A Modular Robotic Arm Control Stack for
Research: Franka-Interface and FrankaPy

Kevin Zhang*, Mohit Sharma*, Jacky Liang*, and Oliver Kroemer

Intelligent Autonomous Manipulation Lab
Robotics Institute, Carnegie Mellon University,
5000 Forbes Ave. Pittsburgh, PA, USA
{kevinleezhang,mohitsharma, jackyliang, okroemer}@cmu.edu
https://labs.ri.cmu.edu/iam/

Abstract. We designed a modular robotic control stack that provides
a customizable and accessible interface to the Franka Emika Panda Re-
search robot. This framework abstracts high-level robot control com-
mands as skills, which are decomposed into combinations of trajectory
generators, feedback controllers, and termination handlers. Low-level
control is implemented in C++ and runs at 1kHz, and high-level com-
mands are exposed in Python. In addition, external sensor feedback, like
estimated object poses, can be streamed to the low-level controllers in
real time. This modular approach allows us to quickly prototype new
control methods, which is essential for research applications. We have
applied this framework across a variety of real-world robot tasks in more
than 5 published research papers. The framework is currently shared in-
ternally with other robotics labs at Carnegie Mellon University, and we
plan for a public release in the near future.

Keywords: Robot Control, Manipulation, Control System

1 Introduction

To facilitate robot programming, commercial collaborative robot arms (cobots)
often ship with simple drag-and-drop programming interfaces or teach pendants.
These interfaces allow an operator to perform teleoperation, kinesthetic teach-
ing, or hardcoding waypoints to program robot behavior, and they have allowed
robots to perform tasks in areas such as manufacturing with minimal setup
time [1]. However, such robot interfaces tend to be very GUI and operator de-
pendant, which do not align well with the requirements of research develop-
ment, where the ability to rapidly prototype with programming languages such
as Python and C++ and incorporating outside sensor feedback is highly desir-
able. Companies like Universal Robots have catered to their academia audience

* Equal Contribution. This work was supported by Sony AI, the NSF Graduate Re-
search Fellowship Program Grant No. DGE 1745016, and the Office of Naval Re-
search Grant No. N00014-18-1-2775.

2 Franka-Interface and FrankaPy

With the key grasp and lock center precisely localized, ~ The three lines
the robot is able to insert the key and unlock the door

Fig. 1. Collage of Robot Tasks implemented using Franka-Interface and FrankaPy.
From left-to-right top-to-bottom, they include unlocking a door with a key, pipetting,
cutting vegetables, picking up 3d printed versions of industrial parts, opening a ketchup
bottle cap, writing letters using pancake batter, opening a door, pouring water from a
beaker, and peg-in-hole insertion.

by developing a simple way for researchers to interface with their robots using
Robot Operating System (ROS) [2] and Movelt [3], through which a program-
mer is able to send joint position and velocity commands. However, their ROS
package [4] is unable to support access to the robot’s full capabilities such as the
URJbe’s force control mode.

In this technical report, we describe Franka-Interface and Frankapy, a mod-
ular robot control software using C++ and Python that allows researchers
to quickly prototype robot controllers on the Franka Emika Panda Research
Robot!. Franka-Interface uses libfranka [5] to interface with the Franka robot,
and Frankapy provides Python APIs for Franka-Interface. Our software stack
allows users to quickly implement control schemes such as Cartesian Impedance
and LQR controllers in C++, all while maintaining an easy-to-use Python in-
terface. In addition, our software allows easy access to the robot’s states and
provides sensor feedback to controllers during skill execution. Finally, we ensure
the ability to control the Franka at 1kHz and quickly change between different
controllers.

2 Comparison to franka_ros and ros_control

Franka Emika has developed the franka_ros [6] package using ros_control [7] that
exposes the majority of their libfranka API to control their Panda Research robot

! nttps://wuw.franka.de/

Franka-Interface and FrankaPy 3

at 1kHz. There are two primary limitations with franka_ros. One, the package is
heavily dependant on ROS and ros_control, which means robot controllers imple-
mented here have to conform to ros_control guidelines. This makes it difficult to
add additional functionality on the robot controllers, such as accepting external
sensor inputs in real-time to guide the robot’s trajectory. Second, ros_control’s
MultilnterfaceController class only allows 4 robot hardware controllers to be
loaded at a time, while libfranka has a total of 9 robot controllers that can be
used to command the robot. For example, if the software is initially loaded the
Joint Position, Joint Velocity, Joint Torque, and Cartesian Pose robot controllers
in one MultilnterfaceController, but the user also needs to use the Cartesian Ve-
locity robot controller for another part of the task, the previous controller would
need to be stopped completely before the new controller can be launched. This
creates an undesirable time gap for switching robot controllers.

By contrast, our Franka-Interface allows us to switch between any of the 9
robot controllers present in libfranka. Our controllers are able to process real-
time sensor feedback from ROS and the Python client. Our software stack also
allows asynchronous Joint Position and Cartesian Pose inputs from a sensor
publisher that allows Movelt integration. Finally, we are able to log robot states
at 1kHz during skill executions. We will explain our entire system pipeline in
the following sections.

3 System Overview

Cameras |— SensorSF'rocessmg | J Sensor Client WP)
erver | 3 ?
p \ P Real-Time] d
Shared al
Other Robot State Client 1< | Robot State Memory Eonic -
[| Publisher Buff Loop
Sensors / wE {1 kHz)
ROS Action = =
ROS Action Client Semver
LB
Robot Planner FrankaPy \ Franka-Interface
Client Server Robot
ROS Ethernet

Fig. 2. Franka Robot System Diagram

Our system, shown in Figure 2, consists of three main parts: the Franka robot,
a Server computer that is running a real-time Ubuntu Kernel, and a Client com-
puter with a powerful CPU and GPU that handles the sensor processing as well
as the high-level planning. While Server and Client can be the same computer,
they are separate for use cases where a deep neural network is involved. This
is because libfranka, which runs on the server, requires a real-time kernel, and
Nvidia drivers, required for running neural networks, are not compatible with

4 Franka-Interface and FrankaPy

real-time kernels. If the Server and Client are separate computers, you can con-
nect them either through ethernet or over wifi. We will walk through the entire
system starting from the Client on the left and slowly moving to the robot on
the right.

3.1 Client

On the Client, we have the high-level robot planner, sensor processing servers,
and FrankaPy which includes a robot state client and a ROS action client. In
addition, the Client is connected to the various cameras and other sensors in
the robot setup. First, the high-level planner is typically a Python program that
acts as a finite state machine, and it takes processed sensor information as well
as the current robot state as inputs to command the robot. Next, the sensor
processing server typically consists of a neural network that is performing object
recognition or pose tracking, the results of which are published continuously.
Both the sensor client on the Server and the high-level planner can subscribe to
the results.

The FrankaPy robot state client on the Client reads information about the
robot’s current joint positions, end-effector pose, experienced torques, current
skill executing, etc. Finally, the FrankaPy ROS Action Client is a Python API
that contains all of the skills that we can have the robot execute. Some example
functions that the Frankapy wrapper contains are ’go_to_pose’, ’go_to_joints’,
‘open_gripper’, and ’execute_dmp’. These functions wrap around the standard
ROS Action server goals, which contain the parameters for each skill that are
serialized using Protocol Buffers [8]. They are sent over the ROS networking
protocol to the ROS Action server on the Real-Time Server that receives and
parses the parameters.

3.2 Server

The ROS action server on the Real-Time Server shares with the 1kHz real-time
control loop a common memory buffer. This allows us to efficiently pass data, like
controller parameters, between these two processes without costly serialization
and deserialization. The Real-Time Control Loop continually queries the shared
memory buffer to see if a new skill’s parameters are present. When it sees that a
new skill is available, it starts executing the skill. The skill parameters contain
5 main fields: the type of the skill, trajectory generator, feedback controller, ter-
mination handler, and the sensor topics to subscribe to. Franka-Interface allows
us to mix and match the trajectory generator, feedback controller, termination
handler, and sensor data manager for each skill depending on the task. Figure 3
illustrates some commonly used types for each field, but this is not an extensive
list of what our framework offers.

Examples of skill types are: using the robot’s internal joint controller to go to
joint positions, using the robot’s internal pose controller to go to a robot pose,
using impedance control to go to a robot pose, exerting forces in certain direc-
tions, moving the gripper, etc. Next, we implemented several different trajectory

Franka-Interface and FrankaPy 5

i) i Feedback Controllers)
SHEE [RECINVGoRSRICE Termination Handlers Sensor Data

. - . . 1. Cartesian
;' éﬂ;;g;sr:l::?gse ; ::2 jgt‘;ﬂgé Impedance 1. Contact 1. Bounding Box
) R 2. Joint Impedance 2. Time 2. Force Position
3. Impedance 3. Joint DMP 2 " "
3. Force Axis 3. Goal Pose 3. Joint Position
4. Force Torque 4.Pose DIP 4. LOR 4. Goal Joints 4 Pose Position
5. Gripper 5. Relative Pose) | : |

Fig. 3. Examples of skill, trajectory generator, feedback controller, termination han-
dler, and sensor types that are implemented in Franka-Interface.

generators for each skill type. For example, we implemented minimum jerk joint
and robot pose trajectory generators that reduce the wear and tear on the robot.
In addition, we implemented a special Dynamic Movement Primitives (DMP)
trajectory generator that we used to have the robot imitate human kinesthetic
demonstrations.

For feedback controllers, we implemented a Cartesian impedance feedback
controller that commands robot end-effector poses via a spring-damper system.
Otherwise, most of the other feedback controllers simply set the internal robot
controller’s Cartesian and joint impedances. However, others using this frame-
work have been able to implement an LQR controller as well. Finally, we have
the termination handlers and the sensor topic parameters. There are time-based
termination handlers that stop the skill after the designated amount of time has
elapsed, goal-based termination handlers that tell a skill to stop when the robot
is within a threshold of the final desired goal pose or joint configuration, and
contact-based ones that stop based on force feedback. The sensor topic param-
eters tell the sensor ROS client which topics to subscribe to and store message
data in the shared memory for the real-time control loop to query.

The last and most important part of the system is the real-time control loop,
which communicates directly with the robot at a 1kHz frequency. This loop
handles commanding the robot over the libfranka C++ API as well as storing
the robot state into logs and shared memory that can be accessed and published
by the Robot State Publisher. We ensure the reliability of the real-time control
loop by using multiple mutexes and shared memory partitions.

3.3 Additional Functionality

Some additional features we have implemented are: the ability to control multiple
robots at once, reconfigurable virtual walls that act as safety barriers, and simple
box collision checking. Franka_ros also can launch multiple robots at once; how-
ever, they only currently support joint torque controllers. We utilize franka_ros’s
robot configuration file in order to visualize the robot’s movements in real-time
in Rviz [2].

3.4 Dependencies

Our Franka-Interface and FrankaPy does depend on several packages such as Au-
tolab_Core [9] for rigid transformations, Google Protocol Buffers [8] to serialize

6 Franka-Interface and FrankaPy

skill parameters and robot state data, and ROS [2] for communication between
the Client and the Server. In the future, for ease-of-use, we are planning to phase
out ROS dependencies and switch to ZeroMQ [10] to handle communications be-
tween the Client and the Server.

4 Impact

TITAN V

Fig. 4. 8 Franka Robot Setups used for a CMU RI course in Spring 2020.

We have been using Franka-Interface and FrankaPy internally in the Intel-
ligent Autonomous Manipulation lab since October 2018. So far, 5 published
papers from our lab have used this software for robot experiments as shown in
Figure 1 [11-16]. Recently, we have shared the software with other labs at the
CMU Robotics Institute. In addition, we have been able to use our package suc-
cessfully for the Robot Autonomy class at the RI. In the class, 50 students were
using the 8 shared robots shown in Figure 4 for lab experiments, like motion
planning with obstacle avoidance. We plan to publicly release the software once
we resolve pending licensing issues and sufficiently improve code documentation.

References

1. V. Villani, F. Pini, F. Leali, and C. Secchi, “Survey on human-robot collaboration
in industrial settings: Safety, intuitive interfaces and applications,” Mechatronics,
vol. 55, pp. 248-266, 2018.

10.

11.

12.

13.

14.

15.

16.

Franka-Interface and FrankaPy 7

M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and
A. Y. Ng, “Ros: an open-source robot operating system,” in ICRA workshop on
open source software, vol. 3, no. 3.2. Kobe, Japan, 2009, p. 5.

S. Chitta, I. Sucan, and S. Cousins, “Moveit![ros topics],” IEEE Robotics & Au-
tomation Magazine, vol. 19, no. 1, pp. 18-19, 2012.

Universal Robots, “universal robot.” [Online|]. Available: https://github.com/
ros-industrial /universal_robot

Franka Emika, “libfranka.” [Online]. Available: https://github.com/frankaemika/
libfranka

——, “franka_ros.” [Online]. Available: https://github.com/frankaemika/franka_
ros

S. Chitta, E. Marder-Eppstein, W. Meeussen, V. Pradeep, A. R. Tsouroukdissian,
J. Bohren, D. Coleman, B. Magyar, G. Raiola, M. Liidtke, et al., “ros_control: A
generic and simple control framework for ros,” 2017.

Google, “Protocol buffers.” [Online]. Available: https://developers.google.com/
protocol-buffers

Berkeley =~ AutoLab, “Autolab core.” [Online]. Available: https://
berkeleyautomation.github.io/autolab_core/

iMatix, “Zeromq.” [Online]. Available: https://zeromgq.org/

M. Sharma, K. Zhang, and O. Kroemer, “Learning semantic embedding spaces for
slicing vegetables,” arXiv preprint arXiv:1904.00303, 2019.

J. Zhao, J. Liang, and O. Kroemer, “Towards precise robotic grasping by prob-
abilistic post-grasp displacement estimation,” arXiv preprint arXiv:1909.02129,
2019.

K. Zhang, M. Sharma, M. Veloso, and O. Kroemer, “Leveraging multimodal haptic
sensory data for robust cutting,” in 2019 IEEE-RAS 19th International Conference
on Humanoid Robots (Humanoids). IEEE, 2019, pp. 409-416.

J. Liang, S. Saxena, and O. Kroemer, “Learning active task-oriented exploration
policies for bridging the sim-to-real gap,” Robotics: Science and Systems (RSS),
2020.

T. Hellebrekers, K. Zhang, M. Veloso, O. Kroemer, and C. Majidi, “Localization
and force-feedback with soft magnetic stickers for precise robot manipulation,”
International Conference on Intelligent Robots and Systems (IROS), 2020.

A. LaGrassa, S. Lee, and O. Kroemer, “Learning skills to patch plans based on
inaccurate models,” International Conference on Intelligent Robots and Systems
(IROS), 2020.

