
Multi-agent Deception in Attack-Defense
Stochastic Game

Xueting Li

CMU-RI-TR-20-59

Submitted in partial fulfillment of the requirements
for the degree of Master of Science.

The Robotics Institute
Carnegie Mellon University

Pittsburgh, PA 15213

December 2020

Copyright © 2020 Xueting Li

Keywords: Attack-defense Game, Multiple Agent Systems, Defense Strategy, Game Theory,
Zero-sum Game, Games of incomplete information, Deception

Abstract
This paper studies a sequential adversarial incomplete information game, the

attack-defense game, with multiple defenders against one attacker. The attacker has
limited information on game configurations and makes guesses of the correct con-
figuration based on observations of defenders’ actions. Challenges for multi-agent
incomplete information games include scalability in terms of agents’ joint state and
action space, and high dimensionality due to sequential actions. We tackle this prob-
lem by introducing deceptive actions for the defenders to mislead the attacker’s be-
lief of correct game configuration. We propose a k-step deception strategy for the
defender team that forward simulates the attacker and defenders’ actions within k
steps and computes the locally optimal action. We present results based on compar-
isons of different parameters in our deceptive strategy. Experiments show that our
approach outperforms Bayesian Nash Equilibrium strategy, a strategy commonly
used for adversarial incomplete information games, with higher expected rewards
and less computation time.

iv

Acknowledgments
First, I would like to thank my advisor, Professor Katia Sycara, for her patience,

insightful suggestions, and guidance for my research. Her vision in the field of multi-
agent systems has deeply influenced me. She has taught me how to conduct solid
research and how to think critically. I could not have become the researcher I am
today without her and I could not have imagined having a better advisor and mentor
for my Master study.

I would like to thank Sha Yi for her help throughout my research project. I really
enjoyed working with her. She always provides valuable advises and helps me to
find more efficient ways to conduct my research.

I also want to thank Professor Changliu Liu for taking the time to be my com-
mittee member and for the useful feedback.

Last, I want to thank my family and my friends for your support and encourage-
ment throughout my life and study.

vi

Contents

1 Introduction 1

2 Related Work 3

3 Technical Approach 5
3.1 Problem Formulation . 5
3.2 Nash Equilibrium and Bayesian Nash Equilibrium 6
3.3 Attacker Strategy and Belief Update . 8
3.4 Deceptive Planning . 8
3.5 Game Tree Sampling . 10

4 Results 11

5 Conclusion and Future Research 15

vii

viii

List of Figures

3.1 Flow diagram of our method. Before execution, we pre-compute the Nash equi-
librium policies. During execution, the attacker tries to play Nash strategy based
on its belief. The defender team tries to deceive the attacker of the target config-
uration. 9

4.1 Experiment configurations. 11
4.2 Results of experiment set 1: Different Action Sample Methods for configuration

4.1a: (a) Defender Payoff (b) Computation Cost 12
4.3 Experimental Results with Different Action Sample Methods for configuration

4.1b and 4.1c: (a) Defender Payoff (b) Computation Cost 12
4.4 Results of experiment set 4: (a)-(c) Defender Payoff with Different Attacker

Action Sample Methods When Defender Sample Method is (a)no sampling (b)
sample based on Nash strategy (c) sample based on uniform distribution ;(d)
Computation Cost with Different Attacker Action Sample Method when all de-
fender actions are considered(no sampling) . 13

4.5 Results of experiment set 5: Different Defender Action Sample Method and Dif-
ferent Sample Size for configuration 4.1c: (a) Defender Payoff (b) Computation
Cost . 13

4.6 Results of experiment set 6: Experimental Results with Different Target Config-
uration Set Size (a) Defender Payoff (b) Computation Cost 14

ix

x

Chapter 1

Introduction

In applications with adversarial opponents, collaboration between agents can improve the per-
formance of the system, for example, pursuit-evasion games [17] [18], and attack-defense games
[2] [15]. In such adversarial scenarios, a game-theoretic formulation provides a framework to
model and reason about the benefits and trade-off between players.

Limitations and challenges arise when the game-theoretic framework is applied to infinite
horizon games with incomplete information. First, state space grows exponentially with increas-
ing number of agents in the system. Second, with game-theoretic model, Nash Equilibrium only
provides solutions to adversarial games with complete information. For incomplete information
games, additional belief needs to be incorporated for the unknown game configurations. In the
incomplete information setting, Bayesian Nash equilibrium is introduced to solve such game by
incorporating players’ beliefs. However, the state-belief space then becomes extremely high-
dimensional, which is computationally expensive. Third, due to the sequential nature of infinite
horizon games, it is intractable to compute the optimal sequence of strategies for the players. In
such incomplete information games where there is a information gap between the players, one
can use deception to manipulate the belief of opponents[9]. Deception strategies help the players
to gain higher rewards in long time horizon, while sacrificing reward gains in short time horizon.

In this paper, we propose a deceptive game-theoretic framework for the infinite horizon, in-
complete information games with multiple players. We consider an attack-defense game where
there are multiple defenders, a single attacker, and multiple target assets. The true configuration
of the target assets i.e.real target values are known to the defender, but only partially known to
the attacker. The attacker aims to maximize the total value of targets attacked by guessing the
game configuration while avoiding getting caught by any defender. We present techniques that
reduce the computational cost of solving the game compared with a standard Bayesian Nash
Equilibrium method for incomplete information games. In particular, defenders and the attacker
pre-compute a library of Nash strategies, based on the commonly known information, that is
exploited during execution. Additionally, we employ the Monte Carlo Tree Search that samples
defenders and attacker actions to further reduce the computation cost. We compare the perfor-
mance and computation cost of our deceptive defense strategy with and without sampling versus
a standard one-step BNE strategy.

The paper makes the following contributions: First, we enrich current attack-defense game
formulations by considering (a) how defender moves can deceive the attacker and (b) by con-

1

sidering an infinite-time-horizon game. Second, we provide a novel framework to enable online
planning for a multi-defender team in a game with incomplete information.

The paper is organized as follows. Section 2 reviews some previous research on the use of
deception in artificial intelligence system and past studies on attack-defense games. In section 3,
we first present the formal definition of the attack-defense game we aim to study. We then review
definitions of Nash strategy and Nash Equilibrium for computation of the strategy library before
execution. We will also introduce Bayesian Nash Equilibrium in section 3.2 as our baseline for
comparison. Monte Carlo Tree Search will be introduced in section 3.5 for improving scalability
and computation efficiency. Section 4 shows experimental results of the defender team perfor-
mance and computation cost when the defender team follows BNE or our deceptive planning
against an attacker who follows BNE or the strategy described in section 3.3.

2

Chapter 2

Related Work

Deception is studied in an incomplete information game setting where one player has private in-
formation of the world configuration. It is mostly studied in the field of Cybersecurity games. In
[14], [7] and [13], the authors study one-shot game-theoretical use of honeypot in cybersecurity.
[3] introduces a game-theoretic model for optimal deployment of honeypots into the network for
a finite-horizon multi-stage game. [6] studies an infinite-horizon deception strategy, where the
user trying to deceive the cyber-attackers by manipulating their beliefs of whether the attackers
has been detected or not.

In multi-agent games, both deceptions by attacker and defender have been studies. In [9],
the authors consider a situation where an adversary apply deception by camouflage the targets
to confuse a sensor team from performing its tasks. They employ a game-theoretic model to
analyze the expected strategy of the adversary and find the best response. In attack-defense
games, deception is often studied in signal games[20] where the defender deceives the attacker
by sending signals of defender type or resource allocation game[19] where deceptive resources
are allocated to deceive the attacker. In [12] and [11], attacker deception is considered in a
Stackelberg game for calculating the optimal strategy for both defenders and the attacker.

Games where a fraction of players hold incomplete information are considered as asymmet-
ric games. Asymmetric games have been widely studied in the literature. In [8], the author pro-
vides an efficient linear programming formulation of asymmetric two-player zero-sum stochastic
games with finite horizon. In [4], the author describes an efficient algorithm for solving the value
of two-person zero-sum repeated games of incomplete information within arbitrary accuracy. To
the best of our knowledge, the current literature does not provide an efficient algorithm to ad-
dress the computational intractability of the belief state space in asymmetric two-player zero-sum
stochastic games with infinite horizon.

3

4

Chapter 3

Technical Approach

We first formally define our problem in section 3.1. In section 3.2, we review details of Nash
Equilibrium of complete information games for later computation of the strategy library, and
the standard Bayesian Nash Equilibrium methods of incomplete information games for compar-
ison in chapter 4. We will introduce our assumptions and methods of attacker belief update in
section 3.3, and our k-step deception planning method in section 3.4. Monte Carlo game tree
sampling will be discussed in section 3.5 for improving computational efficiency.

3.1 Problem Formulation

We model the game as a two-player zero-sum game with incomplete-information and infinite
time horizon. We discretize time and space and represent the environment as a grid world. Both
the attacker and defenders have information of the target locations and can always observe the
adversary’s movement. The game terminates when (i)the attacker is caught by any defender,
or (ii) all valuable targets have been attacked. The attacker is considered caught if it is on the
same cell as any defender and a target is attacked if the attacker is on the same cell as the tar-
get. Throughout the game, the attacker will constantly try to guess the true target configuration.
Meanwhile, the defender team will move in a way to deceive the attacker about the true target
configuration and mislead the attacker to go to targets of lower value.

We model the game as a Markov Decision Processes (MDP)< S,A, T,Φ,R, b, γ >. S is the
joint state space of defenders, attacker, and targets S = Sd×Sa×Sw. Sd = S0×· · ·×Sn where Si
is the state of ith defender. Si and Sa are the positions of corresponding agent in the grid world.
Sw is a binary vector where Swj

= 1 if jth target has not been attacked, 0 otherwise. A is the joint
action space of the defender team and attacker. A = Ad×Aa whereAd = A1×A2×· · ·×An. Ai is
the action space of ith defender and Aa denotes the action space of the attacker. We assume four-
connected grid so the action space of each agent isAi, Aa = {N,E,W, S, Z}, which corresponds
to move to North, East, West, South, and remain in the current cell. T is the deterministic
transition matrix that T (s′|s, a) = 1 if the following state of taking action a at state s is s′, 0
otherwise.

In our game, there is a discrete set of target rewards given different target configurations
Φ. Each φl ∈ Φ represents a reward set of the lth target configuration. Each φl consists of

5

the positions of targets and rewards for attacking different targets. The positions of targets are
accessible for both players. However, only the defender team knows the rewards. The real
target configuration is the one with the true rewards of targets. The reward set of the real target
configuration φl∗ is included in this set, i.e. φl∗ ∈ Φ. We assume both teams have common
knowledge on all possible reward setup. Given the number of targets, there is a finite set of
possible target configuration that is known by both players.

The goal of the defenders is to catch the attacker and minimize the total value of targets being
attacked. The goal of the attacker is to maximize the value of targets attacked and avoid getting
caught by any defender.

R is the reward function set. For each φl, there is a distinct reward function Rl : S ×A→ R
corresponding to that target configuration. Rl(s, a) is the reward of defenders’ team when joint
action a has been taken in the joint state s:

Rl(s
′|s, a) =

−gjl,w if jth target is attacked at state s′

gl,c if attacker is caught by any defender at state s′

0 otherwise

(3.1)

gl,w is a vector consists of the values of different targets where gjl,w is the value of jth target in
lth target configuration. gl,c is the value of catching the attacker. Since it is a zero-sum game,
the reward for the attacker is thus −Rl. The reward function of the real target configuration is
denoted as Rl∗ ∈ R. The expected future reward is discounted over an infinite time horizon
where γ is the discount factor. Both players aim to maximize their expected future reward. The
defender team’s objective is to maximize the expected discounted reward:

max
a0d...a

∞
d

∞∑
t=0

γtRl∗(st, ad,t × aa,t) (3.2)

Not knowing the true target configuration, the attacker maintains a belief vector b = [b0, · · · , bl, · · ·]
where bl = prob(φl = φl∗) denotes the probability the attacker thinks φl is the true target config-
uration. The attacker updates b based on the observed moves of the defender team, which will
be introduced in section 3.3. The defender team can reconstruct the attacker’s belief because all
information on the attacker side is available to the defender team. This is commonly used to keep
track of adversary belief when using deception [6].

3.2 Nash Equilibrium and Bayesian Nash Equilibrium
Before execution, we pre-compute a strategy library based on Nash Equilibrium of all possible
configurations for both the defender team and the attacker. During execution, we utilize the
Nash values for deceptive planning in section 3.4. Nash equilibrium is used to model the in-
teraction between multiple agents when all players have complete information of the game and
aim to maximize their own expected payoffs. The extension of Nash equilibrium for incomplete
information game is Bayesian Nash equilibrium[5] where players incorporate the belief of un-
known information. We will show by comparison in section 4 that our k-step deception method
outperforms the standard Bayesian Nash equilibrium.

6

By definition, a Nash equilibrium occurs when no player can do better by unilaterally chang-
ing its strategy[10]. Given the full target configuration, i.e. both locations and values, the optimal
strategy for each player is to follow the Nash strategy of the complete information game. A Nash
strategy can be either a pure strategy (deterministic) or a mixed strategy(stochastic). We con-
sider mixed strategy here because in a single-stage zero-sum game with finite state-action space,
a mixed strategy always exits whereas a pure strategy might not[10]. At each time step, each
player selects an action based on the probability distribution of the computed mixed strategy. A
mixed strategy for the defender team is denoted as x : S × Ad → [0, 1]. Similarly, a mixed
strategy for the attacker is y : S × Aa → [0, 1]. It has been proven in [16] that in a two-player
zero-sum finite-state space infinite-horizon stochastic game, there exists a unique Nash value
for the complete information game and a unique mixed Nash strategy can be induced from this
Nash value. This uniqueness ensures that in a given state of a known target configuration, the
attacker knows the exact defender strategies. Thus, based on a specific target configuration, both
the attacker and defender team can compute the strategy of one another.

Consider V (x, y, s) as the defender’s discounted expected reward obtained by the defenders’
and attacker’s strategy pair (x, y) starting at state s. The discounted expected reward for the
attacker is thus −V (x, y, s) : S → R. We denote the Nash strategy of the defender team and
attacker to be x∗ and y∗ correspondingly. To differentiate Nash strategies among different target
configurations, we use x∗l , y

∗
l to denote the Nash strategies of lth target configuration. The Nash

value V (x∗l , y
∗
l , s) is then the defenders’ value obtained from players that follow Nash strategy

x∗l and y∗l at state s in target configuration φl. For each s ∈ S, the Nash value satisfies:

V (x∗l , y
∗
l , s) ≥ V (x, y∗l , s),∀x ∈ X (3.3)

V (x∗l , y
∗
l , s) ≤ V (x∗l , y, s),∀y ∈ Y (3.4)

In a zero-sum game, the solution to find the Nash value at single state can be formulated as a
min-max problem:

V (x∗l , y
∗
l , s) = min

y
max
x

∑
a∈A

[
x(ad|s)y(aa|s)

∑
s′∈S

T (s′|s, a)
(
Rl(s, a) + γV (x∗, y∗, s′)

)]

where a = ad × aa, x(ad|s) and y(aa|s) are the probability of the defender team taking action
ad, and attacker taking action aa at state s correspondingly. With the above update equation, we
can obtain the Nash values at each game state with different target configurations.

To enable online planning for both players in section 3.3 and 3.5, we further define a Nash
policy Set Π∗ which contains Nash policies corresponding to different target configurations
φl. More specifically, for each φl ∈ Φ, there is a π∗l = (x∗l , y

∗
l) ∈ Π∗ where π∗l is the

Nash strategy pair of the defender team and attacker given the target configuration φl∗ . Let
π∗l∗ = (x∗l∗ , y

∗
l∗), π

∗
l∗ ∈ Π∗ denote the policy corresponding to the true target configuration φ∗. For

simplicity, let Nashl∗(s) = V (x∗l∗ , y
∗
l∗ , s), s = sd × sa × sw denote the Nash value of a state s

when all players know the true target configuration and play best strategies.
An extension of Nash equilibrium to incomplete information game is a Bayesian Nash equi-

librium (BNE). BNE is not part of our approach, but will serve as a baseline of comparison with
our k-step deception method in section 4. Extending from Equation (3.3) and (3.4) to the BNE

7

formulation, the uninformed player, in our case the attacker, computes BNE based on its belief
of the target configuration:

BNE(xl∗ , yl∗ , s,b) =

min
y

max
x

∑
a∈A

x(ad|s)y(aa|s)∑
s′∈S

T (s′|s, a)
∑
Rl∈R

bl
(
Rl(s, a) + γBNE(x∗, y∗, s′)

)
Importantly, the action spaces, the reward functions, possible target configurations, and the belief
of the uninformed player are assumed to be common knowledge. That is to say, the informed
player(defender team) can compute what the attacker strategy is based on attacker’s belief. With
that in mind, the optimal strategy of the defender team can then be simply calculated as an
optimization function based on the true reward function and attacker’s strategy.

3.3 Attacker Strategy and Belief Update
Since both players (defender team and the attacker) assume their adversary would play opti-
mally and the attacker does not know whether the defender team might take deceptive action
to manipulate its belief, the attacker updates its belief about each target configuration based on
its observation of defenders’ last actions. We assume the attacker’s initial belief of the target
configuration is uniformly distributed as bl = 1

|Φ| ,∀l. After actions (ad, aa) have been executed
at state s, the attacker updates its belief based on defenders’ action ad:

b′l = prob(φl|ad, s) = prob(x∗l |ad, s) = α · bl · x∗l (ad|s) (3.5)

prob(φl|ad, s) = prob(xl|ad, s) because for a given target configuration φl, the defenders will
play optimally, namely the defender team’s Nash strategy x∗l . α is a normalizing factor such that
||b|| = 1. We assume the attacker plays a strategy based on its updated belief b and correspond-
ing Nash strategy of each φl (which we later referred to as the belief-based Nash Strategy):

y(aa|b, s) =
∑
πl∈Π

bl · y∗l (aa|s) (3.6)

where s = sd × sa × sw. y∗l (aa|s) is the probability of executing aa at state s with strategy y∗l .
y(aa|b, s) is the attacker strategy during execution, which is not only based on the joint state s
but also based on the attacker’s belief of the target configuration. Since the defender team knows
1) the target configuration set, 2) all actions are fully observable, 3) the attacker will update its
belief based on defenders’ action, the defender team can perfectly reconstruct the belief of the
attacker. We will utilize this feature during our k-step deception method for the defender team in
the following section.

3.4 Deceptive Planning
An overview of our method is shown in figure 3.1. Before execution, we pre-compute the Nash
strategy library based on all possible target configurations. During execution, at each time step,

8

Figure 3.1: Flow diagram of our method. Before execution, we pre-compute the Nash equilib-
rium policies. During execution, the attacker tries to play Nash strategy based on its belief. The
defender team tries to deceive the attacker of the target configuration.

the attacker takes an action based on its belief of the true target configuration. Since the de-
fender team can perfectly reconstruct the attacker’s belief, the defenders will forward simulate
all actions k steps ahead and plays the deceptive action that gives the estimated highest value.
After both teams take actions simultaneously, the attacker updates its belief of the true target
configuration based on its observation of the defenders’ actions.

Algorithm 1 shows the detailed computation of the k-step deceptive strategy. k is a user-
defined constant that determines how many steps the user would like to simulate forward. This
algorithm first builds a tree of depth k to explore all deterministic moves the defender can take
in k time steps and all the attacker beliefs b induced by those actions. The attacker’s actions
are simulated in a stochastic way based on their belief of the target configurations and the corre-
sponding Nash strategies. We estimate the value of the leaf states by their Nash value in the true
target configuration as if both players were to play a Nash equilibrium in complete information
games from that state forward. Then the algorithm evaluates each k-depth action sequence by
back-propagating the Nash values of the leaf states. The first action in the action sequence that
has the highest expected value is then executed by the defender team.

To guarantee the deceptive action is not worse than the original Nash strategy, we define
Decep(s,b, n) to be the expected discounted reward for the defender team, at state s and at-
tacker belief b, to take a deceptive action sequence with length n, i.e. actions within n time
steps. Denote Decep∗(s,b, n) to be the maximum of all Decep(s,b, n) among all legal action
sequences of length n. Decep∗(s,b, n) is calculated as follows:

Decep∗(s,b, 0) = Nashl∗(s) (3.7)

Decep∗(s,b, k + 1) = max
ad

T (s, a, s′)y(aa|b, s)(R∗(s, a) + γDecep∗(s′,b′, k)) (3.8)

In Theorem 13, we show that Decep∗(s,b, n) will always be greater or equal to the Nash value
of state s. for all n ∈ Z+,

Decep∗(s,b, n) ≥ Nashl∗(s),∀b (3.9)

The detailed proof is can be accessed at the link here . Based on the theorem above, we opti-
mize defender’s local payoff by finding a local optimal k-step pure strategy (a1, a2..., ak)∗ with

9

https://drive.google.com/file/d/1gkJoGKjElVc2SRa0u0zY1dL4jDafu-8v/view?usp=sharing

Algorithm 1: kStepDeception finds the best action and maximum expected value
Input: State s, Attacker Belief b, Step k
Output: Best action and corresponding value

1 maxV alue⇐ Nash∗l∗(s);
2 bestAction⇐ x∗l∗(s);
3 if k > 0 then
4 for ad ∈ Ad do
5 b′ ⇐ updateBelief(b, ad);
6 value⇐

∑
aa∈Aa,s′∈S

[p(aa|b, s) · T (s′|s, ad, aa) · kStepDeception(s′,b′, k − 1).maxV alue] ;

7 if value > maxV then
8 maxV alue⇐ value;
9 bestAction⇐ ad

10 end
11 end
12 end
13 return bestAction,maxValue;

value Decep∗(s,b, k). From the proof we also know there exits at least one such pure strategy
(a1, a2..., ak).

Although the deceptive action returned from the k-step deception algorithm may result in a
lower reward in the current state compared with a Nash strategy, by simulating k step forward
into the future, our deceptive action gives higher reward in the longer time horizon. With this
method, it is guaranteed that the action sequence returned from our k-step deception algorithm
will always gives higher, or equal, expected discounted reward compared with Nash strategy.
However, explore the full game tree of depth k may still be computationally heavy as the state
space increases. We incorporate Monte Carlo sampling methods into our approach in the coming
section.

3.5 Game Tree Sampling
In Algorithm 1, we built a search tree with all valid defender and attacker moves. The tree size
(number of states) grows exponentially with the action space of the agents: |s ∈ Treek| = (|Ad| ·
|Aa|)k, where Treek is the search tree with step size k. With multiple defenders, the number of
defender actions |Ad| grows exponentially with the number of defenders. In order to improve the
scalability of our approach, we adopt the idea of Monte Carlo Tree Search (MCTS)[1]. Inspired
by MCTS, we sample m actions at each step instead of exploring all ad ∈ Ad (at line 4 in
Algorithm 1). The size of the search tree is thus |s ∈ Treek| = (m · |Aa|)k. We compare two
different sample criteria: (1): Sample actions based on their probability in the Nash strategy π∗ :
p(ad|s) = x∗l∗(ad|s). (2): Sample actions based on uniform distribution: p(ad|s) = 1

|Ad|
Apart from the two above mentioned sample criteria for the defender team, to further improve

the computation efficiency, we also sample attacker actions during our forward simulation (at
line 6 in Algorithm 1). We compare two different sampling criteria: (1): Sample actions with
maximum probability in Nash strategy: aa = arg max y∗l∗(aa|s). This decreases the tree size
from (m · |Aa|)k to mk. (2): Sample the top H percent actions based on the probability of actions
from largest to the lowest:

∑
y∗l∗(aa|s) = H .

10

Chapter 4

Results

(a) (b) (c) (d)

Figure 4.1: Experiment configurations.

We extensively ran simulations based
on the configurations in figure 4.1.
In our experiments, we assume there
is only one real target and all players
are aware of this information. We
set gjl,w = 5 when jth target is the
real target, 0 otherwise. The catch
reward gl,c = 5. Unless explicitly
stated, k = 2 for all deceptive plan-
ning. We randomized agents’ initial positions and compared the defender payoff and computa-
tion cost among different methods in section 3.5.

We ran the experiments on an Intel i7 Quad-Core machine with 16 GB memory. The code is
written in python and we use scipy.optimize.linprog as the linear programming solver for solving
the (Bayesian) Nash equilibrium. We ran six sets of experiments, detailed settings of each set of
experiments are as follows: (1) Defender team: three different deceptive strategies or one-step
BNE strategy; Attacker: belief-based Nash Strategy; Configuration: 4.1a; (2) Defender team:
three different deceptive strategy; Attacker: one-step BNE strategy or belief-based Nash Strat-
egy; Configuration: 4.1a (3) Defender team: deceptive strategy with three different sampling
method; Attacker: belief-based Nash Strategy; Configuration: 4.1b and 4.1c (4) Defender team:
deceptive strategy with two different k values; Attacker: belief-based Nash Strategy; Configura-
tion: 4.1b and 4.1c (5) Defender team: deceptive strategy with three different sample methods
and sample size; Attacker: belief-based Nash Strategy; Configuration: 4.1b and 4.1c (6) Differ-
ent size of possible target configuration set; Defender team: deceptive strategy without sampling;
Attacker: belief-based Nash Strategy; Configuration: 4.1d.

First, we compare the performance and computation cost between a traditional one-step BNE
approach and our k = 2 deceptive strategy. For the sake of fairness, we also use the pre-computed
Nash values as a state estimation function for the calculation of BNE. Since the computation
cost of BNE grows exponentially with the increase of actions and target configurations, it is not
solvable when there are more than two target configurations. As a result, experiment set 1 is run
on configuration 4.1a, resulting in two possible target configurations: (1) g1

l,w = 5, g2
l,w = 0, (2)

g1
l,w = 0, g2

l,w = 5. As shown in figure 4.2b, the computation cost of our 2-step full-planning with

11

(a) (b)

Figure 4.2: Results of experiment set 1: Different Action Sample Methods for configuration
4.1a: (a) Defender Payoff (b) Computation Cost

(a) (b)

Figure 4.3: Experimental Results with Different Action Sample Methods for configuration 4.1b
and 4.1c: (a) Defender Payoff (b) Computation Cost

deception is similar to that of a single-step BNE. However, in figure 4.2a, the deceptive strategy
has a significant performance increase with defender payoff of 3.3 while BNE only has a payoff
of -0.6. The sampling methods have similar defender payoff compare to BNE.

The second experiment set was run based on configuration 4.1a and the same two possible
target configuration as the first experiment set. When we plan without sampling, the average
defender payoff decreases slightly from 3.45 to 3.3 when the attacker change strategy from belief-
based Nash Strategy to BNE. This implies that our no-sampling approach is robust against a
smarter adversary(an attacker who follows BNE) even we do not simulate attacker to follow
BNE during planning (high computation cost). However, if we plan with sampling, the average
defender payoff decreases dramatically from 1.212 to -0.868. The mismatch between the attacker
strategy we assume and real attacker strategy makes the sampling methods weaker.

In the third experiment set, we compare the performance of different sampling methods.
We can see that all deceptive methods have better performance than the Nash Strategy. Full
exploration of defender actions show the best performance but also the highest computation cost
(in figure 4.3a). Figure 4.3a shows that simulating single action with maximum probability has
the worst performance. Simulating the actions that take 75% of the total probability has a similar
performance as simulating all attacker actions. Regarding computation cost, figure 4.3b shows

12

(a) (b)

(c) (d)

Figure 4.4: Results of experiment set 4: (a)-(c) Defender Payoff with Different Attacker Action
Sample Methods When Defender Sample Method is (a)no sampling (b) sample based on Nash
strategy (c) sample based on uniform distribution ;(d) Computation Cost with Different Attacker
Action Sample Method when all defender actions are considered(no sampling)

that the computation cost of sample the top H = 75% percent actions is approximately 20% to
40% of the cost of full simulation.

In fourth experiment set, we investigate the influence of the value of k from figure 4.4. Figure
4.4a shows slight performance increase with the increase of k when we explores all legal defender
moves. Figure 4.4b and 4.4c shows that sampling methods has significant performance decrease
with k value. It is because when the search tree grows with k, the sampling methods lead to less
accurate evaluation of the states. Although we have some performance increase in figure 4.4a,
figure 4.4d shows that the computation cost of k = 3 is approximately 100 times more than that
of k = 2 but the performance increase is only around 2%.

In fifth experiment, we investigate the influence of different defender action sample methods

(a) (b)

Figure 4.5: Results of experiment set 5: Different Defender Action Sample Method and Different
Sample Size for configuration 4.1c: (a) Defender Payoff (b) Computation Cost

13

(a) (b)

Figure 4.6: Results of experiment set 6: Experimental Results with Different Target Configura-
tion Set Size (a) Defender Payoff (b) Computation Cost

and different sample size. Figure 4.5a shows that for Nash strategy based sampling, sample size
5 has the best performance. For uniform sampling, the performance increase with sample size.
However, the computation cost also increases rapidly. Overall, Nash strategy based sampling
with sample size 5 has the best performance with a low computation cost.

Last, we tested the scalability of our approach regarding the size of target configuration space.
The real target in each simulation is always target 2. The possible real target indexes in each sim-
ulation are: when |Φ| = 2: [2,5] ;when |Φ| = 4: [2,4,5,6] ;when |Φ| = 6: [1,2,3,4,5,6]. Figure
4.6b shows the computation cost increase slowly with the size of possible target configurations.
Figure 4.6a shows defender team can gain more payoff when there are more possible target con-
figurations.

14

Chapter 5

Conclusion and Future Research

In this paper, we studied the attack-defense game in which the attacker has incomplete informa-
tion of the game configuration. We have proposed a k-step deception algorithm in which the
defender team can generate a deceptive strategy based on pre-computed Nash strategy library
and forward simulation of game tree. Comparing our algorithm to the traditional Bayesian Nash
Equilibrium, our algorithm can handle larger action space and larger target configuration space.
Results from experiments show that our method is more computationally efficient and receives
larger payoff in the game.

From our experiments, we observe that as k increases, the computation cost increases expo-
nentially, but may not necessarily leads to higher reward gain. Choosing the value of k remains an
open problem and it is worth investigating if there is a optimal k value given a specific game con-
figuration and user preference of computation limits. Additionally, choosing the proper methods
of sampling in the game tree influences the policy performances. Further research can be done
with exploring more methods of sampling.

15

16

Bibliography

[1] G. Chaslot, S. Bakkes, I. Szita, and P. Spronck. Monte-carlo tree search: A new framework
for game ai. In AIIDE, 2008.

[2] Z. Deng and Z. Kong. Multi-agent cooperative pursuit-defense strategy against one single
attacker. IEEE Robotics and Automation Letters, 5(4):5772–5778, 2020.

[3] K. Durkota, V. Lisỳ, B. Bošanskỳ, and C. Kiekintveld. Optimal network security hardening
using attack graph games. In Twenty-Fourth International Joint Conference on Artificial
Intelligence, 2015.

[4] A. Gilpin and T. Sandholm. Solving two-person zero-sum repeated games of incomplete
information. In Proceedings of the 7th international joint conference on Autonomous agents
and multiagent systems-Volume 2, pages 903–910, 2008.

[5] J. C. Harsanyi. Games with incomplete information played by “bayesian” players, i–iii part
i. the basic model. Management science, 14(3):159–182, 1967.

[6] K. Horák, Q. Zhu, and B. Bošanskỳ. Manipulating adversary’s belief: A dynamic game
approach to deception by design for proactive network security. In International Conference
on Decision and Game Theory for Security, pages 273–294. Springer, 2017.

[7] C. Kiekintveld, V. Lisỳ, and R. Pı́bil. Game-theoretic foundations for the strategic use of
honeypots in network security. In Cyber Warfare, pages 81–101. Springer, 2015.

[8] L. Li and J. Shamma. Lp formulation of asymmetric zero-sum stochastic games. In 53rd
IEEE Conference on Decision and Control, pages 1930–1935. IEEE, 2014.

[9] V. Lisỳ, R. Zivan, K. Sycara, and M. Pěchouček. Deception in networks of mobile sensing
agents. In Proceedings of the 9th International Conference on Autonomous Agents and
Multiagent Systems: volume 1-Volume 1, pages 1031–1038, 2010.

[10] J. Nash. Non-cooperative games. Annals of mathematics, pages 286–295, 1951.

[11] T. Nguyen and H. Xu. Imitative attacker deception in stackelberg security games. In IJCAI,
pages 528–534, 2019.

[12] T. H. Nguyen, Y. Wang, A. Sinha, and M. P. Wellman. Deception in finitely repeated secu-
rity games. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33,
pages 2133–2140, 2019.

[13] J. Pawlick, E. Colbert, and Q. Zhu. Modeling and analysis of leaky deception using sig-
naling games with evidence. IEEE Transactions on Information Forensics and Security,
14(7):1871–1886, 2018.

17

[14] R. Pı́bil, V. Lisỳ, C. Kiekintveld, B. Bošanskỳ, and M. Pěchouček. Game theoretic model
of strategic honeypot selection in computer networks. In International Conference on De-
cision and Game Theory for Security, pages 201–220. Springer, 2012.

[15] S. Sengupta and S. Kambhampati. Multi-agent reinforcement learning in bayesian stackel-
berg markov games for adaptive moving target defense. arXiv preprint arXiv:2007.10457,
2020.

[16] L. S. Shapley. Stochastic games. Proceedings of the national academy of sciences,
39(10):1095–1100, 1953.

[17] D. Sincák. Multi–robot control system for pursuit–evasion problem. Journal of electrical
engineering, 60(3):143–148, 2009.

[18] R. Vidal, S. Rashid, C. Sharp, O. Shakernia, J. Kim, and S. Sastry. Pursuit-evasion games
with unmanned ground and aerial vehicles. In Proceedings 2001 ICRA. IEEE International
Conference on Robotics and Automation (Cat. No. 01CH37164), volume 3, pages 2948–
2955. IEEE, 2001.

[19] Y. Yin, B. An, Y. Vorobeychik, and J. Zhuang. Optimal deceptive strategies in security
games: A preliminary study. In Proc. of AAAI, 2013.

[20] J. Zhuang, V. M. Bier, and O. Alagoz. Modeling secrecy and deception in a multiple-
period attacker–defender signaling game. European Journal of Operational Research,
203(2):409–418, 2010.

18

	Introduction
	Related Work
	Technical Approach
	Problem Formulation
	Nash Equilibrium and Bayesian Nash Equilibrium
	Attacker Strategy and Belief Update
	Deceptive Planning
	Game Tree Sampling

	Results
	Conclusion and Future Research

