Using Jenson’s Inequality we can pull the expectation outside of our log:

;=(%(-̂ = G)) ≤ E
I∼%(/ | -̂=G)

;=(%(-̂ = G |/ = I))

We can then apply Bayes rule to the right side:

;=(%(-̂ = G)) ≤ E
I∼%(/ | -̂=G)

;=(
%(/ = I | -̂ = G)%(-̂ = G)

%(/ = I)
)

;=(%(-̂ = G)) ≤ E
I∼%(/ | -̂=G)

[
;=(
%(/ = I | -̂ = G)
%(/ = I)

)
]

+ ;=(%(-̂ = G))

Now the right side of our equation has become a KL divergence expression added
to the log-likelihood of our original distribution.

E
I∼%(/ | -̂=G)

[
;=(
%(/ = I | -̂ = G)
%(/ = I)

)
]

= � !

(
%(/ = I | -̂ = G)| |%(/ = I)

)
� !

(
%(/ = I | -̂ = G)| |%(/ = I)

)
≥ 0

Since we know that KL divergence is always non-negative, we can finish our proof.

;=(%(-̂ = G)) ≤ � !

(
%(/ = I | -̂ = G)| |%(/ = I)

)
+ ;=(%(-̂ = G))

58

For this reason, in the case of ourmethod for SLAM, the use of "multiple sessions" of
Visual SLAM should outperform the performance of a single session only looking
at one part of the robot’s gait cycle. In addition to this, having more frequent
measurement updates reduces the average uncertainty of our robot along its path.
Although the figure below illustrates this ideawithin the context ofBayesian filtering,
the same idea applies to our optimization-based framework.

Figure A.1: Visualizing Different Measurement Rates

