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Abstract
Human manipulation skills are filled with creative use of physical contacts to

move the object about the hand and in the environment. However, it is difficult
for robot manipulators to enjoy this dexterity since contacts may cause the manip-
ulation task to fail by introducing huge forces or unexpected change of constraints,
especially when modeling uncertainties and disturbances are present. A properly
designed robot compliance can provide the robot with the resilience and reliability
in handling contacts.

This thesis proposes a framework for robust manipulation with contacts using
active compliance. We provide quasi-static modeling that shows the necessity of
compliance in rigid body manipulation. We further identify two causes of failure in
manipulation: kinematic ill-conditioning and unexpected change of contact modes,
and illustrate how the robot compliance can help avoid those failure types in manip-
ulation tasks.

First, we propose robustness metrics for each type of the failures. The metrics
measure the amount of modeling uncertainty and the magnitude of external distur-
bance forces the system can take before a failure happens.

Second, we provide methods to optimize the robustness metrics in a compliance
control setting, as well as methods to improve the robustness of a contact-implicit
motion planning.

Finally, we experimentally validate our proposed approaches in a variety of ma-
nipulation problems. Our method efficiently finds solutions with consistent high
quality during testing. The result shows that our framework trades-off well between
model complexity and accuracy, captures major factors in manipulation problems
while keeping a low computation burden.
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Chapter 1

Introduction

Manipulation is the process of changing the state of the physical world by transmitting forces
through contacts. Naturally, contacts play a central role in manipulation. Human manipulation
gains dexterity by utilizing contacts in many ways: grasping, pushing, tumbling, pivoting, scoop-
ing, etc. When picking up a flat object lying at the bottom of a box, we touch the object by the
side and press it against a corner to flip it up; when moving a heavy refrigerator, we hold it with
two hands and pivot it about one of its feet; when positioning a wooden piece for band saw cut-
ting, we press the piece against the workbench firmly to withstand disturbance forces. In a word,
contacts provide human manipulation with more dexterity and reliability.

In robotic manipulation, however, contacts are usually considered to be dangerous and should
be avoided. For example, most industrial applications of robot hands falls into the category of
“pick-and-place”: pick up an object, then place it at another location. In pick-and-place, making
and breaking contacts only happens once during grasping and dropping; for the rest of the process
the robot tries to avoid any collision with the environment. The result is the limited dexterity of
robot’s manipulation comparing with human’s. An example is shown in Figure 1.1. In this
thesis, we define contact-rich manipulation as a manipulation problem whose contact sequence
is unknown, so as to distinguish from traditional pick-and-place manipulation.

There are several reasons why robots in real world applications don’t make full use of con-
tacts. First of all, it is difficult to reason about using contacts in motion planning because the
contacts bring numerical difficulties. Computing a sequence of making and breaking contacts for
a multi-DOF system could take tens of minutes. The problem is called contact-implicit motion
planning [63] and has drawn attention of both the locomotion and the manipulation communities.

After computing a motion plan, it is still challenging to execute the planned trajectory in real
world experiments because the constraints introduced by the contacts may cause the task to fail
in many ways. The discrete nature of contacts makes it possible for a small disturbance to trigger
a drastic change of contact constraints, e.g. unexpected slips. The original robot control is likely
to be invalid under a different constraint which could eventually fail the task. To make things
worse, the robot motion may incur huge internal forces and damage the system when it violates
the actual contact constraints.

The robot hardware is another reason why the execution of contact-rich manipulation is dif-
ficult. Most robots, especially industrial robots, are not designed to make contacts. They have
adequate accuracy and rigidity, however, they are not capable of high bandwidth and high accu-
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Figure 1.1: Two manipulation strategies to flip a box. Left: Pick-and-place. The robot must pick
the object up and rotate the whole arm with the box. Right: A more human-like strategy that use
the table contact to tumble the object. The required robot motion is minimal.

racy force control, which would make the handling of contacts easier and safer.
This thesis aims to provide a framework for reliable contact-rich manipulation by resolving

the above difficulties. Unlike the traditional top-down approach which solves for a high level
motion plan before worrying about its execution, this thesis presents a bottom-up approach as
detailed below.

1.1 Outline: A Bottom-Up Approach to Robust Manipulation

A pipeline of manipulation usually starts with the perception of the system state, followed by
computing a motion plan that describes the expected robot and object(s) motion, and ends with
the execution of the motion plan under some low-level control law. However, if a motion plan is
fragile and prune to disturbances, then its execution cannot be reliable no matter what controller
the robot uses. Before solving the motion planning problem, we must understand what kind of
motion can be executed reliably by the robot. With this philosophy, we present our solution in
the following steps:

1. We start in Chapter 3 by introducing our quasi-static modeling for a manipulation system,
including the object(s), the robot, the environment, and their contacts. We discuss the types
of failures the contact may introduce to manipulation, including kinematic ill-conditioning
and unexpected contact mode switching. The analysis demonstrates the benefits of model-
ing the robot compliance using hybrid force-velocity control.

2. In Chapter 4, we present two algorithms to find the best hybrid force-velocity control to
make a manipulation robust to kinematic ill-conditioning. The algorithms are tracking

2



controllers that can be used to execute a pre-computed motion plan.

3. In Chapter 5 we provide a thorough geometrical analysis that shows how contact mode
transitions happen. We propose controllers build upon Chapter 4 that can additionally
maintain the desired contact mode. We design metrics to quantify the robustness of contact
modes, and use them in high level planning to help generate motion plans that are robust
to execute.

4. As an extension, in Chapter 6, we explain how to generalize our analysis and methods
in Chapter 5 from planar problems to 3D manipulation problems. We reformulate the
algorithms to handle polyhedral computation in high dimensional space and reduce unnec-
essary computations.

We review related literatures in Chapter 2, and conclude the thesis in Chapter 7.
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Chapter 2

Related Work

2.1 Mechanics of Rigid Bodies in Contacts

2.1.1 Frictional Contact Modeling
Friction determines the interaction between robots and grasped objects in sliding [13, 16, 48].
The tribology community has extensive researches on precise friction modeling [5]. Static fric-
tion models treat friction as a memoryless function of contact normal force, contact sliding ve-
locity and external force [61]. More detailed static friction phenomena and modeling can be
found in [61].

The discontinuity and lack of expressiveness of static friction models motivates dynamic
friction modeling [5, 23, 61], which provides smooth friction behavior even during friction di-
rection transitions. Dynamic friction models use one or more hidden state variables to describe
microscopic asperities in contact [5, 23]. Complicated friction models provide a more precise
description of friction phenomena. The cost is more effort and more data required for parameter
estimation.

2.1.2 Planar Pushing
Planar pushing studies the motion of a rigid object under face-to-face contact with a frictional
support under gravity. Mason [51] was the first to analyze the mechanics of pushing and proposed
the voting theorem to determine the sense of rotation given a push action and the center of
pressure. Peshkin and Sanderson [64] give further bounds on the possible instantaneous motion.
Goyal et al. [27] noted that all the possible static and sliding frictional wrenches, for any friction
distribution, form a convex set whose boundary is termed as limit surface. Howe and Cutkosky
[39] proposed to use ellipsoid approximation of the limit surface for a given pressure distribution.
Zhou et al. [96] proposed a framework of representing limit surfaces using homogeneous even-
degree convex polynomials with stochastic extension in [97]. It’s also possible to do planar
pushing in a prehensile manner. For example, Kao and Cutkosky [42] used a soft hand to rotate
a paper card on a table by pressing on its top with two fingers.

Closely related to planar pushing, prehensile pushing studies the in-hand motion of a grasped
object in the gravity plane driven by external contacts [16, 17]. For both pushing and prehensile
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pushing, the feasible finger velocity directions are within a cone [18]. Similar to pushing, pulling
analyzes the planar motion of an object driven by a single force whose direction is not confined
within a friction cone [40]. Unlike pushing, pulling is a converging process.

Pushing, prehensile pushing and pulling have two nice properties. No matter in what direction
the robot moves, 1) the object is always in static balance as long as the robot motion is slow; 2)
the robot motion will not cause excessive contact forces (we discussion this phenomenon in
3.5.1). The two properties makes planar pushing and pulling stable and safe.

2.1.3 Extrinsic Dexterity

When the robot body can not provide the necessary contact forces for a manipulation task, the
robot can try to utilize extrinsic dexterity [20], meaning external force resources. The force
resource maybe contact-free, such as gravity and inertia forces: Brock [13] calculated possible
slipping motion for an object in a multi-fingered hand under gravity by maximizing the virtual
work. Rao et al. [69] studied how to grasp a polytope object so that after lifting up, the object
rotates to a desired stable pose under gravity. Holladay et al. [33] extended [69] by planning
an open loop trajectory for the gripper with the consideration of dynamics, and utilizing contact
with the ground to discretize the final poses. It is possible to rotated a grasped object in-hand in
the gravity plane by regulating gripping forces [87][85][77]. In-hand manipulation can also be
done with inertia force by executing an acceleration profile [75] or feedback control [36].

External contacts are another type of extrinsic force resources. By pressing a grasped object
against a support, the robot can do in-hand manipulation [82][16], reorient the object to a desired
pose [33][37] or transport the object without bearing its full weight by rotating it about one of its
corners [1][93] or edges [74]. These work computed the conditions of maintaining static balance
throughout the motion, including minimal friction coefficient (all contacts were sticking) and
range of finger locations. In a sense, pushing, prehensile pushing and pulling (2.1.2) also belong
to this category.

Most of these work focus on one or two particular skills. Dafle et al. [20] demonstrated
that a simple robot hand can do many tasks by sequencing multiple skills with external force
resources, although each of the skills were designed manually. This thesis aims to provide the
tools for analyzing and planning contact-rich skills.

2.2 Control of Manipulation under Contacts

Manipulation control under external contacts is difficult, because a controller designed for one
contact mode can be catastrophic for another mode. Existing control methods usually focus on a
particular type of manipulation system, which is marked by one or a few relevant contact modes.

2.2.1 Control of Pushing

Planar pushing model commonly has uncertainties due to the varying surface property on the
support. There are in general two approaches to handle the uncertainty.
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One approach is to use an edge pusher instead of point pusher in open loop control for un-
certainty reduction. Lynch and Mason [47] gave results on controllability and stability for open
loop edge pushing. The multiple constraints imposed by an edge can be utilized for uncertainty
reduction include planning push-grasps [14], parts reorientation [2] and feeding [92]. The first
closed-loop control for pushing was proposed in [48] where the orientation of object was con-
trolled to achieve stable translation, using a round finger with only tactile sensing.

The other approach is to use feedback and close the loop. Hogan and Rodriguez [31] pro-
posed using model predictive control for planar pushing with all but one prescribed mode se-
quence. Zhou et al. [98] also addressed model identification and adaptation for single point
planar pushing, as well as providing a feedback controller based on fast re-planning.

2.2.2 Mode Scheduling and Trajectory Stabilization

To control a process that goes through multiple contact modes, it is popular to do control syn-
thesis for each continuous mode, then switch to the right controller at mode switching. Work
on both planning and control usually do mode scheduling (either planned or hand-coded). Ex-
amples include legged locomotion [81][66][65], planar pushing with both sticking and sliding
pusher [31] and half-cylinder flipping [30]. If the detection of mode switching is fast enough,
mode scheduling may not be necessary [36].

2.2.3 Compliance/Impedance Control

Surface finishing tasks like polishing and deburring require the robot end-effector to move along
a surface. Peg-in-hole assembly involves the object moving along the edges of the hole. In
both cases, the control of the robot compliance can help avoid penetration and excessive contact
force. People have been using hybrid force-velocity control (HFVC) for these tasks since 1980s,
when Mason [50] introduced a framework for identifying force and velocity controlled directions
in a task frame given a task description. Raibert and Craig [68] completed the framework and
demonstrated a working system. Yoshikawa [94] investigated hybrid force-velocity control in
joint space under Cartesian space constraints, and proposed to use gradient of the constraints to
find the normal of the constraint surface in the robot joint space. For the control of a manipulator
subject to constraints, it was common to align the force and velocity control directions with the
row and null space of the contact Jacobian [89].The approach has industrial applications includ-
ing polishing [60] and peg-in-hole assembly [62]. There are also works on modeling the whole
constrained robot system using Lagrange dynamics, such as analyzing the system stability under
hybrid force-velocity control [53], or performing Cartesian space tracking for both positions and
forces [54][89].

However, when the system contains one or more free objects with no attachment to any
motor, most previous work was case by case study, such as control of pivoting and tumbling
[24][1][93][84][74]. In some special cases, it is possible to design a HFVC from simple heuristics
using local contact information, such as in multi-finger grasping or finger gaiting [13, 59] and
locomotion [15][26]. Uchiyama and Dauchez [84] performed hybrid force-velocity control for
a particular example: two point manipulators contacting one object. In this thesis, we consider
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the general case when the object may have multiple contacts with both the robot hand and the
environment.

There are lots of works on how to implement hybrid force-velocity controls on manipulators.
Velocity control is essentially a high stiffness control; force control can be implemented by low
stiffness control with force offset. Salisbury [71] described how to perform stiffness control on
arbitrary Cartesian axes with a torque-controlled robot. Raibert and Craig [68] divided Cartesian
space into force/velocity controlled parts, then controlled them with separated controllers. The
impedance control [32] and operational space control [43] theory analyzed the force related
behaviors of the end-effector for torque-controlled robots. Maples and Becker [49] described
how to use a robot with position controlled inner loop and a wrist-mounted force-torque sensor to
do stiffness control on Cartesian axes. Lopes and Almeida [46] enhanced the impedance control
performance of industrial manipulators by mounting a high frequency 6DOF wrist. Whitney [90]
and De Schutter et al. [21] provided overviews and comparisons for a variety of force control
methods.

2.3 Motion Planning of Manipulation under Contacts
The contacts impose constraints to the object and hand motion. There have been methods for
motion planning under constraints such as the constraint-based motion planning and state esti-
mation framework [22], and motion planning on the reduced manifold Berenson et al. [10]. Most
difficulty of planning through contacts is in the change of contacts, which is a discontinuous pro-
cess. Gradients do not exist at the making or breaking of contacts, thereby making powerful
continuous solvers unusable. A popular way around is to model the contacts by complementary
constraints on continuous variables [65][78]. However, these constraints make the optimization
problem close to ill-condition and sensitive to the choice of initial trajectory. Another direc-
tion is to approximate the contact dynamics with continuous models [55][56][83]. So far there
have been limited successes [57][30] in transferring motions planned with simplified dynamics
into experiments. Sampling based planning methods handle discrete states naturally. They find
solutions by solving steering problems under contact constraints [88][17], or by projecting the
sampled motion into the constrained manifold [10].

A key to successful experiments is the ability to handle uncertainties. Object pose uncer-
tainties can be reduced by contacts [44][97][76]. However, there has been little work on making
contact modes robust against modeling uncertainties and force disturbances. This thesis provides
analysis tools for this purpose.

In recent years, learning based methods have also enabled robots to do manipulation tasks
with external contacts, such as opening doors [29] and pushing in clutter for grasping [25][95].
However, the success of robot learning relies on the assumption that the policy can be improved
by random sampling. This only holds for tasks that are intrinsically stable, meaning that tem-
porarily falling into a bad contact mode will not fail the task.
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Chapter 3

Modeling And Failure Mode Analysis

Modeling of mechanics phenomenon could be complex and delicate. For example, tribology
is a field focusing on the frictional behavior between two contacting bodies. A friction model
for a point contact in tribology may include eight parameters and five dimensional states [5].
Such modeling is necessary for tire or gear analysis, however, it is excessive for robotics because
the system identification, state estimation, motion planning and control problems would become
intractable.

Our modeling for manipulation draws lessons from George Box’s famous aphorism: “All
models are wrong, but some are useful” [12]. Instead of pursuing an ultra precise frictional
contact model, we found it more practical to adopt a simple static friction model that enables
robust planning and control methods, then rely on the robustness of those methods to handle
modeling uncertainties including unexpected dynamic frictional behavior. Similarly, we only
consider point contacts in the thesis. Other types of contact geometry, such as edge contacts and
face contacts, can be approximated by multiple point contacts.

In the following sections, we introduce key concepts in our modeling of manipulation systems
and the assumptions we made. We discuss the causes of failures in manipulation and motivate
our choice of robot compliance control. We follow these conventions throughout the following
chapters.

3.1 Robot, Object, and Environment

This thesis focuses on manipulation of rigid bodies. In other words, we assume the robot, the
object and the environment will not deform significantly. This is common in applications where
the object is made of metal, wood, plastic, or sometimes card boxes.

We assume the state of the system is known, which includes the pose of the objects and
the configuration of the robot. The object could make contacts with both the robot and the
environment, and we assume the locations of those contacts are also available.

Real world manipulation problems have many sources of uncertainties. The object pose may
come from an inaccurate perception system; object shape may have error from poor measurement
or deformation; robot end-effector location could be off due to deformation of the structure;
all these factors could also affect the contact point position estimation. For all the modeling
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information, we assume the nominal value has uncertainties.
For simplicity, we separate the manipulation problem from the control problem of the ma-

nipulator itself. We ignore the kinematics and dynamics of the robot and model it as one piece of
rigid body that can move freely. The actual robot could be a serial robot arm, an XYZ station, or
even a mobile robot, however, what matters to the object motion is only the list of contact points
with the object and the motion of these contacts. In the case of multi-finger manipulation, we as-
sume the fingertips contacting the object at the same time have no relative motion and treat those
fingertips as one rigid body. Note that this assumption does not exclude making and breaking
contacts, e.g. finger gaiting. We only need to redefine the hand rigid body after a contact change.

3.2 Contact Modeling

We consider point contact with clearly defined contact point location and contact normal. This is
the case for point-to-face contacts. Edge-to-edge, edge-to-face, and face-to-face contacts can be
approximated by one or more point contacts [16]. Point-to-point and point-to-edge contacts are
not considered here due to their rare appearance.

We adopt Coulomb friction model and assume the magnitude of sliding friction is the same
as stiction. The friction coefficients of all contacts are known. Maximum-dissipation principle
holds, i.e. sliding friction force of a point contact is in the opposing direction of the sliding
velocity.

We consider three types of contact modes: sticking, sliding, and separation. Both sticking
and sliding contacts impose a linear constraint in the contact normal direction; a sticking contact
also impose constraints in the contact tangential directions.

3.3 Quasi-static Mechanics

This thesis adopts quasi-static modeling, i.e. the system motion is slow so that all inertia forces
could be ignored. Using quasi-static mechanics, we do not need to model the system velocity
and acceleration, which reduces the dimensionality of the manipulation problem. Technically,
the modeling only works for slow motion where the inertia forces are low. However, in many
cases the system motion does not need to be slow because:

1. The objects are light-weighted. So its motion is dominated by contact forces.

2. The robot velocity/position controller has low tracking error, so that the robot dynamics
can be safely ignored. This is the common case for most industrial robots.

3. The manipulation controller is robust and can tolerate inertia forces as disturbances.
Consider a robot and at least one object in a rigid environment. The robot, object(s), and the
environment has na, nu, and zero degree-of-freedoms (DOF), respectively. The total DOF of the
system is n = na + nu. The subscript ‘a’ and ‘u’ means ‘actuated’ and ‘unactuated’. Denote
v = [vTu v

T
a ]T , f = [fTu f

T
a ]T ∈ Rn as the generalized velocity and force vectors.

Contact points introduce linear constraints on the contact point velocity, which further trans-
lates to linear constraints on the system generalized velocity v. They are linear constraints on the
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system velocity.
Jv = 0. (3.1)

Mv ≤ 0. (3.2)

J and M are the contact Jacobians [59]. A sticking contact contributes equality constraints in the
contact normal and tangential directions. A sliding contact contributes equality constraint in the
contact normal direction. If the sliding direction is specified, it is an inequality constraint in the
contact tangential direction. A separating contact point only contributes an inequality constraint
in the contact normal direction.

Denote λ as the vector of contact forces. Using the principle of virtual work [86], we can
write the contribution of λ to the generalized force space as τ = J′Tλ. Note the J′ here is
different from the J in (3.4), because J′ may have more rows that correspond to sliding friction
depending on the contact mode. The forces in the system is governed by the Newton’s Second
Law:

J′
T
λ+ f + F = 0. (3.3)

The three terms are contact forces λ, control actions (internal forces) f ∈ Rn and external forces
F ∈ Rn, respectively. The external force F may include gravity, disturbance forces, etc. In this
formulation, the unactuated generalized force fu is zero. However, there are places in the thesis
where we represent gravity in fu instead of F for convenience.

3.4 Control of the Robot Manipulator
In the Newton’s Law (3.3), robot control is described by a vector of forces. This is a potential
source of error because most robot manipulators are not capable of accurate force control. Two
notable exceptions are direct-drive robots [6] and robots with Serial-Elastic Actuators (SEA)
[67], which are not commonly seen in off-the-shelf robot manipulators.

In this section we first discuss the nature and limitation of several typical robot control
schemes and establish a realistic expectation of their performance. Then we explain our choice
of a compliance control method.

3.4.1 Velocity (Position) Control
Velocity control and position control are the most common control schemes provided by in-
dustrial robots. Both are high stiffness controls that can be implemented by closing a loop on
acceleration or motor torque. They are equivalent from the modeling perspective: we can im-
plement velocity control by sending incremental positional commands, or implement position
control by closing a PID loop on a velocity-controlled robot.

To be concise, although all the controllers proposed in this thesis can be implemented on ei-
ther position-controlled or velocity-controlled robot, we will only use the term “velocity control”
in derivations.

Velocity control is popular because of its high precision. Industrial robots under velocity con-
trol typically use high stiffness so as to overcome resistance forces from the load, joint friction,
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and any other unmodeled disturbance forces while maintaining the commanded speed. Typical
industrial robots have a repeatability on the order of 0.01mm, which is more than enough for our
manipulation tasks.

As a result, in this thesis we treat a robot as a perfect source of velocity, meaning the robot
can achieve any velocity command; the velocity control loop can generate arbitrarily large forces
when necessary.

Considering its high stiffness, the velocity control needs to be modeled as a constraint on the
robot velocity:

Cv = bC , (3.4)

where C is a matrix describing the directions of velocity control, bC is a vector describing the
magnitude of velocity control in those directions. Remember v = [vTu vTa ]T , so the first nu
columns of C must be zeros since the robot control cannot directly affect the free objects. In
traditional velocity control, C has na rows to control the velocity of the robot in every possible
direction. This is the case in applications like welding.

3.4.2 Force Control

Traditional mechanical analysis in Newton and Lagrange style assumes force or torque as robot
action. It is easier to derive the dynamic model of the whole robot system using force or torque
as robot control.

Although conceptually simple, force control is difficult to implement on real hardware. Off-
the-shelf robot manipulators usually do not come with force control ability. Almost all industrial
robots use high reduction transmission which brings large, nonlinear friction in the joints, making
it impossible to estimate force precisely from motor current. People implemented force control
on industrial robots by installing force/torque sensors in the joints or on the wrist, and close the
force control loop outside. For a detailed list of references see Section 2.2.3. However, the “fake”
force control has a bandwidth limited by the position control bandwidth. For those reasons, we
must consider the inaccuracy when using force control.

Force control can be used to maintain contacts or avoid excessive contact forces in problems
with geometrical uncertainties. Unlike velocity control, force control is not good at moving
the robot or objects precisely. Additional outer loop needs to be closed on position/velocity
feedback, which increases system complexity; its performance is also worse than the off-the-
shelf velocity control since the force control bandwidth is much lower than the voltage/current
control bandwidth used by velocity control.

Low-stiffness force control does not need to be modeled as a velocity constraint. Matrix C
in Equation (3.4) for a force control has zero rows.

3.5 Causes of Failures in Manipulation
With all the modeling choices made, now we are ready to discuss the reasons why a manipula-
tion could fail during execution. The uncertainties in modeling brings two potential problems:
kinematic ill-conditioning and unexpected contact mode switching.
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3.5.1 Kinematic Ill-Conditioning (Crashing)

The system generalized velocity is subject to two equality constraints: the contact constraints
(3.1), and the velocity control constraints (3.4). The two constraints are not necessarily compat-
ible with each other. For example, consider a manipulator whose finger is touching a rigid wall.
If the velocity command is to move the finger towards the wall, this command is conflicting with
the contact constraint from the wall. The situation breaks our modeling assumptions: the wall
may deform and break the rigid body assumption, or the robot may stop moving under force limit
and break the velocity constraint. Due to the high stiffness of the robot and the environment, a
tiny robot motion can cause huge internal force to the system. We call this situation crashing.

During crashing, the two affine constraints (3.1) and (3.4) are infeasible. If we treat the robot
velocity command as a kinematic constraint, then crashing means the system is kinematically ill-
conditioned. This implies using the condition number of the combined affine system to evaluate
the seriousness of ill-conditioning, which will be discussed in detail in the next chapter.

Jamming and wedging are two examples of crashing in mechanical assembly, which was an-
alyzed in detail by Whitney [91]. Roughly speaking, jamming means a sliding contact turns into
sticking unexpectedly. Wedging means two point contacts between an object and the environ-
ment form a force closure and fully immobilize the object. In both cases, the robot motion is
interrupted and stopped by the contact constraints.

From the force balance perspective, a necessary condition of crashing is the existence of force
balance at infinite force magnitude. When analyzing the force condition of crashing, finite forces
(such inertia force, gravity, etc) should be ignored.

3.5.2 Unexpected Contact Mode Switching

A change of contact mode means a sudden change of system constraints. If the change is un-
expected, the original robot control is unlikely to work under the new constraint. The task may
fail immediately, for example, if a grasped object slips away between fingers. Or the contact
mode change could cause a crashing, such as jamming in peg-in-hole assembly. To successfully
execute a task, it is important to maintain desired contact modes even under real world uncer-
tainties and disturbances. We provide methods to avoid unexpected contact mode switching in
Chapter 5.

3.6 Hybrid Force-Velocity Control
Hybrid force-velocity control (HFVC) is a control technique that performs velocity control and
force control in different directions simultaneously. With a properly designed HFVC, we could
enjoy the benefits of both force and velocity control, which could help avoid the two failure
modes. Specifically, using HFVC has the potential of the following benefits:
• Robustly avoid kinematic ill-conditioning using the force control component. By re-

placing some control DOFs to force control, we reduce the number of rows in the velocity
control constraint (3.4), it is less likely to conflict with the contact constraint. In fact, we
are able to maximize the robustness of a HFVC against crashing by picking proper force
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controlled directions. In other words, the force control portion makes our robot resilient to
geometrical uncertainties in the manipulation problem.

• Robustly maintain the desired object motion or system velocity under force distur-
bances. We can design the HFVC such that the velocity control portion together with the
contact constraints fully ensure the desired velocity. This way the velocity control would
generate whatever force that is necessary to overcome the resistance. In other words, the
velocity control portion makes the manipulation robust to disturbance forces.

• Construct a quasi-static problem. Since the object motion is determined by the robot
velocity control commands, the manipulation system becomes a kinematic system as long
as the contact modes are maintained. The system is easier to analyze.

• Requirement on force control accuracy is low. For the same reason as above, small
variations in robot force control or contact forces will not bring any change of velocity
to the system. There is no need for an additional control loop to balance different force
sources, which is the case in some multi-finger force controlled dexterous hands.

• Robustly avoid unexpected contact mode switching. The velocity control portion of
HFVC can be designed to eliminate some undesired contact modes, while the force control
portion can be used to select the desired mode among the rest. This is detailed in Chapter 5.

3.6.1 Quasi-Static Modeling of HFVC

We describe a hybrid force-velocity control as follows. Consider a HFVC with nav dimensions
of velocity control and naf dimension of force control, nav+naf = na. We use matrix T ∈ Rn×n

to describe the directions of force/velocity control. T = diag(Iu,Ra), where Iu ∈ Rnu×nu is
an identity matrix, Ra ∈ Rna×na is an unitary matrix describing the control axes. Here we
assume Ra is orthonormal, so that the force and velocity controls are reciprocal. Without loss of
generality, we assume the last nav rows of T are velocity-controlled directions, preceded by naf
rows of force-controlled directions.

Denote w = Tv, η = Tf ∈ Rn as the transformed generalized velocity and the transformed
generalized force. We know w = [wTu wTaf w

T
av]

T , where wu = vu is the unactuated velocity,
waf ∈ Rnaf is the velocity in the force-controlled directions, wav ∈ Rnav is the velocity control
magnitude. Similarly, η = [ηTu η

T
af η

T
av]

T , where ηu = fu = 0 is the unactuated force, ηaf ∈ Rnaf

is the force control magnitude, ηav ∈ Rnav is the force in the velocity-controlled directions. With
our HFVC representation, C in Equation (3.4) is the last nav rows of T, and bC is simply wav.

To fully describe a HFVC, we need to solve for nav, naf ,Ra, wav and ηaf .

3.6.2 Relation with Other Force Control Schemes

Our quasi-static modeling of HFVC hides the details of the low-level implementation. In fact,
we do not require a specific type of implementation, we only require the robot to be able to apply
different stiffness in different directions, and:

1. In the high stiffness directions, the control can be modeled as a velocity constraint.

2. In the low stiffness directions, the robot could apply force control.
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Beside the original HFVC implementation [68], the robot can also do admittance control with
force offset, or impedance control. Our quasi-static modeling could apply as long as the above
conditions are met.
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Chapter 4

HFVC with the Optimal Conditioning1

In this chapter, we provide methods to compute the HFVC with the best conditioning for a
manipulation problem. To make a complete robust control algorithm, the algorithms also include
methods to avoid unexpected contact modes. We call the control problem hybrid servoing, which
is introduced formally in Section 4.2.

The algorithms for hybrid servoing in this chapter are limited to executing sticking contacts.
In Chapter 5 we will present a more elaborate framework to maintain desired contact modes that
is built upon algorithms presented in this Chapter.

We use the notation NULL(·) and ROW(·) to denote the null space and row space of the
argument, respectively; use Null(·) and Row(·) to denote a matrix whose rows form an orthonor-
mal basis of NULL(·) and ROW(·), respectively. We use rows(·) to denote the number of rows
in the argument.

First, we discuss how to quantify the kinematic conditioning of a manipulation system under
HFVC.

4.1 Evaluate Kinematic Conditioning of a Manipulation Sys-
tem

In manipulator kinematic analysis, it is well-known that the condition number of the manipulator
Jacobian is an indicator of the kinematic performance of the system [3][4][73]. In a manipulation
problem with free objects, we need to consider two kinematic constraints including (3.1) and the
velocity control portion of HFVC (3.4). We need to evaluate the conditioning of the whole
kinematic system: [

J
C

]
v =

[
0
bC

]
. (4.1)

1This chapter uses materials previously published in Robust Execution of Contact-Rich Motion Plans by Hybrid
Force-Velocity Control, Yifan Hou and Matthew T. Mason, ICRA 2019, and An Efficient Closed-Form Method for
Optimal Hybrid Force-Velocity Control, Yifan Hou and Matthew T. Mason, ICRA 2021
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The condition number of the coefficient matrix needs to be minimized:

min
J,C

cond(

[
J
C

]
). (4.2)

Throughout this section, we use the 2-norm condition number, defined as

cond(A) = ‖A‖2‖A†‖2 =
σmax(A)

σmin(A)
, (4.3)

which is the ratio between the maximum and minimum singular values.
However, for our system, directly computing the above condition number makes little sense

for two reasons. First, we only want to evaluate the influence of control C, the rest entries of our
coefficient matrix are constants. In fact, J itself could already be ill-conditioned if the contact
modeling is redundant. To singulate the influence of C, we replace J with an orthogonal basis of
its rows, so it represents the same constraint as (3.1) but has a condition number of one. Second,
the row scaling of C should not affect our criteria, since scaling both sides of (3.4) does not make
a difference to our control. However, the condition number could be made arbitrarily large by
row/column scaling. This problem is called the artificial ill-condition[79], the typical solution
is to pre-normalize each row of our coefficient matrix. Thus our final expression of kinematic
conditioning is:

min
C

cond(

[
Ĵ

Ĉ

]
), (4.4)

where rows of Ĵ form an orthonormal basis of rows in J; Ĉ is C with each row normalized to
unit norm. Figure 4.1 shows the condition number value of several planar examples. When the
control is collinear with constraints, the condition number grows to infinity and a tiny motion
can cause huge internal force. We have been calling this situation crashing in our previous work,
and introduced a “crashing-avoidance score” in [34] to evaluating it. However, equation (4.4) is
a more precise description, we call the cost function the crashing index.

4.2 The Hybrid Servoing Problem
We define the hybrid servoing problem as computing the best HFVC for a manipulation problem
[35]. A hybrid servoing algorithm works as a tracking controller for executing a pre-computed
motion plan. In hybrid servoing, we optimize the crashing index (4.4) defined above, while
satisfying several constraints as detailed below in Section 4.2.1 and 4.2.2. We conclude this
section with the complete problem formulation in Section 4.2.3.

4.2.1 Goal Description
Users of hybrid servoing should describe the desired motion. At a time instant, the desired
velocity can be written as an affine constraint on the system generalized velocity:

Gv = bG. (4.5)
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Figure 4.1: 2D examples of HFVC and their corresponding crashing indexes. The robot execute
2D HFVC, with 1D force control and 1D velocity control.

For example, the user may supply a coefficient matrix G and vector bG with six rows to fully
specify the desired velocity of a 3D rigid body, or only use three rows to specify its rotational
velocity. The coefficients G, bG can be derived from a given trajectory by taking first-order
derivative. For example, denote v ∈ R6, g ∈ R4×4 as the spatial velocity and pose of a 3D
object, respectively. From the definition of spatial velocity [59] we know:

v∧ = ġg−1, (4.6)

where v∧ denotes the wedge of v:

v∧ =


0 −v6 v5 v1

v6 0 −v4 v2

−v5 v4 0 v3

0 0 0 0

 (4.7)

In other words,
v = (ġg−1)∨, (4.8)

where ∨ denotes the inverse operation of wedge. At time step t, we can approximate ġ(t) with
(g(t+ 1)− g(t))/δt, so the desired velocity of the object at time step t is:

v∗(t) =
(
(g(t+ 1)− g(t))g−1(t)

)∨
/δt. (4.9)
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Higher order approximations of ġ(t) could give higher precision, however, we find the forward
Euler here to be accurate enough in our experiments.

The goal specification (4.5) must not be redundant with other constraints in the system. For
example, to slide an object on a planar surface in 3D, the goal should have no more than three
rows. It should not specify the object velocity in the contact normal direction, which is already
limited to zero by the contact constraint. Given the active environmental contact Jacobian Je at
a time step t, we can populate G with the null space of Je to avoid such redundancy:

G = [0, ...,Null(Je), ..., 0] . (4.10)

Here Null(Je) only fills the entries that correspond to the object velocity, the rest entries in G
are zeros. Then we can compute bG by

bG = Null(Je)v
∗(t). (4.11)

4.2.2 Constraints on force
There are two kinds of force constraints. One is Equation (3.3), the Newton’s Second Law under
quasi-static approximation. The other force constraint is the condition for staying in the desired
contact mode, we called them the guard conditions [35]. We borrow the term guard condition
from the hybrid system theory, where it means the condition of discrete mode switching. It’s
usually a good practice to make the guard condition stricter than necessary to encourage con-
servative actions. We consider guard conditions that are affine constraints on force variables.
Examples are friction cone constraints and lower/upper bounds on forces.

Λ

[
λ
f

]
≤ bΛ. (4.12)

Note that (4.12) has no equality constraints, so we don’t consider sliding friction. This is because
applying force on the friction cone is not a robust way to execute a sliding contact [34].

4.2.3 Problem Formulation
Now we can complete the definition of the hybrid servoing problem. The task of hybrid servoing
is to solve for:

1. the dimensions of force-controlled actions and velocity-controlled actions, naf and nav,
and

2. the directions to do force control and velocity control, described by the matrix T, and

3. the magnitude of force/velocity actions: ηaf and wav,
so as to minimize the crashing index (4.4) subject to the following constraints:
• Any v under the robot action shall satisfy the goal constraint (4.5);
• Any f under the robot action shall satisfy the guard conditions (4.12).

We use the word ‘any’ because a HFVC usually cannot uniquely determine v and f .
We do not consider avoiding unexpected new contacts in a hybrid servoing problem since it

should be handled as collision avoidance in motion planning.
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4.2.4 Algorithm Outline
Our approach to solve hybrid servoing has two steps. In the first step we solve for velocity
controls, during which the dimensions and directions of both velocity and force controls are also
determined. This step computes naf , nav,T and wav. Then the only remaining unknown variable
in a HFVC is the value of the force control magnitude ηaf , which can be found by minimizing
the magnitude of force variables:

min
λ,η

λTλ+ ηTa ηa (4.13)

subject to the Newton’s Second Law (3.3) and the guard conditions (4.12), which takes the form
of a Quadratic Programming.

The challenge is how to compute the velocity control. In the following, we present two
hybrid servoing algorithms that share the same force control steps as described above, but use
different approaches to solve the velocity control. The method presented in Section 4.3 has an
optimization formulation, which could incorporate more task specific cost terms. The method
presented in Section 4.4 has a closed-form solution, which directly computes the HFVC with the
best conditioning and is thus faster.

4.3 Algorithm One: Hybrid Servoing by Optimization
To solve for the velocity control, first let’s look at the equations related to the system velocity:
• Contact constraint Jv = 0;
• Goal condition Gv = bG;
• Velocity command Cv = bC .

Denote the solution set of each equation above as Sol(J), Sol(G) and Sol(C). We need to
design the velocity command C, bC such that the resulted solution space (the solution set of nat-
ural constraints and velocity commands) becomes a non-empty subset of the desired generalized
velocities (the solution set of natural constraints and goal condition):

Sol(J&C) ∈ Sol(J&G) (4.14)

4.3.1 Determine dimensionality of velocity control
The first thing we can infer is the dimensionality of the velocity control. Denote rJ = rank(J), rJG =

rank(

[
J
G

]
). The minimum number of independent velocity control we must enforce is

nmin
av = rJG − rJ . (4.15)

This condition makes sure the dimension of Sol(J&C) is smaller or equal to the dimension of
Sol(J&G), so that their containing relationship becomes possible. The maximum number of
independent velocity control we can enforce is

nmax
av = n− rJ = Dim(NULL(J)), (4.16)
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This condition ensures the system will not be overly constrained.
In this section, we choose the minimal number of necessary velocity constraints:

nav = nmin
av = rJG − rJ . (4.17)

This choice gives the system more compliance. It also makes the force control problem easier to
solve in Section 4.2.4.

4.3.2 Characterize the feasible velocity control directions
With our choice of nav, we know rank([J; C]) = rank([J; G]). Then the condition Sol(J&C) ∈
Sol(J&G) implies

Sol(J&C) = Sol(J&G), (4.18)

i.e. the two linear systems share the same solution space. (4.18) can be achieved by firstly

choosing C such that the homogeneous linear systems
[

J
C

]
v = 0 and

[
J
G

]
v = 0 become

equivalent (share the same solution space). We can ensure the equivalence in three steps. First,
compute a basis for the solution space of [JTGT ]Tv = 0: [σ1, ..., σn−rJG

]. Second, ensure C
satisfies:

Cσi = 0, i = 1, ..., n− rJG. (4.19)

And finally, compute bC from any specific solution of {Nv = 0,Gv = bG}. The original non-
homogeneous systems now become equivalent.

Note that the condition in Equation (4.19) cannot uniquely determine the values in the matrix
C, and it leaves room for the crashing index to vary. We need to formulate an optimization
problem to find the solution that minimize the crashing index while satisfying condition (4.19).
However, the crashing index has the form of a condition number, whose gradient is not easy
to obtain. In the following, we propose a polynomial approximation to the crashing index and
optimize the approximation instead.

4.3.3 Polynomial Approximation to the Crashing Index
In the crashing index (4.4), the condition number is computed for a matrix whose rows have unit
norms. Since the norms of the rows are fixed, what could influence the condition number is the
linear dependency between different rows. Since the contact Jacobian Ĵ is orthonormal and not
part of the decision variables, we need to consider two kinds of linear independences:
• Each row of the velocity control C must not be a linear combination of rows of Ĵ. In other

words, each row of C must contain some portion of the null space of Ĵ. They should be as
close to NULL(J) as possible.

• Rows of the velocity control C must not be linearly dependent of each other. They should
be as orthogonal to each other as possible.

When one of the linear dependency happens, the matrix loses rank and the condition number
goes to infinity. The above preference is expressed in the following cost function:

min
C=[cT1 ,c

T
2 ,...]

T

∑
i 6=j

||cTi cj|| −
∑
i

||Null(J)T ci||. (4.20)
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In this cost function we use J instead of Ĵ for simplicity, since their null space is the same.
Previous work on hybrid force-velocity control dealt with fully-actuated systems, so they can

choose the velocity commands from within the null space of the contact constraints Ĵ [94] (Fig.
4.2, left). This is not possible for system with free objects.

We show the physical intuition behind the cost function in Figure 4.2 and Figure 4.3. The
velocity controlled directions are preferred to overlap less with the natural constraints, more
with its null space, so that the system of equations will be less likely to become infeasible under
disturbances. An example is illustrated in Figure 4.2. Similar preference exists among differ-
ent velocity commands. As shown in Fig. 4.3, different velocity controlled directions in the
generalized velocity space are preferred to be more perpendicular to each other.

Figure 4.2: Relation between velocity commands and contact velocity constraints. The robot
(blue) has two orthogonal translational joints, one force-controlled and another velocity con-
trolled. The table provides a velocity constraint that stops the object from moving down. As-
sume no collision between the robot and the table. The systems in the left and middle figures are
kinematically feasible. The system in the right figure is infeasible because the constraints on the
object are ill-conditioned.

4.3.4 The Hybrid Servoing Algorithm

Now we formulate the complete optimization problem. Denote cT ∈ R1×n as any row in C.
Rewrite equation (4.19) as a linear constraint on c, also considering the first nu columns in C are
zeros: 

σT1
...

σTn−nJG[
Inu 0nu×na

]
 c =

 0
...
0

 (4.21)

Its solution space has dimension of nc = na − (n − rJG) = rJG − nu. Since we need nav
independent constraints, we require nc = rJG− nu ≥ nav = rJG− rJ , which gives rJ ≥ nu, i.e.
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Figure 4.3: Relation between different velocity controls. The blue robot and the green robot
are applying different velocity commands on the object. Assume no collision between the two
robots. Systems in the left and middle figures are kinematically feasible. The on in the right
figure is infeasible.

rJ + na ≥ n. (4.22)

For this algorithm to work, (4.22) says it must be possible for the actions and constraints to fully
constrain the system. Denote matrix Bc = [c(1) · · · c(nc)] as a basis of the solution space of
equation (4.21). Denote Null(J) as a basis of NULL(J). We can find a C that satisfies all the
conditions by solving the following optimization problem:

min
k1,··· ,knav

∑
i 6=j
||cTi cj|| −

∑
i

||Null(J)Tci||

s.t. cTi ci = 1, ∀i
ci = Bcki, ∀i

(4.23)

Then C∗ = (Bc [k1 ... knav ])T . The optimization problem (4.23) is non-convex because of
the norm constraint cTi ci = 1. However, we can solve the problem numerically using projected
gradient descent:

1. Start from a random k = [k1 ... knav ];

2. Perform a gradient descent step: k← k− t∇f ;

3. Projection: ki ← ki

||Bcki||
, ∀i;

4. Repeat from step two until convergence.
Here∇f is the gradient of the cost reshaped to the same size as k. t is a step length. In practice,
we run the algorithm with Ns random initializations to avoid bad local minima.

After obtaining C∗, we know the last nav rows of Ra. Denote the last na columns of C∗ as
RC∗ , we can expand it into a full rank Ra:

Ra =

[
Null(RC∗)

T

RC∗

]
, (4.24)
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it encodes the directions of force control. Then we have T = diag(Iu,Ra). The complete
procedure is summarized in Algorithm 1.

Algorithm 1: Optimization-based Hybrid Servoing
1 Check condition (4.22) for feasibility;
2 Compute nav from equation (4.17);
3 Compute a basis of [JTGT ]Tv = 0, plug in equation (4.21) and compute a basis Bc;
4 Sample Ns sets of coefficients k ∈ Rnc×nav ;
5 foreach sample k do
6 Solve the optimization problem (4.23);
7 Compute C = (Bck)T from the solution;
8 Compute the cost of C from equation (4.23);
9 end

10 Pick the C∗ with lowest cost;
11 Compute Ra from (4.24), then T = diag(Iu,Ra);
12 Compute one solution v∗ for Jv = 0,Gv = bG;
13 Compute wav = bC = C∗v∗;
14 Compute the force control magnitude ηaf by solving the QP defined in Section 4.2.4.;

4.4 Algorithm Two: Closed-Form Solution to Optimal Veloc-
ity Control

In this section, we present another method to compute the velocity control directions and mag-
nitudes. The method is complete, in that it always produces an optimal/near optimal solution
when a solution exists. It is efficient, since it is in closed form, avoiding the iterative search of
our previous method. This closed-form method outperforms our previous method by being from
7 to 40 times faster, while consistently producing better solutions in the sense of robustness to
kinematic singularity.

Before introducing our algorithm, we need to make some observations about the nature of the
problem. Since the feasible velocity v under a HFVC may not be unique, the proper statement
of the goal constraint is:

Gv = bG, ∀v ∈ {v | Jv = 0,Cv = bC}, (4.25)

i.e. we need to ensure all possible solutions satisfy the goal. This is an inclusion relationship
between the solution sets of two linear equations, which is equivalent to:

1. The null space of G contains the null space of
[

J
C

]
;

2. There exists a common special solution: ∃v∗ : Gv∗ = bG,Jv
∗ = 0,Cv∗ = bC .
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We call them the Goal-Inclusion conditions and will refer to them repeatedly. Condition 1) is
equivalent to

NULL(

[
J
C

]
) ⊆ NULL(

[
J
G

]
), (4.26)

which further implies

rank(

[
J
C

]
) ≥ rank(

[
J
G

]
). (4.27)

Due to the orthogonal complement relation between the row and null space of a matrix, the null
space inclusion (4.26) can be reformulated as a reverse row space inclusion:

rank

([
J
C

])
= rank

 J
C
G

 . (4.28)

Our algorithm involves three steps. First, we derive the control axis directions to satisfy the
Goal-Inclusion condition 1) while optimizing conditioning. Second, we compute the velocity
control magnitudes to satisfy the Goal-Inclusion condition 2). Finally, we solve for the force
control magnitudes to satisfy the guard conditions.

4.4.1 Pick Control Axes to Optimize Conditioning
The information of the control axes (nav, naf , and T) is contained in the velocity control coeffi-
cient matrix C (3.4): C has nav rows; C and its orthogonal complement forms T.

First thing we need to know about the velocity control is its dimension. We can compute the
instantaneous directions that the system can move without conflicting the contact constraints by
computing the null space U of contact Jacobian:

U = Null(J). (4.29)

The last na columns of U, i.e. the actuated part, indicate the directions in which the robot can
move freely. It is a linear space, a basis of which can be computed as:

Ū = Row(USa), (4.30)

where Sa ∈ Rn×n is a selection matrix with only ones on the last na diagonal entries. Any linear
combinations of rows of Ū corresponds to a vector in NULL(J) and is thus a free robot motion
direction. The dimensionality of Ū indicates the maximum dimension of velocity control we can
apply:

nav ≤ rows(Ū) (4.31)

On the other hand, (4.27) suggests the minimum dimension of velocity control required to satisfy
the goal (4.5):

nav ≥ rank(

[
J
G

]
)− rank(J). (4.32)
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Combining (4.31) and (4.32), we have a necessary condition for the feasibility of the problem:

rows(Ū) ≥ rank(

[
J
G

]
)− rank(J). (4.33)

If equation (4.33) is not satisfied, the problem has an infeasible goal. Otherwise, we can choose
the dimension of velocity control within (4.31)-(4.32). Sometimes we want more velocity control
so as to increase disturbance rejection ability [38]; sometimes we want less velocity control to
have more compliance in the system [35]. We solve both situations and leave this choice to the
user.

If the maximal velocity control is needed, we can simply do velocity control in all directions
in Ū:

nav = rows(Ū), (4.34)

C = Ū. (4.35)

Then we check equation (4.28) to see if the problem is feasible. Otherwise, if the minimal
velocity control is desired, we take

nav = rank(

[
J
G

]
)− rank(J) (4.36)

Then the nav rows of velocity controls are linear combinations of rows of Ū:

C = KŪ, (4.37)

where K ∈ Rnav×rows(Ū). We compute K using the null space form of Goal-Inclusion condition
1), which implies

CNull(

[
J
G

]
) = KŪNull(

[
J
G

]
) = 0. (4.38)

Then K is an orthonormal basis of a null space:

K = NullT
(

NullT (

[
J
G

]
)ŪT

)
. (4.39)

The problem is feasible if K has enough rows:

rows(K) ≥ nav. (4.40)

If this is true, we keep the first nav rows of K and recover C from equation (4.37). The C
obtained this way has orthonormal rows, since it is the product of two orthonormal matrices.

Note that equation (4.35) and (4.37) compute the velocity control direction C in a closed form
without explicitly optimize the crashing index (4.4), however, they do find optimal solutions. As
shown in our numerical experiments, equation (4.37) always finds the solution with the minimal
crashing index; equation (4.35) also always achieves the minimal crashing index among solutions
with the same dimensionality.
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After obtaining the velocity-controlled direction C, we compute the force-controlled direc-
tion as its orthogonal complement to make the velocity and force controls reciprocal. Denote the
last na columns of C as RC , we can expand it into a full rank Ra:

naf = na − nav. (4.41)

Ra =

[
Null(RC)T

RC

]
. (4.42)

Then we have T = diag(Iu,Ra).
We summarize the procedure in line 1 to line 13 in algorithm 2. Note that the method avoids

the non-convex optimization in our previous method.

4.4.2 Solve for Velocity Control Magnitudes
Next, we use Goal-Inclusion condition 2) to compute bC . Compute a special solution v∗ from[

J
G

]
v∗ =

[
0
bG

]
(4.43)

Such v∗ must exist, otherwise the goal itself is infeasible. Use it to compute the velocity control
magnitude:

wav = bC = Cv∗ (4.44)

This choice of bC satisfies condition 2).
An important advantage of this algorithm over the first algorithm 1 is its ability to handle

underactuated system. An example is a cube with one corner sticking on the ground and one

Figure 4.4: An underactuated example.

corner sticking on the robot finger (Figure 4.4): the robot has no control over the rotation of the
cube about the line between the two contact points. Still, a control problem on this object may
still be feasible, e.g. if the goal is to lift the center of mass of the object. Condition (4.28) tells
us whether this is the case or not.
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Algorithm 2: Optimally-Conditioned Hybrid Servoing (OCHS)
Input: Contact Jacobian J , Goal description G, bG
Input: Guard condition,
Output: HFVC (naf , nav,Ra, wav, ηaf )
// Solve for velocity control

1 Compute free motion space U under constraint;
2 Compute free robot motion space Ū (4.30) ;
3 Check necessary feasibility condition (4.33). ;
4 if Maximal velocity control dimension then
5 Take Ū as velocity-controlled directions (4.34)(4.35) ;
6 Check goal feasibility using (4.28);
7 else
8 Compute the minimal dimension of C from (4.36) ;
9 Solve for the coefficient matrix K from (4.39) ;

10 Check goal feasibility using (4.40) ;
11 Compute the velocity control C from (4.37);
12 Complete control axes information using (4.41)-(4.42). ;
13 Compute the velocity control magnitude (4.44) using a special solution to (4.43). ;
// Solve for Force control

14 Compute the force control magnitude ηaf by solving the QP defined in Section 4.2.4.;

4.5 An Example
We illustrate our method on the “block tilting” task shown in Fig. 4.5. The robot needs to flip a
square block forward by pressing on its top. All contacts involved are sticking.

4.5.1 Variables
Denote W , H and O as the world frame, the hand frame and the object frame respectively. In
the following, we use the form of ABX to represent a symbol of frame B as viewed from frame
A. The state of the system can be represented by the 3D pose of the object and the position of
the hand: q = [WO p

T , WO q
T , WH p

T ]T ∈ R10. Define the generalized velocity for the system to be
the object body twist OOξ ∈ R6 and the hand linear velocity W

H v ∈ R3:

v = [OOξ
T , WH v

T ]T ∈ R9. (4.45)

There is a linear relationship between the generalized velocity v and q̇:

q̇ = Ω(q)v, (4.46)

where

Ω(q) =

 W
O R

E(WO q)
IH

 ∈ R10×9. (4.47)
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Figure 4.5: Illustration of the coordinate frames in the block tilting example.

In this definition, WO R ∈ SO(3) denotes the rotation matrix for WO q, E(WO q) is the linear mapping
from the body angular velocity to the quaternion time derivatives [28].

The generalized force corresponding to v is the object body wrench together with the hand
pushing force:

f = [OOw
T , WH f

T ]T ∈ R9 (4.48)

4.5.2 Goal Description
Denote Wptc as a point on the line of contact, Wωg as the axis of rotation, θ̇g as the desired object
rotation speed. The spatial twist for the object velocity is W ξg = (−Wωg ×W ptc,

Wωg)θ̇g ∈ R6,
the corresponding body twist is:

Oξg = AdW
O g−1

W ξg (4.49)

where AdW
O g−1 is the adjoint transformation associated with W

O g
−1 =

[
W
O R W

O p
0 1

]−1

. Then the

goal can be specified as
Gv = bG, (4.50)

where G =
[

I6 06×3

]
, bG = Oξg.

4.5.3 Constraints
Contact Constraints

The contact between the object and the hand is a sticking point contact:

W
O Q(Ophc) +W

O p =W phc, (4.51)

where Wphc,
O phc denote the location of the contact point, function W

O Q(p) rotates vector p by
quaternion W

O q.
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The contact between the object and the table is a sticking line contact. We approximate it
with two sticking point contacts at the corners:

W
O Q(Optc,i) + W

O p=
Wptc,i, i = 1, 2. (4.52)

Equation (4.51) and (4.52) together form a holonomic contact constraint for our system:

Φ(q) =

 W
O Q(Ophc) +W

O p =W phc
W
O Q(Optc,1) + W

O p=
Wptc,1

W
O Q(Optc,2) + W

O p=
Wptc,2

 = 0. (4.53)

Take the time derivative of both sides of Equation (4.53) and use Equation (4.46):

∂Φ(q)

∂q
Ω(q)v = 0, (4.54)

which gives us the Jacobian in (3.1):

J =
∂Φ(q)

∂q
Ω(q). (4.55)

Newton’s second law

The reaction forces λ = [WλThc,
W λTtc,1,

W λTtc,2]T ∈ R9 associated with the constraints (4.53) are
the three contact forces as viewed in world frame. In Newton’s second law (3.3), J′ is the same
as the J computed above since all contacts are sticking; the external force F explains the gravity:

F =
[
OGO

T , 0,H GH
T
]T ∈ R9. (4.56)

HGH should be zero if the robot force controller already compensates for self weight.

Guard Conditions

For each contact we require:
1. the normal force to be greater than a threshold nmin;

2. the contact force to be within the friction cone.
We approximate the 3D friction cone with eight-sided polyhedron [78] with

di = [sin(πi/4), cos(πi/4), 0]T (4.57)

being the unit direction vectors for each ridge. Denote µhc, µtc as the estimated minimal possible
friction coefficient, z = [0 0 1]T as the unit Z vector, the friction cone constraints becomes

µhcz
T (OWR

Wλhc) ≥ dTi (OWR
Wλhc), i = 1, ..., 8

µtcz
TWλtc,1 ≥ dTi

Wλtc,1, i = 1, ..., 8
µtcz

TWλtc,2 ≥ dTi
Wλtc,2, i = 1, ..., 8

(4.58)
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The normal force lower bound can be written as

zT (OWR
Wλhc) ≥ nmin

zT
W
λtc,1 ≥ nmin

zT
W
λtc,2 ≥ nmin

(4.59)

Equation (4.58) and (4.59) form the guard condition (4.12). This completes the problem formu-
lation. Now we can use algorithm 1 or 2 to solve the system at each time step. The solution has
one dimensional velocity control pointing in the tilting direction and two force control dimen-
sions. The Y component of the force command is close to zero. The force in other component is
roughly pressing against the rotation axis to maintain sticking.

4.6 Evaluations
In this section, we evaluate the performance of the optimization-based hybrid servoing algorithm
and the OCHS algorithm in randomly generated manipulation problems. We implement both
algorithms in Matlab and test them on a desktop with an i7-9700k CPU clocked at 4.7GHz.

Test Problems

We consider a rigid object with one to three environmental contacts and one to three rigid body
fingers. Each rigid body has three DOFs in planar problems, or six DOFs in 3D problems. The
settings are listed in Table 4.1, where ‘f’ denotes a fixed (sticking) contact point, ‘s’ denotes a
sliding contact point. Each environment contact point can be sliding or sticking; finger contacts
are all sticking.

Table 4.1: Types of Randomly Generated Test Problems

Environment Contacts Hand Contacts
# Contact
Points

Contact
Modes

# Contacts
per finger # Fingers

Planar
1 f,s 1,2 1
2 ss 1,2 1

3D
1 f,s 1,2,3 1,2,3
2 ff,fs,ss 1,2,3 1,2,3
3 ffs,fss,sss 1,2,3 1,2,3

We randomly sample 1000 set of contact point locations and normals for each contact mode
setting, making a total of 6000 planar and 72,000 3D test problems. The goal constraint is
sampled randomly for each problem.

The results are summarized in Table 4.2 and 4.3, the difference is that in Table 4.3 we give the
goal (4.5) the maximum possible dimension, so all algorithms must select the maximum velocity
control dimension. In the tables, “OCHS(min)” and “OCHS(max)” denotes OCHS with the
minimal and the maximal velocity control dimensions, respectively. “HS3” and “HS10” denotes
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the optimization-based hybrid servoing algorithm. Since the projected gradient descent is the
most time-consuming part of this algorithm, we test it with different number of initial guesses.
HS3 uses three initial guesses and has a good computation speed; HS10 uses ten initial guesses
to search the problem excessively. Both run each initial guess for 50 iterations.

Results

In all tests, OCHS(min) consistently finds solutions with better crashing indexes than HS3 and
HS10, achieves lower average crashing index and fewer ill-conditioned solutions. OCHS(max)
has a larger crashing index in Table 4.2 because it applies more dimensions of control. When
all algorithms selects the same dimension of velocity control, OCHS(max) also always achieves
better crashing indexes than HS3 and HS10 on every problem. HS3 and HS10 can find solu-
tions with comparable conditioning as OCHS(min) most of the time, however, their solution are
sometimes much worse due to the local minima in the non-convex optimization.

Both OCHS(min) and OCHS(max) are notably faster than HS3 and HS10. The velocity part
of OCHS shows 7 to 13 times speedup comparing with HS3, 20 to 40 times speedup comparing
with HS10.

4.6.1 Experiments

Figure 4.6: Our experiment setup. Left: block tilting. Right: tile levering-up.

We implemented block tilting (section 4.5) and another example: tile levering-up, in which
the robot need to pivot the object up against a corner in a box. During the motion, the contacts
between the object and the corner are sliding, while the contact on the robot finger is sticking.

In the block tilting task, the object is a 75mm-wide wooden block. We place a 2mm-thick
piece of cloth on the table to introduce some passive compliance as well as increasing friction.
In the tile levering-up example, the object is placed at a corner of an immobile plastic box. We
experimented with a variety of objects. In both tasks, the robot hand is a rubber ball installed on
a metal bar.
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The control output computed by our algorithms can be implemented in many ways. We im-
plemented hybrid force-velocity control with position-control inner loop according to [49], and
added functionality for choosing axes in any orientation. We use a position-controlled ABB IRB
120 industrial robot with a wrist-mounted ATI Mini-40 force-torque sensor. In all experiments,
we run OCHS off-line on a given motion plan to obtain a trajectory of HFVC, though the compu-
tation speed of OCHS supports feedback control at hundreds of Hz. In online execution, HFVC
control loop is clocked at 200Hz. The lowest communication rate between the computer and the
robot position controller is 250Hz with 25ms latency.

To test the optimization-based hybrid servoing algorithm (Section 4.3), we run the block
tilting task 50 times in a row2. Each run contains 15 time steps. The robot successfully tilted the
block 47 times. The three failures all experienced premature stops because the robot detected
large force (about 25N on the FT sensor) at some time step. The reason could be a bad solution
from our algorithm. We ran the tile levering-up task for about 20 times on different objects with
two-thirds successful rate. The failures are caused by unexpected sticking between the object and
the wall, or unexpected slipping between the robot hand and the object. One important reason for
these failures is the slow response of the low level force control, which introduces large errors in
the commanded contact normal force.

To test the OCHS algorithm and compare with the optimization-based hybrid servoing, we
redo the block tilting experiment with the same setup. OCHS produces a hundred consecutive
successes at with the robot velocity being 50% higher 3. The result demonstrate the better con-
sistency of OCHS comparing with the optimization-based method.

4.7 Summary and Discussion
In this section, we provide two algorithms to compute a hybrid force-velocity control for manip-
ulation under contact constraints. The closed-form algorithm OCHS efficiently finds the solution
with the best kinematic conditioning of the manipulation system. The optimization-based algo-
rithm solves a non-convex optimization and takes more computation to converge, however, it is
convenient to incorporate other cost function terms.

The hybrid servoing algorithms themselves can serve as a robust tracking controller to exe-
cute a pre-computed motion plan with sticking contacts only. It is also a building block for the
more comprehensive contact stability analysis in the next chapter.

2You can find the 25min video at https://youtu.be/YIP8xIFATHE
3The full 40min video is available at https://www.dropbox.com/s/ppimywwrgaelbw8/108_

Block_tiltings.mp4?dl=0
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Table 4.2: Test results - Min Velocity Control Dimension

Planar (6 DOF) OCHS(min) OCHS(max) HS3 HS10
# of
Problems

Total 6000
Solved 5985 5981 5974 5977

Average Crashing Index 15.5 18.4 19.5 19.9
ill-conditioned solutions 15 19 26 23
Velocity
Time(ms)

Average 0.14 0.14 1.74 5.32
Worst 0.63 0.46 2.73 7.40

Force
Time (ms)

Average 0.99 0.94 1.28 1.33
Worst 2.21 2.44 2.09 3.34

3D, (12 to 24 DOF) OCHS(min) OCHS(max) HS3 HS10
# of
Problems

Total 72000
Solved 67506 67399 65950 65952

Average Crashing Index 3.98 13.8 5.20 4.68
ill-conditioned solutions 22 136 50 48
Velocity
Time(ms)

Average 0.28 0.28 1.96 5.70
Worst 0.85 0.77 3.82 10.7

Force
Time (ms)

Average 1.09 1.04 1.57 1.61
Worst 3.03 3.13 12.3 11.8

Table 4.3: Test results - Max Velocity Control Dimension

OCHS(min) OCHS(max) HS3 HS10
# of
Problems

Total 30000
Solved 27372 27372 22939 22951

Average Crashing Index 8.34 8.34 14.0 12.9
ill-conditioned solutions 55 55 37 31
Velocity
Time(ms)

Average 0.17 0.17 2.35 7.25
Worst 0.54 0.45 3.99 28.39

Force
Time (ms)

Average 1.04 0.98 1.39 1.44
Worst 2.39 2.18 3.76 3.62
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Chapter 5

Contact Mode Control In
Shared Grasping1

Among the two failure cases in manipulation, the kinematic ill-conditioning problem is resolved
by the hybrid servoing algorithms in the last chapter. In this chapter, we provide a solution to
resolve the second failure case, which is unexpected contact mode switching, in a class of single
object manipulation problem called shared grasping.

Figure 5.1: An example of shared grasping. The robot uses one point finger to lift a block up a
stair.

A shared grasp is a grasp formed by contacts between the manipulated object and both the
robot hand and the environment. Salisbury [72] introduced the idea of “whole arm manipula-
tion”, suggesting using all available surfaces on the robot for more ways to manipulate an object.
Following this thought, if we treat the environment as another finger of the robot, manipulation

1This chapter is based on materials previously published in Manipulation with Shared Grasping, Yifan Hou,
Zhenzhong Jia, and Matthew T. Mason, RSS 2020
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under external contacts is like grasping from the object’s point of view. This is the reason we call
it shared grasping. Note that in-hand manipulation qualifies as shared grasping if we treat part of
the fingers as the “environment”.

Previous research has used shared grasps for non-prehensile manipulation such as pivoting
and tumbling. This thesis treats the problem more generally, with methods to select the best
shared grasp and robot actions for a desired object motion.

In shared grasping, the object can stay in a force closure even when no force closure grasps
are available. Unlike traditional grasping where only sticking contacts are considered, shared
grasping makes no assumption on contact mode. We need to consider how to avoid unexpected
change of contact modes. In fact, even with perfect modeling parameters, rigid body modeling
still gives shared grasping the problem of contact mode ambiguity, i.e. multiple contact modes
could all be feasible under one robot control. Traditional force-based grasping stability analysis
such as [80] cannot distinguish some contact modes from each other.

To overcome the mode ambiguity and control the exact motion of the shared-grasped object,
our approach for shared grasping again uses HFVC instead of force control or velocity control
alone. The velocity portion of HFVC filters out undesired contact modes and maintains the
desired object velocity regardless of disturbance forces. The force portion of HFVC selects
the desired contact mode while eliminating excessive internal forces. Note that the traditional
force-based grasping analysis cannot model HFVC properly, because the forces in the velocity-
controlled directions are not controllable.

We present our solution to shared grasping as follows. To begin with, we provide the defini-
tion of shared grasping and characterize the range of motion a shared-grasped object could have
in Section 5.1.

Section 5.2 and Section 5.3 introduce our robust control and mode selection algorithm in
detail. We propose to represent each contact mode by the set of feasible robot forces under this
mode, making it possible to distinguish different contact modes by robot force command. We
further make the process robust by adopting hybrid force-velocity control and analyze how the
existence of velocity control affects the feasibility of every contact mode.

Section 5.4 analyzes the causes of contact mode failure and provides metrics to quantify
the robustness of a contact mode. The construction of control in the algorithm reveals how
a contact mode may fail under two influences: modeling uncertainty, and force disturbance.
Modeling uncertainty could ruin the static force balance of a contact mode by affecting the
contact geometries. Force disturbance could directly affect the robot force control in the mode
selection step of our algorithm.

Section 5.5 shows how to apply our algorithm and the stability metrics to several common
problems involving shared grasping, ranging from low-level control tasks to high-level trajectory
planning. We demonstrate the efficacy of each of them in experiments in Section 5.6. In order
to show the reliability of our approaches, we experiment with two different robots and multiple
objects, and repeat every experiment multiple times to provide statistics.
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5.1 Shared Grasping Definition and Properties
In this section, we provide a formal definition of shared grasping and discuss the properties of
the motion of an object in a shared grasp. We focus on planar (2D) manipulation of rigid bodies.
Beside the assumptions we made in Chapter 3, in this chapter we additionally assume the object
weight is small enough comparing with contact forces, so we can ignore gravity and treat it as a
disturbance force.

5.1.1 Shared Grasping

Consider a robot hand, a rigid object and a rigid environment in 2D. Denote vO ∈ R3 as the
velocity of the object. The contacts with the hand and the environment each imposes linear
constraints on the object motion:

JhvO = bh,

JevO = 0,
(5.1)

where Jh and Je are contact Jacobians derived from the contact point location and normal as in
[59], bh is determined by the robot hand velocity. Now we are ready to define shared grasping.
Definition 5.1.1. Shared Grasping. Consider an object that is in contact with both a rigid, fixed
environment and a robot. We say the object is in a shared grasp if:

1. Jh and Je each does not have full row rank, i.e. the object velocity is not fully constrained
by the environmental contacts or hand contacts alone.

2.

[
Je

Jh

]
has full row rank, i.e. the object velocity is fully constrained by the environmental

contacts and hand contacts combined.
An example of shared grasping is shown in Figure 5.1. The conditions in definition 5.1.1

result in a nice property of the object motion in a shared grasp:
Theorem 1 (Motion Range of Shared Grasping). Consider an object in a shared grasp. Denote
Je as the contact Jacobian of the environmental contacts on the object. With a suitable robot
velocity, the object can have any velocity in the constrained subspace, i.e. the null space of Je.

Proof. We prove by constructing a robot action, i.e. the bh in (5.1), then show that it results in
the desired motion. Consider any v∗ 6= 0 satisfying Jev

∗ = 0. Such velocity must exist because
Je does not have full row rank. Next we show the choice b∗h = Jhv

∗ satisfies our requirement.
This choice leads to [

Jh

Je

]
v∗ =

[
b∗h
0

]
, (5.2)

so v∗ is a feasible object velocity under our robot action b∗h. Moreover, since

[
Jh

Je

]
has full row

rank, its null space is empty. Then v∗ must be the unique solution to the linear system (5.2). In
other words, when the robot hand motion provides constraint (Jh, b

∗
h) on the object, the resulted

object velocity will be the given v∗.
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This theorem characterizes how dexterous shared grasping could be. Note the shared grasping
definition and theorem 1 works for both planar problems and 3D problems, although this article
focuses on planar problems.

5.2 A Distinguishable Contact Mode Representation
In this section we provide a representation of contact mode that can distinguish different modes
from each other. This section lies the foundation for the mode selection algorithm and robustness
analysis in the following sections. Denote H,O,W as the hand frame, object frame and world
inertia frame, respectively. In the following we use the symbol AcB to describe the quantity c of
frame B measured in frame A, where c could be position p, normal n, force f , etc.

5.2.1 Polyhedral Convex Cone
In order to reveal the structure of forces in shared grasping, we re-derive the equations of force
equilibrium. Define the generalized velocity vector v ∈ R6 and force vector f ∈ R6 of the
system in the robot hand frame H:

v =

[
HvO
HvH

]
, f =

[
HfO
HfH

]
. (5.3)

HfH ∈ R3 is the robot control force, HfO ∈ R3 is zero since gravity is ignored. We choose
the hand frame as the reference frame because it makes HFVC easier to describe. The Newton’s
Second Law for the hand-object system takes the following form:[

J′Te −J′Th
0 J′Th

] [
τe

τh

]
+

[
HfO
HfH

]
= 0. (5.4)

Here the first term is the contact wrench written in terms of a positive linear combination of
unitary wrenches as in [70]: each row of J′e ∈ Rne×3 and J′h ∈ Rnh×3 represents the wrench of a
friction cone edge of an environment contact and a hand contact, respectively; τe ∈ Rne , τh ∈ Rnh

are non-negative vectors of contact wrench magnitudes. The number of unitary wrenches ne, nh

are determined by the number of contact points and their contact modes. Each contact point
contributes up to two wrenches (i.e. two rows in J′e or J′h), depending on its mode:

(s) Separation: no wrench from the contact;

(f) Fixed: wrenches for both the left and right edges;

(l) Left sliding: only the wrench for the right edge;

(r) Right sliding: only the wrench for the left edge.
Following the convention in [52], we use a string of the abbreviation letters to describe a contact
mode, e.g. ‘ffsl’. Note the J′e and J′h are different from the contact Jacobians used in velocity
constraint. We distinguish them using the prime superscript.

In grasping analysis, it is common to exam the Minkowski sum of all contact wrenches on
the object, which forms a polyhedral convex cone (PCC). Examples can be found in [59] and
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[70]. The PCC represents the range of feasible forces from the given set of contact points. If
the PCC spans the whole wrench space, the object is said to be in force closure. However, this
definition of PCC is not able to distinguish different contact modes because every force closure
contact mode looks the same (spans the whole wrench space). We resolve this ambiguity with a
modified PCC in the following subsection.

5.2.2 The Cone of a Mode
Rewrite equation (5.4) using HfO = 0:

J′
T
e τe = J′

T
h τh = −HfH . (5.5)

This equation maps the environmental contact force τe and the hand contact force τh into the
generalized force space of the hand, which is also the space of robot action HfH . Since τe ≥
0, τh ≥ 0, J′Te τe and J′Th τh each again forms a closed polyhedral convex cone in this wrench
space, call them the environment cone Ce and the hand cone Ch:

Ce = {J′Te τe | τe ≥ 0}
Ch = {J′Th τh | τh ≥ 0}

(5.6)

Different contact modes have different hand cones and/or environmental cones. An example
is shown in Figure 5.2. Rows of J′e and J′h are generators of the cones. The set of feasible

12

3

X

Y

4

H

Figure 5.2: Left: a shared grasping system with a cube object (bottom) and a robot palm (top).
The circled numbers show the ordering of contact points. Right: the hand cone (purple) and
environment cone (blue) for the “ffff” mode.

robot force action HfH under force balance (5.5) is the intersection between the hand cone and
the environmental cone. The intersection is again a PCC, however, the intersection is more
distinguishable for different modes comparing with the Minkowski sum, especially for force
closure modes. We use this intersection to represent a contact mode m and call it the cone of the
mode Cm:

Cm = Ce ∩ Ch (5.7)
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To demonstrate the benefit of this representation, in Figure 5.3 we draw all the feasible cones
of the system shown in Figure 5.2. In this example, all 13 feasible modes have force closure, yet
their Cm are different.

llfs
fffs

fsfsllff

slff

sfff

sfsf
ffsf rrsf

rrff

fsff

ffff rsff

Figure 5.3: A closer look at the cones of the example in Figure 5.2 with annotation. In this
example, each non-zero face of the 3D cone is the cone of a contact mode.

5.2.3 Properties of the Cone of the Mode

The cone of the mode Cm illustrates the structure of the robot action space or the object wrench
space. From the definition, we can easily see that the existence of the cone of the mode indicates
force balance:

The existence of a nonzero intersection between Ce and Ch is equivalent to the existence of a
non-trivial (all zero) solution (τe, τh,

HfH) to the static balance equation (5.5).
Depending on the existence of a non-empty Cm, we call mode m F-feasible or F-infeasible.
The union of all the cones is a complete set of force equilibrium solutions at a given config-

uration. Since the cones are closed polyhedra, this set is exactly the cone of the all-fixed mode,
denoted as CAF. Denote Ch,AF as the hand cone of the all-fix mode. Also denote W as the
whole ND dimensional wrench space. If the robot applies a wrench w, one of the following four
situations must happen:
• w ∈ CAF: the object can have static force balance;
• w ∈ Ch,AF − CAF: the robot action is not balanced, the object is accelerating;
• w ∈W−Ch,AF: impossible because some contact forces are outside of their friction cones.
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5.3 Robust Mode Selection with HFVC

5.3.1 A Naive Approach with Force Control

From (5.5) we know the robot can directly apply a wrench w = −HfH in the wrench space. If

w ∈ Cm, (5.8)

then the mode m is feasible under robot action w. Moreover, if the robot action w is contained
only in Cm, then the system must be in mode m since it is the only feasible mode. Now it seems
straightforward to enforce a contact mode m: pick a robot wrench w in Cm while staying away
from the cones of other modes. The system will be in mode m if such w exists. However, this
approach lacks robustness because the cones of different modes are not well separated from each
other. For example, in Figure 5.3 the cone of the mode “fsff” is a facet of the cone of the “ffff”
mode. If we choose “fsff” mode by applying a wrench in its cone, we might get “ffff” instead.
What’s worse is that a tiny disturbance force could shift the actual combined wrench strictly into
the “ffff” mode. This is a demonstration of the mode ambiguity problem and shows a limitation
of purely force-based method in multi-contact manipulation.

In this section, we show how to overcome this limitation by replacing pure force control w
with HFVC. The key idea is that the velocity control part of HFVC won’t be compatible with
every contact mode; the incompatible modes are infeasible and can be ignored under certain
conditions. Then we can select the desired mode with the force control part of HFVC in a set of
well-separated cones.

5.3.2 Mode Filtering by Velocity Control

HFVC decompose the robot action space into a velocity control subspace and force control sub-
space. Denote naf and nav as the dimension of force and velocity control subspace in HFVC,
naf + nav = Nd. Define transformation Ra ∈ RNd×Nd , we can describe a HFVC by:[

ωaf

ωav

]
= Ra

HvH ,

[
ηaf

ηav

]
= Ra

HfH , (5.9)

where ηaf ∈ Rnaf and ωav ∈ Rnav are the force and velocity control, respectively. ηav, ωaf are
uncontrollable, since it is not possible to control both force and velocity in the same direction.
The HFVC imposes a velocity constraint on the system generalized velocity v:[

0 R
(nav)
a

]
v = ωav. (5.10)

R
(nav)
a is the last nav rows of Ra. Denote Cv = [0 R

(nav)
a ] and write the velocity control as

Cvv = ωav. (5.11)
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Compute a velocity control.

We use the Optimally-Conditioned Hybrid Servoing (OCHS) algorithm in Section 4.4 to compute
the force-velocity decomposition Ra and velocity control magnitude ωav. In shared grasping we
only need the velocity related steps of OCHS and always pick the maximum possible dimension
of velocity controls, so the complete OCHS is not necessary. To use OCHS, first we obtain the
contact Jacobian at the desired contact mode m, which imposes a linear constraint on the system
velocity:

Jmv = 0, (5.12)

where Jm is the contact Jacobian for mode m. Denote U as a matrix whose rows form an unitary
basis of the null space: U = Null(Jm). We can express the free motion space of the robot by
projecting U onto the controllable subspace, and use it as the velocity-controlled direction:

Cv = Row(USa), (5.13)

Row(·) returns a matrix whose rows form an unitary basis of the rows of the argument, Sa ∈ R6×6

is a selection matrix with only ones on the last three diagonal elements. The last three columns
of Cv are the velocity-controlled directions Rnav

a , which can be used to compute Ra:

Ra =

[
Null(Rnav

a )
Rnav

a

]
(5.14)

To compute a velocity control magnitude ωav that satisfies the goal (4.5), OCHS first solves for
a special solution v∗ to the goal and contact constraint:[

Jm
G

]
v∗ =

[
0
bG

]
. (5.15)

Then use it to compute ωav:
ωav = Cvv

∗. (5.16)

(5.13) and (5.16) together describe the velocity control.

Check mode feasibilities

Each contact mode m is associated with a set of contact constraints, including non-penetration
constraint, sticking constraint and sliding direction constraint. Beside the equality constraint
(5.12), there could also be inequalities:

Mmv ≤ 0, (5.17)

We call mode m V-feasible if the velocity constraints (5.12),(5.17), and (5.11) have a solution,
V-infeasible otherwise.

Being V-infeasible means the velocity constraints have conflicts, so the first failure mode,
crashing, could happen. An example is shown in Figure 5.4. Note that although a V-feasible
mode exists (object is sliding to the left, finger is sticking), the all-sticking mode is V-infeasible
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V
F

Figure 5.4: An example where the all-sticking mode is V-infeasible and causes crashing. A block
is sitting on a rigid table. A finger touches the block on the right with a point contact and executes
a HFVC as shown in the figure. Model the table -object edge contact with two contact points on
the corner. The dashed lines show the friction cone of the left contact point.

and causing crashing since the table contact force can balance infinite force from the velocity-
controlled direction.

As explained in Section 3.5.1, V-infeasible modes will not cause crashing and can be safely
ignored if they do not have force balance at infinite magnitude. Since the force/wrench in the
force-controlled directions cannot go to infinity, for crashing to happen the contact forces must be
able to balance the force in the velocity-controlled directions. In other words, Cm must intersect
the set of positive forces in the velocity-controlled directions, denoted as Cv:

Cm ∩ Cv 6= {0}. (5.18)

This is a necessary condition for crashing. Cv here can be derived from (5.6) and (5.9):

Cv = {−R−1
av τv|τv ≥ 0}, (5.19)

where R−1
av represents the last nav columns of R−1

a . Cv is again a PCC, we call it the velocity
cone.

Remember CAF contains all Cm. Using (5.18) we can derive the sufficient condition for
crashing-avoidance:

CAF ∩ Cv = {0}, (5.20)

This condition ensures no crashing in all possible modes. If it is satisfied, we can safely ignore
all the V-infeasible modes, which makes it easier to separate the desired mode from the rest. This
is illustrated in the middle figure of Figure 5.5.

5.3.3 Mode Selection by Force Control
There is usually more than one contact mode remaining after the velocity filtering. The robot
needs to secure the desired one by applying suitable force control. Note that given a force
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control command ηaf , the force in the velocity-controlled directions will automatically move the
total robot wrench w into one of the remaining feasible cones since these cones are the only
places for w to maintain static force equilibrium. As a result, although it is not possible to
directly place the robot wrench w into the cone of the desired mode, we can still use the force
control to do mode selection. From Equation (5.9) and (5.5) we know:

J′
T
e τe = J′

T
h τh = w = −R−1

a

[
ηaf

ηav

]
, (5.21)

so the top naf rows of R−1
a form a basis of the force-controlled subspace in the robot action

space. To select a mode, we project all V-feasible cones Cm into the force-controlled subspace.
Those projections C̄m are PCCs in a lower dimensional space. Then we pick the force control
ηaf to be within the projection of the desired mode, while staying away from the projections of
other modes:

ηaf ∈ C̄goal − C̄others. (5.22)

The minus sign denotes set difference. For planar problems, the projections C̄m are at most two
dimensional; we use simple heuristics to select the best force control ηaf . If such ηaf exists, the
actual w has to be in the desired mode because projections are surjective. An example of is
shown in Figure 5.5, bottom. Because of the projection into a lower-dimensional space in the
wrench space, we call this approach Wrench Stamping.

If the set C̄goal − C̄others is empty, we call this mode F-indistinguishable since there is no
force action the robot can take to avoid other feasible modes.

5.4 Metrics to Evaluate Contact Mode Stability
In this section, we show how to evaluate the robustness of a contact mode by looking at two
causes of mode transitions:

5.4.1 Perturbations on Contact Geometry
Contact geometries plus friction coefficients determine the shape of hand and environment cones
Ce,Ch. Modeling uncertainties change the shape of these cones, which could cause their in-
tersection to disappear and the corresponding mode to be F-infeasible. For planar systems, we
define a stability margin Φg(Ce,Ch) that describes the “depth” of the intersection, i.e. the min-
imal angular rotation Ce needs to take to eliminate non-trivial intersections with Ch. Note that
the volume (solid angle) of the intersection Cm is NOT the right metric. Cones of most modes
have zero volume. To introduce our metric, we first define a distance function ∆(F,E) which
computes the angular distance between ray E and hyperplane F :

∆(F,E) = arcsin(nF · E), (5.23)

where nF denotes the normal of the hyperplane F . Both nF and E are unit vectors. Next, define
a function that evaluates the “depth” of a cone inside another cone. Consider two PCCs Ca,Cb

43



that satisfies Cb ⊆ Ca. Define

σ(Ca,Cb) = min
j

max
i

∆(Fj, Ei), (5.24)

where Fj is the jth facet of Ca, Ei is the ith edge of Cb. A facet Fj defines a hyperplane with the
positive normal pointing inside of the cone. We reduce dimension whenever possible, for exam-
ple, if Ca has two generators, a facet only has one ray and defines a one-dimensional hyperplane.
If Ca only has one generator, we define σ(Ca,Cb) = 0. Finally, define the geometrical stability
margin Φg(Ce,Ch) as:

Φg(Ce,Ch) = min(σ(Ce,Ce ∩ Ch), σ(Ch,Ce ∩ Ch)). (5.25)

5.4.2 Perturbations on Force Control
Disturbance forces can move the force control ηaf out of the region defined by equation (5.22).
We define the control stability margin Φc as the angular distance from ηaf to the closest cone
projections of other modes C̄others.

Φc(ηaf , C̄others) = dist(ηaf , C̄others). (5.26)

Figure 5.6 shows how the control in Figure 5.5 can fail under disturbance force.
Φc and Φg each describes the minimal disturbance force required to trigger mode transition

in terms of angular distance in object wrench space. Define the stability margin Ψ:

Ψ = min(Φc, Φg). (5.27)

With proper scaling between force and torque, as well as a nominal force magnitude KF, the
product KFΨ represents the minimal magnitude of the disturbance force that can change contact
mode m. Just like grasping, we can make the system more robust simply by applying larger
force.

We summarize wrench stamping in Procedure WrenchStamping. JAF,MAF,Ce,AF, and
Ch,AF represents the variables defined in (5.12)(5.17)(5.6) for the all-fixed mode. Ce,m,Ch,m

denote the environmental cone and hand cone for mode m, respectively. Stability margins
Φg,m,Φc,m,Ψm for mode m are defined similarly. We call the 2D contact mode enumeration
algorithm implemented in [41] to obtain a list of contact modes in the input.

5.5 Applications of Shared Grasping
In this section, we demonstrate how to use our wrench stamping algorithm and the stability
margins to solve several common problems in manipulation with shared grasping.

5.5.1 Hybrid Servoing with Sliding Modes
Procedure WrenchStamping can be used directly to solve the hybrid servoing problem defined
in Section 4.2, even if the problem involves sliding contacts. Wrench stamping adopts some
procedures of Algorithm 2, and has two advantages over a plain OCHS:
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Procedure WrenchStamping(Mode m∗)
Input: JAF,MAF,Ce,AF,Ch,AF

Input: G, bG, set of modes M
Output: Ψ, HFVC (naf , nav,Ra, wav, ηaf)

1 Compute naf , nav,Ra, wav from (5.13)(5.14)(5.16);
2 if Crashing happens (5.19)(5.20) then return ∅;
3 Initialize empty set M̂← ∅;
// Mode filtering by F-feasibility

4 foreach m ∈M do
5 Assemble Ce,m,Ch,m from columns of Ce,AF,Ch,AF;
6 Compute Cm = Ce,m ∩ Ch,m;
7 if Cm = ∅ then Continue;
8 Compute Φg,m(Ce,m,Ch,m) (5.25);
9 if Φg,m = 0 then Continue;

10 Assemble Jm,Mm from rows of JAF,MAF;
11 M̂← {M̂,m};
12 end
13 M← M̂, M̂← ∅;
// Mode filtering by V-feasibility

14 foreach m ∈M,m 6= m∗ do
15 if (5.11)(5.12)(5.17) are feasible then M̂← {M̂,m};
16 end
// Projections

17 C̄goal ← R−Taf Cm∗ , R−1
af is the first naf cols of R−1

a ;
18 C̄others ← ∅;
19 foreach m ∈ M̂ do
20 C̄others ← {C̄others,R

−T
af Cm}

21 end
22 C̄remain ← C̄goal − C̄others;
23 if C̄remain = ∅ then return ∅;
24 Pick ηaf ∈ C̄remain, compute Φc,m∗;
25 Ψm∗ ← min(Φc,m, Φg,m);

45



• Wrench stamping does not require the user to provide the guard conditions, i.e. force
constraints for the desired contact mode. On the contrary, wrench stamping reasons about
contact mode switching conditions automatically based on contact geometry information.

• As a result, wrench stamping can handle contact modes with sliding contacts, while the
hybrid servoing problem formulation cannot because the guard condition on contact force
is not sufficient to specify a sliding contact.

We validate wrench stamping in experiments in Section 5.6.1.

5.5.2 Robust Control with Mode Selection

Sometimes when multiple contact modes are feasible, it is not obvious for the user to decide
which mode is the best. In this case we can use the stability margin to select the most robust
one for the desired motion. We wrap Procedure WrenchStamping into algorithm 3 to solve
this problem. Given a desired velocity, the algorithm finds the most robust contact mode and
computes a hybrid force-velocity control that achieves the desired motion and maintains the
most robust contact mode. We demonstrate the use of this algorithm in Section 5.6.2.

Algorithm 3: Robust Control with Mode Selection
Input: JAF,MAF,Ce,AF,Ch,AF, G, bG
Output: The chosen contact mode m∗, stability margin Ψm∗ , and HFVC

(naf , nav, Ra, wav, ηaf)
1 CAF ← Ce,AF ∩ Ch,AF;
2 Mall ← all contact modes, M← ∅;
3 Line 4 - 12 of Procedure WrenchStamping for m ∈Mall, save results in M;
4 Initialize the solution set: S← ∅;
5 foreach m ∈M do
6 S← {S, WrenchStamping(m) }
7 end
8 return s ∈ S with the highest Ψm

5.5.3 Motion Planning with Robustness Guarantee

With the stability margins, we can quantify how robust the shared grasping system is under a
certain control. This information can be incorporated into a motion planning framework to plan
robust contact-rich shared grasping motions. One idea is to use the stability margin to filter out
unstable motions. In a Rapidly-exploring Random Tree (RRT) pipeline, we compute HFVC and
check the stability margin of each new branch before adding it to the existing tree. The new
branch is not added to the tree if its stability margin is smaller than a pre-defined threshold, so
we maintain a tree with only robust motions. We refer the reader to [19] for a complete algorithm
design. Example of executions of planned motions are shown in Section 5.6.3.
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5.5.4 Geometry Optimization
We can optimize contact geometry parameters to maximize the geometrical stability margin Φg

for a given mode. Note that the function Φg(Ce,Ch) boils down to the ∆ distance between a
facet F and an edge E. The facet has either two generators Ci, Cj or just Ci, we can backtrack
its location in Ce and Ch. The edge is a generator of Ce ∩ Ch, which could be either an edge Ck
of Ce or Ch, or an intersection of a facet (C1, C2) in Ce and a facet (C3, C4) in Ch. In the latter
case, the expression of the edge is (C1 × C2)× (C3 × C4). So we can explicitly write down Φg

as a function of contact screws:

Φg(Ce,Ch) = arccos

(
Ci
||Ci||

· Ck
||Ck||

)
or

= arccos

(
Ci
||Ci||

· (C1 × C2)× (C3 × C4)

||(C1 × C2)× (C3 × C4)||

)
.

(5.28)

for one-dimensional facet F , or

Φg(Ce,Ch) = arcsin

(
Ci × Cj
||Ci × Cj||

· Ck
||Ck||

)
or

= arcsin

(
Ci × Cj
||Ci × Cj||

· (C1 × C2)× (C3 × C4)

||(C1 × C2)× (C3 × C4)||

) (5.29)

for two-dimensional F . We can further expand the contact screws into contact geometry param-
eters and compute the gradient of Φg in analytical form. We outline a gradient descent algorithm
in Algorithm 4. The parameter p may contain contact locations, normals and friction coeffi-
cients. Note that computation in (5.28) and (5.29) only involves contact screws that are the
current bottleneck of stability margin. This set of contact screws will change between iterations.
We observed this phenomenon in the experiments section.

In order to get analytical expression of the gradient of Φg, we ignore the normalizations in
(5.28) and (5.29) when computing their derivatives. To obtain the correct gradient about a contact
screw, we just project the gradient computed this way onto the tangent plane of the contact screw,
as shown in line 7.

We can apply geometrical parameter optimization on hand contacts to optimize finger place-
ment, as demonstrated in Section 5.6.4. We can also optimize environment contact geometry,
which is useful for tooling or fixture design.

5.6 Experimental Validations
We implement our algorithms in MATLAB and test them on several tasks in experiments. We use
an ABB IRB120 robot in section 5.6.1, 5.6.2, 5.6.3, and a UR5e robot in section 5.6.4. Both are
6-axis robot and position-controlled; The hybrid force-velocity controller is implemented in C++
with feedback from a wrist-mounted ATI Mini-40 FT sensor. The communication rate is 250Hz
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Algorithm 4: Geometrical Parameter Optimization
Input: Contact geometry parameter p
Output: Optimized contact geometry parameter p∗

1 repeat
// 1. Evaluate Φg

2 Compute Ce, Ch (5.6) using p;
3 Compute Cm = Ce ∩ Ch, record the mapping M1 between columns of Cm and

columns of Ce,Ch.;
4 Compute Φg (5.25), record the mapping M2 between Ci,j,k,1,2,3,4 and columns of

Ce,Ch,Cm;
5 Use M1 and M2 to compute the mapping M3 between Ci,j,k,1,2,3,4 and columns of

Ce,Ch;
// 2. Compute gradient

6 Compute Φt = ∂Φg/∂Ct, t ∈ {i, j, k, 1, 2, 3, 4} by differentiating (5.28)(5.29)
without denominators;

7 Remove the components of Φt that scales Ct:
Φt = Φt − Φt · Ct, t ∈ {i, j, k, 1, 2, 3, 4};

8 Use M4 to construct ΦC = ∂Φg/∂C from Φt, C ∈ columns of Ce,Ch;
9 Compute the Jacobian Cp = ∂C/∂p by differentiating the expression of Ce,Ch

(5.6).;
10 Φp ←

∑
C(ΦC · Cp);

// 3. Update
11 p← p + dΦp, d is a step length;
12 until converge;
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for the ABB robot and 500Hz for the UR5e robot. In both cases, the force control bandwidth is
roughly 1Hz.

5.6.1 Robust control of desired contact modes
First, we validate the ability of our method in computing robust actions under different contact
modes. Consider the shared grasping system in Figure 5.2 as an example. The friction coeffi-
cients are estimated to be 1.2 and 0.25 for hand-object and table-object contacts, respectively.

There are 81 contact modes for the four contact points. Algorithm 3 computes 13 modes with
positive geometrical stability margin Φg. We hand-pick six modes with object motion and solve
them with Procedure WrenchStamping. The results are shown in Figure 5.7.

5.6.2 Contact Mode Selection and Control
Using the same object and robot, we demonstrate Algorithm 3 in the task of cube rotation with a
palm, as shown in Figure 5.8. The task is challenging because the object could fall at any time,
the control must always be robust. The task has four stages. The goal velocity for the first two
stages are:

G1 = [0 0 1 0 0 0], bG1 = −0.1. (5.30)

G2 =

[
AdjWH I3

0 0 0 0 0 1

]
, bG2 = [0 0 0 − 0.1]T . (5.31)

First three rows of G2, bG2 constrain the object to be static. Stage three and four are the same
but in a different plane. Each stage is divided into eight time steps, at which Algorithm 3 decides
which mode and what action to take. There is no vision feedback, the object pose is estimated
from robot hand pose and has an accumulating error. We execute the four-stage task eight times
and have four complete successes. The failures all happen in the last two stages.

5.6.3 Execution of Robust Motion Plans
We obtain trajectories of robot motion for several planar shared grasping problems using the
sampling-based planning method in [19]. The planning algorithm use our stability margin to
filter out unstable motions, so the generated motion plan is guaranteed to be robust. Figure 5.9
shows the experiment results of some of the trajectories found by the planner. To demonstrate
the reliability of the HFVC, we execute each trajectory at least three times consecutively without
object state feedback.

5.6.4 Finger Placement Optimization and Evaluation
We test Algorithm 4 on a point finger manipulation task, as shown in Figure 5.10, left. The width
and height of the block are both 0.1m. We optimize finger location for two tasks: 1. pivoting
about the left corner with mode “sff”; 2. Sliding to the left with mode “llf”. We show the result
of 200 iterations of gradient descent in Figure 5.11, right, which takes 0.45s in MATLAB. The
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stability margin increases and reaches a plateau. Note that on the plateau the solution is still
zig-zagging by a small magnitude, because the set of contact screws being optimized is varying
between iterations, as explained in section 5.5.4.

We can graphically illustrate how robust the optimized control is. Using the optimized finger
location and a HFVC computed from Algorithm 3, we compute the range of table contact loca-
tions that produce a positive stability margin for the desired mode “llf”. We randomly sample
1000 pairs of object right and left corner locations within the range (−0.2m, 0.2m). The result
is shown in Figure 5.12. A point is marked green if the stability margin is positive. We can see
there is roughly a safety range of 0.05m around the nominal point, i.e. the sliding motion can
still be successful if the actual environmental contact location changes by 0.05m. We can do the
same computation for varying object height, friction coefficient, etc.

We implement this sliding action with a wide range of objects. To add more difficulty, we
perform the pushing in the vertical direction to add gravity as a disturbance force. The same
control law works for a variety of different objects reliably, as shown in Figure 5.13.

5.7 Conclusion and Discussion
To conclude, in this chapter we provide a solution to planar rigid body shared grasping problems.
The solution includes metrics to quantify the robustness of contact modes and methods to max-
imize the robustness in controllers. We demonstrate the use of our method in several common
problems including robust planning and control and verify the solution to these problems in a
variety of experiments.

Although shared grasping is designed for making environmental contacts, the stability analy-
sis and algorithms also work for real in-hand manipulation problems if there are two (groups of)
fingers.

Shared grasping complements grasping as another category of manipulations with good ro-
bustness. We shows its potential to make contact-rich manipulations reliable enough in real-
world applications.
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llff

sfff

sfsf

ffsf

rrsf

Figure 5.5: Procedures of wrench stamping for the problem in Figure 5.2. The torque is scaled
into Newton by the object length. Top: All nonempty cones. Middle: the cones of V-feasible
modes (one or two generators). The gray plane is the force-controlled subspace. Bottom: Pro-
jection of feasible cones onto the force-controlled subspace. The red ray is the chosen wrench
for mode “sfff”.
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Figure 5.6: Left: A disturbance force (bold red arrow) changes the contact mode. Right: illus-
tration of the control stability margin.

Figure 5.7: Different contact modes and their stability margins. The order of contacts follows
Figure 5.2.

Figure 5.8: Flipping a cube on its corners.
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Figure 5.9: Snapshots of executing motion plans. Top row: lifting an object over a stair. Middle
row: transport an object over an obstacle. Bottom row: another solution to the obstacle traverse
problem. The wood board in the back is used to reduce out of plane motions.

Figure 5.10: Left: the Finger-block example and the ordering of contacts. Right: Experiment
setup. The yellow block is fixed.
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Figure 5.11: The evolution of finger position and stability margin during the optimization.
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Figure 5.12: Feasibility of different model parameters. The control is computed for the black
dot.

Figure 5.13: The same control law works for different objects.
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Chapter 6

Generalizing Shared Grasping to 3D
Problems

The derivations in Chapter 5 assumes planar manipulation. Now that efficient contact mode
enumeration in 3D is possible with Huang et al. [41], we also propose modifications to generalize
shared grasping analysis to 3D problems. We need to revisit the derivation and design of stability
margins ((5.25) and (5.26)), which relies on 3D geometry.

Also, in order to model object gravity, the cones will have offsets which means they are no
longer homogeneous.

There are two challenges in generalizing the shared grasping analysis to 3D. First, we need
to use the right mathematical language to describe geometric objects in 6D and non-holonomic
cones because of gravity. Second, we need to handle to exponential grows of computational
complexity with dimensionality.

6.1 Modeling of 3D Shared Grasping
Definitions and properties in Section 5.1 translate directly to 3D problems after simply replacing
R3 by R6. Reuse the definition of generalized velocity vector v and force vector f :

v =

[
HvO
HvH

]
, f =

[
HfO
HfH

]
. (6.1)

The only difference is that the quantities HvO,
H vH ,

H fO,
H fH are all six-dimensional vectors

instead of three dimensional.
For 3D friction modeling, we approximate the quadratic Coulomb friction cone with m-side

polyhedral cone. Since we are considering the gravity of the object, HfO is not zero. The
Newton’s Law 5.4 can be re-written as:

J′
T
e τe + HfO = J′

T
h τh. (6.2)

Again J′e and J′h are dependent on the contact mode. The meaning of J′e and J′h has a slight
change. Each row of J′e ∈ Rne×6 and J′h ∈ Rnh×6 represents a unit generator of the ap-
proximated polyhedral friction cone of an environment contact and a hand contact, respectively;

55



τe ∈ Rne , τh ∈ Rnh are non-negative vectors of contact wrench magnitudes. The dimensionality
ne, nh are determined by the number of contact points and their contact modes. Each contact
point contributes up to m wrenches depending on its mode:
• (Sticking): wrenches for all the m generators;
• (Sliding): only the wrench for the sliding direction;
• (Separation): no wrench from the contact point.

From Equation 6.2, we can define the environment cone Ce and the hand cone Ch in the same
way as Equation 5.5:

Ce = {J′Te τe + HfO | τe ≥ 0}
Ch = {J′Th τh | τh ≥ 0}.

(6.3)

Now Ce and Ch are cones in the six dimensional object wrench space, and they are offset from
each other by the object gravity HfO. Their intersection still represent the set of robot wrenches
under force equilibrium at this mode, however, the intersection may not be a cone because of the
offset. We define this intersection for contact mode m as the polyhedron of the mode Pm instead
of the cone of a mode:

Pm = Ce ∩ Ch (6.4)

6.2 Wrench Stamping in 6D Space
The wrench stamping algorithm (Procedure WrenchStamping) is the main analysis tool for
shared grasping problems. We need to make a few changes to accommodate 3D problems. The
main challenge is the significant increase of the number of contact modes. In planar problem,
one contact point may have one of four modes: sticking, left sliding, right sliding, and separa-
tion. A system with four contact points has at most 44 = 256 possible modes. For 3D problems,
there could be infinite sliding directions. If we simplify sliding into eight discrete directions, a
system with four contact points may have at most 104 = 10, 000 possible modes. The 2D wrench
stamping requires computing the cone of every contact mode, the computation time of which is
too much for 3D problems.

In this section, we re-design wrench stamping to avoid the need of computing every sliding
contact mode. Our algorithm only needs enumeration of sticking-sliding-separation modes, in-
stead of individual sliding directions. The key idea is to use the velocity control for the desired
mode to filter out as many sliding directions as possible, then only do the expensive 6D wrench
space polyhedral computation on the remaining ones.

The key steps in wrench stamping is summarized as follows:
1. Compute a velocity control for the desired mode, check if crashing could happen;

2. Filter out modes that are not compatible with the velocity control;

3. Project each cone of the remaining modes to the force-controlled subspace;

4. Select a force control in the projection of the desired cone, while staying away from the
projection of the other cones.

Comparing with the planar algorithm WrenchStamping, the 3D algorithm does not compute the
cones of each mode before the velocity filtering. Before we explain the implementation of those
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steps, first we introduce some concepts and algorithms in polyhedral computation. A polyhedron
P ⊆ Rd in d dimensional space can be described as a sum of a convex hull of a finite set of
points plus a conical combination of vectors:

P = conv(V ) + cone(Y ) (6.5)

for some V ∈ Rd×n, Y ∈ Rd×n′ . This is called the vertex representation. The polyhedron P can
also be described by an intersection of closed halfspaces:

P = {x ∈ Rd|Ax ≤ z} (6.6)

for some A ∈ Rm×d, z ∈ Rm. This is called the halfspace representation. The Main Theorem for
polyhedra says the two representations above are equivalent [99], i.e. given a polyhedron in ver-
tex representation, its halfspace representation must exist, and vice versa. Computing the vertex
representation of a polyhedron given its halfspace representation is called vertex enumeration,
the other direction is called facet enumeration. Both are basic operations in computational ge-
ometry and has efficient algorithms available such as double description [58] and reverse search
[7]. Our 3D wrench stamping algorithm calls facet and vertex enumeration multiple times.

Now we are ready to introduce our 3D wrench stamping algorithm.

6.2.1 Step I: Velocity Control and Crashing Check
Same as in Section 5.3.2, the first step is to call OCHS on the desired mode to compute a velocity
control (Cv, ωav):

CvV = ωav. (6.7)

OCHS also computes the velocity control dimension nav and the control axes Ra, which can
be used to compute the velocity cone Cv = {−R−1

av τv|τv ≥ 0}. The next step is to check the
crashing condition (5.20), which should be written as

PAF ∩ Cv = {0}, (6.8)

where PAF = Pe,AF ∩ Ph,AF is the polyhedron of the all-fixed mode. What we have includes
the vertex representation of Pe,AF,Ph,AF and the velocity cone Cv. To check the condition, we
perform facet enumeration on each of them, and perform a linear programming with no cost
function to check if the combination of the resulting linear inequalities have a solution.

6.2.2 Step II: Mode Filtering by Velocity Feasibility
The goal of step two is to decide which modes should be considered in the force control. We
check the compatibility between the velocity control (6.7) and contact constraint of every contact
mode, and discard the modes that are not compatible. The challenge here is how to efficiently
handle the many sliding contact modes.

We postpone the decision of sliding direction. When calling the contact mode enumeration
algorithm [41], we re-group the contact modes into three state modes, i.e. each contact point
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could be in one of sticking, sliding, or separation mode, the sliding direction (which was dis-
cretized into m directions) is ignored. We call this contact mode the SSS mode, the total number
of which is significantly smaller than the total number of contact modes. If a mode with sliding
contact(s) is feasible, we sample several feasible sliding directions and record them.

The contact velocity constraints for a SSS mode includes:

Jmv = 0
Mmv ≤ 0.

(6.9)

The equality constraint includes contact normal and tangential velocity constraint for a sticking
contact, normal velocity constraint for a sliding contact, no constraint for a separation contact.
The inequality constraint only includes normal velocity constraint for a separating contact.

We examine the feasibility of (6.7) and (6.9) and sample feasible sliding directions as follows.
First we solve the equality part of the system CvV = ωav,Jmv = 0. If the equality part has no
solution, the whole system has no solution and we can ignore this contact mode. If the equality
part has solution(s), denote the solution space as

v = {v∗ +Mσ}, (6.10)

the matrix M denotes the null space. If the null space is not empty, we sample several velocities
v′ from the solution set, otherwise v′ only contains v∗. Using the rows of the contact Jacobian
that corresponds to contact i, Ji ∈ R3×12, we can project a generalized velocity to the 3D velocity
space of each contact:

vi = Jiv. (6.11)

We project each sample in v′ onto each separation contact to check its feasibility, then project
it onto each sliding contact to compute its corresponding sliding direction. We record all the
feasible SSS contact modes and their feasible velocity samples.

If the system velocity is unique under a contact mode, this approach can obtain its exact
sliding direction and avoid any discretization approximation.

6.2.3 Step III: Force Feasibility Check and Projection
For every remaining mode after the filtering in step II, we need to check if the mode has force
equilibrium, i.e. check if the polyhedron of the mode Pm exists. In fact, we can evaluate not only
the existence of Pm but also its robustness against modeling error by computing its geometrical
stability margin Φg,m(Pe,m,Ph,m). We explain the definition of Φg,m in Section 6.3. If the margin
is zero, we know the contact mode is F-infeasible.

Next, we project the remaining F-feasible polyhedra onto the force-controlled subspace. Each
polyhedron Pm is the intersection of two cones given by their vertex representation (6.3). Note
the coordinates of force-controlled directions are orthogonal to those of the velocity-controlled
directions −R−1

av , so we can compute the projection as follows.
First, compute the halfspace representation of the hand cone and the environment cone:

Ce = {f ∈ R6|Aef ≤ be}
Ch = {f ∈ R6|Ahf ≤ bh}.

(6.12)
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The coefficients Ae,be,Ah,bh are obtained by facet enumeration. Combine the constraints
together, we have a (redundant) halfspace representation of the polyhedron of the mode:

Pm = Ce ∩ Ch = {f |Aef ≤ be,Ahf ≤ bh}. (6.13)

Perform vertex enumeration on Pm to get its generators:

Pm = {J0,mτ0 + J1,mτ1|τ0 ≥ 0,0 ≤ τ1 ≤ 1}, (6.14)

where J0,m represents rays, J1,m represent vertices. The 0 and 1 are vectors of suitable dimen-
sions. To project a polyhedron Pm onto the force-controlled directions −R−1

af , we first cylindrifi-
cate it in the orthogonal directions −R−1

av by adding these directions as lines to its generators:

Pm,v = {J0,mτ0 + J1,mτ1 + R−1
av τv|τ0 ≥ 0, 0 ≤ τ1 ≤ 1, τv ∈ Rnav}, (6.15)

then compute the facet enumeration of the cylindrificated polyhedron:

Pm,v = {f ∈ R6|Am,vf ≤ bm,v}. (6.16)

In the cylindrificated polyhedron Pm,v, every facet normal is in the force-controlled subspace.
We can extract a halfspace representation of the projection by looking at Pm,v in the transformed
wrench space (Section 3.6.1):

{f ∈ R6|Am,vR
−1
a f ≤ bm,v}. (6.17)

The last nav columns of Am,vR
−1
a must be zeros. Denote Ām as the first naf columns of

Am,vR
−1
a , denote b̄m = bm,v, we obtain a halfspace representation of the projection of Pm

onto the force-controlled subspace, expressed in the force-controlled subspace:

P̄m = {f ∈ Rnaf |Āmf ≤ b̄m}. (6.18)

By computing P̂m, we have “stamped” the wrench space polyhedra.

6.2.4 Step IV: Force Control

Now we have the polyhedron projections P̄m. The final step of 3D wrench stamping is to select
a wrench in the projection of the desired polyhedron, P̄goal, while staying away from the pro-
jection of other polyhedra to maximize stability. To limit the force magnitude, denote FL as the
maximum allowed wrench magnitude. Maximizing the distance with polyhedra is a non-convex
optimization problem. Unlike the planar case (Section 5.3.3) where the force control can be se-
lected based on heuristics, for 3D problem we design a non-convex optimization algorithm for
finding the force control.

The algorithm iteratively performs hyperplane approximation to all the undesired polyhe-
dra, then compute the largest inscribed sphere inside of those hyperplanes, as shown in Algo-
rithm 5. In the algorithm, “InscribeSphere(A, b, A1, b1, L)” is a linear programming formulation
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Algorithm 5: Iterative Inscribed Sphere
Input: P̄m = {f ∈ Rnaf |Āmf ≤ b̄m},m ∈ {1, 2, ...}
Input: P̄goal = {f ∈ Rnaf |Āgoalf ≤ b̄goal}
Input: Initial point w0, Maximum magnitude FL
Output: Solution w, distance d

1 w ← w0, dimprovement ←∞, d← 0;
2 while dimprovement > ∆ do
3 Solve quadratic programming xm ← arg minx ‖x− w‖, s.t.Amx ≤ bm to find the

point xm in each P̄m that is closest to w.;
4 dimprovement ← minm ‖xm − w‖ − d;
5 d← minm ‖xm − w‖;
6 if d = 0 then
7 return No solution, since w is infeasible.
8 Construct hyperplanes (x− xm)T (w − xm)/‖w − xm‖ ≥ 0,∀m, combine all of

them into A′x ≤ b′;
9 w ← InscribeSphere(A′,b′,Agoal,bgoal, FL);

10 end
11 return (w, d)

that solves for the largest inscribed sphere in a convex polyhedron Ax ≤ b subject to additional
linear constraints A1x ≤ b1,−L ≤ x ≤ L on the sphere center location:

x = maxr,x r
s.t. A1x ≤ b1

r ≥ 0
−L ≤ x ≤ L

(6.19)

where −L ≤ x ≤ L should be interpreted as an element-wise constraint.
Since the force control problem is non-convex, we sample multiple start points then run

Algorithm 5 from each of them. When attacking non-convexity by multiple initial start points,
it is critical to have those initial points well-distributed. To perform uniform sampling in high
dimensional polyhedron, we modify the hit-and-run sampling algorithm [45][9] for polytope to
accommodate unbounded polyhedron. The complete algorithm for force control is summarized
in Algorithm 6.

The wrenchw computed by Algorithm 6 is our force control expressed in the force-controlled
subspace, which is exactly the force control magnitude vector waf . This completes the HFVC
and concludes our 3D wrench stamping algorithm.

6.3 Stability Margins in 3D
Similar to Section 5.4, we can define the two stability margins in 3D. The wrench space distance
d returned by the force control algorithm 6 is exactly the control stability margin ΦC , which
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Algorithm 6: Force Control
Input: Desired polyhedron P̄goal, other polyhedra {P̄m}
Input: Maximum magnitude FL, number of initial points Kinit

Output: Solution w, distance d
1 Get an internal point :w0 ← InscribeSphere(Āgoal, b̄goal,−,−, FL);
2 Use w0 to seed hit-and-run sampling in P̄goal and sample 100Kinit uniformly distributed

points;
3 Sample 100Kinit groups of Kinit points, pick the group with the maximum minimal

distances between points, denote as {w1, w2, ..., wKinit
}.;

4 foreach wi do
5 (wi, di) =IterativeInscribedSphere({P̄m}, P̄goal, wi, FL);
6 end
7 return (wi, di) with the largest di

describes the magnitude of the disturbance force on our robot action w that could potentially
drive the robot action into another mode.

The geometrical stability margin describes the robustness of the system against modeling un-
certainties, i.e. uncertainties in the contact Jacobians J′e and J′h. These uncertainties affects the
shapes of the hand cone and the environment cone (6.3). When they don’t have an intersection,
the polyhedron of the mode Pm (6.4) does not exist and the system has no force equilibrium. We
can express the feasibility as the following statement:
Statement 6.3.1. Given J′e, J′h, and HfO, there exists a solution (τ1, τ2) ≥ 0 such that:

J′hτ1 = J′eτ2 + HfO. (6.20)

We need to evaluate how much uncertainties in J′h,J
′
e can exist while the above statement

holds. We approach the problem in three steps. First, we reformulate the above statement to
make it suitable for perturbation analysis. Second, we propose a quantification of uncertainty in
J′h,J

′
e under which the statement still holds. Finally, we provide implementations to compute

the quantification. J′h ∈ Rn×nh ,J′e ∈ Rn×ne , n = 6 for 3D shared grasping. However, all the
derivations below in this section do not assume a certain dimensionality.

6.3.1 The Reformulation
Denote

A = [J′h,−J′e] ∈ Rn×(ne+nh)

b =H fO ∈ Rn

x =

[
τ1

τ2

]
∈ Rne+nh ,

(6.21)

We can rewrite statement 6.3.1 in a compact form:
Statement 6.3.2. There exists x such that

Ax = b, x ≥ 0. (6.22)
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In this formulation, the uncertainties exist in A. To take trivial solutions (e.g. when Ph and
Pe intersects at one single point only) out of our discussion, we introduce the following lemma:
Lemma 2. Statement 6.3.2 holds for a small perturbation ∆A ∈ Rn×(ne+nh), i.e. there exists x
such that

(A+ ∆A)x = b, x ≥ 0, (6.23)

if and only if the following condition holds: for any y ∈ Rn, there exists x ∈ Rne+nh , t ∈ R such
that

Ax− tb = y, x, t ≥ 0 (6.24)

Geometrically, the condition says that the rays G1,−G2, and −b span the whole n dimen-
sional space.

Proof. Sufficiency:
First, we show that Ax = b, x ≥ 0 is feasible. Taking y = b, (6.24) becomes

Ax− tb = b, (6.25)

A
x

1 + t
= b. (6.26)

x, t ≥ 0, so x
1+t
≥ 0 is a solution to Ax = b, x ≥ 0. Next, we show the feasibility considering

∆A. Suppose (6.23) is infeasible, i.e. vector b is not in the cone spanned by columns of A+ ∆A.
Then from Farkas’ lemma, there must exist a hyperplane that separates vector b from raysA+∆A:

c(A+ ∆A) > 0, (6.27)

cb ≤ 0, (6.28)

where cT is the normal of the hyperplane. Taking the limit ∆A → 0, Equation (6.27) results in

cA ≥ 0. (6.29)

Now, take y = −cT , (6.24) says there must exist x ≥ 0, t ≥ 0 such that

Ax− tb = −cT . (6.30)

Multiply both sides with c:
cAx− cbt = −ccT . (6.31)

However, (6.31) is not possible because cAx ≥ 0,−cbt ≥ 0,−ccT ≤ 0. As a result, (6.23) must
be feasible.
Necessity:
First, we prove the proposition for b 6= 0. Given any y, from (6.23) we know the following holds
for a small enough ε:

(A− εy1T )x = b, x ≥ 0 (6.32)
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where 1T denotes a row vector of ones. Since b 6= 0, we know x 6= 0. Expand it into

Ax− b = εy1Tx. (6.33)

Since x ≥ 0, x 6= 0, we know ε1Tx > 0, so

A
x

ε1Tx
− b

ε1Tx
= y, (6.34)

which proves (6.24).
If b = 0, make the same choice on ∆A and (6.32) becomes:

(A− εy1T )x = 0, x ≥ 0 (6.35)

so
Ax = εy1Tx = ε1Txy (6.36)

A
x

ε1Tx
= y, (6.37)

this proves (6.24) for b = 0.

6.3.2 The Quantification
We quantify the robustness of (6.24) in the following theorem.
Theorem 3. Geometrical Stability Margin
Define r by

r = max{r : B(0, r) ⊆ {Ax− tb : x, t ≥ 0, ||x|| ≤ 1}} (6.38)

Then if
||∆A|| < r (6.39)

The following system must be feasible for any y:

(A+ ∆A)x− tb = y, x, t ≥ 0 (6.40)

Proof. Suppose (A + ∆A)x − tb = y, x, t ≥ 0 is infeasible. We need to show that ||∆A|| ≥ r.
Again by Farkas’ Lemma, there exists ‖v‖ = 1 such that

vTy < 0 ≤ vT [(A+ ∆A)x− tb], ∀x, t ≥ 0 (6.41)

The right hand side is greater than zero for any x, t ≥ 0, so we must have

(A+ ∆A)Tv ≥ 0 (6.42)

−bTv ≥ 0 (6.43)

Now pick (x̄, t̄) ≥ 0 such that

Ax̄− t̄b = −rv, ||x̄|| ≤ 1 (6.44)
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The existence of such choice comes directly from the definition of r. Then

0 ≤ vT
[
(A+ ∆A)x̄− tb̄

]
= vT (Ax̄− t̄b) + vT∆Ax̄
= −rvTv + vT∆Ax̄
= −r + vT∆Ax̄

(6.45)

So
vT∆Ax̄ ≥ r. (6.46)

Finally, using ‖x̄‖ ≤ 1, ‖v‖ = 1, and Cathy-Schwarz Inequality, we finally have:

||∆A|| ≥ ||v|| ||∆A|| ||x̄|| ≥ vT∆Ax̄ ≥ r. (6.47)

6.3.3 The Implementation
Now, evaluating geometrical stability margin is to compute the r defined in Equation (6.38)

r = max{r : B(0, r) ⊆ {Ax− tb : x, t ≥ 0, ‖x‖ ≤ 1}} (6.48)

given A and b defined in (6.21). This is equivalent to

r = max{r : B(0, r) ⊆ {Ax− tb : x, t ≥ 0, ‖x‖ = 1}} (6.49)

Further, we can make our lives easier by picking the 1-norm, then ‖x‖ = 1Tx for x ≥ 0. Then
we are looking for the distance from origin to the boundary of a polyhedron:

Pgeo = {Ax− tb : x, t ≥ 0,1Tx = 1} = conv(A) + ray(−b) (6.50)

This polyhedron is constructed from vertices that corresponds to contact wrenches, and a ray
corresponds to the gravity vector. This is closely related to, but different from the grasping metric
that measures the maximum resistance wrench [70]. In such grasping metric, the maximum
resistance wrench is computed as the radius of the ball inscribed to a different polyhedron that
represents the set of possible wrenches applied to the object. This polyhedron has one vertex
corresponds to the finite gravity wrench, and rays corresponds to contact forces. For any force
closure grasps, this polyhedron span the whole 6D wrench space so it provides no method to
evaluate and compare the stability against modeling uncertainties. The polyhedron defined in
Equation (6.50), however, never spans the whole space since it only has one infinite ray. We call
it the Geometrical Stability Polyhedron Pgeo. Run facet enumeration on Pgeo, obtain its halfspace
representation:

Pgeo = {f ∈ R6|Ageof ≤ bgeo} (6.51)

Then the distance from the origin to the boundary of Pgeo can be computed as:

r = min
i

bi,geo

‖Ai,geo‖
(6.52)

where bi,geo and Ai,geo denotes the ith row of bgeo and Ageo, respectively. If any element of bgeo

is negative, the origin is outside of the polyhedron and the system has no force equilibrium.
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6.4 Implementation and Computational Efficiency
We implemented the 3D wrench stamping algorithm in C++. We use the Parma Polyhedra Li-
brary (PPL) [8] for common polyhedral computations including facet and vertex enumeration,
adding generators, and redundancy removal. PPL implements rational arithmetic that performs
exact computation. We tested our implementation on a desktop with i7-9700k CPU clocked at
4.7GHz.

Considering the complexity of polyhedral computations, we make two compromises to re-
duce the time complexity of our algorithm. First, we use four-sided pyramid to approximate a
friction cone, i.e. each contact point contributes at most four contact wrenches. Second, we as-
sume the finger contact is always sticking in our testing. We test our algorithm on four different
problem settings and show the results in Table 6.1. In the results, step I and II are relatively
fast because they do not involve polyhedral computation. The computation time variations in
step I and II mainly come from the number of environment contact points, which determines the
number of modes to consider in the velocity filtering. The computation of geometrical stability
margin and the projection both are dominated by polyhedral computations including facet/vertex
enumeration. Their computation time grows quickly with the complexity of the polyhedrons,
which is determined by the total number of contact wrenches. The time complexity of the force
control step depends on the dimensionality of the force-controlled subspace and the complexity
of the polyhedrons in it. We use three to eight initial solutions, depending on the dimensionality.
The iterative inscribed sphere is limited to at most three iterations.

Table 6.1: Time Consumption Statistics of the 3D Wrench Stamping Algorithm

Problem
Settings

Hand Contacts 2 sticking 2 sticking 2 sticking 4 sticking
Env Contacts (Goal) 2 sliding 4 sliding 2 sticking 4 sliding
# of contact wrenches 10 12 16 20

Average
Time
Statistics
(ms)

Step I & II 3.1 9.2 3.9 11.03
Step III Compute r 1.3 3.0 8.0 30.0
Step III Projection 1.9 8.2 14.6 43.0
Step IV Force Control 3.5 5.1 60.9 23.5
Total 9.8 25.5 87.4 107.3
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Chapter 7

Summary

This thesis makes the following contributions:
• Modeling of rigid body manipulation that explains the causes of failures related to con-

tacts. Our analysis demonstrates the advantages and necessity of using hybrid force-
velocity control to handle manipulation under contact constraints. Our modeling uses a
contact mode representation that can distinguish the wrenches in different modes from
each other.

• Algorithms that compute a HFVC to control the object motion while enforcing a desired
contact mode. The two hybrid servoing algorithms can efficiently computes the HFVC
with the best kinematic conditioning, while the wrench stamping algorithm can addition-
ally avoid unexpected contact modes.

• Metrics to quantify the quasi-static stability of a manipulation system under any contact
mode. The crashing index quantifies the robustness of a system against the dangerous kine-
matic ill-conditioning. The geometric stability margin evaluates the resistance of a contact
mode against modeling uncertainties, including variations on contact point locations, nor-
mals, and their friction coefficients. The control stability margin evaluates the minimal
force disturbance that is required to break the contact mode.

• Applications of the proposed algorithms and metrics in solving several common manip-
ulation problems, including contact mode selection, motion planning of robust trajectory,
finger placement optimization, and computing the range of feasible parameters.

• Experimental validations of the applications in several representative scenarios. We im-
plemented HFVC on industrial robots and solved tasks that are infeasible without utilizing
environmental contact. Several of the tasks involve a sequence of making and breaking
contacts. We run each experiment multiple times to demonstrate the reliability of the
method.

There are two future work directions that can potentially improve the performance of the pro-
posed methods. The first is to incorporate feedback control. All experiments demonstrated in
this thesis are open loop in the sense that the robot has no object state feedback. Apart from
time limitation, we choose open loop experiments to demonstrate the robustness of our method
is enough to handle the uncertainties. However, the disturbance rejection ability and tracking
performance could be even better if feedback is indeed available.
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The second is to use high force-control bandwidth robots. As we explained in the intro-
duction, most industrial robots, including the ones used in this thesis, are not designed to make
contacts. This is why all the experiments are slow comparing with human motion for the same
task. Our quasi-static modeling is not the limitation of speed, as explained in Section 3.3. There
is a potential of speed improvement using robot designs such as the Direct-Drive Hand [11] to
execute the hybrid force-velocity controls computed by our methods.

To conclude, in this thesis we show that it is possible to plan robust contact-rich manipula-
tion efficiently and execute contact-rich manipulation reliably. It is our hope that our modeling
framework, controller designs, and stability metrics could motivate research work on more dex-
terous manipulation skills with contacts, and ultimately make it easier to deploy contact-rich
manipulation in the real world.
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