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Abstract

Ability to predict outcomes and forecast trajectories of recovery from
resuscitated intensive care patients could guide treatment decisions and
improve outcomes of care in both clinical and field settings. We de-
velop a machine learning driven cyber-physical model to provide such
predictive capabilities by leveraging arterial blood pressure (ABP) wave-
forms, one of the routinely collected vital signs. A cohort of 51 Yorkshire
pigs was subjected to induced slow rate hemorrhage followed by fluid
resuscitation. To represent physics of the arterial system and emulate
blood pressure dynamics, we combine a two-element Windkessel model
with an Unscented Kalman Filter (UKF) to track the instantaneously
estimated Windkessel parameters over time. As the arterial pressure
waveform exponentially decays during diastole after each pump, we use
UKF-tracked Windkessel parameter estimates to identify time windows
of ABP waveforms taken from other subjects in the cohort to reconstruct
the shapes of the test subject’s ABP signal and its moving average. We
allow UKF covariance to temporarily increase to account for the effects of
treatment such as administering norepinephrine. When evaluated under
leave-one-subject-out cross-validation protocol, the model stays within
14+/-5% (mean+/-standard deviation) of mean absolute percentage error
when reconstructing the current 250Hz ABP waveforms, and 19+/-6%,
24+/-6%, and 25+/-6% when forecasting at 5, 15 and 30 minute horizons,
respectively. Our results demonstrate feasibility of using cyber-physical
modeling of hemodynamic waveform data to predict trajectories of resus-
citation and therefore timely inform treatment of hemorrhagic patients
in both clinical and prolonged field care settings. We also provide a few
thoughts for future work, including potential improvements attainable by
calibrating neighbor selections and model predictions to the individual
subject baselines to improve handling heterogeneity of the subjects, on-line
tracking of model performance to estimate confidence in its predictions in
real-time, and forecasting eventual outcomes of resuscitation as well as
time-to-recovery for those subjects who are likely to recover, to name a
few such ideas.
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Chapter 1

Introduction

The Windkessel model is a lumped model of the heart’s arterial system. Based on

simple differential equations, it uses electrical circuit analogs that have physiological

meanings to express in simple, interpretable terms the complex system of blood flow,

blood pressure, organ volume, and other components that dictate blood circulation

through and around the heart. Simple models such as the arterial Windkessel have

proven to be practical in tracking patients’ health in clinical settings [11].

The most basic of the Windkessel models, the two-element model, represents the

arterial system with a single resistance and a single compliance element, with the

heart pumping blood acting as a current source. Its electric circuit analog is shown

in Figure 1.1 and simulates the system’s blood pressure dynamics. This model, when

given a pulsed current, represents the arterial pressure waveform as an exponential

decay in diastole, the period of the heartbeat in which the heart relaxes after a pump

[12].

The Windkessel model parameters can be used as a means to determine values

commonly used in clinical practice such as cardiac output, though their own physio-

logical significance can be telling of the state of the cardiovascular system. Arterial

resistance R represents resistance to blood flow in small blood vessels. It captures the

relation between the pressure drop across a blood vessel and the flow going through

it. Total peripheral resistance captures this feature across the entire vascular bed of

blood vessels leaving the heart. Arterial compliance C relates the change in volume of

a blood vessel for a given change in pressure. Smaller arteries are less compliant than

1



CHAPTER 1. INTRODUCTION

Figure 1.1: The two-element Windkessel model circuit analog. The heart acts as a
current source producing cardiac output, with the larger arteries expanding as blood
is pumped through them due to their compliance and the smaller vessels providing
resistance to blood flow.

larger ones, and the majority of the system’s compliance is found in the proximal

aorta, the head vessels, and the upper limb vessels [8].

Different numerical methods have been used to solve for the Windkessel parameters.

Methods such as subspace model identification [3, 6] and least squares [1] have been

used to solve many variations of two-, three-, and four-element Windkessel models

with offline data, but have struggled with tracking data in real-time. Kalman filters

[9, 14], particularly the unscented Kalman filter, have had success with real-time

tracking, both in regards to convergence time and value accuracy [4].

There exist many cardiac predictive modeling techniques using hemodynamic

parameters such as the Windkessel parameters. Recently, deep neural networks have

been trained on physics-based Windkessel systems and used to predict blood flow

and pressure [7], among other parameters [13]. Other more traditional regression

techniques, such as support vector and random forest regression, have also been used

to calculate hemodynamic characteristics [2].

This thesis research sought to study the efficacy of using the two-element Wind-

kessel model parameters as indicators of health similarity and to use these similarities

to reconstruct the health trends of pigs recovering from severe blood loss. This paper

will be organized as follows. Chapter 2 will outline the methods used for calculating

the Windkessel parameters and using them for arterial pressure regression. Chapter

3 will present and discuss the results of this research. Chapter 4 will summarize the

findings and discuss future work.
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Chapter 2

Methods

The data used in this research was taken from 51 adult female Yorkshire pigs [10].

Each dataset was taken from a three-phase, several-hour-long experiment intended

to obtain vital sign data before, during, and after induced hemorrhagic shock and

the ensuing resuscitation. After undergoing surgery to install a pulmonary artery

catheter and other sensors, each pig was rested for the first 30 minute phase to

monitor its vitals and establish corresponding baseline readings. The second phase

consisted of the bleed phase. 15 pigs were bled at 5 mL/min until they reached a

mean arterial pressure of 40 mmHg, and the remaining pigs were bled at a faster rate

of 20 mL/min until reaching a mean arterial pressure of 30 mmHg. The third and

final phase was the resuscitation phase. The pigs were stabilized with resuscitation

fluids and monitored as their vital signs returned to the healthy ”normal” established

in their respective baselines before being euthanized.

The original vital signs data was sampled at 250 Hz and contains the following

attributes: time, arterial pressure, continuous cardiac output, central venous pressure,

pulmonary artery pressure, arterial oxygen saturation, its corresponding plethysmo-

graphic waveform and electrocardiography tracings, mixed venous oxygen saturation,

and the outside air pressure.

Accompanying the numerical data were annotations written by the physicians

performing the experiments. These annotations contained information such as when

different phases of the experiments began and ended, when fluids or medication doses

were given, and when the pigs began to crash, among others.
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CHAPTER 2. METHODS

The only vital signs that were studied as part of this research were arterial

pressure and continuous cardiac output, as these were the minimum necessary for

the Windkessel model described in the next section. Time and its accompanying

annotations were used to monitor when different phases of the experiments began

and ended and when medical interventions occurred. To reduce the size of the data,

as each CSV file pertaining to each pig contains several hundred thousand entries,

and remove some of the noise, the vital sign data was downsampled to the median of

every 5 entries, resulting in a final sampling rate of 50 Hz. Time was downsampled

to every fifth entry.

2.1 Two-Element Windkessel Model

The circuit in Figure 1.1 was solved to determine the characteristic equations for the

two-element Windkessel model. Continuity of flow gives

dV (t)

dt
= Q(t)−Qout(t) (2.1)

where V (t) is the volume of blood flowing through the artery, Q(t) is cardiac output

and is acting as the current source, and Qout(t) is the flow through the arterioles,

represented by the resistor. Considering the flow through the resistor R and its

corresponding pressure drop P (t) yields

Qout(t) =
P (t)

R
(2.2)

The total arterial compliance C is defined as the ratio of the arterial system’s volume

change to its pressure change,

C =
dV (t)

dP (t)
(2.3)

Combining these above relations yields the governing equation for the current

flow, the cardiac output, of the two-element Windkessel model:

Q(t) = C
dP (t)

dt
+
P (t)

R
(2.4)

Equation 2.4 was then rearranged to solve for the rate of change of the arterial
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CHAPTER 2. METHODS

pressure, giving

dP (t)

dt
=
Q(t)− P (t)

R

C
(2.5)

for each C and R value at time t. Lastly, using Euler’s method to account for

discretized data, the following update equation was formed:

Pk+1 = Pk + dt
Qk − Pk

R

C
(2.6)

for each time step k and a constant sampling rate dt. Equation 2.6 served as the

state equation for the Kalman filter detailed in the next section, with the arterial

pressure and cardiac output being the input values for the characteristic equation of

the two-element Windkessel model.

Three major assumptions were made in this research. Firstly, Windkessel models

are typically used to model the heart, particularly its pressure, during diastole, the

half of the heartbeat when the heart relaxes after having pumped out blood. However,

as the purpose of the Kalman filter was to calculate the Windkessel parameters

given the pressure and cardiac output over many heartbeats, the above relation was

assumed to hold true during the entire heartbeat process to avoid having to isolate the

data pertaining to the latter half of every heartbeat. Secondly, the data studied does

not supply an instantaneous cardiac output measurement, instead giving an average

estimate over a short period of time. Because no other more accurate measurement

was available, this average value had to be used. Therefore, the cardiac output in the

data was assumed constant across the entire heartbeat. This was also reflected in the

state update for the Kalman filter below in Equation 2.6, as only the pressure value

is updated using the two-element model. Thirdly, the two-element model requires

aortic pressure, which was not available directly. However, it could be approximated

by the arterial pressure, the closest measurement available, so this value was used

instead.

2.2 Unscented Kalman Filter Design

A Kalman filter was used to calculate the Windkessel parameters at each time step

in the baseline and resuscitation phases of the experiments because of its ability to

5



CHAPTER 2. METHODS

track and respond to changes in a dynamic system. This research used an Unscented

Kalman filter (UKF) following the method proposed by Huang et al [4].

The UKF takes a state vector xk, observation vector yk, and input vector uk at

time k and models a dynamic system as:

xk+1 = f(xk,uk) + wk

yk = h(xk) + vk

(2.7)

where f(·) and h(·) are the state and observation functions and wk and vk are the

process and measurement noises, respectively. The objective of the filter is to estimate

the state xk given the observation yk.

The UKF requires 2n sigma points to approximate the distribution of the state

vector as a random variable, where n is the total number of states to be estimated

[5]. There are many ways to generate sigma points. The way used in this method

uses a symmetric set unscented transform and is given by the following expressions:

sik−1 = x̂+
k−1 +

(√
nP+

k−1

)T

i

, i = 1, ..., n

sn+i
k−1 = x̂+

k−1 −
(√

nP+
k−1

)T

i

, i = 1, ..., n

(2.8)

where (
√
·)i is the ith row of the matrix square root, and x̂+

k−1 and P+
k−1 are the a

posteriori state estimate and covariance at time k − 1, respectively.

These sigma points are propagated through the state function, given above in

Equation 2.6, averaged, and used to calculate the state covariance, giving,

sik = f(sik−1,uk)

x̂−k =
1

2n

2n∑
i=1

sik

P−k =
1

2n

2n∑
i=1

(sik − x̂i
k)(sik − x̂i

k)T + Qk−1

(2.9)
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CHAPTER 2. METHODS

where x̂i
k and P−k are the a prior state estimate and covariance, respectively, and

Qk−1 is the covariance associated with the process noise.

Next, the predicted observation ŷk, innovation covariance Py, and cross covariance

Pxy are found using:

ŷk =
1

2n

2n∑
i=1

h(sik)

Py =
1

2n

2n∑
i=1

(h(sik)− ŷi
k)(h(sik)− ŷi

k)T + Rk

Pxy =
1

2n

2n∑
i=1

(sik − x̂i
k)(h(sik)− ŷi

k)T

(2.10)

Rk is the covariance associated with the measurement noise.

Lastly, the Kalman gain and measurement and covariance update equations are

given by:

Kk = PxyP
−1
y

x̂+
k = x̂−k Kk(yk − ŷk)

P+
k = P−k −KkPyK

T
k

(2.11)

The new a posteriori state estimate x̂+
k - which contains the C and R values - are

recorded, and it along with the new a posteriori state covariance matrix P+
k are then

used as inputs for the following step of the Kalman filter in the next time step.

The continuous-time governing equation in Equation 2.5 can be discretized - for

discrete time data - to give the update rule in Equation 2.6, and thus the UKF must

be adjusted accordingly. The state function was instead adjusted to ẋ = f(x, θ,u),

where ẋ is the time derivative of the continuous-time state variable, and θ is the

additional model parameters, C and R, following Equation 2.5. Therefore, the

following extended model for the UKF was used:

x′k+1 =

(
xk+1

θk+1

)
=

(
xk + f(xk, θk,uk)dt

θk

)
(2.12)
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CHAPTER 2. METHODS

The state vector xk was [Pk, Qk], the arterial pressure and cardiac output values at

time k; the extended state parameters vector θ was [Ck, Rk], the arterial compliance

and peripheral resistance values calculated at that time; and the observation vector

yk was Qk, the cardiac output.

Because this UKF method generates an arterial pressure prediction at each time

step, along with its calculations for C and R, it was also used as a comparison for the

predictive model described in the next section. The root mean square error (RMSE)

and mean absolute percentage error (MAPE) between the actual arterial pressure

values and those output by the filter were calculated and compared.

This research also studied the effect of adjusting variance around times of drastic

external changes to the system. To aid the filter in its ability to capture changes in

the system quickly, the process noise estimate was increased at and around times of

moderate to severe medical intervention. The process noise covariance was increased

for 1000 consecutive data points, the equivalent of 20 seconds, for times listed in the

annotations when norepinephrine doses were injected or changed, and when CPR

occurred. This 20 second window was chosen somewhat arbitrarily as a time period

long enough for noticeable changes to occur and propagate throughout the system, yet

short enough to isolate the disturbance, though there is certainly room to experiment

with and optimize this time window duration. For the sake of simplicity, this research

limited the studied medical interventions to just the cases of the application of

norepinephrine and CPR, though a few others were listed in the annotations and

could potentially be further investigated. The increased covariance was used for 500

data points prior to the time listed in the annotations, to allow for a buffer for any

discrepancies between the listed time and actual time of the intervention, and for 500

data points afterward, to allow time for the change in the system to take effect. We

did not have capacity to study effects of the specific settings of these assumptions for

this report, but these topics should be investigated further in the future work.

This system, like most other Kalman filters, was extremely sensitive to both initial

state values and noise values [in vitro 10], and several design iterations of the filter

had to be tested before values that functioned for all the several dozen unique and

diverse pigs were settled upon. The initial state estimate x−k used was the means of

the arterial pressure and cardiac output values for the entire resuscitation for each

pig. The initial state covariance P−k was set as a diagonal matrix with the variance

8



CHAPTER 2. METHODS

of the arterial pressure along its diagonal. The measurement noise covariance Rk

was set as the variance of the arterial pressure. While the two initial state estimates

and measurement noise covariance varied per pig, being functions of their unique

data, the process noise covariance matrix Qk was fixed for all pigs and was set to[
500 0

0 500

]
normally, and increased to

[
500 0.0001

0.0001 500

]
during medical intervention

phases.

2.3 Regression Using Dynamic Time Warping

The utility of using the calculated Windkessel parameters as similarity metrics in

predicting the health trends of a recovering pig was also investigated. In order to

begin testing this query, firstly, after the Windkessel parameters of each pig’s baseline

and resuscitation phases were found, the mean and standard deviations of the baseline

phases were used to normalize the resuscitation phase time series values. This assured

that each resuscitation was personalized by its baseline, which was previously found

to substantially reduce the effects of subjectivity between hemodynamic presentation

of patients in critical care [10].

The next step was to attempt to reconstruct a test pig’s arterial blood pressure

waveform during its resuscitation phase. Any of the other vital signs provided could

have been reconstructed, but this research focused on arterial pressure because it

was one of the two vital signs used and predicted in the UKF implementation, and

because it is, in medical practice, easier to obtain than cardiac output, the other vital

sign used in the UKF. Rather than attempt to reconstruct an entire resuscitation’s

pressure time series of tens of thousands of data entries all at once, this research

focused on reconstructing much smaller periods, one at a time. Each normalized

episode of resuscitation was broken up into non-overlapping windows of 100 entries

each, or 2-second-long windows. Each data entry consisted of two values: the C and

R values for the pig at that time step. For each window of one test pig, n similar

neighbors of windows from other pigs at some point in their respective resuscitations

were chosen by minimizing a distance criterion. Various techniques were used to group

the normalized C and R values such K-nearest neighbors and Dynamic Time Warping

(DTW) with a Euclidean distance metric. The latter was chosen as producing the

9
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best results.

Once the n most similar neighbors for the given window were selected, DTW

was used to align the pressure waveforms corresponding to that window of the n

neighbors to the pressure waveform of the test pig. The mean of these n waveforms

was taken as the predicted pressure profile for the test pig, and the model moved

on to the next window and selected a new set of similar pigs, reconstructing the

test pig’s entire resuscitation phase window by window. Both the predicted pressure

waveforms and a smoothed average pressure time series, using a sliding window

average, were studied and compared to the original data in a leave-one-subject-out

validation scheme. The RMSE and MAPE between the actual and predicted pressure

waveforms were also studied and compared to those calculated by the UKF. Different

values for the number of other pigs chosen per window were tried before n = 7 was

settled upon as producing the best results the most consistently.

The same neighbors can be used to construct forecasts of the arterial blood

pressure waveforms. In the next section, we include results computed for 5, 15, and

30 minute forecast horizons. These time spans have been selected to fit the typical

scenarios of resuscitation, patient monitoring, and clinical decision making in the

fast-paced critical care settings.

10



Chapter 3

Results and Discussion

All test pigs that did not crash had converging and stable arterial compliance C and

peripheral resistance R values using the UKF, though the filter took longer for some

pigs to reach stability than for others. The UKF caused an initial large spike in one

or both Windkessel parameters for most pigs before stabilizing; pigs whose values

took longer to settle experienced an additional small number of peaks in the first few

minutes of resuscitation data. This is likely due to the tendency of the UKF to have

large initial errors in practice [4].

The majority of pigs converged to the same range of C and R values once they

reached their stable baseline or near-baseline health levels in the latter stages of their

resuscitations. The C values converged to 0.5 mL/mmHg on average and R values

to 0.5 mmHg·s/mL on average, though distributions of the two shown in Figure 3.2

show that there was a comparatively smaller yet noticeable cluster of secondary C

convergence values at 9.7 mL/mmHg. The pigs from the 5 mL/min bleed group had

peaks at 0.5 mL/mmHg and 0.5 mmHg·s/mL, and the pigs from the 20 mL/min bleed

group had slightly different peaks at 0.6 mL/mmHg and 0.6 mmHg·s/mL. Its ability

to reconstruct the arterial pressure waveforms was also investigated by calculating

the RMSE and MAPE between each time step’s predicted value and the actual value.

Across all pigs that did not crash, the average RMSE was 5.49 mmHg, and the

average MAPE was 6.19%. An example is shown in Figure 3.3, depicting both several

individual heartbeats of and smoothed averages of the actual pressure waveforms and

those predicted by the filter, in which the UKF is able to reconstruct each successive
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pressure value very well. This is expected due to the high sampling frequency of the

data used in the filter, as the filter predicts each state a small amount of time in the

future.

Increasing the variance around points of medical interventions either had little

to no noticeable effect in revealing sudden value changes, such as in the arterial

compliance plot in Figure 3.1, or revealed a sudden change in one or both of the

Windkessel parameters, as seen in the accompanying peripheral resistance plot. Plots

showing the calculated Windkessel parameters for the same specimen (pig 6 from the

5 mL/min bleed group) without increased variance during its medical interventions

are shown in Figure 3.4. There is a slight change in the trend followed by the arterial

compliance between the constant and adjusted variance scenarios, but the values

largely remain the same. The peripheral resistance without the adjusted variance,

however, shows a much more gradual decay to the value it eventually settles at and

shows no major immediate changes due to the external influence, the administered

norepinephrine dose. Comparing the two scenarios indicates that the increased

variance allowed the filter to react more quickly to this change in the pig’s system

Figure 3.1: Arterial compliance C (left) and peripheral resistance R (right) for pig
6 from the 5 mL/min bleed group. This pig experienced a norepinephrine dose at
around 23,000 seconds, causing the filter to increase its variance around that time.
Its arterial compliance values did not appear to change much in response to this
disturbance, but its peripheral resistance suddenly dipped.
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Figure 3.2: The distributions for the calculated C (left) and R (right) values. Arterial
compliance has peaks at 0.5, 9.7, and 20.2 mL/mmHg. Peripheral resistance has one
major peak at 0.5 mmHg·s/mL and two smaller peaks at 10.9 and 19.9 mmHg·s/mL.

Figure 3.3: Predicted and actual pressure waveforms and smoothed average pressure,
calculated from the Unscented Kalman Filter, from the resuscitation of pig 6 from
the 5 mL/min bleed group. Because the data sampling rate is high, the UKF is able
to calculate the next pressure value in the time series with high accuracy. The RMSE
across the entire resuscitation was 3.17 mmHg, and the MAPE was 5.06%.

and adjust the peripheral resistance accordingly. About a third of the pigs showed

behavior in one or both of their Windkessel parameters similar to this latter case.

13
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Though the pigs used in these bleed experiments were chosen and raised to be as

similar as possible, that there was such disparity in the effects of the increased

variance reveals an interesting insight into how different these seemingly homogeneous

specimens are from each other when responding to medical trauma.

Because of the large number of test pigs and their apparent heterogeneity, coupled

with the observed sensitivity of this filter, it was difficult to find optimal variances

for each unique pig, and so the same standard and increased variances were used for

all of them. This may have negatively affected the efficacy of the adjusted variance

method altogether, as some pigs may have responded better to a higher variance

and others better to a lower variance. For example, the arterial compliance for pig

6 from the 5 mL/min bleed group may have also had a sudden change in value

that the filter could not capture with the increased variance used. This apparent

diversity should be studied further as it has a potential to help characterize response

to interventions at the individual patient levels, given that accurately predicting and

rapidly characterizing such response is one of the key challenges in clinical practice,

especially in fast-paced critical care settings.

For every consecutive 100 data entry, 2-second-long window throughout a test

pig’s resuscitation, the n most similar pigs to the test pig in that window were selected

by minimizing distances between Windkessel parameters using DTW and a Euclidean

distance metric. Pigs from both bleed groups (5 mL/min and 20 mL/min) were used

when selecting similar pigs. Their arterial pressure waveforms were then aligned

to the test pig’s waveform via DTW and averaged to produce pressure waveform

predictions. A small section of the actual and predicted pressure waveforms are shown

in Figure 3.5.

Both the original and predicted pressure waveforms were also averaged over time

using a sliding window to create a smoothed average pressure plot to compare how

well the predicted average arterial pressure matched that of the original both in value

and in trends. A comparison of the average arterial pressures over the course of the

resuscitation are shown in Figure 3.6. The root mean square error (RMSE) and mean

absolute percentage error (MAPE) between the predicted and actual pressure values

were calculated to serve as performance metrics for the model. The average RMSE

was 11.56 mmHg, and the average MAPE was 13.93%.

The pressure waveforms and averaged pressure plots show the weaknesses and
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Figure 3.4: Comparisons of the arterial compliances C (left column) and peripheral
resistances (right column) for pig 6 from the 5 mL/min bleed group. The top
row shows the parameters calculated with increased variance due to the medical
intervention (the norepinephrine dose), and the bottom row shows the results without
increased variance. There is little change between the two compliance series, with only
slight changes in trends, and the two cases remain at and converge to the same values.
However, the increased variance clearly produces a drastic change in resistance that
is not captured when the intervention is ignored, though both resistances converge to
the same values.

strengths of this predictive model. It struggles with consistently recreating the original

waveforms with their accurate pressures, notably at the peaks and valleys of each
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Figure 3.5: Predicted and actual pressure waveforms for a small time period from
the resuscitation of pig 56 from the 20 mL/min bleed group. The left image shows
general predicted and actual arterial pressure trends over a window of about 10
seconds, and the right image isolates three heartbeats to view closer detail of the
predicted waveform’s fit. DTW allows predicted and actual heartbeats to be aligned,
but the predicted values often significantly overshoot the actual values at the peaks
and valleys of each heartbeat.

heartbeat. Figure 3.5 shows that the predicted waveforms can significantly overshoot

the actual pressure values. However, the model is able to reproduce the average

pressure decently well, particularly the pressure trends. The predicted values in

Figure 3.6 align with many of the small peaks and dips in the actual pressure values,

especially in the early and later stages of the resuscitation, despite having occasional

random spikes and under- or overshooting the actual average values. It is possible

that some of these discrepancies could be reduced by independently calibrating model

predictions on a set-aside small sample of test pig data, perhaps collected during the

stable period before the bleeding experiment start, or at the very beginning of the

resuscitation process. Due to time constraints, this intriguing question had to be left

for future research.

The majority of the pigs had performances well within a standard deviation of

average values outlined in Table 3.1, though the model performed noticeably worse on

some pigs than on others. The UKF occasionally output large spikes in Windkessel

parameter values that, in a few select cases, aligned with large arterial pressure spikes,
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Figure 3.6: Predicted and actual pressure waveform averages over the course of the
resuscitation of pig 56 from the 20 mL/min bleed group. The predicted values follow
the trends of the actual values, especially in the latter half of the resuscitation, despite
a few random peaks and dips. However, the model is unable to capture the large
pressure spike early in the resuscitation. The RMSE across the entire resuscitation
was 12.01 mmHg, and the MAPE was 9.17%.

as seen in the plots in Figure 3.7. However, the majority of these Kalman filter spikes

are placed randomly and do not align with pressure spikes. We have not yet fully

determined the sources of these large value spikes generated by the UKF, though

the behavior visually indicates a ramp in value caused by poorly tuned variance

values in the filter for those few pigs in particular. These drastic ramps in Windkessel

parameter values resulted in poorer predictions matching neither in value nor trend

to the actual pressure values, as few other pigs had Windkessel parameters that

behaved similarly at that point in their resuscitations. These abnormalities in the

results further show that the pigs used in the bleed experiments can differ enough to

produce unusual results even though they were raised to be as similar as possible. A

promising circumstance is that by noticing proximity of neighbors selected for making

predictions for the current patient, we could flag predictions with less than favorable

support of evidence from close enough peers.

17



CHAPTER 3. RESULTS AND DISCUSSION

Many of the pigs experienced large spikes in arterial pressure in their resuscitations,

such as those seen in Figure 3.6 and 3.7, for unknown reasons. The model is

unable to capture and replicate these large spikes. This is likely due to the UKF-

generated Windkessel parameters not changing accordingly to reflect those spikes in

a meaningful way. Because the cardiac output as measured and presented in the data

is an average estimate as opposed to an instantaneous measurement, it rarely has

large jumps aligning with those in the pressure data, which may affect the accuracy

of the calculated Windkessel parameters at those pressure peaks. Moreover, the

physician annotations for the data rarely mention anything at or near these peaks

(the norepinephrine dose proceeding the spike in Figure 3.6 is a rare exception), so

they cannot be relied upon to adjust the variance manually and aid the filter change

quickly to these disturbances in the system. However, since the manual adjustments

do improve the regression results, it is entirely possible that adjustments implemented

at these spikes - if their onset is known or can be estimated ahead of time - could

improve the model.

Other attempts were made using only one of the Windkessel parameters, either

arterial compliance or the peripheral resistance, to select similar pigs. This was done

to investigate if one parameter were more indicative of the health of the pig than the

other or than both used together. To compare each similarity selection method, the

RMSE and MAPE computed with the test pig’s arterial pressure and the respective

predicted pressures for the entire resuscitations were compared and averaged across

all pigs that did not crash. These are summarized in Table 3.1 and Table 3.2. With

regards to RMSE, on average across all pigs, using only the peripheral resistance

provided the best prediction results of the three methods with an average RMSE of

11.52 mmHg, though the differences in errors across all of the pigs are slight, with

using both compliance and resistance giving 11.56 mmHg and only compliance giving

11.63 mmHg. Using both Windkessel parameters gives the best average MAPE at

13.93%. For comparison, the UKF had errors about half these values, with an average

RMSE of 5.49 mmHg and MAPE of 6.19%. Performances for pigs from just the 5

mL/min group and just the 20 mL/min group were similar across both groups, which

may be because the model does not use data from the bleed portion of the experiment,

though it may also indicate that the rate of blood loss does not affect the Windkessel

parameters enough to have an effect on this model. However, the model on average
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performed worse for pigs from the 5 mL/min bleed group in both RMSE and MAPE.

Average RMSE of all pigs
Bleed Group Both C and R [mmHg] C [mmHg] R [mmHg]

All pigs 11.56 11.63 11.52
5 mL/min 12.40 12.10 12.45
20 mL/min 11.19 11.42 11.11

Std. Dev. 3.39 3.81 4.05
Var. 11.47 10.39 14.53

Table 3.1: The average RMSE when predicting arterial pressure for the entire
resuscitation and selecting similar pigs based on combinations of the Windkessel
parameters. Using only the peripheral resistance provides the best results for all
pigs by a slight margin, though all three methods provide comparable results. The
averages are also shown for pigs only from the 5 mL/min and 20 mL/min bleed
groups, as are the standard deviations and variances for all pigs from both combined
groups.

Average MAPE of all pigs
Bleed Group Both C and R [%] C [%] R [%]

All pigs 13.93 14.41 14.11
5 mL/min 15.36 15.25 15.78
20 mL/min 13.31 14.04 13.34

Std. Dev. 5.25 5.52 6.31
Var. 0.28 0.30 0.40

Table 3.2: The average MAPE when predicting arterial pressure for the entire
resuscitation and selecting similar pigs based on combinations of the Windkessel
parameters. Using both the arterial compliance and peripheral resistance provides
the best results for all pigs by a slight margin, though all three methods provide
comparable results. The averages are also shown for pigs only from the 5 mL/min
and 20 mL/min bleed groups, as are the standard deviations and variances for all
pigs from both combined groups.

Pigs that crashed were excluded from the group calculations of model performance

because the model was completely unable to capture the steeply decreasing arterial

pressure trends, as seen in Figure 3.8. 6 such pigs were removed from the average

RMSE and MAPE calculations as all had over double their respective average values.

It may be possible to train separate Kalman filters and DTW regressors, or to use
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discrepancies between our model predictions and actually measured blood pressure

trends on these subjects to be able to predict which pigs and when will crash, but no

such attempts were made due to time constraints and the small number of examples.

To test the validity of increasing the variance of the UKF when calculating

the Windkessel parameters, additional experiments were done in which no changes

to the filter were made during medical interventions, and these newly calculated

Windkessel parameter time series were used for the same arterial pressure regression

method detailed above. The RMSE across all resuscitations of using both Windkessel

parameters when selecting similar pigs and with no changes due to interventions was

12.86 mmHg, and the corresponding MAPE was 14.69%, larger errors than all other

attempts in which medical interventions were taken into account. Though the error

increase is slight, this does suggest that altering the dynamic system in the UKF

due to extreme external influences better reflects medical changes in the pigs and

provides better similarity criteria, and that further refinement of acknowledging these

external influences in the filter, and perhaps also in the regressor, could provide better

regression results. The results for all test pigs used, excluding pigs that crashed, are

shown in Table A.1.

In addition to reconstructing arterial pressure waveforms, the model’s ability

to forecast a test pig’s arterial pressure was investigated. For every 2-second-long

window, the n most similar neighbors were selected using both Windkessel parameters

as already described, including the increased variance due to medical interventions,

and those pigs’ waveforms from a certain amount of time in the future were combined

to forecast how the test pig’s arterial pressure would change. Each window and its

similar pigs were used to forecast the test pig’s arterial pressure 5, 15, and 30 minutes

in the future. An example of a smoothed average 5-minute forecast is shown in Figure

3.9. The RMSE and MAPE are 18.70 mmHg and 26.59% for the 5-minute forecast,

19.46 mmHg and 27.74% for the 15-minute forecast, and 19.55 mmHg and 28.20% for

the 30-minute forecast.

Each method, like the original reconstruction model, is able to forecast the general

pressure trends decently well. Because of time constraints, further refinement of the

forecasting method could not be investigated. However, that the model is able to

forecast the pressure trends significant amounts of time into the future is a promising

result and shows that given more time and research, models such as this can be
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utilized in care settings to forecast a patient’s vital sign trends and responses to

treatment.

Despite the inability to track extremely large and sudden spikes in pressure and

the occasional random peaks and dips in its predictions, that the model is able to

track and forecast the average arterial pressure trends well shows that the health

trends of pigs with similar Windkessel parameters can be indicative of each other.

Moreover, it shows that predictive accuracy can be increased by manually accounting

for periods of moderate to severe medical intervention. This model uses only a simple

distance metric when selecting similar pigs based on their Windkessel parameters.

Had other selection criteria been implemented, such taking into account the presence

or absence of medical interventions or weighting the pressure data of the selected

pigs by some similarity factor to the test pig, the predicted pressure values may have

shown more refinement and closer similarities to the original.
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Figure 3.7: Arterial compliance C (upper left) and peripheral resistance R (upper
right) for pig 33 from the 20 mL/min bleed group, and its corresponding predicted and
actual pressure waveform averages (bottom). The spikes in compliance and resistance
values seem to match the first large spike in arterial pressure, though most other pigs
with similar pressure spikes did not have corresponding Windkessel parameter spikes.
These abnormally large compliance and resistance values around the 14,000 second
mark caused the regression model to perform poorly at that time as there were few
other pigs that behaved similarly at that stage in their resuscitations. Interestingly,
the Windkessel parameter values show small increases in value at the 18,000 second
mark, seemingly corresponding to the second large arterial pressure spike. The RMSE
across the entire resuscitation was 16.61 mmHg, and the MAPE was 10.79%.
22



CHAPTER 3. RESULTS AND DISCUSSION

Figure 3.8: Predicted and actual pressure waveform averages for pig 18 from the
20 mL/min bleed group. This pig was unable to be resuscitated as indicated by
the numerous CPR interventions near the end of the data available. The model is
unable to predict the arterial pressure values for pigs that crash like this. The RMSE
across the entire failed resuscitation was 28.86 mmHg. Note that these substantial
mismatches are included in the results reported, diminishing overall performance
metrics, even though these cases are relatively easy to identify and exclude. Note also
that we could track discrepancy between predicted and actual values of arterial blood
pressure and use these residuals to build detectors that could issue early warnings
about patients trending towards significant health crises.
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Figure 3.9: Forecasted and actual pressure waveform averages over the course of the
resuscitation of pig 30 from the 20 mL/min bleed group when the model attempts
to forecast 5 minutes into the future. The forecasted values follow the trends of the
actual values, though they seem to be shifted forward slightly as seen in the several
larger pressure peaks in orange appearing later than their respective peaks in blue.
The RMSE across the entire resuscitation was 11.93 mmHg, and the MAPE was
12.96%.
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Chapter 4

Conclusions and Further Work

This research sought to calculate the two-element Windkessel parameters and use them

to predict arterial pressure over the course of the resuscitation of a pig recovering from

severe blood loss. An Unscented Kalman Filter was used to calculate the Windkessel

parameters and reconstruct the arterial pressure waveforms of each pig with high

accuracy. It was also able to track the dynamic system of the pigs’ health using

manually adjusted variances with moderate success, being unable to track large spikes

in arterial pressure without corresponding trends in cardiac output or mentions of

causes by the physicians performing the experiments. Dynamic Time Warping was

used to select pigs similar to a test pig using a Euclidean distance metric and combine

their pressure waveforms into a prediction of the test pig’s arterial pressure over the

course of its resuscitation. This predictive model was able to follow the overall trends

of the test pig’s average arterial pressure, though it was unable to predict large spikes.

It was also shown that adjusting the variance in the Kalman filter during medical

interventions produced better overall predictive accuracy than when these external

influences to the system were ignored. Moreover, in addition to reconstructing the

original pressure waveforms successfully, this model was also able to forecast the

pressure trends of the test pigs several minutes into the future. This model has set

the framework for predictive health modeling using the Windkessel model parameters

as similarity features.

This work set the basis for an analytic algorithm for predicting a patient’s recovery

from medical trauma and their response to treatment using a simple physical heart
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model that many physicians are familiar with. Though it focused only on predicting

the arterial blood pressure, which in of itself is a highly useful vital sign for physicians

to monitor, other implementations of similar models could be used to predict other

vital signs as well. A further developed model would be incredibly valuable in both

hospital and field critical care settings, particularly models that could be trained

and tuned on data with a wide variety of common medical interventions, and as

such could be tailored to specific medical applications. Predictive models such as

this could alert physicians to evolution of patients’ health seen through the lens of

high frequency vital signs, and what their expected outcomes are and could therefore

greatly aid in the division of care and resources in bustling and fast-paced medical

settings.

There are several directions this research can be taken next. Further studies could

be done on the utilization of a Kalman filter to track changes in the Windkessel

parameters more accurately, particularly during annotated and/or apparent severe

changes to the dynamics of the system. If given knowledge of sudden spikes in

arterial pressure, the Kalman filter may be able to respond more quickly and produce

Windkessel values more reflective of the change, though there are challenges in this

approach in that there is no gold standard for calculating Windkessel parameters

and what their values should be in critical care patients. More research could be

done into the forecasting abilities of the Kalman filter; it is able to reconstruct

pressure waveforms well, and its dynamic state tracking abilities could prove useful

in forecasting changes to this state, either by itself or combined with regressors like

the DTW method implemented in this research. Separate filters could also be tuned

only on subjects that crashed and were unable to be resuscitated to begin building

the framework for predicting fatal trends as opposed to just stable recoveries. This

approach can also be tried with higher complexity Windkessel models, such as the

three- and four-element models, both of which have been shown to model the cardiac

system more accurately than the two-element in many cases.

Other techniques can also be studied for cyber-physical modeling of hemodynamic

data for regression. When selecting similar pigs, predicting, and forecasting blood

pressure values, weighting by similarity in Windkessel parameters can be implemented.

Weight criteria could include the presence or absence of specific types of medical

interventions, along with numerical parameters directly related to the data such as
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its variance or standard deviation. Other values can also be used to determine the

most similar pigs, such as additional vital sign waveforms, medical history data, and

the rate of change in the Windkessel parameters, instead of just their raw values at

that time. Closer attention could be paid to the similar neighbors whose waveforms

are used for regression; if some or all of the most similar neighbors fall past some

threshold considered too dissimilar, or if the considered neighbors vary too much

in their Windkessel parameters, then the corresponding predicted pressure windows

could be flagged as less confident or even rejected. There is also much room to study

what metrics are best for selecting similar subjects other than just simple Euclidean

distance, and learning such metrics from data appears very appealing in this context.
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Appendix

Average RMSE of each pig using four methods

Bleed Group

[mL/min]

ID Both C and R

[mmHg]

C [mmHg] R [mmHg] No Interven-

tions [mmHg]

5 2 17.61 17.08 17.35 18.43

5 3 12.46 11.64 12.30 14.00

5 4 24.55 23.01 25.17 24.90

5 5 15.84 12.10 15.06 15.29

5 6 9.15 9.96 9.25 8.08

5 7 10.79 10.38 8.89 10.47

5 8 7.70 7.85 8.58 8.07

5 9 9.46 9.35 10.05 8.22

5 10 9.22 9.57 8.34 8.74

5 11 6.91 7.11 7.07 9.51

5 12 10.48 10.67 10.47 11.3

5 13 7.37 6.91 7.32 7.90

5 14 12.25 13.02 12.73 12.47

5 15 12.71 13.00 13.37 13.52

5 16 19.46 19.53 20.83 18.82

20 6 12.44 11.81 12.39 12.64

20 7 12.48 12.88 11.89 12.46
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20 8 9.27 10.36 10.35 10.81

20 9 8.94 8.89 10.21 10.32

20 10 13.34 13.89 12.66 20.50

20 11 7.62 8.02 6.62 11.3

20 14 8.11 7.89 8.84 7.87

20 21 9.75 10.81 9.67 8.53

20 23 16.58 16.74 18.72 16.53

20 24 9.62 9.15 7.56 10.62

20 26 10.58 10.66 10.50 11.94

20 27 10.62 10.89 11.40 12.93

20 29 18.00 18.55 19.02 19.48

20 30 10.09 10.43 10.38 13.06

20 32 11.52 13.66 11.99 14.46

20 33 13.28 12.35 12.58 15.86

20 36 12.29 11.88 12.50 15.33

20 37 13.07 14.36 12.75 14.50

20 38 10.63 12.04 8.86 13.20

20 41 9.06 8.95 9.13 8.35

20 42 12.27 13.79 11.15 12.58

20 43 10.32 10.13 11.31 17.68

20 44 9.36 9.43 7.61 13.45

20 45 9.94 10.15 10.36 11.00

20 47 12.32 13.33 9.90 17.71

20 48 9.02 8.92 8.82 11.36

20 49 11.57 14.06 10.87 10.92

20 53 12.53 11.54 13.52 13.68

20 56 12.52 11.64 17.48 12.19
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20 58 14.11 9.67 8.79 15.35

20 60 13.32 13.65 12.07 15.35

20 61 9.10 8.27 7.82 9.14

20 64 7.59 9.84 6.44 7.07

20 65 9.23 9.70 14.52 10.45

Table A.1: The average RMSE for each pig. The The third, fourth, and fifth columns
indicate different combinations of Windkessel parameters used to select similar pigs for
each window, and the Windkessel parameters were calculated with increased variance
in the UKF around times of moderate to severe medical interventions. The last column
used both the arterial compliance C and peripheral resistance R Windkessel values
when selecting similar pigs, and the parameters were calculated without increased
variance during medical interventions.

Average MAPE of each pig using four methods

Bleed Group

[mL/min]

ID Both C and R

[%]

C [%] R [%] No Interven-

tions [%]

5 2 21.69 21.27 22.01 21.59

5 3 14.71 13.48 14.77 15.34

5 4 19.63 18.86 22.05 19.67

5 5 18.44 16.90 17.37 19.20

5 6 12.68 14.43 12.46 12.04

5 7 12.34 9.29 8.00 9.71

5 8 9.02 9.58 10.03 9.59

5 9 13.84 14.41 15.02 11.85

5 10 12.64 13.53 12.16 11.48

5 11 7.38 7.88 7.51 8.47

5 12 10.92 11.27 11.93 10.95

5 13 9.26 8.45 9.22 9.36

5 14 19.01 20.15 19.46 18.50

5 15 18.60 19.45 20.48 22.75

5 16 30.01 29.75 34.26 29.35
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20 6 14.55 15.44 16.40 16.86

20 7 11.37 11.90 11.13 10.74

20 8 14.15 16.23 16.21 16.64

20 9 11.59 13.83 15.07 15.36

20 10 12.21 11.46 12.16 11.48

20 11 8.76 9.30 7.51 8.47

20 14 10.09 9.89 19.46 18.50

20 21 14.99 16.93 14.16 10.94

20 23 28.56 29.07 32.73 29.70

20 24 13.76 13.10 10.48 11.43

20 26 16.10 15.88 16.37 13.99

20 27 9.68 9.51 9.91 9.88

20 29 30.75 33.51 35.00 40.35

20 30 11.39 11.61 11.95 11.97

20 32 17.25 21.33 18.60 21.36

20 33 10.79 10.21 9.90 10.20

20 36 11.85 12.19 11.93 12.41

20 37 16.04 18.69 15.60 17.13

20 38 16.23 18.08 13.05 12.72

20 41 11.72 12.09 11.50 10.31

20 42 12.97 16.48 11.04 13.06

20 43 9.17 9.25 9.78 12.41

20 44 13.02 13.71 10.43 13.19

20 45 10.93 11.79 10.25 12.69

20 47 12.74 15.29 9.67 18.25

20 48 10.54 10.74 9.91 10.82

20 49 10.51 14.26 10.08 9.29

20 53 11.77 10.42 12.66 11.20

20 56 9.17 8.13 17.45 10.30

20 58 17.69 12.29 11.43 13.36

20 60 11.09 12.22 10.17 12.22

20 61 12.08 11.09 9.29 10.26
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20 64 9.07 12.77 8.01 17.11

20 65 7.80 8.86 14.64 7.99

Table A.2: The average MAPE for each pig. The The third, fourth, and fifth columns
indicate different combinations of Windkessel parameters used to select similar pigs for
each window, and the Windkessel parameters were calculated with increased variance
in the UKF around times of moderate to severe medical interventions. The last column
used both the arterial compliance C and peripheral resistance R Windkessel values
when selecting similar pigs, and the parameters were calculated without increased
variance during medical interventions.

Average RMSE of each pig when forecasting different horizons

Bleed Group

[mL/min]

ID 5 min [mmHg] 15 min

[mmHg]

30 min

[mmHg]

5 2 19.25 21.51 20.91

5 3 12.04 15.00 16.82

5 4 24.13 25.53 23.62

5 5 19.93 17.85 18.34

5 6 13.17 17.82 17.76

5 7 13.91 15.55 17.11

5 8 17.95 17.74 19.51

5 9 12.72 15.2 16.33

5 10 13.65 16.70 15.32

5 11 12.24 16.82 18.15

5 12 12.11 16.03 18.06

5 13 11.21 16.15 15.46

5 14 15.81 18.57 18.97

5 15 13.81 18.51 18.99

5 16 23.66 25.23 23.84

20 6 16.21 20.17 21.63

20 7 14.75 17.92 18.03
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20 8 13.69 17.74 17.99

20 9 14.86 18.39 19.45

20 10 18.87 22.29 24.33

20 11 11.25 15.07 16.77

20 14 12.28 16.79 16.93

20 21 12.99 16.12 18.03

20 23 21.76 26.14 26.78

20 24 11.44 14.55 15.93

20 26 14.15 15.00 17.05

20 27 15.15 20.37 20.68

20 29 22.62 24.20 26.27

20 30 16.10 22.23 22.55

20 32 14.94 19.49 18.79

20 33 17.76 22.42 23.84

20 36 16.22 21.7 22.36

20 37 16.20 21.74 22.36

20 38 14.77 18.11 20.93

20 41 13.11 17.11 19.35

20 42 15.77 17.89 18.35

20 43 15.78 20.25 22.03

20 44 12.93 16.75 17.32

20 45 15.47 20.24 21.93

20 47 14.05 18.01 19.38

20 48 14.55 16.13 17.96

20 49 14.33 19.00 19.85

20 53 16.06 21.43 22.97

20 56 16.32 19.2 20.54
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20 58 13.97 16.7 17.94

20 60 16.03 19.22 20.85

20 61 14.96 19.77 21.36

20 64 12.84 15.65 16.42

20 65 14.70 17.35 18.91

Table A.3: The average RMSE for each pig when forecasting using both Windkessel
parameters and increased variance in the UKF around times of moderate to severe
medical interventions. The third, fourth, and fifth columns represent forecasting 5,
15, and 30 minutes in the horizon.

Average MAPE of each pig when forecasting different horizons

Bleed Group

[mL/min]

ID 5 min [%] 15 min [%] 30 min [%]

5 2 27.20 25.12 31.55

5 3 14.36 20.14 21.87

5 4 20.48 25.92 22.46

5 5 25.01 27.20 29.32

5 6 19.98 25.20 25.90

5 7 14.36 16.61 18.88

5 8 22.29 22.76 22.98

5 9 18.64 22.90 24.48

5 10 18.37 22.76 23.28

5 11 15.46 20.18 23.07

5 12 15.71 20.38 22.43

5 13 16.42 21.70 20.66

5 14 25.8 25.62 26.09

5 15 21.11 25.35 32.67

5 16 35.41 34.75 28.33

20 6 21.60 23.59 24.10

20 7 17.34 19.44 19.56
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20 8 13.74 18.55 19.12

20 9 20.86 24.69 24.20

20 10 19.93 23.89 24.15

20 11 16.75 20.37 24.49

20 14 15.04 22.86 24.11

20 21 18.72 23.01 25.73

20 23 35.90 44.48 48.09

20 24 18.02 19.43 20.02

20 26 21.68 18.21 19.93

20 27 17.99 21.61 21.67

20 29 40.60 46.53 46.99

20 30 18.72 24.91 23.21

20 32 23.20 33.07 32.22

20 33 16.23 23.18 21.81

20 36 15.10 23.36 25.41

20 37 20.81 29.25 29.81

20 38 23.57 26.43 28.55

20 41 17.32 24.14 25.58

20 42 17.78 22.94 23.12

20 43 14.29 20.86 21.09

20 44 18.05 24.69 26.49

20 45 16.09 24.43 25.85

20 47 15.15 20.00 21.03

20 48 14.77 22.29 23.09

20 49 14.20 19.84 20.07

20 53 15.93 21.37 23.48

20 56 16.60 18.65 19.73
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20 58 15.37 20.77 21.35

20 60 17.01 19.22 19.88

20 61 19.53 23.47 23.94

20 64 14.16 18.87 19.05

20 65 14.00 18.32 19.16

Table A.4: The average MAPE for each pig when forecasting using both Windkessel
parameters and increased variance in the UKF around times of moderate to severe
medical interventions. The third, fourth, and fifth columns represent forecasting 5,
15, and 30 minutes in the horizon.
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Figure A.1: All smoothed predicted versus actual arterial pressure plots from the 5
mL/min bleed group.
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Figure A.2: All smoothed predicted versus actual arterial pressure plots from the 20
mL/min bleed group.
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Figure A.3: All smoothed 5-minute forecasted versus actual arterial pressure plots
from the 5 mL/min bleed group.
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Figure A.4: All smoothed 5-minute forecasted versus actual arterial pressure plots
from the 20 mL/min bleed group.
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