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Abstract

Despite substantial technological progress that has driven the proliferation of robots
across various industries and aspects of our lives, the lack of a decisive breakthrough in
electrical energy storage capabilities has restrained this trend, particularly with respect to
mobile robots designed for use in unstructured and unknown field environments. The fact
that these domains are often less accessible and previously unexplored makes them a perfect
candidate for the use of robots, but at the same time raises the stakes of failures such as
premature energy depletion, which can result in various irrecoverable scenarios leading to
loss of time and equipment. If we are to successfully leverage robots for these promising
applications in the absence of a revolutionary development in battery technology, it is clear
we must consider alternative means of addressing the energy storage issue.

Fortunately, many of the features that contribute to the difficulty of real-world field
scenarios can actually be a source of ambient energy that can be captured and exploited
to extend operation beyond what is possible using limited on-board energy supply. In
fact, humans have been harnessing the power of wind and currents to travel the oceans
for centuries and continue to take into account ambient energy when performing various
activities, either by instinct or design. The premise of this thesis is that this same thinking can
be extended to planning for mobile robots in the field in order to mitigate the shortcomings
of present day energy storage technology and open up further opportunities for robotic
exploitation.

In particular, this thesis considers the problem of energy-efficient Coverage Path Planning
(CPP) in river domains where ambient energy is present in forms such as wind, currents,
or elevation change. Instead of formulating a specialized monolithic algorithm to achieve
energy-efficiency in a given set of scenarios, we instead develop a novel constraint-based
coverage path planning (CB-CPP) framework, which breaks down the planning process
into discrete stages that can be optimized and tuned individually. This approach allows
us to specifically consider the energy-use implications of the order in which different parts
of the region are covered as well as the vehicle’s direction of travel in each region. Finally,
we propose several new energy-efficient coverage planners implemented within our CB-
CPP framework that leverage these insights. We demonstrate and validate this work on a
variety of simulation scenarios across domains and with real-world experiments with an
autonomous surface vehicle deployed in rivers.
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Chapter 1

Introduction

Continued technological advances coupled with breakthroughs in manufacturing have
sped the adoption of autonomous systems to the point that new cars are expected to drive
themselves and everyday encounters with cleaning robots are nothing to write home about.
One area that does not seem to have kept pace with this progress, however, is energy storage,
which remains a considerable obstacle for all mobile robot applications. Although robots
designed for situations where the implications of premature energy depletion are trivial or
easily addressed (e.g., home robotic vacuum cleaners) have been able to gain popularity
despite this issue, energy constraints have severely impacted the usage of robots in situations
where power failure can have more dire consequences (e.g., a UAV running out of power
mid-flight). Fortunately, in many domains of interest ambient energy is present in various
forms such as wind, waves, currents, and elevation change, which when properly exploited
can help surmount these energy storage limitations and enable broader use of robots beyond
the realm of cleaning carpets.

One clear robotic application that would benefit from such improvements is the gathering
of environmental data. Manual collection of environmental data over a large area can be
a time-consuming, costly, and even dangerous process, making it a perfect candidate for
automation with mobile robots. Unfortunately, this type of data often needs to be collected
at a dense set of points throughout the survey region to adequately capture certain features
that may go unnoticed if the area is explored more selectively. This complete coverage
requirement unavoidably translates to an extended deployment, which can be problematic
for mobile robots with a limited on-board energy supply. Although much research into
the Coverage Path Planning (CPP) problem has been done in pursuit of time- and length-
optimal planning algorithms, there has not been a commensurate effort to develop CPP
techniques that minimize the energy requirements of the resulting coverage plan. The result
is that while there exist specialized CPP algorithms that claim efficiency according to various
metrics for specific applications or scenarios, they are often difficult to generalize to other
applications and may not be easily extensible to leverage additional domain knowledge or
insights to further improve performance.
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1.1 Problem Statement/Thesis

This thesis seeks to address this gap by first formulating a new framework that breaks up
the CPP process into a set of discrete stages that can be optimized individually and then
developing a novel energy-efficient CPP algorithm using this architecture. In particular,
we investigate how exploiting overlap in sensor coverage and adjusting the direction and
sequence of different segments of the coverage path can result in improved energy-efficiency
in the presence of fluid flow fields such as wind or currents. More formally, the thesis of
this work is:

A coverage path planner can be constructed in such a fashion as to take advantage
of ambient domain energy by strategically selecting the order and direction path
segments are visited in, as well as opportunistically exploiting sensor coverage
overlap to plan movement through easier regions or along shorter routes.

In order to demonstrate the generality of our approach, we include simulation results
from different domains and vehicles across a variety of scenarios. For practicality reasons,
however, we restrict our real-world experiments to a single Autonomous Surface Vehicle
(ASV) platform deployed in a set of straightforward scenarios in a river.

1.2 Contributions

The key contributions of this thesis are:

1. CB-CPP, a Constraint-Based Coverage Path Planning framework, which produces
planning algorithms that assemble coverage paths from extensible path constraints
and can reason about the constraints individually during the planning process in order
to achieve highly specific performance objectives.

2. A specialized path constraint layout module within the CB-CPP framework for use
in river domains that leverages overlap in the coverage envelope while distributing
path constraints throughout the target area to shorten the overall path and optimize
impacts of surface currents on the vehicle.

3. A pair of path constraint refinement and sequencing modules that can be applied to
different constraint layouts and function together to reduce energy usage of coverage
paths across regions with moving fluids by intelligently guiding vehicle movement
according to the flow along each path constraint.

4. A set of new CPP algorithms utilizing combinations of the above modules built on top
of a boustrophedon planner implemented within the CB-CPP framework.

5. A real-world implementation of the above on an autonomous surface vehicle.

1.3 Thesis Outline

The remainder of this section will provide a brief outline of the thesis. Chapter 2 begins
with a broad introduction to the Coverage Path Planning problem, with a detailed survey of
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conventional methods, and concludes with a discussion of state of the art with regards to
energy-efficient coverage planning. Chapter 3 introduces the Path Constraint abstraction and
presents CB-CPP, our proposed coverage path planning framework. Chapter 4 details the
specifics of two coverage planning optimizations developed within the CB-CPP framework
with the objective of enabling energy-efficient coverage of river domains in the presence of
currents. Chapter 5 describes the simulation platform we built to evaluate the efficacy of our
proposed optimizations, and presents results from several simulation scenarios that support
our hypothesis. Chapter 6 details the implementation of the purpose-built platform used
to field test our algorithms, and provides an analysis of results from field experiments and
simulation. Finally, Chapter 7 concludes with closing remarks and a discussion of avenues
for future investigation.
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Chapter 2

Background

The primary contribution of this thesis is the design of a novel coverage path planning
framework that enables the adaptation of energy-efficient techniques from the realm of
point-to-point planning to the coverage planning domain. This chapter sets the stage for
our discussion of this work, and motivates the development of our framework through
an examination of existing approaches to coverage path planning, energy-efficient path
planning, and energy-efficient coverage path planning. Through this literature survey, we
aim to expose a clear gap in the state of the art where established methods for achieving
energy-efficiency during path planning have not been effectively applied to planning for
coverage.

During our discussion of existing energy-efficient coverage planning techniques, we
identify a dearth of methods that optimize for energy usage domains involving moving
fluids, such as winds or currents. These domains are of particular interest as far as energy
conserving algorithms are concerned because they offer abundant ambient energy in the
environment that can assist or hinder motion. The lack of research interest in this specific
problem motivates the second contribution of this thesis: the development of an energy-
efficient approach to coverage of riverine domains, which exploits variations in surface
currents across the survey region as well as typical geometric features of rivers in order
to reduce energy consumption. The algorithm proposed is implemented within the new
coverage planning framework introduced in this thesis.

The remainder of this chapter is organized into three primary sections covering the
seminal techniques and works dealing with coverage path planning, energy-efficient path
planning, and a combination of the two, energy-efficient coverage path planning. In the first
section we introduce the coverage path planning problem and present a spectrum of different
methods that have been developed over the years. In the next section, we examine the task
of optimizing paths for energy consumption through a variety of approaches at different
levels of the planning hierarchy. Finally, we discuss the set of existing work involving energy-
efficient coverage planning for the limited set of domains and scenarios where it has been
considered.
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2.1 Coverage Path Planning

Although specific formulations vary across implementations, fundamentally, the problem
of Coverage Path Planning (CPP) is to determine an appropriate coverage path given a
robot specification, the reach of its sensor or actuator payload, and the target region. The
desirable criteria for a coverage path solution were defined by Cao, Huang, and Hall in some
of the earliest work on CPP and continue to influence algorithms developed today [11]. The
requirements they laid out are as follows:

1. The robot must move through an entire area (i.e., cover the whole region).

2. The robot must fill the region without overlapping paths.

3. Continuous and sequential operation without any repetition of paths is required.

4. The robot must avoid all obstacles.

5. Simple motion trajectories (e.g., straight lines or circles) should be used for simplicity
in control.

6. An ”optimal” path is desired under the available conditions.

Clearly it is seldom possible to completely satisfy all these criteria and therefore it is
typically necessary to prioritize a subset over the others. In fact, unless the target coverage
region can be exactly covered by a continuous sweep of the robot’s payload footprint, some
overlapping must occur to fully cover the region or certain areas will be missed. Many of the
developed CPP algorithms balance the tradeoffs between these criteria to achieve the desired
performance for specific applications or scenarios, resulting in a diverse set of specialized
techniques and algorithms. A broad set of these approaches have been summarized and
discussed in the surveys of Choset [15], Galceran and Carreras [30], and most recently
Bormann et al. [9].

Although its criteria are often defined in the context of guiding a mobile robot, CPP
is not strictly a robotics problem and is related to several research areas across computer
science and manufacturing. Several clear parallels can be drawn between CPP and the
famous Travelling Salesman Problem (TSP), which is commonly stated as follows: given
the distances between each pair of n cities, find a tour (i.e., a simple path visiting all cities)
that minimizes the total distance travelled. Of particular interest is the Euclidean case of
TSP, where cities are points on a map and the distance between them is defined by the usual
Euclidean metric, as well as its generalization, the Covering Salesman Problem (CSP), where
the determined tour must only visit a neighborhood defined around each city [7]. If the
polygon defining our robot’s reach is chosen to represent each city’s neighborhood and the
cities are distributed densely throughout the target region as well as along its boundary, the
CPP problem can be transformed to CSP. Unfortunately Euclidean TSP and consequently CSP,
are NP-Complete [74], which suggests finding an optimal solution using this approach will
require dramatically increasing amounts of computation as the dimension of the problem
increases. In fact, in some of their later work, Arkin et al. show that the ”lawn mowing” or
”milling” problem of finding a shortest path to cut all the grass or material from a given
region is itself NP-Hard [6]. As robots take over tasks such as mowing lawns and vacuuming
floors, these problems have shifted to become classic applications for CPP.
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As alluded to above, the CPP problem is also closely related to the problem of automated
tool path generation for manufacturing and fabrication. There is a significant amount of
work that has come out of the CAD community regarding the milling or pocket machining
problem, which is informally stated as follows: given the boundary contours enclosing a
multiply-connected planar area and the size of a tool, determine the tool path for machining
the pocket [35]. Clearly if we define the size of the tool as the reach of the robot, the CPP
problem can be transformed to the pocket machining problem, although solutions to the
latter often involve additional considerations specific to machining, such as spindle direction
and surface quality. The recent rise in popularity of 3D printing has also been accompanied
by a growing interest in determining the optimal tool path fill pattern from within the
additive manufacturing community [32]. This problem is essentially the opposite of the
pocket machining problem, where material is being added instead of removed in order to
build up a 3D object layer by layer. Beyond the clear parallels to the CPP problem, it is
interesting to note that the deleterious impact of several tool path characteristics such as sharp
turns or corners, which can lead to discretization artifacts and degrade fill quality [44], can
have similarly negative consequences on a coverage path where the robot must change speed
and direction rapidly. As increasingly sophisticated fill pattern tool path algorithms are
developed [119], they continue to influence the development of novel CPP approaches [114].

Before diving more deeply into an examination of CPP methods, it is useful to first
discuss a few characteristics commonly used to distinguish these algorithms. Firstly, CPP
algorithms can generally be classified as either heuristic or complete, depending on whether
they can provably guarantee complete coverage of the free space. Additionally, CPP methods
can be partitioned into either offline or online approaches, where offline algorithms rely on
full a priori knowledge of the environment while online methods do not assume full prior
domain knowledge and instead rely on real-time sensor measurements. This classification
was originally proposed by Choset in his survey of CPP methods and has largely endured to
this day [15].

In his discussion of complete CPP algorithms, Choset points out that in order to achieve
some sort of provable guarantee of coverage, many of these techniques rely on a cellular
decomposition of the target region into cells such that coverage of each cell is ”simple.”
Provably complete coverage can then be guaranteed by planning a path that ensures the
robot visits each cell in the decomposition. Choset then continues to introduce three classes
of cellular decomposition: approximate, semi-approximate, and exact. According to his
definition, an approximate cellular decomposition is a fine-grid representation with uniform
cells whose union only approximates the target region, while an exact cellular decomposition
is a set of non-intersecting regions whose union fills the target environment. The semi-
approximate decomposition is somewhat of a middle ground to host methods relying on
partial discretization, such as the work of Hert and Lumelsky, which decomposes the target
region into cells of fixed width but arbitrary top and bottom boundaries [36].

Although adequate at the time, Choset’s CPP algorithm classification scheme falls short
when it comes to including complete coverage methods that do not rely on decomposing the
target region into cells, such as those inspired by space-filling curves for tool path generation.
In order to remedy this and streamline our further discussion of CPP methods, we propose
a modification to Choset’s original methodology; while each CPP algorithm will still be
classified as heuristic or complete as well as offline or online, it will additionally be placed
along a decomposition spectrum that indicates the level of decomposition performed on
the target region by the algorithm. Using this updated classification, we can place grid-
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based methods that discretize the target area into uniform robot-sized cells on one end of
the spectrum and global methods that don’t partition the target region on the other. An
illustration of our proposed decomposition spectrum for coverage path planning techniques
is provided in figure 2.1. For our following discussion of CPP methods, we will discuss
algorithms spanning three approximate regions of the spectrum: Grid-based Methods,
Cellular Decomposition Methods, and Global Methods.

Grid-based Methods1 Cellular Decomposition1 Global Methods2

More Decomposition Less Decomposition

Figure 2.1: Decomposition Spectrum of Coverage Path Planning Techniques.
Images adapted from (1) Galceran and Carreras’ survey of CPP methods [30], and
(2) Zhao et al.’s paper on Fermat spirals as tool paths for fabrication [119]

2.1.1 Grid-Based Methods

We begin our overview of CPP methods at the most granular end of the decomposition
spectrum with a discussion of grid-based methods. Algorithms at this end of the spectrum
decompose the target area into uniform grid cells, which are typically the size of the robot’s
footprint or reach so that when the robot enters a cell it is considered covered. After applying
this decomposition, the CPP problem reduces to determining a path that visits each cell.

The grid representation was first proposed by Moravec and Elfes to map an indoor
environment using a sonar ring mounted to a robot [26,70]. In their representation, each
grid cell has an associated value between −1 and 1 where negative and positive values
indicate a cell is likely empty or occupied respectively. The magnitude of each cell’s value
represents the certainty of the information, and a 0 value signifies the state of that cell is
unknown.

The shape of the grid cells used for grid decomposition does not necessarily need to
be rectangular. In their work Oh et al. propose a triangular decomposition, which has
the advantage of providing a higher resolution and higher connectivity than grids built
on rectangular cells of similar size [71]. While a rectangular cell within a grid is typically
connected to 4 or 8 of its neighboring cells, each triangular cell in the proposed decomposition
is connected to 12 adjacent cells, which can lead to smoother paths and increased flexibility
during planning but can also increase computational requirements. Another example of
a non-rectangular grid cell is the exact hexagonal decomposition proposed by Paull et al.
in their work on information gain-based coverage planning for autonomous underwater
vehicles (AUVs) outfitted with side scan sonars [75, 76]. An interesting result of using
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hexagons is that, unlike 8-connected square grids or 12-connected triangular grids, the
distance between the centers of any two neighboring hexagonal cells is the same, which can
simplify the objective function used during planning. Additionally, by sizing the hexagons
appropriately, their application involving side-looking sensors allows for coverage of two
additional cells whenever the AUV moves from one cell to another.

Although the choices of grid shape, resolution, and connectivity can have serious im-
plications, decomposing the target region into a suitable grid is just a preliminary; the
substance of grid-based CPP methods lies in connecting the grid cells into a suitable path
that achieves the coverage objectives. The earliest published work formally proposing a
grid-based coverage planning algorithm was that of Zelinksy et al., in which the authors
present a technique based on propagating a wave front throughout the grid map to assign
values to each free-space cell and then using these values to construct a coverage path [117].
The wave front begins by visiting a specified goal cell and repeatedly expands to the cells
adjacent to the current set of visited cells, while assigning values based on some metric.
When this metric is the length of the shortest path from the current cell to the goal cell, this
wave front propagation is also known as the distance transform, and can be combined with a
gradient descent approach to plan point-to-point paths [39]. In his doctoral work, Zelinsky
also introduced the ”path transform,” a modification to the distance transform that includes
a factor representing the discomfort exerted by nearby obstacles [118]. In their proposed
grid-based coverage planner, Zelinsky et al. apply either the distance or path transform,
then perform a pseudo gradient ascent from a specified starting cell by continuously moving
towards the highest-value neighboring cell that has not yet been visited [117]. Though either
transform will work, the authors note that the path transform produces better coverage
paths that tend to follow the contours of the target region.

One inconvenient aspect of Zelinsky et al.’s approach is that it is a strictly offline method
that requires full a priori knowledge of the target region, which is often unavailable in real-
world situations. To address this shortcoming, numerous online grid-based methods have
been developed that can collect information about obstacles during the coverage process. In
their work Shivashankar et al. present several strategies for online coverage in unknown
environments where a robot builds a mental map of the environment as it chooses directions
to move [89]. One of the strategies they develop is a generalization of Zelinsky et al.’s wave
front algorithm, where the technique is repeatedly applied with the robot’s mental map to
plan paths to yet uncovered cells.

Another interesting online grid-based CPP approach is the Spiral Spanning Tree Covering
(Spiral-STC) algorithm developed by Gabriely and Rimon [27]. This technique uses a square
grid decomposition with a 2D cell size, where D is the size of the robot or tool. Each cell
is further divided into four square subcells of size D than can be considered covered as
soon as the robot visits them. To build the coverage path, this algorithm incrementally
constructs a spanning tree of the 2D cells within the grid while moving along the subcells to
one side of the spanning tree. The result is that the robot circumnavigates the spanning tree
constructed on the 2D cell grid. One disadvantage of this method is that partially occupied
2D cells are discarded and not covered by the planner, which can lead to poor coverage
performance when the target area contains features smaller than 2D. Gabriely and Rimon
address this shortcoming in their followup work, where they cover partially occupied 2D
cells by modifying the coverage path of the robot through those cells at the cost of some
coverage overlap [28].
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In fact, the coverage of partially obstructed cells is a common challenge many grid-
based CPP methods must contend with. In their initial work, Gonzalez et al. devise the
Backtracking Spiral Algorithm (BSA) for online CPP, based on the idea of filling simple
regions using a spiral pattern and then linking these regions using a backtracking mechanism
[33]. Although their approach uses a higher-resolution grid decomposition than Spiral-
STC with a cell size equal to that of the robot, it fails to handle partially occupied cells in
its original incarnation. Gonzalez et al. address this issue in their later work where they
extend BSA to perform a wall-following behavior whenever an obstacle is encountered while
executing the typical spiral fill pattern [34]. The authors present experimental data to show
that this extension can improve the coverage rate of BSA by up to 30%.

Building on the techniques designed for Spiral-STC and Extended BSA, Choi et al. develop
an online complete coverage planning algorithm based on Linking Spiral Paths using a
Constrained Inverse Distance Transform (LSP-CIDT) [13]. Like Extended BSA, LSP-CIDT
implements a similar spiral method of filling simple regions and executes a wall-following
behavior whenever obstacles are encountered in order to cover partially obstructed cells.
Instead of the memory-intensive backtracking mechanism proposed for BSA, however,
LSP-CIDT introduces a new Constraint Inverse Distance Transform (CIDT), which is used
to find the shortest path from the current cell to the entry cell of the closest uncovered
region. In addition, LSP-CIDT proposes aligning the map’s coordinate system along the first
wall detected, which can reduce excessive turns due to the discretization inherent to grid
decomposition. This trick is particularly effective when covering typical rectangular rooms
but cannot completely eliminate the excessive turn effect for other polygonal areas.

Lee et al. further extend this work in the Linked Smooth Spiral Path (LSSP) algorithm [54].
This algorithm uses a higher-resolution grid decomposition where each cell is smaller than
the robot and a new technique for generating smoother spiral paths. Individual spiral
patterns are linked together using the CIDT approach developed for LSP-CIDT. The improved
resolution and spiral path generation allow LSSP to generate significantly smoother paths
than LSP-CIDT and essentially eliminate the excessive turns due to grid discretization for
any shape of target region.

Given the dense interconnected nature of the cells within a typical grid decomposition,
it should come as no surprise that a number of grid-based CPP methods adopt a neural
network approach. In their work, Yang and Luo propose an online neural network CPP
approach built on a grid decomposition with square robot-sized cells [60,115]. Each grid cell
is associated with a neuron that is connected to its eight neighbors and exhibits dynamics
governed by a shunting model based on the membrane equation originally developed by
Hodgkin and Huxley [37]. This model is designed such that the output value of all neurons
at a given instant (i.e., the activity landscape) attracts the robot to uncleaned areas while
repelling the robot from cleaned areas and obstacles. The robot is assumed to be outfitted
with sensors that can detect obstacles and whether cells are clean or unclean up to some fixed
range away, but is not provided with any prior knowledge of the environment. This sensor
information is used to dynamically build a map of the target region, which together with
the current state of the robot, is used to compute the neural activation and guide coverage
by the vehicle. An advantage of this method over those previously discussed is that is is
robust to changes in the environment during operation (e.g., dynamic obstacles).

Although the neural network approach to grid-based methods has several advantages,
the computational burden of these methods can necessitate the use of more powerful and
expensive hardware. In their work, Qiu et al. build on the biologically inspired neural
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network approach discussed above by adding a local path planner that determines the
robot’s next move [79]. In their approach the neural network is still used to model the
environment but rather than compute the next position using the neural activation, a heuristic
planner generates a local optimal plan. In addition to reducing the computational load, this
technique is shown to produce shorter coverage paths with fewer turns and less coverage
overlap than the original neural network approach when moving obstacles are encountered
during coverage.

Due to its intuitive nature and ease of implementation, the grid decomposition continues
to be a popular tool in CPP for many applications. It does, however, suffer from several
shortcomings that render it an inefficient choice in certain circumstances. First of all, a typical
grid map suffers from exponential growth of memory usage as the target area gets larger
because the size of the cells remains uniform throughout the decomposition, regardless of the
environment’s complexity [94]. Furthermore, grid-based methods typically require accurate
localization in order to maintain the map’s coherency [12,95]. Finally, since finding a path
to visit all cells within a grid decomposition is reducible to the path version of Euclidean
TSP, a known NP-complete problem, any optimal solution is likely to require significant
computational resources that scale sharply as the size of the problem (i.e., the number of
grid cells) increases. Fortunately, these drawbacks suggest a possible solution; by increasing
the size of the cells used in the decomposition, removing the constraint that cells be uniform,
and designing a simple procedure to cover each of these cells as they are visited, both the
memory usage and total cell count can be substantially reduced. This idea forms the crux of
the methods discussed in the next subsection, which covers CPP algorithms that occupy the
middle ground of the decomposition spectrum.

2.1.2 Cell Decomposition Methods

Moving along the decomposition spectrum of CPP algorithms we shift our attention to
less granular techniques, sometimes known as exact cellular decomposition but which we
will henceforth refer to as cell decomposition methods. This class of planners relies on
partitioning the free space of the target coverage area into a set of simple non-intersecting
regions called cells, where each cell is ”easy” to cover using simple motions such as a back-
and-forth sweep or spiral pattern. A pair of cells within this decomposition is said to be
adjacent if they share a common boundary. This fact can be used to build an adjacency graph
representation of the target environment where each cell is a graph node and each pair of
adjacent cells is connected with an edge in the graph. Given this representation, the CPP
problem is reduced to planning an exhaustive walk through the adjacency graph that visits
each node and uses the defined simple motions to cover the corresponding cell. Although
this problem is still related to TSP, the larger cells used in this decomposition greatly reduce
the number of cells needed to represent large target regions when compared to grid-based
methods, thereby making the search for an optimal path more computationally tractable.

Due to the well studied nature of TSP, much of the research into cell decomposition
methods for CPP tends to focus on the process of decomposing the target region into suitable
cells. Perhaps the simplest such approach is known as the trapezoidal decomposition [51] or
slab method [77], where a line, deemed a slice, is swept through the target region populated
with polygonal obstacles. Whenever a slice intersects the vertex of an obstacle, additional
cells are defined, ultimately resulting in a decomposition where each cell is a trapezoid.
Trapezoidal cells are very convenient for coverage as a simple back-and-forth path, also
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known as a boustrophedon path after the pattern an ox follows while plowing a field, can be
computed to guide a robot to every location within the cell. Although the original approach
was an offline algorithm, VanderHeide and Rao extended the trapezoidal decomposition in
their work to implement online coverage of initially unknown environments [104].

One drawback of the trapezoidal decomposition is that it tends to produce many cells
due to the fact that it exclusively creates convex cells. This is undesirable because generally
the more cells are present in the decomposition, the longer the final coverage path will
be. Furthermore, many nonconvex cells can also be completely covered by simple motions,
which suggests the cells from a trapezoidal decomposition could somehow be combined
to improve the final coverage path. This is essentially the approach developed by Oksanen
and Visala in their work on CPP for agricultural applications [72]; after applying a standard
trapezoidal decomposition on the target region, their algorithm tries to merge groups of
adjacent trapezoidal cells into larger cells according to a couple of simple rules and a tuned
parameter indicating how rectangular each cell is.

Rather than attempting to recombine suitable cells following an initial decomposition,
another common technique to reduce the final number of cells is to modify the decomposition
process to create fewer cells directly. Perhaps the best-known method that espouses this
approach is the boustrophedon cellular decomposition, originally developed by Choset and
Pignon [14, 16]. As its name suggests, this method decomposes a target region into cells
particularly suited to coverage with a boustrophedon pattern. In order to accomplish this, a
slice is again swept through the target region; however, this time additional cells are only
created if the slice intersects an obstacle at a single point, also known as a critical point. This
approach generally results in fewer cells than a trapezoidal decomposition, which can reduce
the length of the final coverage path. Just like the trapezoidal method, the boustrophedon
decomposition assumes obstacles are polygonal and that the terrain is known a priori.

In their later work, Acar et al. develop a new decomposition approach in an effort to
generalize the boustrophedon method to smooth and polygonal workspaces [3]. Because it
is based on finding the critical points of Morse functions [68], this new technique and its
variants became known as Morse decompositions. Although the boustrophedon decom-
position is a special case of a Morse decomposition, the latter has several advantages and
additional capabilities. Not only can Morse decomposition handle non-polygonal obstacles,
but the specific Morse function used can influence the shapes of the resulting cells in the
decomposition (e.g., circles, squares, triangular slices, etc). Furthermore, Acar and Choset
were able to devise a method to perform coverage of planar spaces by detecting critical points
using sensory range information and an algorithm using motion templates that ensures all
these points are discovered within the target area, thereby allowing for complete coverage
online [1, 2].

Although it is capable of being adapted to a variety of scenarios and applications, one
area in which the Morse decomposition method falls short is rectilinear environments, where
critical points cannot be determined. An alternative approach based on the detection of
natural landmarks was developed by Wong and McDonald to function on a larger variety of
environments, including those with polygonal, elliptical, and rectilinear obstacles [111–113].
Like the boustrophedon decomposition, the landmark method performs its decomposition
by sweeping a slice through the target area, albeit with different events used to determine
cell boundaries. Because these events or ”landmarks” can be detected using a combination
of range measurements, sensor readings, and odometry, both offline and online versions of
this algorithm are possible.
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For many of the methods discussed, a slice of some sort is swept through the target
region during decomposition. By changing the direction of this sweep, the resulting cell
decomposition for a given area can vary substantially. It is not surprising then that con-
siderable research has gone into investigating how sweep direction can be optimized to
improve the final coverage path. In his work, Huang develops the minimum sum of altitudes
(MSA) decomposition, which decomposes the region multiple times with sweep directions
perpendicular to each edge in the area, uses dynamic programming to combine these cells
into subregions, and then assigns a sweep direction to each subregion [38]. Revisiting the
work of Oksanen and Visala presents another example of optimizing the cell decomposition
by adjusting the sweep direction [72]. In order to fully decompose the target area, their
trapezoidal split and merge technique is repeatedly applied along different sweep directions
until the cell with the best score is found. This cell is then removed from the target coverage
area and the process is repeated until the entire area has been decomposed into cells.

As alluded to above, the CPP problem is also closely related to the problem of automated
tool path generation for manufacturing and fabrication. There is a significant amount of
work that has come out of the CAD community regarding the milling or pocket machining
problem, which is informally stated as follows: given the boundary contours enclosing a
multiply-connected planar area and the size of a tool, determine the tool path for machining
the pocket [35]. Clearly if we define the size of the tool as the reach of the robot, the CPP
problem can be transformed to the pocket machining problem, although solutions to the
latter often involve additional considerations specific to machining such as spindle direction
and surface quality. The recent rise in popularity of 3D printing has also been accompanied
by a growing interest in determining the optimal tool path fill pattern from within the
additive manufacturing community [32]. This problem is essentially the opposite of the
pocket machining problem, where material is being added instead of removed in order to
build up a 3D object layer by layer.

As mentioned in our introduction to this section, many techniques for automated tool path
generation are directly applicable to the CPP problem. Though many of these methods tend
to avoid explicit decomposition of the target region, there are several approaches that could
be considered cell decomposition methods. One example of such an algorithm is the tool
path generation strategy for wire and arc additive manufacturing that was developed by Ding
et al. [22]. Critical to their approach is a ”divide-and-conquer” strategy, which essentially
decomposes the target region into convex polygons using a technique based on removing
”notches,” i.e., vertices with an internal angle greater than π. After the decomposition, a
coverage path for each cell is generated using combination of contour and zigzag pattern
strategies. These individual cell coverage paths are finally joined into a single closed curve
that fully covers the target region.

Although many cellular decomposition techniques used for CPP take a mainly geometric
approach that strives to reduce the total number of cells or generate cells that can be more
efficiently covered, there are other strategies from related research areas that could be used
in a cell decomposition CPP algorithm. For example, methods of map segmentation into
semantically meaningful regions such as rooms or hallways could be particularly effective
for CPP algorithms where some higher-level optimizations of the coverage plan are desired.
Using these semantic cell decompositions, coverage plans could more easily be designed
to prioritize coverage of room cells or use sparser coverage patterns in hallways cells. A
detailed discussion of semantic map segmentation is outside the scope of this work but
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the survey of Bormann et al. provides a comprehensive discussion of the most popular
methods [10].

As we transition our discussion to the next class of CPP methods, it is worth noting a
tendency of the research we have discussed to focus on the decomposition method rather than
generating the coverage path within each cell. For a large number of these algorithms, the
cell area is often described as being ”easy” to cover with simple back-and-forth or spiraling
motions without providing specific implementation details, although there are several
notable exceptions. In their work on CPP for agricultural applications, Oksanen and Visala
provide coverage path examples that take into consideration the vehicle turning dynamics in
between concurrent back-and-forth passes and describe a procedure for generating spiral-like
coverage paths using techniques from computational geometry such as polygon offsetting
[72]. As part of their research into optimal coverage path planning using genetic algorithms,
Jimenez et al. use variations of two different ”motion templates” to generate feasible coverage
patterns for each cell following decomposition [40]. In the next subsection we further shift
our focus towards methods for generating actual coverage paths as we examine global
approaches to CPP where the target area is considered as a whole.

2.1.3 Global Methods

Continuing along the decomposition spectrum we finally arrive at the global CPP methods,
which operate on the entire target region without the need to decompose it into any sort of
grid or cells. Although they don’t specifically require decomposition, these methods can
generally also be applied to each cell within a cellular decomposition to determine a coverage
path for that cell. These global methods include both heuristic and complete approaches,
the former of which do not guarantee that the entire target environment will be covered.

Perhaps the most popular of the heuristic methods is random coverage. This approach is
particularly common among many simpler floor cleaning robots due to its ease of imple-
mentation and basic sensor requirements. Using this technique, the robot moves around
the target area randomly, turning whenever an obstacle is encountered or at some random
interval. A disadvantage of this method is that as the domain increases in size or complexity,
it can become less effective; environmental features and geometry may prevent the robot
from entering specific areas unless entering from exactly the right angle or a certain area
may lend itself to being consistently missed by the robot.

In their work, Palacin et al. developed a computer vision system for measuring the
performance of cleaning robots executing random coverage [73]. The system makes use
of a camera mounted over the target scenario to acquire imagery of the scene and then
processes the images with a background subtraction technique to track the position of the
robot over time. By analyzing the results of several experiments, the authors are able to show
an exponential relationship between the coverage percentage and the operating time for a
circular cleaning robot moving in random directions after reaching a wall in a rectangular,
obstacle-free target area. This result perfectly illustrates that a simple random coverage
approach can quickly cover most of an open area but achieving complete coverage is unlikely
no matter how long the robot runs.

Clearly, a random method is not the most suitable technique for high-risk applications
where missing a certain section of the target area could have drastic consequences, such
as structural inspection or demining. If the sensor being used to cover the target area is
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imperfect, however, this can change the calculus of whether a random approach is appro-
priate. In his work Gage evaluates the performance of random coverage in the context of
demining with imperfect sensors that have a detection probability of less than 1.0 [29]. In
this case, even provably complete coverage cannot guarantee certain success and in fact, as
this detection probability decreases, the advantages of complete systematic coverage over
random coverage diminish.

In order to improve some aspects of random coverage methods, there has been some
research into combining these techniques with complete coverage path planning. In their
work, Liu et al. propose a hybrid approach that alternates between random movement and
a boustrophedonic complete coverage path [58]. This strategy seeks to benefit from some
of the advantages of each method, using random paths to more rapidly explore the target
region and mitigate potential localization issues that may impair complete coverage methods,
while relying on the latter to improve the rate of coverage over time.

As far as complete global CPP methods go, by far the most common approaches are to
implement a back-and-forth boustrophedonic or contour-following spiral pattern. These
techniques have their roots in early work on tool path generation for pocket machining,
where they are referred to as direction-parallel and contour-parallel milling respectively [35].
While the direction-parallel approach has been the most widely adopted fill pattern by
today’s 3D printers due to its simplicity [32], the boustrophedonic pattern results in many
sharp turns, which can be problematic for additive manufacturing and robotic coverage
applications alike; as a tool or robot reaches one of these sharp corners, it must decelerate in
one direction and then accelerate in another direction. Contour-parallel paths are comprised
of a set of closed curves parallel to the perimeter of the target region and generally result in
smoother turns and object boundaries than direction-parallel methods [25, 116]. However,
if the target area has a more complex shape, these methods can lead to isolated ”pockets,”
which are disconnected and result in path plurality. In their work, Jin et al. propose a
hybrid fill pattern that generates a few contours before filling the remaining area with a
direction-parallel pattern [41].

Interestingly, while research into CPP drew extensively from work on tool path generation
in its early days, this crossover faded somewhat over time, perhaps due to the different
optimization criteria for manufacturing and robotic coverage applications. The Hilbert
space-filling curve gained some popularity as a means of generating tool paths for additive
manufacturing due to its good preservation of locality, meaning two points that are close
within the 2D space being filled are also close along the Hilbert curve. This property is
advantageous for additive manufacturing because the bonding quality between two adjacent
lines of material can be adversely affected if one is allowed to cool and shrink before the
other [8]. On the other hand, this locality property is less important for most applications
of robotic coverage and the high number of corners on a Hilbert curve can be difficult to
follow effectively for a mobile robot. Additional fractal-like space filling curves have been
suggested by Wasser et al. in their work on tool path generation for Fused Deposition
Modeling (FDM) [107]; however, these methods likewise feature numerous sharp corners,
which limit their use for CPP.

Recently a new kind of space-filling curve has been developed that shows promise as
a potential CPP technique as well. In their research, Zhao et al. introduce the connected
Fermat spiral, which in contrast to classical patterns like the Hilbert curve, are made up
of mostly long and low-curvature paths [119]. In addition, it is generally possible to fill a
region with a connected Fermat spiral such that the start and end points of the curve lie
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next to each other on the outside boundary of the target region. This property allows for
convenient joining of multiple spirals to fill groups of connected regions with ease. Both
this property and the low-curvature nature of the curves, make this approach more suitable
for robotic coverage applications.

2.2 Energy-Efficient Path Planning

Due to the inherent power constraints of mobile robots, energy-efficiency has been a contin-
ued area of interest in robotics, motivating extensive study and engineering efforts. As aerial
drones with strict payload limitations rapidly gain popularity and robots are increasingly
deployed in remote scenarios from the ocean depths to other planets, the need to under-
stand robotic power consumption and develop energy-saving algorithms and technology
that increase the lifespan and utility of these vehicles has intensified and garnered further
attention. Mei performed a comprehensive study of robot power usage in the context of
common robotic subsystems such as locomotion, sensing, communication, and computation,
and developed several strategies for energy-efficient motion planning, exploration, and
deployment [64, 66]. While continued progress in power-efficient electronics has helped
reduce the energy footprint of sensing, communication, and computation, motion remains a
major power sink for robots [61]. Although energy-efficiency has historically taken a back
seat in path planning research, which focused on providing safe, goal-oriented, and/or
time-optimal paths [50,52,69,86,90,102], energy-efficient planning techniques have emerged
as a means of mitigating the energy costs of robotic locomotion and have recently become
the subject of renewed interest.

Energy-efficient planning methods have been suggested at all levels of the autonomy
hierarchy, from high-level task schedulers, to the low-level controllers guiding basic motion.
At the topmost abstraction level of autonomy, energy-efficiency is achieved through dynamic
power management and intelligent scheduling of tasks according to their power require-
ments, available energy, and mission objectives. In practice this approach involves selectively
modulating or disabling idle robot subsystems and timing execution of power-hungry oper-
ations to occur when their cost is least or energy is abundant; for example, a ranging sensor’s
sampling rate can be reduced when the robot is moving slowly, communications can be
scheduled for when transmission distance is shortest, and uphill locomotion can be limited to
when solar power is available [65,67,81]. In order to apply these techniques successfully, the
available knowledge of vehicle power consumption and operation, domain-specific sources
of energy, and overall mission objectives is typically encoded in some representation that
can then be used to produce valid schedules for vehicle actions in the given scenario. Since
task scheduling is a well-studied problem in computing, common representations such as
the constraint graph are often used to allow for convenient adaptation of existing scheduling
algorithms to robotics applications [17,49].

One example that illustrates the potential of high-level task scheduling to improve energy-
efficiency is the work of Liu et al., which describes a power-aware scheduling technique that
can satisfy typical time and power constraints, while additionally maximizing the use of
available free power [57]. The researchers present their methodology in the context of the
NASA/JPL Mars Pathfinder rover, which used a solar panel and non-rechargeable battery as
its power sources and was designed with a low-power task scheduler that enabled the rover
to operate for hundreds of days during daylight. By extending the constraint graph problem
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formulation and discerning the free power provided by the solar panel from the costly
power sourced from the battery, their scheduling technique is able to achieve significant
improvements in execution time and energy usage over the system implemented on the
Mars rover. Although such high-level approaches towards energy-efficiency can be very
effective, detailed constraint graph representations become increasingly difficult to define as
the complexity of the robot or mission increases, limiting the scope of their use.

To bridge the gap between task scheduling and path planning, Tompkins, Stentz, and
Whittaker pioneered the mission-level planning approach in their work creating TEMPEST, a
planner that combines knowledge of mission objectives, operational constraints, rover perfor-
mance, and the environment to solve the coupled path planning and resource management
problem [100]. Initially developed in the context of long-duration, solar-powered, planetary
exploration in polar regions, TEMPEST was first used to guide a solar-powered rover using
a sun-synchronous navigation strategy [109,110] and knowledge of available solar energy
and anticipated power draw. In this implementation, TEMPEST runs offline prior to rover
operations and computes mission plans that combine time-sequenced path plans, battery
energy guidelines, and a schedule for battery recharge intervals in order to achieve energy-
efficient rover operation. Deployed on the solar-powered Hyperion rover in the field, the
plans supplied by TEMPEST enabled continuous operation for 24-hour time periods, during
which the rover executed multi-kilometer traverses while maintaining substantial battery
energy reserves for the duration. In their follow-up work, Tompkins, Stentz, and Wettergreen
extended TEMPEST to run online, support additional rover actions, and use re-planning to
repair plans during execution, and present results from the field [99,101]. Wettergreen at
al. further deployed TEMPEST on the Zoë rover during multiple field experiments in the
Atacama Desert involving a total of 55km of autonomous navigation [108].

Since the energy consumption of an electric motor used to propel a typical mobile robot
fundamentally relies on two parameters, speed and load, approaches to improve energy-
efficiency at the path planning abstraction level generally seek to optimize the velocity of
the robot along its trajectory or search for advantageous routes through the domain that
balance travel time and motor load. Given an arbitrary input trajectory for a robot to follow,
Tokekar et al. use closed-form solutions to compute optimal velocity profiles with an optional
constraint on maximum velocity and develop a dynamic programming scheme to extend
their method to chains of input trajectory segments [96, 97]. Wang et al. take a similar
dynamic programming approach in their work to optimize mobile sensor placement, but
additionally consider scenarios when road conditions, and thereby load, are not uniform
along the path [106].

Instead of trying to optimize velocity along a given path, Sun and Reif study the problem
of finding paths over terrain that minimize energy expenditure by a robot due to gravity
and friction [93]. Adapting their previously developed BUSHWHACK algorithm, they are
able to approximate energy-efficient paths across the terrain that inherently take advantage
of friction and gravity (e.g., zig-zagging up steep slopes) [82,92]. In our previous work on
energy-efficient planning through flow fields, we build upon a planner developed by Lolla
et al., which uses level set evolution to compute time-optimal paths for a vehicle moving at a
constant nominal velocity through a completely known flow field [59]. By considering the
dynamics of the ASV we developed for our research [85,103], we predict the velocity that will
be attained by the robot for initial path planning and then periodically trigger re-planning
using the true velocity that was achieved [98]. Using this approach, we were able to achieve
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some improvement in simulation, but have not been able to test in the field due to a lack of
complete surface current information, on which this method is strictly dependent.

At the lowest level of the autonomy hierarchy, some groups have approached the task
of achieving energy-efficiency for their robots by encoding some sort of behavior in the
control laws governing their vehicles’ operation. In their work, Kim and Kim use optimal
control theory to compute minimum-energy translational velocities along a straight line
for differential drive robots and achieve energy savings of up to 10% over other energy-
optimizing methods [48]. In their work applied to autonomous sail boats, Sauze and Neal
use a biologically inspired control technique to achieve significant energy savings during
operation [83, 84]. Other work done by Derenick, Michael, and Kumar similarly takes a
control-centric approach to achieve energy-aware behavior with a team of quadrotors, but
focused on maintaining continuous coverage of the region as agents leave the area to dock
and recharge [18].

Although energy-efficient operation can successfully be achieved with techniques across
the autonomy hierarchy, most approaches rely on exploiting domain knowledge and accurate
system models, which are often incomplete, unavailable, or difficult to obtain outside of
simulation. Further difficulty arises from the fact that environmental conditions and vehicle
dynamics can change significantly between deployments or during the course of operation,
which can reduce the effectiveness of energy-efficient methods even to the point that energy
consumption is increased. These challenges have conspired to limit the widespread adoption
of such techniques in the field and motivated efforts to develop approaches that can adapt
to changing conditions and balance domain exploration to refine environmental knowledge
with the exploitation of this information to improve energy-efficiency.

In their work with UAVs, Lawrance and Sukkarieh develop a method to simultaneously
map and utilize a dynamic wind field using soaring flight in order to significantly extend
UAV flight duration [53]. Wind speed and direction at the vehicle location are measured
using a combination of air data and inertial measurement sensors and then used as input
to a Gaussian process regression to estimate a wind map. Their planner then makes use
of this wind map and aerodynamic models of the UAV to determine new target locations
that will allow for data collection resulting in wind map improvements and paths to these
targets that best capture the available ambient wind energy. By balancing exploration and
exploitation of the wind environment, their planner is able to achieve consistent energy gain
in simulations with dynamic wind fields.

Since environmental conditions such as ambient winds and currents are often mercurial,
even domain knowledge gathered during exploration can be highly uncertain. A common
approach to overcome this uncertainty is to dynamically replan and adjust models during
operation as new information is collected and prior knowledge is invalidated. An exam-
ple of this technique is demonstrated by Jones and Hollinger in their work to develop a
framework for planning energy-efficient trajectories for a vehicle moving through uncertain
environmental disturbances [45]. Their approach generalizes previous trajectory optimiza-
tion techniques, such as STOMP [46], by removing the assumption that trajectory waypoints
are equally spaced in time, thereby allowing the optimization to vary the temporal length
of the trajectory. This strategy enables their algorithm to optimize trajectories over a wider
range of cost functions, which can be specifically defined to plan energy-efficient paths.

In order to address environmental uncertainty, Jones and Hollinger additionally build
a model describing deviations from the forecast disturbances using a GP regression and
observations collected by the vehicle, which is used to regularly replan new potential paths.
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The energy costs of newly computed trajectories are then compared to that of the existing
path being executed and can be selected to replace the current path depending on user-
selected parameters. Experiments in simulation reveal that the choice to accept a replacement
path critically affects the performance of this framework; metrics which estimate and weigh
the probability that the replacement path consumes less energy are shown to improve
energy-efficiency on average while greedy switching actually leads to worse performance.
Jones and Hollinger further validate their framework with a series of field tests using the
ASV platform we developed in our previous work [85, 103] deployed on a lake in windy
conditions. By selecting an appropriate replanning strategy, the system is able to reduce
the energy consumption during a traverse of the lake without any a priori knowledge of the
wind patterns across the domain.

2.3 Energy-Efficient Coverage Planning

While energy-efficient planning has shown continued promise when applied to planning
problems where the robot is guided between a subset of points within the domain, problems
such as complete coverage planning provide additional structure that presents an opportu-
nity for further exploitation to achieve even greater performance. In this section we examine
the intersection of the coverage planning and energy-efficient planning methods from our
previous discussion.

One approach to energy-efficient coverage planning involves splitting up a coverage path
to introduce stops where a robot can refuel or recharge prior to continuing its work. This kind
of servicing behavior was implemented by Oksanen and Visala in their work on coverage
for agricultural machines, but was considered in the context of spreading and harvesting
operations where the robot must make stops to fill or empty its tanks respectively, rather
than vehicular energy constraints [72]. In order to achieve this, their algorithm simulates
the tank level along a coverage path to determine whether the tank ever reaches a critical
level requiring servicing. If such a point is identified, the coverage path is modified to visit a
servicing location before the critical level is reached, after which the simulation is repeated
to check whether additional service stops are required.

Strimel and Veloso specifically tackled the version of this problem where the robot cover-
ing the target area has finite energy resources [91]. Building on the boustrophedon cellular
decomposition coverage algorithm, a new sweeping planning algorithm is introduced that
augments the cellular decomposition with an additional cell to represent the service or
charging station. After a tour of cells is determined, it is then optimally partitioned into
subroutes which begin and end at the charging station and meet the energy constraint of
the robot. These subroutes are then appended together to determine the shortest coverage
plan throughout the region while obeying energy constraints.

Although this type of servicing behavior is a practical solution to achieving complete
coverage when energy is limited, the coverage paths generated are not necessarily optimal
and there are aspects of these paths that can be modified to have a significant effect on
execution costs. In their work on optimal coverage planning for arable farming, Jin and
Tang consider several of these aspects, most notably the cost of various turning techniques
between the straight transects that make up typical back-and-forth boustrophedonic coverage
patterns [42]. While it is a common approach to choose the direction of boustrophedon
coverage corresponding to the longest dimension of the target area since this can minimize
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the number of required turns, the authors demonstrate that the incident angle between the
transects and the edges of the target region can substantially affect the total length of the
coverage path as well. Since the energy required to drive a path at a given speed generally
increases with the length of the path and sharp turns are expensive due to the need to
decelerate then accelerate the vehicle, optimizing the turns along the coverage path can have
a profound impact on its energy cost.

As additional domain knowledge becomes available to the planner, this opens up various
avenues for further optimization. 3D terrain information has become a popular choice to
leverage in order to improve coverage path planning performance due to its availability
and broad utility across a variety of applications. Jin and Tang utilize terrain knowledge in
order to extend their prior work optimizing turns along coverage paths to three dimensions,
while introducing additional path optimizations that improve coverage rate and decrease
soil erosion [43].

In their work, Dogru and Marques specifically consider the task of energy-efficient
coverage planning for ground robots when terrain of the survey environment is known [23,
24]. They propose an alternative decomposition of the environment into regions with similar
terrain slope and use a genetic algorithm to optimize the orientation of the boustrephedon
path computed in each region and the order in which they should be visited by the robot in
order to minimize energy usage. The proposed technique is shown to successfully reduce the
energy requirement to cover several scenarios in simulation; however, it assumes a constant
vehicle velocity, which prevents exploitation of the potential energy of the vehicle when
descending from a higher region.

More recently, Wu et al. introduced an energy-efficient coverage path planning algorithm
for 3D surfaces [114] that builds on the Fermat spiral tool path generation technique originally
proposed by Zhao et al. [119]. By modifying the geodesic field used when the spirals are
computed and applying a heuristic to minimize height variation along the coverage path,
their algorithm is able to plan paths with significantly reduced energy costs when compared
to other coverage algorithms for 3D terrain. Similarly to Dogru and Marques, the authors
assume braking when descending from higher terrain, which again leaves some energy
optimization on the table.

Beyond knowledge of the terrain throughout the domain, coverage planners can take
advantage of other sources of ambient energy within the environment, such as solar radiation.
In her work on coverage planning for lunar rovers, Shillcutt investigates the effect of the
coverage pattern used on the energy cost to completely survey an area in the context of
solar-powered lunar rover exploration [87,88]. By taking into account orbital ephemeris and
terrain data as well as models for solar power generation by the robot, Shillcutt was able to
evaluate the energy cost of specific coverage patterns and develop sun-synchronous and sun-
seeking algorithms to extend rover lifetime and increase mission productivity. The coverage
pattern energy cost evaluation was validated with data collected during tests of autonomous
searches for meteorites in the Antarctic [4, 5] while performance of the sun-synchronous
and sun-seeking behaviors was evaluated in simulation.

In their work, Vasisht and Mesbahi address a similar problem of energy-aware coverage
planning in the context of persistent monitoring of a geographical area for events of varying
priorities by a UAV equipped with solar cells [105]. By building a model of the energy
collected by the solar cells on the UAV which depends on the ambient conditions and
vehicle orientation, the authors can estimate the net energy cost of moving between points
within the survey region and compute energy-optimal trajectories. The coverage planning
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algorithm developed then makes use of this model to maximize coverage time of the area
while prioritizing visits to regions that not been observed for the longest time. Using this
approach, the authors are able to extend the total persistent coverage time by the UAV in
simulation.

2.4 Summary

In this chapter, we reviewed a subset of the available literature and research that addresses
coverage path planning and energy-efficient path planning for autonomous vehicles. While
there are a multitude of methods that tackle these problems individually, the existing work
targeting the combination of these topics is strikingly limited by comparison. As outlined in
the previous section, the primary approaches to energy-efficient coverage planning involve
breaking up coverage paths with stops to service (e.g., refuel or recharge) the vehicle,
optimizing the number and types of turns along the path, considering terrain information
to design more efficient paths, and incorporating knowledge of ambient solar radiation to
improve collection of energy during execution. The absence of planning methods that apply
other established techniques of conserving energy to the coverage planning problem across
a broader set of domains motivates the work in this thesis.

In our discussion of energy-efficient path planning, we examine a variety of methods
ranging from strategic task scheduling to velocity optimization along a trajectory, which
would seem like perfect candidates for adaptation to coverage planning. For example,
intelligently scheduling the power-hungry suction motor on a robotic vacuum to turn off
when traversing regions that have already been cleaned could have a significant impact
on the coverage range of the unit. Similarly, for automated surveys of large outdoor areas,
sensors and radios could be powered down when passing through a visited region or out
of communications range respectively. Adjusting drive speed to let a vehicle coast down a
decline also seems like a natural approach to save energy and yet existing energy-efficient
algorithms for coverage of 3D terrain often assume a fixed velocity along the coverage path.
Although they may be simply stated, actually implementing these strategies in a coverage
path planner can be complicated and typically involves developing a custom, application
specific solution that might build on a general CPP approach - an effective deterrent for
further research into this important problem.

The goal of the novel coverage path planning framework introduced in this thesis is to
remove this barrier and offer a clear process for quickly building coverage planners and
experimenting with various optimizations without the need to rewrite significant parts of an
algorithm. Using this framework, optimizations such as intelligent throttling of high power
devices and decreasing thrust depending on the local environment can be implemented as
standalone components that can be applied to existing coverage planners independently
or in a chain, which can result in synergistic benefits that are unexpected or would have
been difficult to design. Moreover, this framework allows for further reasoning later in the
planning process based on any applied optimizations. This enables the design of complex
behavior such as coverage where communications radios are turned off when out of range,
but the longest stretch of time the vehicle spends out of range is minimized. In the next
chapter, we present our framework and demonstrate how it can be used to implement several
common coverage planners.
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Chapter 3

Constraint-Based Coverage Path
Planning

In this chapter, we present the Constraint-Based Coverage Path Planning (CB-CPP) archi-
tecture and describe the key stages within this planning pipeline. We begin by introducing
the concept of a Path Constraint and offer some simple examples of how these might be
implemented. Next we describe the process by which path constraints can be manipulated
and assembled into a coverage path. Finally, we present several case studies in which we walk
through the implementation of common CPP algorithms within our CB-CPP framework
and conclude with a discussion of the advantages of planning within the framework.

3.1 Path Constraints

A path constraint is a set of details that limits different aspects of the complete path being
constructed. In its most basic incarnation, this boils down to a pure spatial constraint, which
simply represents a set of locations that must lie on the final path determined by the planner.
By designedly laying out a set of such constraints throughout the target region and then
chaining them together appropriately, it is possible to build path plans with a variety of
characteristics for different applications, including notably complete coverage paths.

Path
Constraint

X
 Coordinate 
Sequence

I
Ingress 

Coordinates

C
Constrained 
Parameters

E
Egress 

Coordinates

Figure 3.1: Formal path constraint definition

To this end, we formally define a path constraint as an ordered set P = (X, I,E,C) where
X is a sequence of coordinates, I and E are sets of possible ingress and egress coordinates
respectively, and C is a set of additional constrained parameters. When referring to a specific
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path constraint Pi, we adopt the graph style notation X(Pi), I(Pi), E(Pi), and C(Pi) to refer
to these components, while the set of all path constraints is referred to by P.

Each component of this definition serves a specific purpose in the context of assembling
constraints into a complete path to achieve some goal. The coordinate sequence X localizes
the constraint, both providing the actual coordinates that will ultimately make up part of the
complete path and coupling the parameter constraints defined in C to particular segments
along that path. The ingress points I and egress points E facilitate the linking of multiple
path constraints into a single path by informing planners of valid points at which to begin
and end following a constraint. Finally, the constrained parameters defined in C describe
further restrictions to a vehicle’s operation as it moves along the the constraint.

Before delving into the roles of each path constraint component in detail with some
examples, it is helpful to first partition the set of all possible path constraints by whether their
defining geometry is open or closed. We now discuss each of these partitions individually,
providing basic examples and illustrating important differences that should be taken into
account during implementation.

3.1.1 Open Path Constraints

Conceptually, open path constraints are just path constraints defined by open geometry such
as sequences of line segments or curves. Since these geometries can intersect themselves
and even begin and end at the same point, however, the primary defining characteristic
of constraints in this subset is that they can have a maximum of two possible ingress and
egress points because their defining coordinate sequence must be executed in its entirety,
either forwards or in reverse. Using this fact we can formally define the open path constraint
subset as follows: PO = {Pi : Pi ∈ P and |I(Pi)| ≤ 2 and |E(Pi)| ≤ 2}.

Like all path constraints, each open constraint definition includes a coordinate sequence
X that contains the coordinates of all points along the defining geometry. The sets of valid
ingress and egress points, I and E respectively, may both include the first and last elements
of a constraint’s coordinate sequence X if the constraint is undirected and can be executed
in either direction, or may each contain a single point if the constraint is directed and must
be followed in a specific direction. Examples of both undirected and directed open path
constraints are shown in figure 3.2.

In addition to its coordinate sequence and ingress/egress points, each path constraint
should define a set of parameter constraints C, which can restrict additional aspects of
movement along the constraint to achieve specific goals. In the most basic example of
an undirected open constraint, this set is empty, but in the directed example, a direction
is imposed on the constraint using an entry in C, thereby specifying single ingress and
egress points that define the final execution order of the coordinate sequence X . This type
of parameter constraint is universal, meaning it applies to the entire constraint, but more
advanced parameter constraints that change along different segments can also be specified
by defining a sequence of values that matches the length of the coordinate sequence X .

An example of this type of varying parameter constraint is given by the Thrust Constraint
in figure 3.2. This particular instance limits the thrust a vehicle can apply as it moves along
the constraint by specifying an allowable thrust range for each point in the constraint. Using
this representation, it is possible to remove the parameter constraint from sections of the
constraint altogether by specifying a null/none value for those points. In the example shown
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Figure 3.2: Examples of open path constraints with varying levels of specificity

in figure 3.2, there is no constraint on thrust the vehicle can use to reach waypoint A. For
the subsequent waypoints, the allowable thrust is increasingly restricted from a range of 0
to 1.0 for waypoint B, to 0 to 0.25 for waypoint D. Other possible parameters to constrain
include velocity ranges, vehicle orientations, and sensor/actuator state, which can be used
to enforce safe velocities in critical areas, optimize environmental effects (e.g., orient vehicle
to decrease drag), or reduce energy usage due to extraneous sensing/actuation (e.g., turn
off vacuum when travelling over already visited regions).

3.1.2 Closed Path Constraints

In order to facilitate the implementation of planning algorithms that make use of contours
or offset polygons, it is convenient to be able to construct path constraints defined by closed
geometry. Closed path constraints provide this capability through a slight modification to
their implementation that uses their coordinate sequenceX to specify the vertices of a closed
polygon, the boundary of which then becomes the defining geometry for the constraint.
In contrast to open constraints, closed constraints will always share the same ingress and
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egress points, or more formally I(PC) = E(PC) for all closed path constraints PC . Although
it is feasible to implement closed path constraints in such a fashion as to allow ingress
and egress at any point along the closed boundary of the polygon defined by X , we limit
our implementation to allow ingress/egress solely at the coordinates defined in X , that is
∀i ∈ I(PC), i ∈ X(PC) and ∀e ∈ E(PC), e ∈ X(PC).

Basic 
Constraint

Ingress Points:
[A, B, C, D, E]

Egress Points:
[A, B, C, D, E]

Constrained 
Parameters: 

{}

Coordinate List: 
[A, B, C, D, E]

Directed 
Constraint

Ingress Points:
[A, B, C, D, E]

Egress Points:
[A, B, C, D, E]

Constrained 
Parameters: 

{direction: A->E}

Coordinate List: 
[A, B, C, D, E]

Single Ingress 
Constraint

Ingress Points:
[C]

Egress Points:
[C]

Constrained 
Parameters: 

{direction: A->E,
transition: [C]}

Coordinate List: 
[A, B, C, D, E]

A

B C D

Closed Path Constraint
E

Figure 3.3: Examples of closed path constraints with varying levels of specificity

Several examples of closed path constraints are shown in figure 3.3. In the simple case
when a closed path constraint PC is virtually unconstrained beyond its defining geometry,
the sets of ingress and egress points I(PC) and E(PC) are congruent to the set of defining
polygon vertices X(PC). Like open path constraints, we can enforce a direction of travel
along the constraint by adding an entry in the set of constrained parametersC(PC), as shown
in the directed constraint in figure 3.3. Unlike open path constraints, however, defining
a direction for the closed constraint does not affect its sets of possible ingress and egress
points.

In order to fully constrain a closed path constraint such that it can be represented by
a sequence of coordinates, we must define a transition point, which represents the point
at which an agent can begin executing the constraint. Defining such a point will collapse
the sets of valid ingress and egress points to a singleton set containing the transition point,
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indicating that the constraint must begin and end execution at this point. An example of
such a fully defined closed path constraint is given in figure 3.3.

Once a closed path constraint has a defined transition point, it can be easily be converted
into an open path constraint with the same ingress and egress point. This feature can enhance
code reuse and simplify adapting algorithms built for open path constraints to work with
closed path constraints.

3.2 Constraint-Based Coverage Planning

By introducing the concept of a path constraint as a building block of coverage paths, we laid
the foundation for designing coverage planners that can reason about the order or direction
in which constraints are executed, and take into consideration available domain knowledge
encoded in additional constraint parameters. In this section we present a general framework
for such a constraint-based coverage planner.

Figure 3.4: Where CB-CPP methods fall on the Decomposition Spectrum

When considered in the context of our discussion of existing coverage path planners
in the previous chapter, CB-CPP implementations naturally fall into the global methods
section of the decomposition spectrum because they do not themselves contain a method
of decomposing the target coverage area. They can, however, be readily combined with
any number of existing decomposition schemes to build coverage paths for each cell, which
can then be assembled into a complete coverage path. In fact, knowledge of the ingress
and egress points into and out of each cell can easily be fed into a CB-CPP algorithm from
the decomposition in order to further optimize the coverage path constructed. Moreover,
additional knowledge from the decomposition may be useful during the different phases of
CB-CPP, so a more deliberate coupling of decomposition and CB-CPP algorithms can yield
further benefits.

Our framework for constraint-based coverage planning consists of four distinct stages:
Layout, Refinement, Sequencing, and Linking. When designing a coverage planner using
this framework, the developer can choose an existing implementation for each component
or implement a custom component provided that the interfaces defined for each stage are
respected. Typical constraint-based planner implementations will have one layout compo-
nent, any number of refinement components, one sequencing component, and one linking
component.
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Path constraints are laid out 
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domain knowledge as additional 
constrained parameters
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Linking

The ingress and egress points of 
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linked together using a specified 
point-to-point planner (e.g. A*)

Figure 3.5: Stages of the constraint-based coverage planning framework

3.2.1 Layout

The layout component is responsible for distributing the path constraints throughout the
target region in a manner that ensures complete coverage if a robot executes all the constraints.

An important consideration when designing a layout component of a coverage planner
is the footprint of the target vehicle as well as its sensor or actuator payload. The vehicle
footprint defines a safe envelope surrounding the robot, which specifies a boundary that
may result in a collision if breached. The sensor or actuator footprint, hereby referred to
as the payload footprint, defines the reliable range of the sensor or actuator mounted on
the vehicle (e.g., field of view and range of a sonar sensor or inlet shape and position on a
vacuum). As shown in figure 3.6, the geometry and configuration of these footprints can
vary in size and shape: the vehicle footprint can be smaller than, larger than, or congruent
to the payload footprint, and the footprints can be of different shapes and asymmetric.

The choice of vehicle and payload footprints can have profound implications on the
coverage quality of the final path and complexity of the planning algorithm, particularly
relating to the layout of path constraints. In fact, if the payload footprint is completely
contained within the vehicle footprint and their boundaries do not touch, complete coverage
of any specified target area is not possible without breaching either its boundary or the
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Payload Footprint

Vehicle Footprint

Figure 3.6: Vehicle and Payload Footprints can be of Different Shapes and Sizes

vehicle footprint. Asymmetric footprints pose an additional challenge as vehicle orientation
must be accounted for during constraint layout. If the target vehicle is holonomic, the desired
orientation can be encoded on each path constraint as an additional constrained parameter,
however, for non-holonomic vehicles this may result in path constraints that are impossible
to execute for the target vehicle. Perhaps the simplest approach is to define both vehicle
and payload footprints with congruent symmetric polygons if appropriate, although this
can often reduce the coverage quality if the payload footprint is overestimated and leave
potential efficiency on the table if the vehicle footprint is excessive. Since the specifications for
layout components within the CB-CPP framework do not restrict the footprint configuration
that can be used, this choice is left up to the developer to balance the the tradeoff between
improved coverage and implementation complexity according to the needs of his application.

Configuration Space

Domain with Robot Footprints Vehicle Configuration Space Payload Configuration Space

Figure 3.7: Choice of Vehicle and Payload Footprints Affects Configuration Space

In addition to the vehicle and payload footprints, the geometry of the target region plays
a significant role in the constraint layout process. In order to layout constraints, the planner
must determine how close to the boundaries of the target area and any obstacles within the
vehicle should drive to avoid collisions while still achieving full coverage of the region. A
common approach is to first determine a configuration space for the robot and the given
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survey area according to the vehicle and payload footprints. This space defines a safe region
within which constraints can be laid out in a systematic fashion without concern of collision
or departure from the target area. Two different configuration spaces determined using a
sample domain and robot footprint specification are show in figure 3.7.

Sweep Line

Sweep 
Direction

Intersection 
Points

Figure 3.8: Line Sweep Layout Approach

Once a suitable configuration space has been
determined, there are a number of strategies for
laying out constraints to cover this space. One
approach that will produce a set of parallel line
constraints throughout the region is the line
sweep approach illustrated in figure 3.8. This
method relies on moving a line that extends be-
yond the boundaries of the configuration space
along a specified sweep direction in fixed incre-
ments. After each movement, the intersection
points of the sweep line with the configuration
space polygon are used as the coordinates of
a new path constraint. This process is analo-
gous to the line sweep methods used for cel-
lular decomposition by several common cover-
age path planners [14,51,113] and the resulting
straight line path constraints are well-suited for
implementing the classic boustrophedon cov-
erage pattern. The distance the sweep line is
advanced at each step can be determined by
calculating the number of transects required to
fully cover the region depending on the robot’s
payload footprint.

The choice of configuration space and layout approach can have profound implications
on the effectiveness and efficiency of the resulting constraints. In figure 3.9 we present the
result of the line sweep approach using three different choices of configuration space: the
vehicle configuration space, the sensor configuration space, and an intermediate option
based on the smallest internal angle of the polygon defining the target area. As shown,
the coverage rate for the sweep line method is best when the vehicle configuration space is
used, because this allows the vehicle to get as close as possible to the target area boundaries.
However, this comes at the expense of generally longer path constraints and potentially more
transects required to fully cover the region. By choosing a configuration space with a larger
offset, total length and number of constraints can be reduced at the expense of a slightly
worse coverage rate. It is worth noting that in the case the payload footprint is smaller than
the vehicle footprint, it is generally not feasible to use the sensor configuration space unless
the vehicle is allowed to travel beyond the specified target area.

Beyond the conventional boustrophedon or spiral coverage patterns, the layout com-
ponent can leverage additional domain data to distribute path constraints; for example,
when the domain is defined over a region of moving water and the flow is known, suitable
constraints may lie along the streamlines of this flow. Regardless of the implementation,
given a problem description, this component should produce a list of path constraints that
will ultimately be combined into a coverage path for the region.
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Boustrophedon Layout

Vehicle Radius Offset

Coverage Rate: 99.50%
Total Length: 46.03 m

Min. Interior Angle Offset

Coverage Rate: 98.59%
Total Length: 43.28 m

Payload Radius Offset

Coverage Rate: 94.09%
Total Length: 34.03 m

Figure 3.9: Examples of Boustrophedon Layout with Different Choices of Offset

3.2.2 Refinement

The refinement phase of the CB-CPP framework is unique in that it is the only optional stage;
no refinement component implementation is necessary as long as the constraints created
during layout are sufficiently descriptive to sequence or the downstream planner components
can handle and resolve constraint ambiguities. If a refinement component is implemented,
it will take the specified set of path constraints and use domain or user-specified knowledge
to restrict additional parameters such as direction, thrust, or velocity. Although this will
typically entail adding to the set of parameter constraints C, a refinement can also modify a
path constraint’s coordinate sequence X by inserting additional points along its defining
geometry in order to increase the resolution of the representation and allow for different
parameter constraints along any section of the path constraint.

The purpose of the refinement stage of the CB-CPP pipeline is twofold: the additional
information encoded in the path constraints in this phase can be used directly by the vehicle
during execution of the final coverage path and/or it can be leveraged at further points in the
planning process in order to influence the assembly of path constraints into a coverage path.
For example, we consider a refinement that makes use of a known communications envelope
that denotes an area within the target coverage region in order to mark sections of each path
constraint where reliable communications are unlikely. A robot executing a coverage path
built from these constraints can then strategically throttle or disable its communications
radio along segments of the path in order to conserve energy. Furthermore, this information
can be used in subsequent planning steps to govern the order or direction in which path
constraints are assembled, resulting in a final coverage path the minimized the time the
vehicle spends between successive communications, perhaps by staggering the execution of
path constraints that lie predominantly out of communications range.

The output of a valid refinement component will be another list of constraints, making it
possible to chain multiple refinement components together during this stage, provided that
they do not contradict one another. This design feature not only allows for the decomposition
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(a) Connectivity of Unrefined Constraints (b) Connectivity of Refined Constraints

Figure 3.10: Constraint Refinements can Reduce Search Space During Sequencing

of complex path constraint refinement into simpler distinct modules but also facilitates the
modification of existing coverage planner implementations within the framework to add
new optimizations or influence the behavior of the vehicle during execution.

3.2.3 Sequencing

After the set of path constraints is fully refined, the planning process proceeds to constraint
sequencing. The sequencing component takes an unordered list of constraints and returns
an ordered list that defines the order in which the constraints should be executed in the final
coverage path. In addition, this component can take into account the ingress and egress
points to the target coverage area, if specified. This can be useful if using a CB-CPP planner
in conjunction with a cellular decomposition technique, in order to optimize the coverage
pattern within each cell according to the determined tour through the cell adjacency graph.

Although sequencing components should generally be implemented to handle ambiguity
in path constraints that have not been refined, the amount of refinement in the previous
planning phase can have a significant impact on the computational load in this step. If the
ingress and egress points of constraints are not fully defined, the sequencing component
will have to consider all possible combinations of valid ingress and egress points during
planning and fully constrain these parameters before returning the ordered list. Simply
defining a direction of travel along each constraint, however, can reduce the search space
during sequencing by half. An example illustrating this effect with a set of sample constraints
is provided in figure 3.10, where the connections that must be considered during sequencing
for a single constraint endpoint are shown in green. This effect is magnified when planning
using closed constraints that each may have more than two possible ingress and egress
points.
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The output of a valid sequencing component should be an ordered list of path constraints
that each have a single ingress and egress point defined, which can easily be assembled into
a coverage path in the following stage.

3.2.4 Linking

The linking stage is the final phase of the constraint-based coverage planning pipeline where
the ordered list of path constraints is combined to create the final coverage path for the
target region. The simplest implementation of a linking component would be to take the
ordered list of constraints and connect the egress of each constraint to the ingress of the
following constraint with a single line segment, although depending on the target region
geometry, this straight line segment may cross a region or obstacle boundary. A more
robust and configurable approach is to design a linking component based around a point-to-
point planner such as A*. Instead of simply connecting egress points to subsequent ingress
points, this planner can now be used to determine collision-free optimized paths between
constraints. More advanced point-to-point planners that take advantage of additional
domain knowledge to improve path characteristics such as energy-efficiency or travel time
can also be implemented for this component, at the cost of some additional complexity and
computational load.

3.2.5 Summary

We have described the function of each stage in the constraint-based coverage planning
pipeline shown in figure 3.5 and have hinted at how the conventional back-and-forth bous-
trophedonic or spiral patterns can be implemented within this framework. In the next
section we walk through the design and implementation of the boustrophedon and spiral
coverage patterns using the constraint-based approach and propose an alternative streamline
boustrophedon approach that is well-suited for coverage of domains containing moving
fluids such as rivers.

3.3 Case Studies

In this section we walk through a few sample implementations of traditional coverage plan-
ners within constraint-based framework, highlighting the reusability of planner components
across implementations. In addition, we introduce a new streamline boustrophedon planner
that has several convenient features for planning coverage paths in sections of river and only
requires the development of a new layout component. For clarity and ease of explanation,
the vehicle and payload footprints for these studies are fixed as congruent circles with a one
meter diameter, while the target domains are restricted to simple scenarios: a 10 meter by 10
meter square for the first two studies and a 90 degree river bend with a uniform 10 meter
width for the final study.

3.3.1 Boustrophedon Pattern

In our first case study, we describe one possible implementation of the popular boustrophe-
don coverage pattern as a constraint-based planner. Although there are different methods to
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build such a planner within the constraint-based framework, we present an approach with a
single component for each stage of the CB-CPP pipeline, and generalized implementations
that can easily be mixed and assembled into different coverage planners. The intermediate
and final outputs of our planner on a simple coverage planning problem are shown in figure
3.11.

Constraint-Based Boustrophedon PlannerProblem Description

Domain
Definition

Ingress/
Egress
Points

10 m

10 m

Constraint 
Refinement

Switching Direction Refinement

Constraint Layout

Parallel Sweep Layout

Constraint 
Sequencing

Greedy Sequencer

Constraint 
Linking

Simple Direct Linker

Vehicle/Payload Footprint

Coverage Path

Figure 3.11: Sample implementation of boustrophedon coverage within CB-CPP
framework

The layout component of our implementation is responsible for determining the initial
spatial path constraints that will be used throughout the planning process. Given the 10 by
10 meter domain as a target area with congruent vehicle and payload footprints defined by a
circle with a radius of 50 cm, our layout component begins by computing the configuration
space of the vehicle within this target area, pictured as a green square within the blue domain
in figure 3.11. Next the number of passes required to cover this configuration space in the
desired direction is computed using the payload footprint; in our example we orient our
passes vertically, and therefore since the width of the configuration space is 9 meters and
our payload footprint radius is 50 cm, we can completely cover this area with 10 passes. The
distance between parallel passes is chosen such that the first and last passes lie on the edges
of the configuration space and the perpendicular distance between neighboring passes is no
greater than two times the payload footprint radius. Although this works out to 10 passes
with no overlap in our example, other geometries may require some overlap of payload
footprints along parallel passes.
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In order to generate the spatial path constraints corresponding to these passes, we sweep
a line through the configuration space perpendicularly to the desired pass orientation, and
record the intersection points of this line with the configuration space polygon. We begin at
the first intersection of this line with the configuration space, which may be at a single point,
and move the computed distance between passes repeatedly until the sweep line no long
intersects the configuration space. Each set of intersection points recorded along the way
becomes the coordinate list for an undirected path constraint. The output of this component
for our example problem is shown in the constraint layout block in figure 3.11.

The next component in our implementation is constraint refinement, where each con-
straint is assigned a direction in an alternating fashion, such that any two adjacent constraints
are oriented in opposing directions. Additionally, the orientations of the closest constraints
to the ingress and egress points are chosen to minimize the distance from the ingress point to
the beginning of the first constraint as well as the distance from the end of the last constraint
to the domain egress point. The oriented constraints produced by this component for our
example problem are pictured in the constraint refinement block in figure 3.11.

After the path constraints have been refined with an execution direction, they are passed
to the constraint sequencing component of our planner, which determines an ordering that
will be used to assemble the constraints into a complete coverage path. Our sequencer
implementation uses a greedy approach, which relies on repeatedly searching for the closest
ingress point across all remaining unsequenced constraints. The distance to each ingress
point is measured with respect to a reference point, which initially starts at the domain
ingress point specified by the problem and is updated to the egress point of each constraint
as it is sequenced.

During its search, the greedy sequencer must consider all possible ingress points for each
unsequenced constraint. If the direction of any constraint is undefined, the greedy sequencer
resolves this ambiguity during operation at the time the constraint’s ingress points was
found to be closest to the current reference point. For open path constraints, specifying a
single ingress point will collapse its sets of ingress and egress points to singletons, thereby
implicitly defining a direction of execution for the constraint. Although constraint sequencing
components should be designed to handle completely unrefined constraints with ambiguous
ingress and egress points, there are benefits to some refinement if it is possible; by refining
the direction of our input constraints in the previous stage of the planner, each constraint
is limited to a single ingress point, thereby reducing the sequencer search space by half.
This effect was illustrated during our earlier discussion of the constraint refinement phase
in figure 3.10. The sequenced constraints produced by this component for our example
problem are shown in the constraint sequencing block of figure 3.11.

With an ordered list of oriented path constraints, the final component of our imple-
mentation links the egress points of each constraint to the ingress point of the following
constraint, and combines the constraints into a final coverage path. Because our sample
problem involves coverage of a convex region, our implementation simply links each egress
point to the next ingress point directly with a straight line, which is guaranteed to lie within
the configuration space. The final coverage path determined by our planner for the example
problem is presented in the coverage path block of figure 3.11.

This description of our constraint-based boustrophedon planner demonstrates how one
of the most commonly-used CPP methods can easily be implemented within our constraint-
based framework and offers a preview to the advantages of this approach over typical ad
hoc or one-off implementations - namely the reusability and extensibility of individual
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components that make up a constraint-based planner. We showcase these features in the
following case studies.

3.3.2 Spiral Pattern

In our next case study, we examine how the popular spiral coverage pattern can be imple-
mented within the constraint-based framework. To accomplish this task, we will reuse two of
the exact planning components used in the previous case study, without any modifications:
the greedy constraint sequencer and the simple direct constraint linker. To further demon-
strate the capabilities of our framework, we also implement this coverage planner without
any refinement component, allowing the sequencer to operate on an unpruned search space
and resolve any constraint ambiguities on its own. The intermediate and final outputs of
our spiral coverage planner on the same planning problem considered in the previous case
study are shown in figure 3.12.

Figure 3.12: Sample implementation of spiral coverage within CB-CPP framework

The primary difference between the constraint-based boustrophedon planner presented
in the previous case study and the constraint-based spiral planner is the manner in which
the path constraints are laid out throughout the target coverage region. As before, the
layout component begins by computing the configuration space according to the domain and
vehicle footprint geometry, pictured as a green square in figure 3.12. Instead of sweeping
a line through this configuration space, however, the spiral pattern layout module defines
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constraints by repeatedly offsetting the contour of the configuration space inwards. The
specific process used to generate each successive offset contour can grow complicated
depending on the complexity of the target region, vehicle and payload footprints, and the
degree of coverage and overlap desired. The approach implemented for this case study
translates each edge of the prior contour a fixed distance along its normal vector towards the
center of the polygon and then uses the intersection points of these new edges to determine
a set of one or more offset contours.

At each offset step, the newly determined contours are used to instantiate new path
constraints that will be passed along to components further down the planning pipeline.
In contrast to the open path constraints produced by the boustrophedon layout in the
previous case study, the path constraints generated by this spiral layout implementation
are closed path constraints, which can be joined together at one of any number of defined
transition points along their defining curves. As mentioned in our introduction to path
constraints, any closed constraint can also be transformed into a single open constraint with
coincident endpoints, however, this will in effect restrict the transition point for each contour.
Alternatively, any closed constraint can also be decomposed into a set of open constraints,
although this will generally remove the restriction that the resulting constraints are executed
in order. In this case study we want to follow a spiral coverage pattern where the vehicle will
move along each contour completely before transitioning to another contour, therefore we
do not perform this decomposition. The output of this component for our example problem
is shown in the constraint layout block in figure 3.12.

The next stage in the CB-CPP pipeline is constraint refinement, which we have omitted in
our implementation for illustration purposes. Consequently, the set of closed path constraints
created during layout is passed directly into the sequencing module of our planner, which is
the same greedy sequencer implemented for the boustrophedon planner in the previous case
study. Unlike that example, however, the set of closed constraints supplied to the sequencer
have undefined directions and transition points, which means that the full set of ingress
points for each constraint must be considered during sequencing and a direction to execute
each constraints must be determined. This ambiguity is resolved in a greedy fashion, where
the sequencer repeatedly uses the shortest distance metric to select and fully define the next
constraint.

The greedy sequencer initially starts at the domain ingress point specified by for the
problem and considers all possible ingress points across all unsequenced constraints before
choosing the closest option. This point is then selected as the ingress point for its parent
constraint, which for closed path constraints corresponds to defining a transition point that
subsequently collapses the sets of possible ingress and egress points to singletons containing
that point. The parent constraint is then indexed and removed from the set of unsequenced
constraints. This process is then repeated starting at every possible egress point of the prior
constraint, and continues until no unsequenced constraints remain.

One distinction between open and closed path constraints is that while an open con-
straint’s direction is fully defined when the sets of possible ingress and egress points are
singletons, this information is insufficient to define the direction for a closed constraint.
Since the ingress and egress points defined by our choice of transition point are coincident,
however, the direction of travel along each constraint will not influence the greedy selection
of the following constraint and will not affect the total length of the resulting coverage path.
Due to these circumstances, our greedy sequencer implementation will assign a default
clockwise execution direction if it determines that selecting an ingress point did not fully
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define the direction of a processed path constraint. In more complex sequencer implemen-
tations, the direction of a closed constraint may be defined using other methods such as
minimizing the change of a vehicle’s heading required when moving between constraints.
The sequenced constraints produced by our implementation for the example problem are
shown in the constraint sequencing block of figure 3.12.

Once an ordered list of fully defined path constraints has been prepared, it is passed to
the final linking component of our coverage planner. Since the target region for this case
study is convex without any holes, the simple direct linker module created for the previous
study is still suitable and can be directly reused without modification. The final coverage
path determined by our planner for the example problem is presented in the coverage path
block of figure 3.12.

Over the course of this and the previous case studies, we have described possible imple-
mentations of the two most common approaches to area coverage: the direction-parallel
boustrophedon pattern and a contour-parallel spiral pattern. Furthermore, we have illus-
trated how the CB-CPP framework facilitates code reuse through the segmentation of the
planning process into phases that are commonly implemented across individual planners.
In the following section we propose a new streamline boustrophedon layout for coverage
in rivers, and walk through the process of building a constraint-based planner around this
layout technique.

3.3.3 Streamline Boustrophedon Pattern

CB-CPP offers the opportunity to easily develop a variety of new coverage path planning
algorithms by simply mixing existing implementations of planner components or combining
them with newly designed modules; even introducing a single new component into a planner
implemented within the CB-CPP framework can dramatically change the characteristics
and performance of the coverage paths it produces. In this final case study, we exploit
this capability to create a new streamline boustrophedon planner for river domains, which
generates coverage paths that follow approximate streamlines in the river. In order to
accomplish this, we design a new streamline layout technique and pair it with the switching
direction refinement and greedy sequencing components developed in previous case studies,
as well as an upgraded linking module based on smoothed A*. The intermediate and final
outputs of our streamline boustrophedon planner on a simple quarter turn target region are
shown in figure 3.13.

The crux of this new planner is the new streamline layout component that generates
curves based on the geometry of the river domain that can approximate the streamlines
of the flow in the river. Just like the two CB-CPP planners discussed in the previous case
studies, this layout module begins by computing the configuration space according to the
domain and vehicle footprint geometry, which is represented by the green areas shown
in figure 3.13. Next, the layout algorithm approximates the medial axis or centerline of
the river using the supplied domain geometry. For the simple scenario in the case study,
this axis can be computed directly from the equations defining the river banks, however, a
variety of algorithms exist to determine the medial axis for arbitrary geometries using Vornoi
diagrams [47], Delaunay triangulation [63], the medial axis transformation (MAT) [78],
and the edges of a Triangulated Irregular Network (TIN) [56].
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Figure 3.13: Sample implementation of streamline boustrophedon coverage within
CB-CPP framework

After the central axis is determined, the layout process continues by examining perpen-
dicular cross-sections of the river at regular intervals along this centerline. The length of
the longest of these cross-sections, which corresponds to the width of the river at its widest
point, is used to determine the number of transects N required to cover the entire target
region given the vehicle payload footprint. The perpendicular cross-sections are then each
divided into N − 1 equal line segments, and their endpoints are numbered from left to right.
These endpoints are then grouped together across all cross-sections according to their index
to create the coordinate sequences that define the final path constraints. Additional details
and explanatory figures for this constraint layout approach are available in our discussion
of energy-efficient modifications to this layout component in chapter 4. The output of this
component for our example problem is shown in the constraint layout block in figure 3.13.

The next two components in our planner implementation are reused directly from the
constraint-based boustrophedon planner described in the first case study. The first of these
is the switching direction refinement module, where each constraint is assigned a direction
in an alternating fashion, such that any two adjacent constraints are oriented in opposing
directions. Additionally, the orientations of the closest constraints to the ingress and egress
points are chosen to minimize the distance from the ingress point to the beginning of the
first constraint as well as the distance from the end of the last constraint to the domain egress
point. After the path constraints have been refined with an execution direction, they are
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passed to the constraint sequencing component repurposed from our previous case studies,
the greedy sequencer. As before, the greedy sequencer module repeatedly searches for the
closest ingress point across all remaining unsequenced constraints. The distance to each
ingress point is measured with respect to a reference point, which initially starts at the
domain ingress point specified by the problem and is updated to the egress point of each
constraint as it is sequenced. The oriented and sequenced constraints produced during these
planning phases are pictured in the constraint refinement and constraint sequencing blocks
in figure 3.13.

Once a sequenced list of fully defined path constraints has been prepared, it is passed
to the final linking component of our coverage planner. In contrast to the two previous
case studies, the target region in this scenario is concave, and therefore the previously used
simple direct linker module is unsuitable because connecting the ends of two constraints
with a straight line may intersect with the region boundary and lie partially outside the
configuration space. For example, if the egress point of transect 9 were to be connected
directly to the ingress point of transect 7 in the constraint sequencing block of figure 3.12, the
direct connecting path would cut across the inner bank of the river. Although the constraint
refinement we apply in our planner implementation may result in the simple direct linker
producing a viable path for this specific scenario, implementing a dedicated point-to-point
planner within a linking component is more appropriate for general river domains, which
may meander significantly. In our linking component, we implement a post-smoothed A*
planner to connect the ingress and egress points of the sequenced path constraints. The final
coverage path determined by our planner in this case study is depicted in the coverage path
block of figure 3.13.

3.3.4 Additional Scenarios

Although the case studies in this section were limited to simple scenarios and vehicle config-
urations, these example planners implemented within the CB-CPP framework can produce
coverage paths for a variety of target region geometries as well as different combinations of
vehicle and payload footprints. In order to showcase some of this versatility, the intermediate
outputs and final coverage paths produced by these planners for additional scenarios are
presented in appendix A.

3.4 Summary

In this chapter we formally introduced the path constraint abstraction and described a
constraint-based coverage path planning (CB-CPP) framework based on assembling these
path constraints into coverage paths through four distinct phases: Layout, Refinement, Se-
quencing, and Linking. After an examination of each of these planning stages, we presented
a series of case studies illustrating how common coverage techniques such as the boustro-
phedon and spiral patterns could be implemented within the framework with significant
code reuse. We concluded our case studies with the introduction of a new streamline bous-
trophedon planner, that only required the development of a new constraint layout planner
component.

Throughout this chapter, we have targeted our discussion of the CB-CPP framework and
subsequent examples of planners implemented within it in order to highlight several of the
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advantages over conventional approaches to coverage planner implementation. The most
impactful of these are revisited and briefly discussed below.

• Modular
By partitioning the planning pipeline into four distinct phases with well-defined inputs
and outputs at each stage, development of coverage planner components can occur
independently and concurrently. This can speed planner development and simplify
the design of new optimizations that can be experimented with in isolation while
holding other planner components constant. The four stages in the pipeline (layout,
refinement, sequencing, and linking) additionally encourage a natural separation of
steps in the planning process, without restricting developers from designing more
complex effects based on interaction between components across multiple planning
phases.

• Reusable
Since many coverage planning algorithms include common subtasks or boilerplate
that is not specific to the core approach but nevertheless required, the modular nature
of planners implemented within CB-CPP allows for a tremendous amount of code
reuse. As long as planner components are developed to adhere to the specifications
defined by the CB-CPP framework, component implementations can often be directly
dropped in when building new constraint-based planners.

• Scalable
Due to the modular approach of the CB-CPP framework, the choice of component
implementation at each stage in the pipeline can scale according to the available
computational or time resources and adjust based upon any domain or application
specific knowledge. For example, while a greedy constraint sequencing approach
may be appropriate when planning with limited resources, a more computationally
demanding heuristic sequencer may produce superior results. Similarly, if the target
coverage area is known to be convex and free of obstacles and holes, a simple direct
linking component will substantially reduce computational and memory requirements
over a post-smoothed A* linking algorithm running on a dense grid map.

• Extensible
Existing coverage planners within the framework can easily be augmented to imposed
additional vehicle constraints or introduce additional optimizations, simply by adding
new constraint refinement modules. For example, in order to constrain vehicle velocity
within a specified ”safe” subregion of the domain, a new refinement can be imple-
mented that encodes a velocity limit as an additional constrained parameters along
sections of each path constraint that lie within the specified subregion.

Thanks to its modular and extensible design, the CB-CPP framework can be used to
build coverage path planners for a variety of domains and applications. Planning for multi-
agent coverage can also be achieved through the implementation of suitable sequencing and
linking modules that assemble multiple coverage paths instead of a single plan for the entire
target region. Due to some reliance on domain knowledge at each phase within the CB-CPP
planning pipeline, however, this framework is primarily suited to building offline coverage
planners. More complex implementations that merge the planning and execution processes
to achieve online coverage planning using the cb-cpp framework may be possible but are
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outside the scope of this work. Instead, this work focuses on developing offline coverage
planning algorithms that are robust to some degree of uncertainty in domain knowledge.

The development of the CB-CPP framework was motivated by the objective of creating
an energy-efficient coverage planner for river domains. To this end, path constraints and
CB-CPP were designed to provide a clear abstraction for defining a vehicle’s motion through
a region and a methodology for interacting with this abstraction to plan efficient coverage
by the vehicle. The phases of the CB-CPP pipeline allow for planner optimization at every
stage, which lets users focus on a single process when trying to improve a planner. This was
instrumental for the development of the energy-efficient coverage planners described in this
work. In the next chapter we examine the details of the energy-efficient optimizations that
power these planners.
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Chapter 4

Energy-Efficiency Coverage
Planning

In this chapter we address the fundamental problem that motivates this work: how to plan
energy-efficient coverage paths in river domains, where currents in the fluid have substantial
impact on the vehicle’s motion. Although tackling this question as a single irreducible
problem is daunting, the constraint-based planning architecture developed in the previous
chapter provides a tool to decompose this problem into discrete stages that can then be
optimized independently or in sensible combinations. This approach allows us to easily
encode common sense strategies based on available domain knowledge by building new
specialized components within the CB-CPP framework, and reuse standard existing modules
when appropriate.

In this work we propose three avenues for the optimization of coverage path plans to
reduce the energy-usage during execution: Streamline Constraints, Constraint Coverage
Overlap Biasing, and Flow-Aware Constraint Refinement and Sequencing. These optimiza-
tions span different stages of the CB-CPP framework and can be applied independently or
sequentially if appropriate for the application scenario. In the following sections, we delve
into the specifics of each approach and describe the reasoning behind each method.

4.1 Streamline Constraints

Our first optimization approach centers around the streamline constraints introduced during
the development of the streamline boustrophedon planner in the final case study of chapter
3. The idea behind these constraints is that their defining geometries approximate the
streamlines of the river, a feature which can simplify the coverage path planning process and
open up possibilities for further optimizations. In this section we will discuss the motivation
and potential benefits of streamline path constraints, before walking through our proposed
layout methodology that can be used to generate these constraints for a given target region
of river.
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4.1.1 Motivation

Common geographical features of rivers, such as meanders, bifurcations, confluences, and
river islands, can make for complex geometries when defining a target region for coverage.
While conventional approaches to coverage path planning may handle this complexity
by decomposing the target region into simpler cells before planning a coverage path for
each cell individually, streamline constraints offer a convenient alternative. By following
approximations of the river’s streamlines that naturally curve with the riverbanks and
around obstacles, streamline constraints can be distributed to cover even complex sections of
rivers without the need for explicit cellular decomposition prior to planning. Furthermore,
because the endpoints of streamline constraints tend to be clustered together at upstream and
downstream points throughout the target region of river, constraint linking is simplified and
the resulting coverage paths can end up with significantly less backtracking and turns than
would result from cellular decomposition and direction-parallel boustrophedon coverage.

Beyond the aforementioned geometric advantages, streamline constraints additionally
facilitate further energy saving optimizations based on the currents of the river. Because the
direction of flow in the river will generally correspond to the direction of the approximated
streamlines that define the constraints, this greatly simplifies reasoning about the additional
energy costs of executing a streamline constraint due to the river currents. For example, if
we consider a linear path constraint defined by the cross-section of the river and a single
streamline constraint, it is clear that the energy costs of traversing the streamline constraint
in the upstream direction will be higher than a downstream traversal, however, the same
cannot be easily determined for the cross-section constraint without additional information
regarding the river current distribution.

In addition, the alignment of streamline constraints with the surface currents in the
river also makes them well suited to additional refinement that can be used to enforce more
efficient execution by a specific vehicle. Perhaps the clearest example of such a refinement is
to limit the thrust of the vehicle along streamline constraints when travelling downstream.
Since thrust makes up such a large component of a vehicle’s energy consumption, limiting
thrust output to just allow for small course corrections while drifting with the currents along
a constraint can result in significant energy savings. Depending on the capabilities of the
vehicle, streamline constraints open the door for many other optimizations such as adjusting
ballast or deploying a drogue to adjust the impact of river currents on its motion.

4.1.2 Layout Methodology

Like many of the other planner components described during our discussion of the CB-
CPP framework, the specific implementation of a layout module that generates streamline
constraints can be accomplished in a variety of ways. Although the computation of true
streamlines requires knowledge of the complete vector field representing the surface currents
throughout the target region, this information is seldom available ahead of time and generally
requires taking measurements in the field. While it is perfectly feasible to design a CB-CPP
algorithm with a layout component that requires a surface current vector field input alongside
the target area, in this work we chose to approximate the streamlines using the medial axis
of the river instead. The resulting streamline approximations are sufficient to implement the
simple optimizations we discussed above and remove the need for a prior survey of river
currents before our planner can develop a coverage plan.
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In the discussion of our streamline constraint layout methodology that follows, we refer
to an example scenario involving a section of the Monongahela River in Pittsburgh, which is
presented in figure 4.1. In this scenario, streamline constraints are generated and assembled
into a boustrophedonic coverage path by the streamline boustrophedon planner introduced
in chapter 3, however, since the streamline constraints generated by our layout module are
valid path constraints, they can be used within any other CB-CPP planner as well.

The inputs to our streamline layout module are the vehicle and payload configurations,
target coverage region, and coordinates of relevant river geometry in the section of river
surrounding the target region. This is a slight departure from the minimal inputs into typical
constraint layout algorithms in that the user is also asked to specify the coordinates for river
geometry that would impact its flow, even if those features lie outside the specified target
region. In our example scenario, these features are simply the banks of the river, but for
more complex stretches of river they may include the boundaries of islets within the river
or artificial structures such as piers or bridge pylons. This additional geometry is used by
our layout algorithm to approximate the centerline or medial axis of the river, the first step
towards generating approximate streamlines.

When the river geometry is simple enough to be described exactly by a set of equations,
the medial axis can be computed directly, however, this is seldom the case in real world
scenarios with natural rivers. In order to implement a general approach to laying out
streamline constraints, we must make use of an algorithm capable of determining the medial
axis of arbitrary geometries. As we hinted at in the final case study in the previous chapter,
there are many existing algorithms that solve this problem including techniques that leverage
Delaunay triangulation [63], the medial axis transformation (MAT) [78], and the edges of a
Triangulated Irregular Network (TIN) [56]. However, perhaps the most popular approach
adopted many medial axis algorithms relies on building a Voronoi diagram from the input
geometry [19,47, 62, 80].

In our implementation, we determine the river centerline using a methodology adapted
from several existing algorithms that use the Voronoi diagram. The availability of Voronoi
diagram functionality within the SciPy library played a large role in our decision, as this
simplified our implementation and provided well-tested functions capable of processing
complex geometries. The first step in our approach is to pre-process all the provided river
geometry in order to convert each curve into a dense set of points. These points are then
used to construct the Voronoi diagram for the scenario.

Once the Voronoi diagram has been created, we extract from it all the ridge edges that
do not intersect the original river geometry and assemble them into a graph. At this stage
in the process, the graph is a skeleton of the river geometry and contains an approximate
centerline of the river. In order to extract this centerline, we first select all the nodes with
degree 1 within the graph. These nodes represent all the endpoints of the river’s skeleton
and therefore a path between some pair of them will approximate the medial axis of the
river. For simple river scenarios without bifurcations, it suffices to determine the shortest
path between all combinations of endpoints and select the path with greatest length as
the centerline. The river bank geometry inputs and resulting centerline computed for our
example scenario are shown in orange and black respectively in figure 4.1c.

After the medial axis of the river has been determined, our layout module proceeds to
compute perpendicular cross-sections of the river at regular intervals along its centerline.
These cross-sections extend from the centerline to the boundaries of the target coverage
region, which may or may not correspond to actual river geometry. In the case where
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(a) Target Region on the Monongahela River

(b) Streamline Boustrophedon Coverage Path

(c) River Centerline Computation

(d) River Cross-Section Analysis

(e) Streamline Constraint Layout

Figure 4.1: Monongahela River Bend Example Scenario

the target region encompasses the entire river and the river banks are coincident with the
boundary of the target region, the computed cross-sections are true cross-sections of the
river, but this is not a necessary condition. A sample of these cross-sections for our example
scenario is shown in figure 4.1d, where each cross-section is denoted in green.

After generating these cross-sectional segments, our proposed layout algorithm then
considers the lengths of these perpendicular segments in order to determine the maximum
width of the target region. In the case that the target coverage region spans the entire river,
this value corresponds to the width of the river at its widest point. The algorithm then
uses this value along with the vehicle payload footprint in order to determine how many
streamline constraints are needed to cover the entire target region. If it is determined that N
constraints are required, each perpendicular cross-section is then divided into N − 1 equal
line segments, and their endpoints are numbered from left to right with respect to the river’s
centerline. These endpoints are then grouped together across all cross-sections according
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to their index to create the coordinate sequences that define the final path constraints. The
streamline path constraints for our example scenario are presented in figure 4.1e, while
the final coverage path produced from these constraints by the streamline boustrophedon
planner is shown in figure 4.1b.

Although this discussion has described our implementation of the streamline constraint
layout methodology in the context of a simple section of river without bifurcations or
obstacles, one of the claimed benefits of streamline constraints is that they should allow for
coverage of more complex river geometries without the need for prior decomposition. We
address this point in the following subsection where we describe how our layout algorithm
can handle junctions along a river and present an example scenario centered around the
confluence of the Allegheny, Monongahela, and Ohio Rivers near Pittsburgh, PA.

4.1.3 River Junction Extension

Apart from an adjustment to our medial axis approximation algorithm, the methodology we
have proposed for laying out streamline constraints will largely function for river sections
containing any junctions, whether they be due to tributaries flowing into the river or the
channel splitting upstream of a river island and coming together again at a point downstream.
Due to the larger cross-sectional widths that can occur at junction points, however, the
resulting streamline constraints can end up distorted around the junction points and may also
be distributed more densely than required for complete coverage. In order to address these
issues, we have developed an extension to our layout methodology that uses alternatively
defined cross-section segments near river junction points. In the discussion that follows, we
refer to an example scenario involving the confluence of three rivers near Pittsburgh, which
is presented in figure 4.2.

As before, the first stage of our extended layout algorithm involves approximating the
centerline of the river using our Voronoi-based approach. After pre-processing the river
geometry, generating the Voronoi diagram, and building a graph from the diagram’s ridge
edges, we deviate from our previous approach and execute a search for junction points in
the graph instead. These points will be represented by nodes with a degree of 3 in the graph,
however, this relationship is not a bijection and there may be additional nodes with degree 3
that do not represent junction points, and are merely short branches off the centerline that
occur as a consequence of the discretized river geometry.

In our previous centerline algorithm we were able to filter out these extraneous branches
by simply finding the longest shortest path between two endpoints in the graph, but applying
this technique in this case would filter out true junction points as well. Fortunately, the
length of extraneous branches off the centerline is limited to approximately half the river
width at any given point, which is typically substantially shorter than the stretch of river on
either side of a true junction point. Therefore, in most scenarios, we can use the length of
the branches on either side of a junction point candidate to determine whether it is a true
junction point or an extraneous branch off of the centerline.

After we have identified the true junction points within the ridge edge graph, we can split
this graph up at the nodes corresponding to each of these points and once again determine
the longest shortest path between endpoints for each of of the new sub-graphs. These
paths will correspond to the centerlines for the specific sections of river represented by each
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(a) Target Region at the Confluence of Three Rivers

(b) Streamline Boustrophedon Coverage Path

(c) Centerline Computation and Partitioning

(d) River Cross-Section Analysis

(e) Streamline Constraint Layout

Figure 4.2: Three Rivers Confluence Example Scenario

sub-graph. The centerlines determined using this extended methodology for our example
scenario is shown in figure 4.2c.

By splitting up the ridge edge graph at the junction points, we essentially partition
the target region into simple sections of river which can each be processed by our layout
algorithm independently. As we alluded to earlier, however, this can result in distorted
cross-sections near junction points and excessively dense constraint distribution. To resolve
these issues, we propose a final extension to our layout module, which computes a special
cross-section for each centerline that meets at a junction point. In order to construct these
cross-sections, we simply draw a line from each junction point to the closest point on each
disjoint curve defined by the river geometry, and select the three shortest lines. For each
centerline, the special cross-section is defined as the polygonal chain comprised of the two
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lines at the junction point that have the smallest angles between them and the centerline.
The lines that make up these special cross-sections for our example scenario are shown in
black in figure 4.2c.

After the special cross-sections have been constructed for all centerlines and junction
points, the constraint layout algorithm can proceed with the computation of perpendicular
cross-sections at regular intervals along each centerline, with the caveat that these perpendic-
ular segments cannot intersect any special cross-sections. A sample of valid cross-sections
determined for our example scenario is shown in figure 4.2d, where the perpendicular and
special cross-sections are shown in green and black respectively. The remainder of the layout
process plays out as before, with each cross-section being split up into line segments of equal
length according to the vehicle payload footprint and the length of the longest cross-section.
The endpoints are then grouped together across the sets of cross-sections corresponding to
each centerline in order to generate streamline path constraints for each simple river section.
The computed constraints for our example scenario are shown in figure 4.2e, while the final
coverage path produced from these constraints by the streamline boustrophedon planner is
shown in figure 4.2b.

With the changes proposed in this subsection, we have extended the capability of the
streamline constraint layout algorithm to process sections of river with junction points. This
opens up the possibility of using this layout module during planning for more complex
scenarios involving river islands and multiple bifurcations, which can be represented as
simple stretches of river joined together with junction points. Coverage plans developed
using this layout method for additional real world scenarios are presented in table A.5 in
appendix A.

4.1.4 Summary

In this section we introduced the concept of streamline constraints - a specialized building
block of coverage path plans that uses the streamlines of the ambient current field as their
defining geometry. We discussed the advantages of using streamline constraints during
coverage planning in real world river domains and the promising opportunities for further
optimizations that these constraints provide. Finally, we presented our implementation of a
constraint layout algorithm that can generate streamline constraints based on an approxima-
tion of a river’s streamlines from its geometry, without a priori knowledge of the surface
current field.

Although streamline constraints appear to be well-suited technique for coverage planning
in river domains, they are not without shortcomings, particularly when applied to long
stretches of the diverse and complex river geometries found in nature. Since the cross-
sectional width of rivers typically varies along its length, the likelihood of significant coverage
overlap increases with the length of the target region of river being planned on. Fortunately,
this increase in coverage overlap affords some additional latitude in the arrangement of the
constraints on the river. In the next section we propose another optimization that exploits the
flexibility provided by coverage overlap to reduce the execution costs of the final coverage
path.
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4.2 Constraint Coverage Overlap Biasing

Although one of the goals of coverage path planning is to minimize redundant coverage
during execution, some degree of coverage overlap is typically unavoidable. While there
has been work done in the past to develop techniques that plan ahead in order to ensure
that the area lying along a vehicle’s return path is not visited repeatedly [20], there has not
been much consideration for the inherent coverage overlap that occurs when the dimensions
of the target region are not perfectly divisible by the payload radius of the vehicle. When
the individual transects that make up a coverage path are simple straight lines, as is the
case with the prototypical implementation of the common boustrophedon pattern, and
there is no difference in the cost of executing a transect regardless of its location within the
target region, the distribution of coverage overlap throughout the survey area may have
little bearing on execution costs. However, as soon as the straight transects are replaced with
more complex curves and heterogeneous environmental conditions throughout the target
region are considered, the consequences of where redundant coverage occurs can have a
significant impact on the performance of a coverage plan.

Our second optimization approach centers around the idea of modifying the layout
of path constraints throughout the target region in order to decrease their execution costs
while still ensuring complete coverage through the exploitation of coverage overlap. Funda-
mentally, our proposed method biases the distribution of path constraints towards more
advantageous sectors within the survey area, resulting in a sparser allocation of constraints
across problematic regions. In the context of river domains that are the focus of this work,
our approach is to bias coverage towards river geometry with a higher curvature, such as
the inner bank of a meander.

When planning coverage of sections of river that include bends, the advantages of paths
that lie closer to inner bank are twofold. As flowing water is forced to change direction with
the river, inertial forces push the faster-moving volume from the center of the river channel
towards the outer bank, which creates an asymmetric current distribution with slower flow
near the inner bank [55]. Secondly, because the curvature of the inner bank is higher than
the outer bank, the streamlines of the river’s current field are generally shorter at the inner
bank than at the outer bank. Our proposed optimization seeks to leverage these properties
during the layout of streamline constraints in order to reduce the sum of the generated
constraint lengths and provide more routes through slow-flow regions that a vehicle can
exploit to move upstream.

The implementation of this optimization only requires a simple modification to the
streamline constraint layout procedure discussed in the previous section; when partitioning
the cross-sections that have been computed along the river’s centerline into line segments,
we maximize the length of segments closest to the river geometry with lowest curvature. In
effect, this will increase the spacing of streamline constraints that lie closer to the bounding
river geometry with lower curvature, consequently increasing the density of constraints in
higher curvature regions. In order to further explain this idea, we consider the streamline
constraints generated for the Monongahela River scenario discussed in the previous section.
The original uniformly distributed constraints for this scenario are presented alongside the
biased streamline constraints in figure 4.3, with the coverage envelope associated with the
vehicle payload footprint overlaid on each transect in transparent yellow.

An examination of the constraint coverage envelopes and their darker overlapping regions
in figure 4.3 reveals how the choice of where coverage overlap occurs within the target region
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(a) Coverage of Uniformly Distributed Constraints

(b) Coverage of Constraints Biased Towards Higher Curvature Bank

Figure 4.3: Biasing the Coverage Overlap of Streamline Constraints

can result in substantially different plans. When path constraints are laid out uniformly,
coverage overlap is likewise distributed more uniformly throughout the target area. However,
when path constraints are biased towards the inner bank of the river, the coverage overlap is
clustered near this bank as well. In this case, the path constraints near the outer bank of the
river are spaced as far apart as the vehicle payload footprint allows, eliminating coverage
overlap in this zone altogether.
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(a) Streamline Boustrophedon Path (b) Biased Streamline Boustrophedon Path

Figure 4.4: Comparison of coverage paths

In order to quantify the effects of our proposed optimization on the final coverage paths
for this scenario, both the original and biased sets of path constraints were assembled
into complete coverage plans using the streamline boustrophedon planner. The resulting
streamline boustrophedon paths for each set of constraints are shown side by side in figure
4.4, and several relevant path metrics are presented in table 4.1. By applying the bias towards
the riverbank with highest curvature, the length of the final coverage plan was reduced by
about 3780 meters, which corresponds to a reduction of approximately 20.50%. Similarly,
the total turns along the coverage path were reduced by about 258 degrees, or approximately
17.05%. These improvements were achieved while maintaining a 100% coverage rate across
both plans.

Path Length (m) Coverage Rate Total Turns (degrees)
Unbiased Streamlines 18440 100% 1515
Biased Streamlines 14660 100% 1257

Table 4.1: Comparison of Biased and Unbiased Streamline Coverage Paths

Although the reduction in length and total turns along the coverage path due to our
overlap biasing optimization is clear, the benefits due to slower river currents near the
inner bank of the river are not obvious since the back-and-forth nature of the streamline
boustrophedon plan results in vehicle motion that alternates between movement with and
against the currents. Depending on the direction the coverage path plan is executed in, our
overlap biasing optimization may end up decreasing the energy cost of on leg of the journey
while increasing the cost of another. To truly take advantage of the new distribution of
path constraints in low-flow regions, the direction of travel along all constraints could be
restricted so that the vehicle tends to move upstream in zones where the currents are slow
and downstream at points where the currents are running quickly. This idea is crux of our
last proposed optimization, which is the topic of the next section.
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4.3 Flow-Aware Constraint Refinement and Sequencing

Although streamline constraints can be determined using the surface current field of a
river, up until this point our proposed optimizations have been usable without any a priori
knowledge of the river current distribution. Our final optimization bucks this trend as it
requires at least some estimate of the ambient flow field throughout the target region in order
to function. At its core, this optimization considers a set of undirected path constraints and
a velocity flow field spanning the target region, and uses simulated travel times to impose a
direction of travel along each constraint.

In order to achieve the desired result, the implementation of this optimization spans both
the refinement and sequencing stages of the CB-CPP process. In the refinement component,
we first determine a vehicle speed to use throughout our simulations by taking the maximum
current velocity that occurs across the target region and increasing this value by 10%. The
exact factor by which the simulated vehicle speed should exceed the maximum surface
current magnitude is not critical, as long as the resulting speed used for simulation is
guaranteed to exceed any flow speed that may be encountered within the target region. If
this rule is not enforced, the simulation may get stuck as the vehicle fails to make progress
against currents that exceed its prescribed velocity.

After selecting a suitable speed, the refinement module proceeds to simulate the motion
of a vehicle at this speed along each constraint in both directions, noting the execution times.
During simulation, the vehicle maintains a constant speed and is able to change directions
instantaneously. The chosen vehicle speed can be thought of as the terminal velocity of
the vehicle corresponding to a fixed thrust. If these simplifying assumptions are made, the
simulated execution times can serve as reasonable surrogates for the energy usage by the
vehicle required to drive the constraint.

Once the execution times have been determined, the refinement module defines an
”opportunity cost” for each constraint for a given direction as follows: the cost for a constraint
in the specified direction is equal to its execution time in that direction less its execution time
in the opposite direction. Next the algorithm proceeds to consider the opportunity cost for
all remaining undirected constraints in the forward direction, before selecting the constraint
with lowest cost and assigning it the forward execution direction. Then the algorithm repeats
this process, this time considering the opportunity costs of each undirected constraint in the
reverse direction. If there are an even number of constraints in total, this process continues,
alternating between forward and reverse directions, until all constraints have been assigned
a direction. If there are an odd number of constraints, the process is the same, but for the last
undirected constraint, the opportunity cost is computed in both directions and the constraint
is assigned the direction corresponding to the lowest cost.

After refinement has been completed, each constraint should have an assigned direction
and the number of ”forward” constraint should differ from the number of ”reverse” con-
straints by at most one. At this point the sequencing component of this optimization takes
over to determine an efficient ordering of the constraints. Similarly to the greedy sequencers
described in our CB-CPP case studies, the sequencer repeatedly selects the closest constraint
using a specified heuristic to compute the cost from the previous constraint’s egress point
to the ingress points of all available constraints. In a departure from the typical greedy
approach, however, this sequencer restricts the available constraints during the search to
only the unsequenced constraints with a prescribed direction that opposes the direction
of the previous constraint. This modification ensures that the sequencer doesn’t select two
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Figure 4.5: Flow-Aware Refinement and Sequencing

consecutive constraints that have the same execution direction, which could potentially force
a vehicle to fight its way upstream against strong currents just to take advantage of those
strong currents to traverse the next constraint. This situation is a particular problem when
the width of the target region is significantly longer than its length, resulting in many shorter
path constraints.

An example scenario that illustrates how this optimization can be combined with a
conventional boustrophedon planner implemented within the CB-CPP to create an energy-
efficient boustrophedon planner is shown in figure 4.5. The problem description block
shown in blue has been extended to include the additional surface current domain knowl-
edge required to employ the flow-aware optimization. Within the planner, we directly reuse
the parallel sweep layout and simple direct linker components from our constraint-based
boustrophedon implementation, and drop in the refinement and sequencing modules de-
scribed in this section. In the example scenario, we define the surface current field using a
model based on fully developed pipe flow, where the currents are strongest at the center of
the flow and drop off inverse quadratically towards either bank. Examining the intermediate
results and final output of the planner, we can recognize the flow-aware refinement imposing
directions on the constraints that result in motion with higher speed currents at the center
of the domain and against lower speed currents near the banks. The resulting coverage path
resembles two adjacent spiral patterns on either side of the river that are oriented in opposite
directions.

4.4 Summary

In this chapter we have presented three avenues for the optimization of coverage paths to
improve energy-efficiency. First, we introduced the streamline constraint, a new type of
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path constraint with geometry defined by the streamlines of the river surface current field,
which makes it particularly well-suited for covering diverse river geometries and enables the
development of new optimizations due to their alignment with the river’s flow. Next, we
described the constraint coverage overlap biasing optimization, which takes advantage of
river geometry to shift the layout of path constraints in a fashion that reduces their length and
results in a denser distribution of path constraint in regions to the river with slower currents.
Finally, we presented our flow-aware constraint refinement and sequencing optimization,
which imposes a direction of travel along each constraint in a manner that minimizes the
sum of simulated travel times along each constraint and results in as close to an even split
of upstream and downstream constraints as possible. In the next chapter we introduce our
simulation platform and explore several scenarios in simulation to evaluate our proposed
optimizations.
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Chapter 5

Simulation Experiments

In order to demonstrate the constraint-based coverage path planning architecture and val-
idate the performance of the energy-efficiency optimizations described in the preceding
chapter, we conducted various experiments both in simulation and in the field. Due to the
difficulty in locating suitable scenarios in the real-world with sufficient variation in surface
current data that was generally stable and easily measured, simulation experiments were
critical in the development and validation of our approach. In this chapter we describe our
simulation methodology and present simulation results from a variety of scenarios.

5.1 Simulation Platform

The simulation platform used in this work is a custom solution that simulates the motion of
a surface vehicle through a region of fluid, which may itself be in motion defined by a vector
field. Several simplifying assumptions are made in order to reduce the complexity of the
simulation as well as its reliance on accurate models of the vehicle’s intrinsic characteristics
and dynamics; namely, that the vehicle moves at a constant speed and that it can change
direction of travel instantaneously. By incorporating these assumptions, our simulation can
approximate the vehicle moving at its terminal velocity when propelled by a constant thrust,
while ignoring the time that would be required to accelerate to this speed and maintain it
when changing direction. In this manner, our platform can simulate a vehicle’s motion along
a coverage path to obtain the total execution time for that path at a fixed thrust, which can
serve as a surrogate measure for the vehicle’s energy consumption.

We provide pseudocode for our simple simulator implementation in algorithm 1. In our
implementation, the simulator is configured with a specified timestep and arrival threshold
distance, which regulate the length of each simulation iteration and define how close the
simulated vehicle must get to each waypoint respectively. Using a given vector field defining
the flow, a desired constant boat speed relative to the local river current, and a coverage
path to test, the simulator can then approximate the vehicle’s motion along this path to
produce two arrays of timestamps and associated vehicle positions. A key component of
this simulator involves computing the optimal heading for the vehicle, which will move
it along the desired coverage path given the flow at the current location and the constant
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speed to be maintained. This computation is abstracted in the ComputeMove function in
our pseudocode for simplicity.

Algorithm 1: Simple Simulator
Input: dt, arrival dist, flow field, boat speed, path
Output: times, positions
/* Initialize internal variables */

1 curr time = 0.0
2 curr pos = path[0]
3 target idx = 1
4 curr target = path[target idx]
/* Initialize output arrays */

5 times = [curr time]
6 positions = [curr pos]
/* Run simulation until last waypoint has been reached */

7 while target idx < len(path) do
8 if curr target - curr pos < arrival dist then
9 target idx += 1

10 curr pos = curr target
11 curr target = path[target idx]
12 else
13 curr flow = flow field[curr pos]
14 boat move = ComputeMove(curr pos, curr target, curr flow, boat speed)
15 curr time += dt
16 curr pos += boat move * dt
17 times.append(curr time)
18 positions.append(curr pos)

19 return (times, positions)

5.1.1 Evaluation Metrics

In order to evaluate and compare the performance of various coverage paths, several path
metrics were identified, including path length, total turns along the path, coverage rate, and
execution time. The first three of these metrics are independent of boat speed and can be
calculated one time per each path without running the simulation. The execution duration
metric is a direct output of the simulator and must be determined from simulation at specific
vehicle speeds. We now briefly describe each metric, providing details on how it is computed
and what its consequences are.

Path Length

This metric is simply the total length of all the segments making up the coverage path. Using
the notation illustrated in figure 5.1, the path length is defined by the formula

∑n
i=1 di.

Although this is a common metric to optimize in path planning, when the path traverses an
area with moving fluids, the shortest path length does not necessarily imply the shortest
execution time at a given vehicle velocity. Likewise when traversing uneven terrain of
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Figure 5.1: A diagram illustrating the computation of certain path metrics

varying elevation, the shortest path length will not guarantee the minimal energy cost
of covering a given area. These are important considerations when planning for energy-
efficiency and motivate the development of several other metrics to complement path length
when evaluating coverage paths.

Total Turns

This metric is the summation of all the changes in heading the vehicle must perform while
executing the target path. Using the notation from figure 5.1, the total turn metric is defined
by the formula

∑n−1
i=1 θi. This metric is useful to consider when evaluating the energy costs of

a coverage path since increasing the amount of turns a vehicle makes will typically increase
the total energy costs of executing the path. This stems from the fact that when a vehicle
changes heading, it must accelerate along the vector corresponding to the difference of
its previous velocity vector and its new velocity vector. In practical terms, this means the
vehicle must arrest its previous motion in the direction perpendicular to its new heading and
accelerate along its new heading to reach its desired speed. Although there are maneuvers
specific to the vehicle that can mitigate the effects of turning, a change in heading will always
incur some energy costs and is therefore important to keep in mind.

Coverage Rate

The coverage rate is defined as the total area of the polygon formed by sweeping the sen-
sor/actuator envelope along the coverage path, divided by the total area of the region being
covered. These components are illustrated in figure 3.9 in our discussion of layout modules in
chapter 3. For complete coverage path planning, the goal is to keep this coverage rate as close
to 100% as possible, and although additional energy savings are undoubtedly achievable by
sacrificing coverage rate, that is beyond the scope of our objectives/application. Therefore,
for this work we will simply use this metric as a check to verify that our coverage path
achieves complete coverage, rather than a means of evaluation. This metric is nevertheless
important across all coverage planning work.
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Execution Time

As we alluded to when describing the path length metric, length alone does not always
correspond to the true time or energy costs for a vehicle executing the path, depending on
the domain environment. In order to approximate the true time a path will take to execute,
we rely on our simulator, which takes into account fluid motion throughout the domain.
This metric is important because it provides an execution time for a path given a constant
velocity, which can represent the terminal velocity at a constant thrust. It therefore makes a
reasonable surrogate for energy cost since at any fixed thrust, a path which takes longer to
execute will generally have a higher energy cost.

5.2 Results

In this section we present the results from several simulation experiments using the platform
described in the previous section. For each experiment, we first describe the scenario
and the reasoning behind our design decisions, then show the test and baseline coverage
paths generated by our planner and a conventional boustrophedon approach, and finally
present simulation data to evaluate the performance of our energy-efficient plans. Because a
typical boustrophedon path can be assembled in two different ways from any given set of
transects (i.e., each transect can be connected to the following adjacent transect at either of
its endpoints), we consider both possibilities when determining the baseline performance.
Furthermore, we additionally simulate execution of each baseline path in both directions,
and use the best performing combination to compare against the path generated by our
proposed planner. This ensures any observed benefits of our method are independent of
how a competing boustrophedon planner may be configured.

For the sake of a clear and compact presentation of our results, only one of the possible
baseline boustrophedon paths is illustrated alongside the energy-efficient paths throughout
this discussion. In addition, only the best performing boustrophedon baseline data is
presented in figures and tables within this section. For more detailed tables that include
complete baseline simulation results, refer to appendix B.

5.2.1 Four Transect Field Experiment Analog

Figure 5.2: Field experiment analog scenario

Our first scenario was designed to simulate a sec-
tion of river adjacent to its left bank extending
partway into the channel. The target coverage
area and surface current model for this scenario
were chosen to approximate our four transect
field experiment on the Cape Fear River that we
present in chapter 6, in order to provide an in-
teresting comparison between simulation and
real-world experiments. These features are re-
flected in figure 5.2, where the blue polygon de-
notes the target region and the colored vector
field represents the surface currents.
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The target region for this scenario has a total area of about 3580 m2 with a current
distribution that is fastest towards the center of the river channel, reaching a maximum
speed of approximately 0.36 m/s and then dropping off quadratically towards the river bank.
The minimum surface current speed within the region is 0.082 m/s, while the mean and
median flow speeds are 0.29 and 0.32 m/s respectively. This skew of the mean and median
towards the upper end of the range of current speeds within the region implies that a greater
proportion of the area has relatively high currents, a fact borne out by the vector field plot in
figure 5.2. As a result, achieving energy-efficiency will rely in large part on exploiting the
region closest to the bank where the current is slowest in order to move upstream during
coverage.

(a) Boustrophedon Coverage Path (b) Energy-Efficient Coverage Path

Figure 5.3: Baseline and test paths for the field experiment analog scenario

In this scenario, we assess the performance of our proposed coverage planner with the
flow-aware refinement and sequencing optimization applied as described in the previous
chapter. We evaluate the energy-efficient coverage path produced by our planner against a
baseline coverage path produced by a conventional boustrophedon planner. The baseline
and test coverage paths for this experiment are shown side by side in figure 5.3, with the
sequence of transects annotated with blue arrows for clarity. The start and end points of
each path are denoted with green and red circles respectively.

Path Length (m) Coverage Rate Total Turns (degrees)
Boustrophedon 472 99.17% 539
Energy-Efficient 494 99.39% 540

Table 5.1: Field Experiment Analog Scenario Coverage Path Metrics

Upon examination of several of our coverage path evaluation metrics, presented in
table 5.1, we can see that the length of the energy-efficient coverage path produced by our
planner is about 22 meters, or about 4.66%, longer than the boustrophedon baseline. This is
an expected consequence of sequencing the execution of the transects that comprise both
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coverage paths because our proposed planner at times chooses to travel transects that may
be further away but have more advantageous surface currents for the next leg of the path. A
small benefit of this extra distance is that the energy-efficient paths produced by our planner
tend to achieve better coverage rates due to this additional length, which is also the case
in this scenario. Finally, the total turns in each path are nearly the same, with the 1 degree
difference being attributable to the irregular nature of the target area polygon.

In order to gauge the energy requirements for each coverage path, we used our simulator
to estimate the execution times for a vehicle moving at a range of fixed speeds. Due to
the design of our simulation platform, we must restrict the vehicle speed to lie above the
maximum surface current speed within the target region in order to avoid situations where
the simulated vehicle gets stuck heading directly into the currents or cannot successfully
move along the planned path. Therefore, the range of simulated vehicle speeds was fixed
at 0.375 to 1.0 m/s, in increments of 0.025. A plot of the simulated path durations vs. the
simulated boat speed is presented in figure 5.4.

Figure 5.4: Field experiment analog scenario simulation results

From this visual representation of our results, it is evident that the energy-efficient path
takes substantially less time to execute when the vehicle is travelling at a fixed speed that
is close to the maximum surface current speed within the target region; at an operating
speed of 0.375 m/s, the energy-efficient approach results in a 54.92% decrease in execution
time over the best possible boustrophedon path. However, this effect diminishes as the
speed of the vehicle increases relative to the surface currents within the target region. At an
operating speed of 0.9 m/s and above, the duration curves in figure 5.4 cross, indicating that
the energy-efficient path actually performs very slightly worse than the best boustrophedon
path.

Since the energy-efficient path is over 4% longer than the boustrophedon path, this
explains how the boustrophedon pattern is able to eventually beat out our proposed energy-
efficient approach at higher vehicle speeds. In fact, we would expect the difference in
execution times between the two paths to trend towards that same 4% differential as the
vehicle speed continues to increase and the surface currents become increasingly less relevant.
A complete table of simulation results for this experiment can be found in appendix B.
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5.2.2 River Cross-Section

In this scenario we simulate several cross-sections of a river with a unidirectional surface
current distribution. The magnitude of this current field is modelled after the velocity profile
of fully developed pipe flow [31], with a maximum flow speed of 0.5 m/s occurring at the
center of the channel and then dropping off inverse quadratically towards both banks of the
river. The width of the river is fixed at 150 meters, while the lengths of the cross-sections
considered are 75, 150, and 300 meters, resulting in target regions with areas of 11250,
22500, and 45000 m2 respectively. The geometry and surface current distribution of each
cross-section is shown in figure 5.5.

(a) Wide River Cross-Section

(b) Square River Cross-Section
(c) Long River Cross-Section

Figure 5.5: River cross-section scenario

Like the previous experiment, this scenario was designed to evaluate the performance of
our proposed coverage planner with the flow-aware refinement and sequencing optimization
applied. The reasoning behind considering three different lengths of river cross-section
together in this experiment, however, was to assess the impact of the transect length on
the energy-efficiency achieved by our planner. To isolate this experimental parameter, the
transect orientation was chosen to lie parallel to the river’s center line and flow, the river
width was fixed, and the surface current distribution was held constant. This resulted in a
set of 8 transects for each cross-section geometry, which were colinear and differed only in
length.
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The computed transects for each cross-section were assembled into coverage paths by
our planner and a baseline boustrophedon coverage planner, after which the execution of
these paths was simulated with our simulation platform. The baseline and test coverage
paths for the wide river cross-section are shown side by side in figure 5.6, with the sequence
of transects annotated with blue arrows for clarity. The start and end points of each path are
denoted with green and red circles respectively.

(a) Boustrophedon Coverage Path (b) Energy-Efficient Coverage Path

Figure 5.6: Baseline and test paths for the wide river cross-section scenario

Because the coverage paths determined for the square and long river cross-sections are
simply elongated versions of the paths shown in figure 5.6 that share the same transect
sequence and endpoints, we have omitted dedicated figures for these paths in this section.
These figures are made available in appendix B.

An examination of our coverage path evaluation metrics, presented in table 5.2, reveals
that the energy-efficient coverage path produced by our planner is consistently 130 meters
longer than the baseline boustrophedon path, regardless of the cross-section region. This
is an expected result since the additional length of the energy-efficient paths is solely a
consequence of additional travel between transects, and the route between transects does
not change for either path across the scenario variants.

We also note that the coverage rate of each path tends to increase as longer cross-sections
of river are considered. This increase can be attributed to the fact that any gaps in coverage
occur at the domain boundaries where transects are joined together and do not change as
total scenario area grows. Finally, the total turns along all paths across regions are equal,
which is unsurprising considering that the transect orientation is fixed and all the transects
for each scenario variant are the same length; practically this implies that the vehicle will
need to execute two 90 degree turns between execution of any two transects.

Region Path Length (m) Coverage Rate Total Turns (degrees)
Wide Boustrophedon 570.00 97.22% 1260.00
Wide Energy-Efficient 700.00 98.37% 1260.00
Square Boustrophedon 1170.00 98.61% 1260.00
Square Energy-Efficient 1300.00 99.18% 1260.00
Long Boustrophedon 2370.00 99.30% 1260.00
Long Energy-Efficient 2500.00 99.59% 1260.00

Table 5.2: River Cross-Section Scenario Coverage Path Metrics
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As in our previous experiment, we used our simulator to estimate the execution times
for a vehicle moving along the test and baseline paths at a range of fixed speeds. Since the
maximum flow speed that occurs in this scenario is 0.5 m/s, the range of simulated vehicle
speeds was restricted between 0.51 and 1.0 m/s to avoid badly conditioned situations within
the simulator. The simulated path durations for each path type and cross-section geometry
are plotted against the simulated boat speed in figure 5.7, where the boustrophedon baseline
path results and energy-efficient path results are denoted in orange and blue respectively.
Additionally, the continuity of the lines is used to indicate the corresponding cross-section
for each path in the plot legend.

Figure 5.7: River cross-section scenario simulation results

This visual representation of our results reveals a significant reduction in execution time
for the energy-efficient paths when the vehicle is travelling at a fixed speed that is close to the
maximum surface current speed within the target region. This effect diminishes as the speed
of the vehicle increases. Comparing the data for paths covering the different cross-sections,
it is clearly evident that the energy saving benefit from our proposed flow-aware refinement
and sequencing optimization is substantially magnified as the length of the transects making
up the coverage path increases. This conclusion is borne out in the complete simulation
data, which is available in appendix B.

5.2.3 River Bend Scenario

In this scenario we model a section of river as it rounds a 180 degree bend. Bends in a
river make for an interesting scenario to test our planning algorithm, as the change in
direction gives rise to inertial forces that drive the high-velocity core of the river towards the
outer bank, thereby creating an asymmetric current distribution throughout the region [55].
Furthermore, this asymmetric flow results in erosion at the outer bank and deposition at
the inner bank, which can cause significant changes in the river channel width along the
curve [21]. These characteristics are captured in our scenario design as shown in figure 5.8.

The target region in this scenario represents the entire channel of a river as it flows around
the bend, encompassing a total area of approximately 62780 m2. The channel width varies
from a minimum of 100 meters at the narrowest points upstream and downstream from
the bend, to a maximum width of 150 meters at the midpoint of the bend. For the surface
current distribution, we use the same fully-developed pipe flow model as for the previous
scenario, but modify it to shift the center axis of flow along the river bend. While the center
axis starts out centered within the river channel upstream of the bend, the axis is biased
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Figure 5.8: River bend scenario

towards the outer bank throughout the curve to simulate the inertial effects that occur at
real river bends. As before, the maximum flow speed is 0.5 m/s at the center axis and drops
off inverse quadratically towards each bank.

In our experiments for this scenario, we evaluate the performance of our proposed cover-
age planner with the coverage overlap bias and flow-aware energy-efficiency optimizations,
which we described in the previous chapter. Contrary to the previous scenarios discussed
up to this point, the baseline planning method for these experiments is the streamline
boustrophedon technique introduced in a case study in chapter 3. This approach is better
suited to coverage of winding river domains, where a conventional boustrophedon planner
would require a preliminary cellular decomposition step and may not achieve as good a
coverage rate due to the irregular transects that may be generated. Furthermore, because the
transects of a boustrophedon path will likely not be aligned with direction of flow in the river
across the target region, it limits the effectiveness and extents to which our energy-efficient
sequencing optimization can be applied.

The remainder of this section lays out the results of our simulation experiments. We
begin by examining the effect of our coverage overlap bias optimization when applied to the
streamline boustrophedon coverage pattern and evaluate how the resulting plan performs
against the baseline. In the next experiment, we repeat the same analysis with a path that was
planned with our flow-aware optimization applied. In the third experiment, we demonstrate
the layerable nature of CB-CPP algorithms by considering the performance of our planner
when both the coverage overlap bias and flow-aware optimizations are applied. Finally, we
conclude our discussion of this scenario by comparing the best-performing energy-efficient
path produced by our planners against a conventional boustrophedon coverage path in
order to address any concerns that the proposed approach only performs well relative to the
streamline boustrophedon coverage pattern.
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Constraint Coverage Overlap Bias

In our first experiment, we investigate the benefits of our proposed constraint coverage over-
lap bias optimization. Since the scenario domain narrows both upstream and downstream of
the river bend, coverage transects oriented along the streamlines of the river will necessarily
have some overlap in these regions. In the baseline case, the transects are evenly spaced
along each cross-section of the river; however, by biasing transects towards the inner bank
of the river bend, the total length of all coverage transects, and consequently the complete
coverage path, can be reduced. The baseline and test coverage paths for this experiment are
shown side by side in figure 5.9, with the sequence of transects annotated with blue arrows
for clarity. The start and end points of each path are denoted with green and red circles
respectively.

(a) Streamline Coverage Path (b) Biased Streamline Coverage Path

Figure 5.9: Exploiting coverage overlap to enhance coverage path plans

The coverage path metrics for both the baseline and test paths are presented in table
5.3. Looking at the path lengths, we note that the coverage overlap biasing does indeed
shorten the path as expected, by about 170 meters, or 4.19%. At the same time, the coverage
rate only marginally decreases by 0.08%, while the total turns along the path increase by
approximately 142 degrees, or 5.31%. This turn increase is a consequence of the biasing
deforming several transects and could be partially remedied by applying some smoothing
during the planning process.

Path Length (m) Coverage Rate Total Turns (degrees)
Baseline 4060 99.99% 2672
Biased Streamline 3890 99.92% 2814

Table 5.3: Baseline vs. Biased Streamline Coverage Path Metrics

When vehicle execution of these paths is simulated at various fixed speeds and the total
travel time is recorded, the advantage of the biased coverage plan is even more apparent; the
performance gain ranges from a 32.71% reduction in execution time when the vehicle speed
is fixed at 0.51 m/s, to a 6.95% reduction at 1.0 m/s travel speed. The simulated execution
times for the full range of vehicle speeds is provided in appendix B.
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Flow-Aware Constraint Refinement and Sequencing

In our next experiment, we consider the flow-aware optimization and evaluate its impact
when applied to our proposed streamline boustrophedon planner. Because the surface
currents in this scenario are faster towards the outer bank of the river bend, we would expect
this optimization to prioritize upstream travel along the transects closest to the inner bank.
A closer examination of the coverage paths for this experiment presented in figure 5.10
confirms this hypothesis. In this figure, we present the baseline and test coverage paths with
the sequence of transects annotated with blue arrows for clarity. The start and end points of
each path are denoted with green and red circles respectively.

(a) Streamline Coverage Path (b) Energy-Efficient Coverage Path

Figure 5.10: Optimizing constraint direction and sequencing using flow information

The coverage path metrics for both the baseline and test paths are presented in table 5.4.
Looking at these metrics, we note that the flow-aware optimization extends the length of the
energy-efficient coverage path by approximately 230 meters, or 5.67%, while maintaining the
same 99.99% coverage rate as the baseline path. The total turns along each path are about
the same, which is expected since both paths are built from the same set of constraints.

Path Length (m) Coverage Rate Total Turns (degrees)
Baseline 4060 99.99% 2672
Energy-Efficient 4290 99.99% 2672

Table 5.4: Baseline vs. Energy-Efficient Coverage Path Metrics

As in our previous experiment, we used our simulator to estimate the execution times
for a vehicle moving along the test and baseline paths at a range of fixed velocities between
0.51 m/s and 1.0 m/s. The results from these simulations reveal a significant reduction in
path execution time when the vehicle is travelling slower speeds close to the maximum
surface current speed within the target region. At a fixed vehicle speed of 0.51 m/s, this
improvement amounts to 54.11%, but this is substantially reduced to 5.83% when the vehicle
speed is increased to 1.0 m/s. The simulation results for the full range of vehicle speeds for
this experiment are provided in appendix B.
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Combined Optimizations

In our third experiment, we demonstrate the layerable nature of the CB-CPP framework by
applying both the coverage overlap bias and flow-aware energy-efficiency optimizations
sequentially within our proposed planner. By combining these two methods, we hypothesize
that the observed improvement in resulting path execution time will be at least match the
sum of the improvements we observed when each optimization was applied individually.
The baseline and test coverage paths for this experiment are shown side by side in figure
5.11, with the sequence of transects annotated with blue arrows for clarity. The start and
end points of each path are denoted with green and red circles respectively.

(a) Streamline Coverage Path (b) Biased Energy-Efficient Coverage Path

Figure 5.11: Multiple optimizations to enhance coverage path plans

Upon examination of the coverage path metrics presented in table 5.5, we find that the
energy-efficient path produced by our proposed planner with both optimizations applied
scores worse than the baseline path across all the metrics. The length of our path is about 90
meters, or 2.22% longer than the baseline path, which lies in between the 4.19% decrease we
observed when applying the coverage overlap bias alone, and the 5.67% increase observed
due to the energy-efficient sequencing. The coverage rate is virtually unchanged between the
test and baseline paths, while the total turns along the energy-efficient path are increased by
approximately 152 degrees.

Path Length (m) Coverage Rate Total Turns (degrees)
Baseline 4060 99.99% 2672
Biased Energy-Efficient 4150 99.98% 2824

Table 5.5: Baseline vs. Biased Energy-Efficient Sequencing Coverage Path Metrics

Despite our test path performing worse on every metric we examined, the simulation of
path execution at different vehicle speeds reveals an entirely different result; at a fixed speed
of 0.51 m/s, the energy-efficient path took 76.49% less time to execute than the baseline
path. Even at the higher vehicle speed of 1.0 m/s, our test path still produced a 15.60%
improvement in execution time over the baseline. The simulated execution times for this
energy-efficient path are plotted in figure 5.12 and a complete table of numerical results is
provided in appendix B.
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Figure 5.12: Coverage path execution times for various vehicle velocities

In addition to the results from this experiment, figure 5.12 presents the simulated dura-
tions for paths planned with each optimization individually alongside the duration of the
baseline streamline boustrophedon path. This visual representation shows that applying
any of our proposed optimizations results in a performance improvement over the baseline
method, and applying both optimizations together yields even greater improvements. Table
5.6 lists the percentage improvement resulting from each proposed optimization individu-
ally, the sum of these improvements, and the percentage improvement resulting from the
combined optimizations.

Vehicle Speed
(m/s)

Coverage
Overlap Bias

Flow-Aware Sum of
Improvements

Combined
Optimizations

0.510 32.71% 54.11% 86.82% 76.49%
0.525 21.41% 41.97% 63.37% 65.75%
0.550 13.81% 31.42% 45.23% 54.39%
0.575 11.16% 25.58% 36.74% 47.00%
0.600 11.09% 21.72% 32.81% 41.64%
0.625 10.76% 18.93% 29.70% 37.50%
0.650 10.37% 16.80% 27.17% 34.19%
0.675 9.97% 15.10% 25.07% 31.45%
0.700 9.59% 13.70% 23.29% 29.15%
0.725 9.24% 12.52% 21.77% 27.18%
0.750 8.92% 11.51% 20.44% 25.46%
0.775 8.63% 10.64% 19.27% 23.96%
0.800 8.37% 9.86% 18.23% 22.62%
0.825 8.13% 9.18% 17.31% 21.43%
0.850 7.91% 8.56% 16.47% 20.35%
0.875 7.72% 7.99% 15.71% 19.38%
0.900 7.53% 7.49% 15.02% 18.49%
0.925 7.37% 7.02% 14.39% 17.68%
0.950 7.22% 6.59% 13.81% 16.93%
0.975 7.08% 6.20% 13.27% 16.24%
1.000 6.95% 5.83% 12.77% 15.60%

Table 5.6: Comparison of Execution Time Improvements
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If we compare the percentage improvement in path execution time produced by our
energy-efficient path for this experiment and compare it against the improvements seen in the
previous experiments, an interesting pattern emerges. Not only does the combined planner
generally produce an improvement that is comparable to the sum of the improvements
observed when each optimization is applied individually, but the improvement actually
exceeds this sum for most simulated vehicle velocities. This suggests that there is some
synergistic effect taking place between the two optimizations that results in further reduced
execution time than what can be expected from each optimization alone. For example, it may
be that biasing transects towards the inner bank of the river bend creates shorter routes that
the energy-efficient sequencing optimization then exploits to move upstream more quickly
than was possible without the biasing.

Conventional Boustrophedon Comparison

In the previous section we presented the results of our proposed planner with coverage over-
lap biasing and flow-aware energy optimization on the river bend scenario and showed that
it resulted in a significant reduction in execution time when compared the the baseline plan-
ning method - the streamline boustrophedon planner. Although this planner is well suited
to river domains, the paths it produces tend to be longer than a conventional boustrophedon
approach may yield. Therefore, in this section we repeat our previous analysis, comparing
the biased energy-efficient path against a new baseline, the conventional boustrophedon
path. The baseline and test coverage paths for this experiment are shown side by side in
figure 5.13, with the sequence of transects annotated with blue arrows for clarity. The start
and end points of each path are denoted with green and red circles respectively.

(a) Conventional Boustrophedon Coverage Path (b) Biased Energy-Efficient Coverage Path

Figure 5.13: Comparison against a conventional boustrophedon plan

The path metrics for both the conventional boustrophedon path and our proposed energy-
efficient path are presented in table 5.7. Due to a greater extent of coverage overlap along
its route, the energy-efficient path is approximately 780 meters longer than the convention
boustrophedon path, which corresponds to a substantial 23.15% increase over the baseline.
At the same time, the coverage rate of the conventional boustrophedon pattern is inferior to
the energy-efficient path because of the discretization that occurs along the smooth banks of
the river during the layout of straight line transects throughout the region. This results in
uncovered parts of the target region, as seen in the bottom right of figure 5.13a, between
transects 15 and 16 as well as to the right of transect 19.

68



Path Length (m) Coverage Rate Total Turns (degrees)
Conventional Boustrophedon 3370 97.18% 3600
Biased Energy-Efficient 4150 99.98% 2824

Table 5.7: Boustrophedon vs. Biased Energy-Efficient Path Metrics

By replacing the many straight line transects of the conventional boustrophedon plan with
a smaller number of longer curved path segments that approximately follow the streamlines
of the river, the energy-efficient path produced by our proposed planner can achieve better
coverage of the target region while at the same time significantly reducing the total turns
along the coverage path. Compared to the conventional boustrophedon path, our optimized
path turns 776 degrees less along its route, which amounts to a decrease of 21.55% from the
baseline performance.

Figure 5.14: Comparison against conventional boustrophedon coverage path

As in our previous experiments, we used our simulator to estimate the execution times
for a vehicle moving along the test and baseline paths at a range of fixed velocities between
0.51 m/s and 1.0 m/s. The simulated path durations for each path type are plotted against
the simulated boat speed in figure 5.14, where the conventional boustrophedon baseline
path results and energy-efficient path results are denoted in red and green respectively.
Despite the 23.15% longer length of the energy-efficient path, these simulation results once
again reveal a significant reduction in execution time for the energy-efficient path over the
conventional boustrophedon baseline path when the vehicle is travelling at fixed velocities
close to the maximum surface current velocity within the target region. At a simulated boat
speed of 0.51 m/s, our energy-efficient approach reduces the total time required to cover the
target area by nearly 4 hours, or approximately 56.80% This effect diminishes as the speed of
the vehicle increases, and at speeds upwards of 0.725 m/s the baseline begins to outperform
the energy-efficient path. The full set of simulated execution times for this experiment is
provided in appendix B.

5.3 Summary

In this chapter we described the simulation platform that was created specifically to evaluate
the performance of the energy-efficient planners developed in this work, laid out several
metrics that can be used to compare different aspects of coverage paths, and presented
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simulation results for several scenarios to test our proposed planning methods. Through
our analysis we showed that the energy-efficient optimization presented in this work can
significantly reduce the time required for a vehicle moving at a constant speed to cover
a given region in the presence of flow. Since travel at a constant speed can essentially be
thought of as movement at the terminal velocity achieved by a fixed thrust, and the power
consumption for motors outputting a fixed thrust will also remain relatively constant, it
is reasonable to conclude that the execution time for a path will be directly related to the
energy used by the vehicle while executing this path at a fixed speed. This coupled with
the very significant performance improvements we observed across our scenarios, strongly
suggest that the optimization methods proposed in this work will significantly reduce energy
usage during coverage, particularly when the vehicle is moving at speeds close to the surface
current velocities within the target region. In the next chapter, we will present results from
the field that validate this hypothesis.
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Chapter 6

Field Experiments

As we alluded in the description of our simplified simulation methodology in the previous
chapter, accurately modelling fluid dynamics in order to perfectly simulate an autonomous
surface vehicle’s motion and energy consumption during operation is a challenging endeavor
that is seldom realistic. Although we developed and described several indicators/metrics
and simplifications for our simulation in an attempt to overcome these difficulties, actually
deploying an ASV in the field and directly measuring energy costs of various coverage pat-
terns is indispensable to validate our constraint-based coverage path planning approach and
evaluate the performance of the proposed energy-efficiency optimizations. In this chapter
we introduce the test platform built for this work, present results from field experiments
using this vehicle in North Carolina, and compare these results to simulation.

6.1 Test Platform

Figure 6.1: Field test platform

The test platform used for field experiments in this work is a
purpose-built autonomous catamaran, measuring 1.5 meters
in length and weighing approximately 25kg when outfitted
with two batteries. The vehicle is built from two roto-molded
HDPE plastic hulls, each containing a waterproof compart-
ment that houses the computing, power distribution, and
other electronics. The hulls are joined together with lengths
of PVC tubing that are clamped to plastic plates fixed to each
hull’s deck. The clamping points along the tubing can be
adjusted to conveniently change the vehicle width between
deployments, but for the purposes of these experiments the
boat’s width was fixed at 1.1 meters at its widest point. An
annotated image of the vehicle is shown in figure 6.1.

Each hull of the vehicle contains a waterproof compart-
ment, two deck plates that serve as attachment points for the
cross-beams, a collapsible antenna mast at the stern, and a
T200 Blue Robotics thruster below the waterline. With the
exception of a GPS receiver mounted to one hull’s deck as
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(a) Power Compartment (b) Computing Compartment

Figure 6.2: Hull Compartment Internals

well as the GPS and WiFi antennas mounted to the rear masts, the bulk of vehicle electronics
are partitioned between the two hull compartments, hereafter referred to as the power and
computing compartments. In order to reduce the effects of electromagnetic interference
on sensitive electronics such as the inertial sensors used for navigation, the batteries and
high current power regulator are isolated in the power compartment while the computing
and sensors are housed in the computing compartment. Diagrams illustrating the most
important components within each compartment are provided in figure 6.2.

The power for the system is provided by two 8Ah three-cell lithium polymer batteries
connected in series to provide approximately 24 Volts. This voltage varies as the batteries
discharge and additionally depends on the current being drawn from the batteries at any
given time. Since the voltage supplied to the thrusters dictates the speed of at which they
rotate for a specified command, these variations in battery voltage present a challenge for
driving the thrusters at a fixed rate and evaluating the energy consumption of the vehicle.
Without compensating for this effect, which also varies from battery to battery, the thrusters
will run ever slower for a fixed motor command thereby reducing the speed of the vehicle
as it executes its mission and the batteries are depleted. Because the Blue Robotics T200
thrusters on the test vehicle are more efficient at lower speeds and the drag forces on the
displacement hulls grow as their velocity through a fluid increases, this reduction in speed
generally results in more efficient operation as well. This makes a comparison of the energy
required to execute two different path plans difficult, particularly when one path takes longer
to drive than the other or different batteries are used across experiments.

In order to overcome this challenge, we make use of a 24V to 12V DC-DC buck converter
connected in between the battery packs and the rest of the vehicle’s power system. Although
adding this component introduces some additional energy losses to the system, the output
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from the converter is a stable 12 Volts, which ensures the thrusters maintain a consistent speed
at any given command throughout operation. Additionally, the system is now agnostic
to the internal characteristics of the installed battery packs, which allows for a cleaner
comparison between experiments conducted with different batteries and in turn enables
rapid redeployment of the test platform with fresh batteries when collecting data in the field.
This is a critical capability for our purposes because the experimental coverage paths we are
testing rely on some knowledge of the surface current distribution, which can significantly
over time in the field.

After passing through the regulator, power is routed through a wattmeter that measures
the total energy consumed by all vehicle systems during operation, except for the losses
introduced during voltage regulation. The reasoning behind this placement is that it avoids
incorporating any irregularities that might occur during regulation into the energy measure-
ment while improving the power meter performance by removing the need to account for
voltage variation. After passing through the meter, power is distributed via a fuse block to
the motor electronic speed controller (ESC) and the power umbilical, the latter of which
carries power to the computing compartment within the second hull.

The computing compartment contains the bulk of the electronics and sensors responsible
for the control and operation of the autonomous surface vehicle. Unlike the contents of the
power compartment, the computing components are predominantly mounted to the hatch
of the compartment as shown in figure 6.2b. This setup allows for convenient connections
outside the compartment without passing wires through the molded hull and mitigates the
risk of water damage if the compartment were to flood. The primary onboard computer
is an ODROID XU4 device, which is powered by an ARM processor and runs Ubuntu
16.04. The ODROID interfaces with navigational sensors and motor controllers through its
connection to an Arduino Due microcontroller with custom electronics board while network
connectivity is provided by a Ubiquiti Bullet M2HP mounted externally to one of the rear
antenna masts on the vehicle. As a safety measure, a completely independent 2.4 GHz RC
receiver is integrated into the system with the ability to override motor commands being sent
from the Arduino microcontroller to the motor ESCs. More details on how these components
are configured and their interactions are provided in the system diagram in figure 6.3.

In typical deployment scenarios, the ASV test platform was designed to work with a shore
station consisting of a shore computer, Ubiquiti Rocket M2 WiFi base station, and a 2.4 GHz
RC transmitter that serves as a failsafe override of the vehicle autonomy. The shore computer
is primarily used to plan the coverage paths using the Constraint-Based Coverage Path
Planners developed for this work and then relay these plans to the vehicle over WiFi. This
communication is accomplished largely with the help of the ROS middleware, which is used
across the software implementation of the field test system. After the planner determines
a target coverage path, the path plan is packaged into custom Waypoint Command ROS
messages that are then published to the network. The command interface on the shore
computer additionally publishes Autonomy Command ROS messages that enable, disable,
and control aspects of the test platform autonomy. The use of ROS in our implementation
allows for the secondary role of the shore computer, which is to log all ROS messages
published to the network whenever the platform is within range in case of catastrophic
failure resulting in loss of the robot.

The software controlling the test vehicle is divided across a few ROS nodes implemented
in Python running on the ODROID as well as some firmware written in C++ running
on the Arduino Due. The firmware on the Arduino is written to communicate with the
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Figure 6.3: System diagram illustrating how the field testing platform functions

GPS sensor over a UART and an IMU over I2C, package up the sensor readings as JSON
messages, and send them up to the ODROID over USB. Futhermore, the firmware accepts
motor commands as similarly formatted JSON messages from the ODROID, translates them
into appropriate PWM commands, and sends them out to the appropriate motor ESC. On
the ODROID side, the Serial Comms. Node translates the incoming sensor readings from
JSON into the corresponding ROS messages and publishes them to the network. It also
subscribes to any Motor Command ROS messages and upon receiving any, translates them
to JSON motor commands and transmits it to the Arduino over USB. The ASV platform’s
autonomy is provided by the Control Node, which subscribes to all sensor ROS messages as
well as Waypoint and Autonomy Commands from the shore station. Using this information,
the node maintains a current path plan and computes appropriate motor commands to
execute the path using a PID controller. It then publishes Motor Command messages that
get passed to the Serial Comms. Node and out to the Arduino. All published ROS messages
are recorded on the ODROID computer for later playback and analysis. Details of this
architecture are illustrated in the system diagram shown in figure 6.3.

6.2 Results

In this section we present the results from our field experiments using the ASV test platform.
We first describe the test site chosen for our experiments, then present the results of each
experiment, and finally present some analysis to compare our results to simulation.
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6.2.1 North Carolina - Cape Fear River

Figure 6.4: Test area on the Cape Fear River in North Carolina

For these experiments we selected a length of the Cape Fear River near a boat launch
point, located just south of Raleigh, North Carolina. This testing location was selected due
to its mild climate during the testing period, the significant variation in surface currents
present near the bank, and the convenient access provided by the dock and boat ramp. The
region highlighted in blue in figure 6.4 indicates the approximate boundary enclosing all
experimental coverage paths tested at this site. The extent of this region into the river was
limited due to the geometry of the river and its effect on the surface current distribution;
while the significant depth variation near the bank resulted in substantial current variations
near the shore, the surface currents towards the center of the river channel were more
uniform as the depth leveled off. The direction of the river’s flow is denoted with a blue
arrow in 6.4.

River Section - Three Transects

In our first experiment we examine the effect of the energy-efficient sequencing optimization
proposed in this work on the simplest scenario where the resulting coverage path can be
differentiated from a conventional boustrophedon approach - a target region and payload
footprint selection that requires three transects parallel to the shoreline to completely cover
the area. If the experiment was limited to coverage paths with only two transects, every
path produced by the energy-efficient optimization would be a valid boustrophedon path as
well, and therefore would make for an inconclusive evaluation of the optimization’s impact.
The downstream length of the experimental test area was designed to limit the total length
of the resulting coverage paths such that the test vehicle could execute each plan within
approximately 15 minutes, depending on the river currents. This decision was made in order
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(a) Boustrophedon Path (b) Energy-Efficient Path

Figure 6.5: Three Transect Coverage Paths

to allow for multiple runs of each coverage pattern in a single day of testing as well as to
limit the effect of changing ambient conditions during and between experimental runs.

In order to evaluate the impact of the energy-efficient optimization, two coverage plans
were developed for the test area: a baseline boustrophedon path and an energy-efficient
boustrophedon path with the optimization applied during planning. The planned coverage
paths for this experiment are shown in figure 6.5, where the boundary of the test region
is denoted in dark blue and each coverage path is drawn in light blue. A single point at
the end of the dock was used as both the ingress and egress point for both coverage plans,
and is illustrated by a black point on the maps. The ingress and egress routes that the test
platform follows when starting and finishing execution of each coverage path are denoted in
green and red respectively. Numbered blue arrows are overlaid over each transect in each
coverage path to illustrate the direction of travel along each transect as well as their sequence
of execution.

Comparing the two coverage plans, it is immediately apparent that the energy-efficient
optimization has constrained the directions of the transects so that motion against the
dominant surface currents occurs closer to the river bank, where the currents are slowest,
and motion with the currents occurs along transects further out in the river channel, where
the currents are faster. Since the scenario ingress point is located upstream of the test area,
this strategy requires delaying execution of the transect closest to the riverbank, as opposed
to the boustrophedon approach which greedily chooses to execute this transect first. As
a result, the ingress route of the energy-efficient approach is slightly longer as the vehicle
travels to the middle transect first. In addition, the distance travelled between the second
and third transects is increased in the energy-efficient plan when compared to the baseline
boustrophedon plan. Together these factors account for a 5.13% increase in the total path
length over the baseline, which is in line with the additional path length introduced by the
energy-efficient optimization in similar scenarios in simulation. The sharper angle of the
ingress route with the middle transect on the energy-efficient route also results in a 2.09%
increase in the total turns the vehicle makes during execution. Both coverage paths achieve
complete coverage of the target region.
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To collect the data for this experiment, the ASV test platform was deployed for a total
of 16 trial runs, including 8 runs of the baseline boustrophedon plan and 8 runs of the
energy-efficient plan. The runs were executed in an alternating fashion, with each run of
the boustrophedon path being followed by a run of the energy-efficient path, in an effort to
minimize the effects of changing river currents over time and to simplify analysis by ensuring
each run of the energy-efficient path had a temporally adjacent run of the boustrophedon
path to compare to. In between runs, the vehicle runtime, battery charge usage (Ah), and
power consumption (Wh) were recorded and batteries were replaced if necessary. The net
results from these runs are presented in table 6.1.

Coverage Path Net Power Usage (Wh) Net Current Usage (Ah) Runtime

Boustrophedon 6.6 0.544 14:57.75
Energy-Efficient 5.7 0.472 12:49.35
Boustrophedon 6.4 0.528 14:39.48
Energy-Efficient 5.9 0.492 13:19.35
Boustrophedon 6.3 0.521 14:19.84
Energy-Efficient 5.5 0.457 12:26.00
Boustrophedon 6.1 0.507 13:47.32
Energy-Efficient 5.8 0.477 12:53.32
Boustrophedon 6.4 0.528 14:04.99
Energy-Efficient 5.6 0.465 12:31.05
Boustrophedon 6.7 0.553 14:51.57
Energy-Efficient 5.1 0.429 11:36.51
Boustrophedon 5.7 0.466 12:44.67
Energy-Efficient 5.3 0.440 11:48.42
Boustrophedon 5.9 0.480 12:50.94
Energy-Efficient 5.3 0.442 11:43.38
Boustrophedon Avg. 6.263 0.516 14:02.07
Energy-Efficient Avg. 5.525 0.459 12:23.42

Table 6.1: NC 3 Transect Coverage Path Energy Usage and Execution Times

An analysis of these results reveals that the energy-efficient path optimization successfully
reduced the energy cost of covering the test region by approximately 0.7327 Watt-Hours
on average, which amounts to a 11.78% improvement. A p-value of 3.53 × 10−4 from a
two-sample heteroscedastic t-test using a two-tailed distribution suggests these results are
significant. Furthermore, the average runtime of the optimized path is 1:38.65 faster than
the baseline boustrophedon path, again representing approximately a 11.71% improvement.

When each set of trials runs is considered as a whole, some variation in the data is evident;
the standard deviation of the energy cost, for instance, is 0.342 for the baseline boustrophedon
path and 0.276 for the energy-efficient path. The recorded power consumption varies between
5.7 Wh and 6.7 Wh for the baseline plan, and between 5.1 Wh and 5.9 Wh for the energy-
efficient plan, which correspond to ranges of 1.0 Wh and 0.8 Wh respectively. This substantial
variation suggests that environmental conditions changed throughout the time-frame during
which the experiment was conducted.

During data collection for this experiment, we observed the surface currents of the river
changing gradually over the course of the day. Therefore, our hypothesis is that these
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Figure 6.6: Energy usage for 3 Transect coverage paths

Figure 6.7: Execution times for 3 Transect coverage paths

current fluctuations may be responsible for the variation recorded across trial runs. To
further investigate, we plot the power consumption recorded for each trial in the order they
were executed to allow for a clearer comparison between temporally adjacent trial runs of
the baseline boustrophedon and energy-efficient test plans. This representation is shown in
figure 6.6, where the data corresponding to boustrophedon and energy-efficient trials are
colored orange and blue respectively. Also shown in this figure are loess curves through
each subset of the data, obtained through a local regression with a smoothing parameter of
0.5. From this analysis, we note that the loess curves for each type of coverage path seem to
share a downwards trend over time and never intersect. A similar result is observed upon
an equivalent analysis of the runtimes recorded for each trial, as shown in figure 6.7.

These results combined with our observations in the field seem to support our hypothesis
that changes in environmental conditions did indeed occur over the course of this experiment
and that these changes had a substantial impact on the execution of each coverage plan. The
fact that the loess curves corresponding to the baseline boustrophedon data were strictly
above the loess curves for the energy-efficient test data, however, lends further credence to
our conclusion that the energy-efficient optimization did produce a significant reduction in
power consumption over the baseline boustrophedon approach.

River Section - Four Transects

In this experiment we build upon the basic scenario designed for our first experiment,
making several modifications to the target region and payload footprint specification that
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(a) Boustrophedon Path (b) Energy-Efficient Path

Figure 6.8: Four Transect Coverage Paths

we hypothesize will result in more significant energy savings from our energy-efficient
optimization, based on our findings from simulation. For this test scenario, the target area
is still confined to the section of river near the bank exhibiting substantial variations in
surface currents, however, the length of this region parallel to the shoreline is extended to
produce longer transects within each coverage path. The radius of the payload footprint
is also decreased, in order to shift the two transects running along the borders of the test
area towards the river bank and center, thereby increasing the differential between surface
currents lying along those transects. This reduction in payload footprint has the added effect
that the target region now requires four transects to cover completely with a boustrophedon
pattern.

Repeating the previous experimental protocol, two coverage paths are generated once
again for this revised test scenario: a baseline boustrophedon path and a modified boustro-
phedon path with our energy-efficient optimization applied. The planned coverage paths
for this experiment are shown in figure 6.8 where the boundary of the test region is denoted
in dark blue and each coverage path is drawn in light blue. The same point at the end of
the dock used in the previous experiment was again selected as both the ingress and egress
point for both coverage plans, and is illustrated by a black point on the maps. The ingress
and egress routes that the test platform follows when starting and finishing execution of
each coverage path are denoted in green and red respectively. Numbered blue arrows are
overlaid over each transect in each coverage path to illustrate the direction of travel along
each transect as well as their sequence of execution.

As in the previous experiment, the energy-efficient optimization has again refined the
directions on the path constraints representing each transect in order to force all upstream
travel to occur closer to the river bank. As a result, the two transects closest to the river bank
in the energy-efficient path are restricted to upstream travel while the remaining transects
further out in the river channel are limited to downstream travel, resulting in a path that
spirals outwards from the center axis of the target region.

Although the ingress route for the energy-efficient path is longer than for the baseline
boustrophedon path, the situation is reversed when it comes to each plan’s egress route.
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This results in only a marginal difference between the combined length of ingress and egress
routes for each path. Furthermore, since both the baseline and energy-efficient approaches
begin their first transect and finish their last transect at the upstream boundary of the target
region, the ingress and egress routes make up a substantially smaller fraction of the complete
coverage paths when compared to the previous experiment. This implies that the majority
of the difference in length and energy consumption between the two coverage paths will be
due to the influence of the energy-efficient optimization being tested. In total, the proposed
energy-efficient path is 3.13% longer with 0.60% more turns than the baseline boustrophedon
path. Both coverage paths achieve complete coverage of the target region.

To collect the data for this experiment, the ASV test platform was deployed for a total
of 20 trial runs, including 10 runs of the baseline boustrophedon plan and 10 runs of the
energy-efficient plan executed in an alternating fashion. In between runs, the vehicle runtime,
battery charge usage (Ah), and power consumption (Wh) were recorded and batteries were
replaced if necessary. The net results from these runs are presented in table 6.2.

Coverage Path Net Power Usage (Wh) Net Current Usage (Ah) Runtime

Boustrophedon 7.6 0.628 18:17.81
Energy-Efficient 6.3 0.526 15:04.58
Boustrophedon 7.6 0.628 17:57.74
Energy-Efficient 6.9 0.577 16:32.40
Boustrophedon 7.8 0.644 18:42.03
Energy-Efficient 7.0 0.576 16:39.82
Boustrophedon 8.1 0.673 19:40.99
Energy-Efficient 7.1 0.588 17:10.64
Boustrophedon 8.0 0.659 19:15.85
Energy-Efficient 6.8 0.559 16:20.07
Boustrophedon 7.5 0.617 18:00.38
Energy-Efficient 6.7 0.553 16:14.88
Boustrophedon 8.4 0.690 19:49.74
Energy-Efficient 6.9 0.569 16:45.71
Boustrophedon 7.8 0.638 18:34.02
Energy-Efficient 6.5 0.540 15:40.93
Boustrophedon 7.6 0.627 18:10.21
Energy-Efficient 6.6 0.547 15:42.48
Boustrophedon 7.3 0.602 17:10.25
Energy-Efficient 6.2 0.521 14:52.32
Boustrophedon Avg. 7.77 0.641 18:33.90
Energy-Efficient Avg. 6.70 0.556 16:06.38

Table 6.2: NC 4 Transect Coverage Path Energy Usage and Execution Times

Upon analysis, these results suggest that the energy-efficient path optimization success-
fully reduced the energy cost of covering the test region by approximately 1.07 Watt-Hours
on average, which amounts to a 13.77% improvement. A p-value of 4.44 × 10−7 from a
two-sample heteroscedastic t-test using a two-tailed distribution suggests these results are
significant. Furthermore, the average runtime of the optimized path is 2:27.52 faster than
the baseline boustrophedon path, again representing approximately a 13.24% improvement.

80



Similarly to the previous experiment, there is also some variation in the data collected
for each path type this time around; the standard deviation of the recorded energy cost is
0.3234 for the boustrophedon baseline path and 0.2981 energy-efficient path. The measured
power consumption varies between 7.3 Wh and 8.4 Wh for the baseline plan, and between
6.2 Wh and 7.1 Wh for the energy-efficient plan, which correspond to ranges of 1.1 Wh
and 0.9 Wh respectively. Although these values are in line with the statistics from the
previous experiment, we note that the minimum energy cost across all runs of the baseline
boustrophedon path is 7.3 Wh, which is still greater than the maximum energy cost across
all energy-efficient trials, 7.1 Wh.

Figure 6.9: Energy usage for 4 Transect coverage paths

Figure 6.10: Execution times for 4 Transect coverage paths

In order to further verify these results, we performed the same temporal analysis as for
the previous experiment, where each energy usage measurement is plotted in trial order
to create an approximate time series. This representation is shown in figure 6.9, where the
data corresponding to boustrophedon and energy-efficient trials are colored orange and
blue respectively. Also shown in this figure are loess curves through each subset of the data,
obtained through a local regression with a smoothing parameter of 0.5. A comparison of
loess curves suggests that the data follow similar trends for both path types over the course
of the experiment. A similar result is observed upon an equivalent analysis of the runtimes
recorded for each trial, as shown in figure 6.10.

These results offer additional support to our hypothesis that the environmental conditions
at this test location do change over time and influence the execution of each coverage plan.
However, the fact that the loess curves maintain a steady separation and follow a similar
trend is a strong indication that the reduction in power consumption produced by our energy-
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efficient optimization is a valid result despite changing ambient conditions. This coupled
with the high statistical significance of the observed effect and the disjoint ranges of the
power usage data recorded for each type of path, provides convincing evidence to support
our claim that the energy-efficient optimization we have proposed does indeed reduce the
energy costs of coverage paths for target regions with nonuniform current distributions.

6.3 Analysis

In the previous section we presented the results from field experiments that were designed to
test the performance of the energy-efficient sequencing optimization proposed in this work.
Although the data collected during these experiments was supportive of our hypothesis
that the optimization would reduce the energy cost of coverage plans, we were interested in
how the real world data would compare to simulated results. To this end, we developed
an approach to use the experimental data to characterize the motion of the vehicle and the
surface current distribution across the target region, and then use these models with our
simulator to predict the execution times of our experimental paths.

In this section we walk through each step in our methodology and finally present the
simulated coverage path durations alongside the measured values from the field experiments.

6.3.1 Estimating Vehicle Speed

(a) Selecting transects with opposing execution

VC1

VC1

VB

VB

VT1B

VT1EE

T1

d1

(b) Example of relevant speeds along transect 1

Figure 6.11: Using opposing transects to estimate boat speed

The first step in our analysis is to estimate the speed of the ASV test platform as it
travels at a fixed thrust during execution of each coverage path. In order to accomplish
this, we make a number of simplifying assumptions that facilitate extrapolating the average
speed of the vehicle. First of all, we assume that the vehicle travels at a roughly constant
speed, corresponding to its terminal velocity at a fixed thrust. Secondly, we assume that
the transects in the experimental paths as well as the predominant direction of flow in the
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river are colinear. These are both reasonable simplifications as the experimental paths were
designed to lie parallel to the direction of flow and are comprised of long transects, which
reduce the turns required for coverage.

Trials Speed Along T1 (m/s) Speed Along T4 (m/s) Average Speed (m/s)

0/1 0.6260 0.6336 0.6298
1/2 0.6534 0.6422 0.6478
2/3 0.6096 0.6607 0.6351
3/4 0.6185 0.6435 0.6310
4/5 0.6365 0.6449 0.6407
5/6 0.6667 0.6381 0.6524
6/7 0.6625 0.6204 0.6415
7/8 0.6216 0.6331 0.6273
8/9 0.6269 0.6516 0.6392
9/10 0.6431 0.6710 0.6571
10/11 0.6423 0.6514 0.6469
11/12 0.6411 0.6236 0.6324
12/13 0.6456 0.6288 0.6372
13/14 0.6374 0.6422 0.6398
14/15 0.6509 0.6507 0.6508
15/16 0.6253 0.6604 0.6428
16/17 0.6220 0.6543 0.6381
17/18 0.6327 0.6558 0.6443
18/19 0.6711 0.6441 0.6576

Avg. 0.6386 0.6448 0.6417
Std. Dev. 0.0170 0.0132 0.0088

Table 6.3: ASV Speed Estimates

The crux of our estimation methodology is to consider the transects for which the vehicle
travels in opposite directions while executing the baseline boustrophedon and energy-
efficient paths, as shown in figure 6.11a. For this scenario, we identify transects 1 and 4
as satisfying these conditions. To streamline our explanation we will focus our analysis
on former, hereby referred to as T1, however the same technique can be used to estimate
velocity using any transect with opposing travel directions.

The relevant values to this discussion are presented in figure 6.11b. We begin out analysis
by determining the average speed of the vehicle motion along T1 in the world frame for both
the boustrophedon and energy-efficient paths. These values, denoted as VT1B and VT1EE

respectively, can be determined by dividing the length of the transect, d1, by the duration of
travel along T1 during execution of each path. We note that these velocity vectors are the
effectively the superposition of the river current along that transect, −−→VC1, and the terminal
boat velocity vector, −→VB . This results in the following equations:

VT1B = VB + VC1 VT1EE = VB − VC1
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Adding these two equations together and solving for VB , we find that the average boat
speed along this transect can be determined by simply taking the average of the two transect
speeds VT1B and VT1EE . The computed boat speeds along transects 1 and 4 for all pairs of
consecutive trials are shown in table 6.3. We note the good agreement between boat speeds
computed using data from T1 and T4, as well as the low standard deviation across all trials,
which suggests the our methodology has determined a reasonable estimate for the terminal
speed of the ASV and that the vehicle consistently achieved and maintained this speed
throughout the experiments.

6.3.2 Estimating River Flow Along Transects

Figure 6.12: Flow estimated along each transect

Once we have an approximate speed
for the ASV, we can use this informa-
tion to estimate the average river cur-
rent speed along each transect. Using
the equations developed in the previ-
ous stage of our process, we solve for
VCi, which represents the average flow
speed along transect i, as shown by the
red arrows in figure 6.12. In order to
best account for any changes in environ-
mental conditions or vehicle dynamics,
we use a unique ASV speed value when
computing the VC values for each trial.
Note that because the boat speed val-
ues determined in 6.3 all use data from
two consecutive trials, each trial, with
the exception of 0 and 19, have two po-
tential speed values we can use when
calculating flow velocities. To make use of all the data we have available, we take the average
of these ASV speeds for trials 1 through 18. The vehicle speed used when computing flow
speeds for each trial is listed in the second column of table 6.4.

Upon analysis of the flow estimates presented in table 6.4, we confirm the variation in
surface currents that we observed while conducting our field experiments; the flow speeds
in the river gradually increase over the course of the day before dropping off during the
later experimental trials. Despite this trend, we note that the standard deviations for the
flow speeds along each transect only range between 0.0192 and 0.0342 m/s.

6.3.3 River Current Model Reconstruction

In the final step of our process to prepare for the comparison of field experiment results with
simulation, we use the estimated flow speeds along each transect to reconstruct a complete
model of the surface currents throughout the test region. In order to achieve this, we set
up a model of the river’s surface currents that defines the flow at every point to lie along
a specified flow axis vector. The magnitude of the flow defined by the model is a value
determined by a quadratic function fit to the transect flow estimates we computed earlier
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Trial Boat Speed
(m/s)

T1 Flow
(m/s)

T2 Flow
(m/s)

T3 Flow
(m/s)

T4 Flow
(m/s)

0 0.6298 0.0918 0.2574 0.3584 0.3500
1 0.6388 0.1084 0.2267 0.3313 0.3486
2 0.6415 0.1348 0.2602 0.3668 0.3444
3 0.6331 0.1902 0.2684 0.3754 0.3912
4 0.6359 0.1583 0.2560 0.3557 0.3732
5 0.6465 0.1676 0.3156 0.3450 0.3805
6 0.6469 0.2076 0.2932 0.3718 0.3979
7 0.6344 0.1639 0.3000 0.3935 0.3574
8 0.6333 0.1395 0.2947 0.3394 0.3589
9 0.6481 0.1672 0.2809 0.3348 0.3807
10 0.6520 0.1533 0.2860 0.3195 0.3388
11 0.6396 0.1602 0.2609 0.2641 0.3499
12 0.6348 0.1680 0.2928 0.3644 0.3771
13 0.6385 0.1501 0.2918 0.3276 0.3614
14 0.6453 0.1410 0.2738 0.3616 0.3607
15 0.6468 0.1313 0.2684 0.3396 0.3700
16 0.6405 0.0946 0.2539 0.3826 0.3365
17 0.6412 0.1324 0.2522 0.3754 0.3634
18 0.6509 0.1057 0.2451 0.3387 0.3439
19 0.6576 0.0722 0.2269 0.3095 0.3236

Avg. 0.6418 0.1419 0.2702 0.3478 0.3604
Std. Dev. 0.0073 0.0342 0.0240 0.0297 0.0192

Table 6.4: Flow Along Transect Estimates

and the perpendicular transect offsets from the river flow axis. The method of defining these
offset distances with respect to the flow axis vector is illustrated in figure 6.12.

The process of fitting this flow magnitude function can be repeated for each set of flow
speeds in table 6.4 to obtain a model of the river currents at the time of that particular trial.
Alternatively, the average of these flow speeds can be used to generate a more general model.
The vector field reconstruction resulting from such a generalized model of surface currents
in the river is shown in figure 6.13. In the final segment of this section we describe the
outcome of simulating execution of the boustrophedon and energy-efficient paths using
these models and discuss how they compare to our field results.

6.3.4 Simulation

After we have successfully reconstructed the surface current model from our field data
we can utilize this model with the simple simulator described in the previous chapter to
simulate an ASV executing the boustrophedon and energy-efficient paths. We approached
this analysis in two different ways: first using the generalized flow model built from the
average ASV and transect flow speeds across all trials, and then using individualized models
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Figure 6.13: Reconstructed Surface Current Field

built from the data from each trial. The results of these simulations are presented alongside
the experimental results from the field in figure 6.14.

Figure 6.14: 4 Transect Path Execution Times - Field vs. Sim

In our generalized approach, we used the average transect flow speeds from table 6.4 to
build a surface flow model and simulated execution of the boustrophedon and energy-energy
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efficient paths at a fixed ASV speed of 0.6418 m/s. This resulted in simulated execution
times of 1129.15 and 956.90 seconds respectively, which corresponds to approximately a
15.25% improvement. This agrees well with the improvement we observed during our field
experiments, where, on average, the energy-efficient path took 13.24% less time to execute
than the boustrophedon path. These results are represented by the dashed and dot-dashed
gray lines in figure 6.14.

As we have established when estimating the transect flow speeds from each set of trial
data, the surface current distribution changed during the time the field experiments were
conducted. As such, the recorded durations of each path type in the field vary below and
above the values predicted by our generalized simulation. This effect is clearly illustrated
by the plots of boustrophedon and energy-efficient trial durations, denoted in orange and
blue respectively in figure 6.14. This motivated our second analysis approach where instead
of using the general model with an average vehicle speed, we constructed a new model for
each trial and simulated the path matching that trial at the true boat velocity calculated for
that trial. The results from this analysis are shown as red and green lines in figure 6.14 and
the values are recorded in table 6.5.

Trial Simulated Duration (s) Experimental Duration (s)

0 1085.29 1097.81
1 895.71 904.58
2 1061.54 1077.74
3 976.65 992.4
4 1121.88 1122.03
5 972.09 999.82
6 1158.6 1180.99
7 1002.17 1030.64
8 1105.11 1155.85
9 944.25 980.07
10 1046.17 1080.38
11 935.95 974.88
12 1155.94 1189.74
13 959.5 1005.71
14 1086.18 1114.02
15 915.95 940.93
16 1051.82 1090.21
17 921.92 942.48
18 1025.26 1030.25
19 855.76 892.32

Table 6.5: Simulated vs. Experimental Path Durations

Using this second approach, it is evident that the predicted execution times for both
paths agree with the results recorded during our field experiments. In fact, when each
simulated energy-efficient trial is compared against temporally adjacent simulated boustro-
phedon trials, the average reduction in execution time is 13.49%, which nearly matches the
average improvement from our experimental results. An interesting pattern that emerges
during comparison of the individually simulated and experimental trial runs, is that the
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simulation consistently underestimates the true execution time of each path, on average by 2
to 3 percent. This result is expected as the simple simulator we described in the previous
chapter was designed with several simplifying assumptions cause it to underestimate the
execution time for a path. Notably, the simulator assumes the vehicle can change velocity
vectors instantaneously and in an optimal fashion. In reality the ASV cannot adjust its
course instantaneously, must decelerate then accelerate when making turns, and has an
imperfect controller that can produce some heading oscillations. These factors help explain
the consistent difference between the simulated and experimental results.

6.4 Summary

In this chapter we introduced the autonomous surface vehicle that was developed specifically
as a test platform for this work, presented experimental results from the field, and compared
these results to simulation. Through our analysis we showed that the energy-efficient
optimization presented in this work can significantly reduce the energy requirements for
covering a given region in the presence of flow. Furthermore, despite river current variations
across different trials, the energy-efficient path consistently delivered better performance
than the baseline boustrophedon pattern. This suggests that our proposed optimization
still produces energy savings when the exact magnitudes of the surface current are not
known a priori; as long as the relative surface current distribution is generally accurate,
the optimization can improve the energy-efficiency of the resulting coverage path. This is
an important result because a complete and accurate knowledge of the surface currents in
a river is seldom available and can change over the course of the day, as we noted in our
experiments.
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Chapter 7

Conclusions

Energy storage will continue to be a substantial obstacle for roboticists to grapple with
for years to come; until battery technology catches up, energy-efficient algorithms will
undoubtedly become an important piece of the toolset used to address this problem in the
meantime. In this thesis we contribute to this toolset through the development of a new
coverage path planning framework along with specific planning algorithms that enable
more energy-efficient coverage of river domains. This is significant because to the best of
our knowledge, this is the first result in robotics literature that addresses energy-efficient
coverage planning in aquatic domains with moving fluids. Moreover, the CB-CPP framework
developed provides a starting point towards a more generalized approach to building energy-
efficient coverage planners from reusable components that can be combined and layered
with each other to plan coverage paths to meet sophisticated performance criteria.

For completeness we conclude this discussion by briefly revisiting the expected contribu-
tions we outlined in chapter 1 and acknowledging where they were addressed within this
thesis. The Constraint-Based Coverage Path Planning (CB-CPP) was introduced in chapter
3 and used to implement all coverage planners throughout this work. Chapter 4 details
the development of specialized layout, refinement, and sequencing modules that can be
combined with standard planning modules within the CB-CPP framework to plan more
energy-efficient coverage paths through river domains. A set of new CPP planners using
our proposed energy-efficient modules were developed over the course of chapters 3 and 4.
These planners were tested in the simulation experiments presented in 5 and deployed on a
custom built autonomous surface vehicle for real-world experiments that are described in
chapter 6.

7.1 Future Work

We close out this thesis with a brief overview of promising avenues for further research into
energy-efficient coverage of domains with moving fluids. Due to the substantial possibilities
for extending the CB-CPP method to other domains and new applications, our discussion
is organized into two sections: enhancements the methods proposed in this work, and
system extensions that can expand the utility of this work to interesting new domains and
applications.
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7.1.1 Enhancements

During the development, implementation and testing of the methods proposed in this thesis,
there were predictably times where certain features that would have greatly strengthened
our proposed methodology or produced an added benefit, had to be omitted due to time
and resource constraints. The following list presents the most poignant of these neglected
enhancements:

• Implement thrust constraints in order to enable drifting with the currents when exe-
cuting streamline constraints in the downstream direction. Thrust can be reduced to
the point that control is still maintained in order to allow the vehicle to make course
corrections and stay on the constraint as it drifts.

• Allow for coverage overlap bias optimization to bias paths outside of the payload
configuration space (e.g., if vehicle radius is smaller than sensor radius, we can push
the innermost path constraints closer to the domain boundary to shorten them further).

7.1.2 System Extensions

As the CB-CPP framework was developed and used to create new coverage plans that
achieved interesting and useful objectives, numerous natural extensions continuously be-
came evident. The following list captures a sampling of these ideas:

• Constraints on a variety of different vehicle parameters (e.g., velocity constraints to
effectively enforce speed limits through dangerous sectors for safety).

• Actuator/Sensing shutdown when moving through regions that have already been cov-
ered (e.g., shut off/decrease rate of vacuum/sensors while moving between constraints
or covered cells).

• Turn off nonessential equipment on certain constraints or portions of constraints (e.g., if
we know the approximate communications range, shut down wireless communications
for all constraint segments outside this coverage area).

• Consider wind fields in addition to current fields for river domains.

• Extend energy-efficient coverage planning techniques to planning for UAV coverage
in the presence of winds (e.g., planning bridge inspection routes while utilizing the
bridge structure to avoid winds).

• Extend energy-efficient coverage planning techniques to planning for ground vehicle
coverage over uneven terrain.
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Appendix A

Constraint-Based Coverage
Planner Output Examples

In this appendix we provide additional examples of coverage planners implemented within
the CB-CPP framework. Throughout the appendix we include tables that show coverage
planner output as different parameters of the planning problem are changed individually, in
order to illustrate the effect changing these parameters may have on the final coverage path.
Furthermore, we also include a table of different coverage plans for a variety of scenarios to
demonstrate the robustness of the planners developed using the CB-CPP framework.

The most common types of graphics included within this appendix are shown below
in figure A.1. Within this figure, image A.1a shows the domain for the planning scenario
in blue, as well as the vehicle and payload footprints in green and yellow respectively. The
configuration spaces associated with these footprints are shown in their respective colors
overlaid over the domain polygon. Image A.1b illustrates the path constraints as they are
laid out by the planner, while image A.1c shows the final coverage path produced for the
region.

(a) Domain and Vehicle Config. (b) Path Constraints from Planner (c) Final Coverage Path

Figure A.1: An example of the figures showing planner input and output
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Domain & Vehicle Config. Constraint Layout Coverage Path

Vehicle Radius: 2.5 m
Payload Radius: 5.0 m

Num. of Constraints: 11
Coverage Rate: 99.22%

Length: 827.12 m
Total Turns: 1800.00◦

Vehicle Radius: 5.0 m
Payload Radius: 5.0 m

Num. of Constraints: 10
Coverage Rate: 97.32%

Length: 736.99 m
Total Turns: 1620.00◦

Vehicle Radius: 7.5 m
Payload Radius: 5.0 m

Num. of Constraints: 10
Coverage Rate: 87.18%

Length: 688.41 m
Total Turns: 1620.00◦

Table A.1: Boustrophedon Coverage Plans with Changing Vehicle Envelope
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Domain & Vehicle Config. Constraint Layout Coverage Path

Vehicle Radius: 2.5 m
Payload Radius: 5.0 m

Num. of Constraints: 5
Coverage Rate: 100.00%

Length: 960.96 m
Total Turns: 2168.27◦

Vehicle Radius: 5.0 m
Payload Radius: 5.0 m

Num. of Constraints: 5
Coverage Rate: 99.88%

Length: 928.92 m
Total Turns: 2168.27◦

Vehicle Radius: 7.5 m
Payload Radius: 5.0 m

Num. of Constraints: 5
Coverage Rate: 89.28%

Length: 837.92 m
Total Turns: 2168.27◦

Table A.2: Spiral Coverage Plans with Changing Vehicle Envelope
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Domain & Vehicle
Config.

Constraint Layout Coverage Path Path
Metrics

Length:
681.32 m

Coverage:
97.37%

Total Turns:
1800.00◦

Length:
639.32 m

Coverage:
97.33%

Total Turns:
2160.00◦

Length:
677.05 m

Coverage:
97.10%

Total Turns:
1800.00◦

Length:
660.47 m

Coverage:
98.50%

Total Turns:
900.00◦

Table A.3: Boustrophedon Coverage Plans with Changing Transect Orientation
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Domain & Vehicle Config. Boustrophedon Path Spiral Path

Length, Coverage, Turns: 641.13 m, 95.40%, 2035.58◦ 696.86 m, 92.96%, 2160.00◦

Length, Coverage, Turns: 729.27 m, 99.17%, 2221.56◦ 1571.65 m, 99.97%, 4578.21◦

Length, Coverage, Turns: 629.24 m, 93.53%, 2308.69◦ 1749.35 m, 99.65%, 4918.62◦

Table A.4: Boustrophedon and Spiral Coverage Plans for Different Domains
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Domain & Target Region Streamline Boustrophedon Path

Colorado River at Horseshoe Bend, AZ

Monongahela River at Pittsburgh, PA

Three Rivers Confluence at Pittsburgh, PA

Table A.5: Streamline Boustrophedon Coverage Plans for Real World Domains
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Appendix B

Full Simulation Results

In this appendix we provide additional figures and complete tables of data from our sim-
ulations of various scenarios. The primary reasons for providing this information are to
illustrate the impact that our choice of boustrophedon baseline path has on the path ex-
ecution time, and for completeness since only the best performing boustrophedon path
result was presented in the simulation results chapter. It is important to note that since these
results are the outputs of computer simulations we tabulate them to as much as seven digits,
however, given all simulation assumptions and real-world variability, we do not believe
more than three are really meaningful.
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B.1 Four Transect Field Experiment Analog

For this experiment, we present the simulation data for all possible boustrophedon baseline
paths and directions in table B.1 below.

Vehicle
Speed
(m/s)

Boustrophe-
don Path

(s)

Rev.
Boustrophe-

don Path
(s)

Alt.
Boustrophe-

don Path
(s)

Rev. Alt.
Boustrophe-

don Path
(s)

Energy-
Efficient

Sequencing
Path (s)

0.375 5107.19 11545.79 11403.86 5152.76 2404.37
0.400 3062.82 4587.92 4528.89 3080.01 1977.19
0.425 2294.73 3100.84 3066.57 2301.52 1709.63
0.450 1878.37 2411.00 2388.82 1879.87 1517.50
0.475 1611.28 2000.82 1985.67 1609.69 1370.84
0.500 1422.54 1724.02 1713.71 1419.67 1251.47
0.525 1280.50 1522.10 1515.75 1276.56 1153.20
0.550 1168.79 1369.10 1364.09 1164.09 1073.01
0.575 1078.10 1247.74 1243.55 1072.52 1004.53
0.600 1002.62 1148.75 1145.06 997.47 945.13
0.625 938.59 1066.26 1062.75 933.79 893.15
0.650 883.40 996.18 992.84 878.91 847.26
0.675 835.23 935.70 932.52 831.02 806.33
0.700 792.72 882.96 879.91 788.73 769.61
0.725 754.86 836.43 833.51 751.08 736.39
0.750 720.88 795.04 792.24 717.28 706.19
0.775 690.17 757.96 755.26 686.73 678.61
0.800 662.26 724.49 721.89 658.98 653.29
0.825 636.74 694.13 691.61 633.59 629.95
0.850 613.31 666.41 663.97 610.30 608.35
0.875 591.73 641.02 638.65 588.82 588.30
0.900 571.72 617.64 615.36 568.91 569.62
0.925 553.14 596.04 593.81 550.45 552.18
0.950 535.84 576.01 573.85 533.23 535.84
0.975 519.66 557.37 555.27 517.14 520.51
1.000 504.53 539.99 537.94 502.09 506.09

Table B.1: Complete Field Experiment Analog Scenario Simulation Results
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B.2 River Cross-Sections

B.2.1 Wide River Cross-Section

Vehicle
Speed
(m/s)

Boustro-
phedon
Path (s)

Reverse
Boustrophedon

Path (s)

Alternate
Boustrophedon

Path (s)

Rev. Alt.
Boustrophedon

Path (s)

Energy-
Efficient
Path (s)

0.510 5304.47 5304.48 5304.48 5304.47 2141.33
0.525 3504.32 3504.32 3504.32 3504.32 1935.21
0.550 2478.37 2478.37 2478.37 2478.37 1723.93
0.575 2007.25 2007.25 2007.25 2007.25 1573.63
0.600 1721.47 1721.47 1721.47 1721.47 1455.55
0.625 1523.93 1523.93 1523.93 1523.93 1358.37
0.650 1376.64 1376.64 1376.64 1376.64 1276.11
0.675 1261.21 1261.21 1261.21 1261.21 1205.18
0.700 1167.53 1167.53 1167.53 1167.53 1143.07
0.725 1089.49 1089.49 1089.49 1089.49 1088.06
0.750 1023.16 1023.16 1023.16 1023.16 1038.91
0.775 965.86 965.86 965.86 965.86 994.59
0.800 915.74 915.74 915.74 915.74 954.43
0.825 871.38 871.38 871.38 871.38 917.74
0.850 831.77 831.77 831.77 831.77 884.11
0.875 796.15 796.15 796.15 796.15 853.13
0.900 763.86 763.86 763.86 763.86 824.48
0.925 734.44 734.44 734.44 734.44 797.87
0.950 707.52 707.52 707.52 707.52 773.10
0.975 682.68 682.68 682.68 682.68 749.91
1.000 659.79 659.79 659.79 659.79 728.26

Table B.2: Complete Wide River Cross-Section Simulation Results
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B.2.2 Square River Cross-Section

(a) Boustrophedon Coverage Path (b) Energy-Efficient Coverage Path

Figure B.1: Baseline and test paths for the square river cross-section scenario

Vehicle
Speed
(m/s)

Boustro-
phedon
Path (s)

Reverse
Boustrophedon

Path (s)

Alternate
Boustrophedon

Path (s)

Rev. Alt.
Boustrophedon

Path (s)

Energy-
Efficient
Path (s)

0.510 11765.01 11765.01 11765.01 11765.01 3702.30
0.525 7651.97 7651.97 7651.97 7651.97 3411.20
0.550 5334.73 5334.73 5334.73 5334.73 3080.45
0.575 4283.97 4283.97 4283.97 4283.97 2831.55
0.600 3652.48 3652.48 3652.48 3652.48 2630.32
0.625 3219.25 3219.25 3219.25 3219.25 2461.88
0.650 2898.22 2898.22 2898.22 2898.22 2317.79
0.675 2647.95 2647.95 2647.95 2647.95 2192.50
0.700 2445.75 2445.75 2445.75 2445.75 2082.18
0.725 2277.94 2277.94 2277.94 2277.94 1984.03
0.750 2135.81 2135.81 2135.81 2135.81 1896.01
0.775 2013.42 2013.42 2013.42 2013.42 1816.49
0.800 1906.61 1906.61 1906.61 1906.61 1744.17
0.825 1812.34 1812.34 1812.34 1812.34 1678.08
0.850 1728.37 1728.37 1728.37 1728.37 1617.39
0.875 1652.95 1652.95 1652.95 1652.95 1561.41
0.900 1584.73 1584.73 1584.73 1584.73 1509.49
0.925 1522.69 1522.69 1522.69 1522.69 1461.35
0.950 1465.94 1465.94 1465.94 1465.94 1416.43
0.975 1413.77 1413.77 1413.77 1413.77 1374.46
1.000 1365.63 1365.63 1365.63 1365.63 1335.10

Table B.3: Complete Square River Cross-Section Simulation Results
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B.2.3 Long River Cross-Section

(a) Boustrophedon Coverage Path (b) Energy-Efficient Coverage Path

Figure B.2: Baseline and test paths for the long river cross-section scenario
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Vehicle
Speed
(m/s)

Boustro-
phedon
Path (s)

Reverse
Boustrophedon

Path (s)

Alternate
Boustrophedon

Path (s)

Rev. Alt.
Boustrophedon

Path (s)

Energy-
Efficient
Path (s)

0.510 24686.05 24686.07 24686.07 24686.05 6824.16
0.525 15947.30 15947.30 15947.30 15947.30 6363.24
0.550 11047.52 11047.51 11047.51 11047.52 5793.55
0.575 8837.38 8837.38 8837.38 8837.38 5347.32
0.600 7514.48 7514.48 7514.48 7514.48 4979.86
0.625 6609.88 6609.88 6609.88 6609.88 4668.97
0.650 5941.35 5941.36 5941.36 5941.35 4401.11
0.675 5421.40 5421.40 5421.40 5421.40 4167.09
0.700 5002.16 5002.16 5002.16 5002.16 3960.34
0.725 4654.86 4654.86 4654.86 4654.86 3775.95
0.750 4361.12 4361.12 4361.12 4361.12 3610.22
0.775 4108.54 4108.54 4108.54 4108.54 3460.25
0.800 3888.36 3888.36 3888.36 3888.36 3323.72
0.825 3694.28 3694.28 3694.28 3694.28 3198.79
0.850 3521.54 3521.54 3521.54 3521.54 3083.94
0.875 3366.56 3366.57 3366.57 3366.56 2977.92
0.900 3226.51 3226.51 3226.51 3226.51 2879.68
0.925 3099.19 3099.19 3099.19 3099.19 2788.32
0.950 2982.82 2982.83 2982.83 2982.82 2703.14
0.975 2875.93 2875.93 2875.93 2875.93 2623.49
1.000 2777.33 2777.33 2777.33 2777.33 2548.77

Table B.4: Coverage Path Execution Time at Various Vehicle Speeds
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B.3
R

iverBend
Scenario

Speed
(m

/s)
Stream

(s)
Rev.Stream

(s)
Biased

Stream
(s)

Rev.Biased
Stream

(s)
EE

(s)
Biased

EE
(s)

Bous.(s)
Rev.Bous.

(s)

0.510
46031.46

47332.68
49778.00

30973.45
21123.63

10821.05
26015.83

25081.17
0.525

29000.69
28920.82

27142.81
22729.91

16783.21
9906.76

17628.18
16789.95

0.550
19900.7

19594.25
17558

16888.24
13437.53

8937.75
13006.9

12270.24
0.575

15802.07
15525.94

13792.83
13854.53

11555.16
8229

10820.63
10161.68

0.600
13355.14

13130.99
11674.68

11921.9
10279

7663.63
9453.85

8858.82
0.625

11689.47
11510.67

10271.81
10557.03

9331.3
7194.04

8484.55
7943.72

0.650
10464.64

10322.67
9252.47

9529.27
8588.33

6793.69
7745.69

7251.41
0.675

9517.01
9403.58

8466.23
8720.78

7983.81
6445.99

7155.68
6701.84

0.700
8756.38

8665.79
7834.67

8063.61
7478.56

6139.74
6668.95

6250.57
0.725

8129.31
8056.58

7311.96
7516.3

7047.59
5866.93

6257.72
5870.63

0.750
7601.15

7542.47
6869.47

7051.62
6673.96

5621.9
5903.84

5544.51
0.775

7148.51
7101.25

6488.21
6651

6345.87
5400.06

5594.86
5260.34

0.800
6755.42

6717.25
6154.97

6300.74
6054.67

5197.61
5321.83

5009.62
0.825

6409.97
6379.32

5860.58
5991.45

5794
5012.46

5078.31
4786.1

0.850
6103.47

6078.76
5597.71

5715.53
5558.52

4841.54
4859.28

4585.15
0.875

5829.15
5809.3

5361.08
5467.87

5344.84
4683.73

4660.86
4403.22

0.900
5581.81

5566.03
5146.76

5243.61
5149.24

4536.89
4480.06

4237.38
0.925

5357.29
5345.03

4951.21
5039.51

4969.59
4400.15

4314.38
4085.4

0.950
5152.56

5143.09
4771.99

4852.76
4804.02

4272.25
4161.88

3945.45
0.975

4964.88
4957.87

4607.06
4681.24

4650.68
4152.5

4020.95
3816.02

1.000
4792.12

4786.91
4454.45

4522.64
4507.91

4040.17
3890.19

3695.87
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Appendix C

Full Field Results

In this appendix, we present our complete field result data as it was recorded during the
experiments. Since battery changes did not occur after every run, the starting and ending
power and current consumption on the integrated meter aboard the vehicle were recorded.
This data was then used to compute the new power and current usage for that run.
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