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Abstract

Planetary robots currently rely on significant guidance from expert human
operators. Science autonomy adds algorithms and methods for autonomous sci-
entific exploration to improve efficiency of discovery and overcome limited com-
munication bandwidth and delay bottlenecks. This research focuses on planning
trajectories for information gathering and choosing sampling locations that have
the most informative samples. We frame our exploration problem as a mapping
problem for spectroscopic data and explore the concept of using low spatial den-
sity and low spectral resolution remote data as an information prior. We utilize
a Gaussian Process regression model to fuse remote and in situ observations.
This allows us to improve our high-resolution predictions across an entire scene
without visiting all locations and compute an entropy map to guide exploration.
We propose performing informative path planning using ergodic trajectory op-
timization. We explore the efficacy of the ergodic Spectral Multi-scale Coverage
and ergodic Projection-based Trajectory Optimization algorithms. We demon-
strate our approach in simulated exploration with real spectroscopic data of
Cuprite, Nevada to highlight the advantages compared to traditional planning
strategies. We successfully display that the ergodic Projection-based Trajectory
Optimization planner outperforms all planners including state-of-the-art a non-
myopic Markov Decision Process based planner. We also explore how the plan-
ning horizon affects planner performance, varying how often the entropy map
is updated and the remaining sample points re-planned. We demonstrate that
re-planning after every 1 sample does improve performance however a planning
horizon of 4 samples offers a favorable balance between improved information
gathering and increased computation time.
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1 Introduction

Modern planetary robotic exploration is guided by scientists specifying the lo-

cations on a path that they believe will best address mission investigation ques-

tions. The path is formed from expert knowledge of the site and expectations

about where to gather scientific information. Scientists reinterpret their mea-

surements with growing contextual knowledge of the environment, so explo-

ration is characterized by a frequent reformulation and replanning throughout

the mission lifetime. Replanning occurs on large strategic scales, bypassing or

favoring geographic locales, as well as local tactical scales, to approach potential

new discoveries or to remain at an anomalous feature for additional measure-

ments. However, many exploration scenarios occur with low bandwidth and

high latency communication, leaving limited opportunities to revise exploration

plans.

This work describes an approach to overcome the communication bandwidth

and delay bottleneck in robotic exploration, where the command to the remote

explorer is based on an evolving model of the explored environment, rather than

a single prescribed route, enabling the robot to take more adaptive and efficient

actions based on real-time information, improving the rate and productivity

of discovery. By encoding belief of the spatial distribution of the information

content of a region, we can iteratively plan actions that will guide the robot

toward more information rich areas. Our context driven exploration strategy

draws inspiration from and captures the characteristics of geologic site survey.

Sample interpretations are sensitive to spatial relations. Rather than considering

each sample independently, field scientists incorporate each new observation into

an evolving model of geologic formation.

1



Figure 1: Prototype planetary rover in Cuprite, Nevada exploring terrain to
classify and map geology. An on-board spectrometer measures ground spectra
to identify mineralogical composition.

1.1 Science Autonomy

Algorithms and methods for autonomous exploration and scientific measurement

by robotic agents falls under the label of Science Autonomy. In this work, we

are focusing on information gathering in the context of spectroscopic mapping,

which enables analysis and interpretation of material composition and physical

properties. Our objective is to discover the true state of some phenomena of

interest from the true spectral reflectance of a region. Therefore, the robotic ex-

plorer should collect observations that are most informative with respect to the

spatial model, the spectroscopic map. Exploration becomes an active learning

problem, where a data sample’s value is derived from the information content

it provides to the larger spectroscopic map.

Often regions of interest are studied via airborne or orbital remote instru-

ments prior to deploying an in situ robotic instrument. Remote sensing in-
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struments often suffer from low spatial density and low spectral resolution and

therefore robots are tasked with collection of high resolution data. We limit our

exploration to the common scenario where low resolution data is available for a

region prior to the deployment of the in situ robotic explorer. Ultimately the

goal is to integrate both types of measurements to reconstruct dense maps of

high resolution spectra without taking high resolution measurements of all map

locations. Therefore it is imperative to plan robot trajectories that contain the

most information to efficiently reconstruct spectroscopic maps. We demonstrate

the feasibility and successful performance of our high-level autonomy approach

via simulation investigations of real data from Cuprite, Nevada.

Our evaluation of the efficacy of our robot trajectories are based on com-

parison of reconstructed spectra with ground-truth high resolution real data

measurements. This performance metric, based on mapping accuracy, inher-

ently ignores some aspects of exploration problems. Novel feature detection is

disregarded, as the underlying phenomena to be mapped is predefined. Also,

our formulation does not address the needle in a haystack problem.

1.2 Problem Formulation

Our specific formulation of this active exploration problem includes leveraging

prior data about a region of interest to guide autonomous robot exploration to

ultimately produce a high resolution spectroscopic map. Low spatial density and

low spectral resolution data provides significant information to guide our robot

exploration compared to no prior information (uniform prior). We encode the

spectroscopic data into a latent space Gaussian Process representation. Thus

we are able to reduce the dimensionality of in situ samples to the same number

of features as our prior data to integrate both information sources.

Our formulation of belief space representation, a Gaussian Process, is a con-

3



tinuous model which provides the advantage of not requiring discretization (or

arbitrary discretization) of the space to plan trajectories. Our contributions

therefore include the study of ergodic trajectory optimization to plan informa-

tive robot trajectories. Ergodic trajectory optimization allows for a continuous

information space and continuous arbitrary non-linear agent dynamics which

provide distinct advantages over previous methods. Often the map, belief space,

and agent dynamics are required to be discretized to employ search-based and

Markov Decision Process based trajectory planning. Continuous space plan-

ning provides the inherent benefit of allowing the robot to take samples not

represented in a grid, therefore favorably balancing exploration versus exploita-

tion. We will compare the performance of ergodic planning techniques with

baseline informative search techniques in terms of computation and the sample

efficiency of each trajectory. We will explore the usefulness and robustness of

ergodic Projection Based Trajectory Optimization (PTO) for users to balance

the relative cost of maximizing information gain and minimizing control effort.

We also will explore the use performance of ergodic planners in a Model Pre-

dictive Control (MPC) framework to better understand how planning horizon

and re-planning affects trajectory sample efficiency. We therefore contribute

methods for applying various ergodic trajectory optimization techniques for a

spectroscopic mapping application, implement the algorithms from scratch, per-

form simulated experiments on real data to interrogate the performance of the

ergodic techniques, and analyze results to make claims about the best uses of

ergodic trajectory optimization.
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2 Spectroscopic Maps

In short, spectral signals allow us to infer what something is made of. The

spectral signature of a surface provides insight into its composition and subse-

quently its formation process. Planetary scientists use imaging spectrometers to

measure the light reflected from a surface at various wavelengths. The natural

process of material absorbing and reflecting light differently at different wave-

lengths allows scientists to infer the composition of the target with a spectral

signal. The number of wavelengths an instrument measures with each sample is

referred to as the number of channels. More channels (i.e. more wavelengths)

allow greater insight into the spectral features of a spectra. Spectral features

are the signal shapes that allow scientists to infer composition from a signal.

Imaging spectrometer instruments are commonly deployed on spacecraft and

aircraft to map the spectral content of regions. Various instruments are de-

scribed in detail in Section 4.1.1 and Section 4.1.2. These remote measurements

lack in spatial and spectral resolution however, and are often insufficient to

planetary scientists to make confident predictions of surface composition and

material distribution. Our method allows for in situ robotic explorers to lever-

age this prior low-resolution information to guide exploration. The in situ and

remote measurements can also me fused to better predict high-resolution spec-

tral signals throughout a scene.

2.1 Background

2.1.1 What is a Spectrum?

We refer to a series of reflectance values as a spectrum. Reflectance is a measure

of the electromagnetic energy present in the light reflected or scattered from

a surface at a particular wavelength. More photons present, yields a higher

reflectance measurement. A spectrum refers to a series of reflectance measure-
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Figure 2: Example of a normalized reflectance spectrum.

ments from the same source but at different wavelengths of light. A spectrum

captures a significant amount of information about the source. The pattern of

reflection and absorption bands allows scientists to derive information about the

chemistry and composition of a material from the light reflected from the ma-

terial. As photons enter a material, some are reflected from surfaces, some pass

through the surface, and some are absorbed. Those photons that are reflected

from surfaces or refracted through a particle are said to be scattered.

Spectra are measured using a variety of instruments but we will briefly dis-

cuss how one particular class of instruments works, the spectrometer. This

allows us to better understand the physical process of the taking measurements

and how that effects the formulation of our trajectory planning problem. As you

might assume, the basic function of a spectrometer is to measure a spectrum.

That is, to take in reflected light from a target, break it into its spectral com-

ponents, and digitize the signal as a function of wavelength. Measurements are

normalized to compensate for changes in the incident light source, in our case

changes in sunlight conditions. Therefore, spectrometer measurements are taken

of a white reference material, which provide spectra with which to normalize
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subsequent measurements with the same lighting conditions.

2.1.2 Hyperspectral Images

Our spectroscopic maps leverage the data structure of a hyperspectral image.

A hyperspectral image is like a standard RGB image, but instead of each pixel

containing an intensity value for three color channels there are more channels

that refer to specific wavelength bands and can also include wavelengths outside

of the visible spectrum. Instruments vary in terms of the number of wavelength

channels, the width of each wavelength band, and what part of the electro-

magnetic spectrum is covered. Different wavelengths are more informative for

detecting different materials and often the wavelength range used is chosen based

on estimates of material composition. The number of channels in each spectra

is referred to as the spectral resolution. Consequently, more channels provide

better insight into the true spectral signal and is therefore more informative in

identifying material composition. The spatial resolution of the hyperspectral

image, the physical distance measured by each pixel, is a function of instrument

optics and relative instrument and target positions. Imaging spectrometer in-

struments are often used in orbital, airborne, and ground-based settings. A

hyperspectral image from an instrument used on orbit will, on average, have a

lower spatial resolution than one from a ground-based instrument. The geome-

try of the position of the orbital instrument and the optics field of view will yield

pixels that cover much larger physical regions than ground-based instrument.

It follows that there is a primary issue when using low spatial resolution data

to determine material composition. How can one identify the composition of a

target if its spectra contains a diversity of materials?
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Figure 3: Hyperspectral image of Cuprite, Nevada. Note the large number of
channels per pixel compared to a standard RGB image. Two pixel location
spectra are shown.

Table 1: Spectrometer Instrument Comparison

Instrument Source Wavelength Range Channels Avg. Res.
ASTER Orbital 2-2.4 µm 5 80 nm

AVIRIS-NG Airborne 2-2.4 µm 80 5 nm
ASD Ground 2-2.4 µm 400 1 nm

2.1.3 Spectral Features and Endmember Detection

Measuring the spectral signature of materials is of interest to scientists to de-

termine material composition. A reflectance spectrum contains unique signal

features that allow scientists to very accurately identify the sampled material.

When a stream of photons encounter a medium with a change in the index of

refraction some are reflected and some are refracted into the medium [13]. This

results in absorption patterns, where the relative strength of reflectance and

refractance across various wavelengths creates unique signal features dependent

on material [46].
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Spectroscopists often classify material composition based on spectral mea-

surements using reference measurements of pure laboratory materials, this is

called endmember detection. The Tetracorder expert system, developed by

Clark et al., uses an extensive library of USGS spectra to identify endmem-

bers [12]. Other times learning-based approaches at classification of spectra are

used [62]. In all cases a set of reference measurements are required and your

classification is only as good as your reference measurement signals. Therefore

we focus on reconstructing high-resolution spectra and decouple the problem of

material classification from our problem of information gathering.

Spectral signals often are combinations of endmembers, a phenomena known

as spectral mixing. If the incident light into the spectrometer instrument re-

flected from various materials, the resultant signal will contain spectral features

of all materials present proportional to the concentration of each material. Fig-

ure 4 show the concept of spectral mixing. This adds another layer of complex-

ity to classification directly from our GP model. There is a mature knowledge

base regarding spectral mixture models and methods for unmixing spectra for

the purpose of endmember detection [43]. We therefore choose to focus on re-

constructing high-resolution spectra and using other means for unmixing and

endmember detection.
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Figure 4: Spectral Linear Mixture Model: Exploded view of a pixel of an or-
bital image from a location in Cuprite, Nevada. The pixel consists of two end-
members, Alunite and Kaolinite, which linearly combine to form the observed
spectrum.

2.2 Related Work

Related work provides models for representing spectroscopic maps. Thompson’s

work [57] specifically developed spatial models of the environment: a generative

map of the environment that extrapolates from previous measurements and

predicts new measurements at un-visited locations. The work demonstrated

an effective spatial model representation using Gaussian Processes that infused

orbital data as input dimensions into the model. This Gaussian Process spatial

models allow for adaptive, online learning such that an agent can efficiently

update the models in real-time. A distinct difference of this work from robotics

concepts like topological mapping is that unlike spatial modeling, topological

mapping does not extrapolate beyond the sensing-horizon of the robot [20].

One of the reasons why spatial modeling is able to achieve this is because of

strong cross-sensor correlation such as between orbital data and in situ data.
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For example, geological studies of the reflectance spectra measured by these

spectrometer instruments can characterize the minerals present on the surface.

Therefore, comparing the spectral signatures of in situ measurement with the

corresponding orbital spectra at a particular location allows us to make informed

predictions about the minerals present at locations where similar orbital spectra

are observed.

Adapting concepts from information-driven sampling for sensor networks

[33], Thompson further proposed information gain based sampling techniques

for spatial modeling. Building upon Thompson’s work, Foil [17] used an active

learning approach to expand on sequential modeling. Sequential modeling is

a topic similar to spatial modeling, with a key difference being that sequen-

tial modeling allows non-stationary environmental models. Foil also proposed a

Dirichlet Process based Adaptive Gaussian Mixture Model model and a Gaus-

sian Process based model for adaptive sampling; a form of sequential modeling

with non-stationary objective functions. Recently, Candela et al. [7] developed

the science hypothesis map: a probabilistic structure in which the initial beliefs

of scientists evolves using Bayesian updates as the robot takes measurements.

2.3 Active Spectroscopic Mapping

Our goal is to leverage data collected from low spectral resolution and low

spatial resolution sources in order to plan trajectories that collect high spec-

tral resolution and high spatial resolution measurements to best reconstruct a

spectroscopic map. The question remains: how can we mitigate the resolution

disparity and combine these sources of data in a spatial model? We also would

like to be able to iteratively update the our spatial model with each new mea-

surement taken. It stands that our model should permit online learning and

inference while representing both spatial and spectral correlations in collected
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data. We rely on Gaussian process regression, a machine learning technique that

has been widely used in spatial statistics [15] and informative robotic exploration

[5]. We opt to use a Gaussian Process Regression based spatial model derived

from Thomson [57] combined with feature extraction methods from Candela [8].

2.3.1 Spectroscopic Data Feature Extraction

Gaussian Processes (GPs) are typically used for representing scalar-field val-

ues [47], however spectra are inherently high dimensional. in situ spectroscopic

measurements tend to have very high spectral resolution, which makes using a

GP for each measurement channel computationally infeasible. However, many

of these channels and wavelength bands are highly correlated, allowing for the

application of dimensionality reduction techniques. We use a Variational Au-

toencoder (VAE) [30] technique developed for spectral application by Candela

[9]. A VAE is a neural network that converts a set of high-dimensional ob-

servations y ∈ Y ⊂ Rn into a set of lower dimensional features z ∈ Z ⊂ Rd,

where d < n. We specifically use a VAE because it learns a representation

that resembles a multivariate normal distribution, i.e. Z ∼ Nd(0, Id), effectively

normalizing and uncorrelating the features. The VAE uses the following loss

function:

L(X) = Error(X̂,X) + λDKL(N (µ,Σ),N (0, 1)) (1)

with the first term referring to the reconstruction error and the second term

is a regularizer that refers to the amount of information lost in the compressed

representation of the data [30]. The parameter λ is a tunable gain to weight

the relative importance of the reconstruction accuracy and the size of the com-

pressed representation. The VAE is comprised by two networks: an encoder

that extracts the features, and a decoder that reconstructs high-resolution ob-
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servations using the learned features. It is important to underscore that the

VAE ignores spatial correlations in the data. It is also important to note that

the low dimensional features output by the VAE do not represent spectral fea-

tures in the sense of the spectroscopy. In other words, there is no physical

interpretation of the features, but they allow for computationally efficient use

of GPs to represent spectroscopic maps.

2.3.2 Gaussian Processes for Spatio-Spectral Regression

We use Gaussian Process regression to learn the spatial distribution of spectra

in a spectroscopic map, M. This process is defined as spatio-spectral regres-

sion. We follow from Candela’s [8] work, combining different sources of spectra

data of varying resolutions. To mitigate the issue of high dimensional spec-

tral data, we use GP regression to learn distributions in the condensed feature

space, Z ⊂ Rd, from the VAE. The VAE dimensionality reduction allows data

sources of disparate dimensionalities to be reduced to a common size and fur-

thermore uncorrelates the learned feature representation, allowing for the use

of d independent GPs.

We assume we have low resolution remote spectra x ∈ X ⊂ Rm, and high

resolution in situ spectra y ∈ Y ⊂ Rn. We assume remote spectra are available

prior to deployment of the robotic explorer for the spatial locations of interest

l ∈ L ⊂ R2, whereas in situ spectra are collected by the robot in the field. We

define the GP independent input vector variable v to be the known properties

of the measurement location. For example, v could include the site’s physical

position, represented by latitude and longitude coordinates. It could also include

other input dimensions corresponding to preexisting measurements or remote

sensing data. We use the latitude and longitude position of the center of our

remote spectra l = [lat, lon], along with m remote spectral reflectance values

x = [c1, c2, ..., cm] and append them to produce the input vector v = [l, x] ∈
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V ⊂ R2+m.

We assume there exists a function f i : R2+m → R1 that maps an input

vector v to each feature of vector z ∈ Z ⊂ Rd, therefore zi = f i(v) + εi for

i = 1, 2, ..., d. Each of the d GPs learns a distribution over the the values of

function f i. Each GP is defined by a mean function µi and a covariance function

Ki
θ [47]. We assume that the mean is zero, which is reasonable because of the

nature of VAE normalized features. For the covariance matrix, we utilize a

radial basis function (RBF) kernel defined as follows:

Ki
θ(v, v

′
) = θi0 exp

(
−‖l − l

′‖22
2(θil)

2
− ‖x− x

′‖22
2(θix)2

)
(2)

where θi =
(
θi0, θ

i
l , θ

i
x

)
are the kernel hyperparameters for each GP. We also

use the GP varient for noisy observation and therefore add the additional noise

hyperparameter, σinoise [47]. The GP hyperparameters are estimated by max-

imizing the log-likelihood of the observed data as shown in [47]. We currently

pre-tune the GP hyperparameters using a portion of the relevant dataset and

keep these hyperparameters fixed during experiments, however the hyperparam-

eter tuning process can be done iteratively with each new measurement.

The full active spectroscopic mapping model integrates VAE feature extrac-

tion and GP regression. Given a set of in situ observations, we would like to pre-

dict the true value of f i(v) at other locations not visited by the robotic explorer.

We can infer a probability distribution from a prior P (f i(v)) using Bayes’ rule

and Recursive Bayesian estimation. The probability distribution over possible

f i(v) therefore provides a map of any desired resolution. This is done by eval-

uating Maximum A Posteriori (MAP) estimates of f i(v) at unobserved remote

sample sites to yield the most likely observations [57]. The Recursive Bayesian

estimation learning process is comprised of an update step and prediction step

[59]. In the update step, shown in Figure 5, the learning model is improved
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when the robot collects in situ measurements. The d independent GPs are up-

dated using the compressed features that are extracted using the encoder of the

VAE, along with the associated spatial coordinates and remote measurements.

In the prediction step, shown in Figure 6, the model uses this new informa-

tion and its correlations to old information to better reconstruct spectra in all

map locations. First, the GPs predict the compressed features at each point of

the map, v ∈ V , using a normal distribution, Ẑ ∼ N
(
µ̂Z(V ), Σ̂Z(V )

)
. These

predicted compressed features are then passed through the decoder of the VAE

and reconstructed as high resolution spectra, Ŷ , that can be used to make more

accurate predictions of material composition.
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Figure 5: The update step of the active spectroscopic mapping model.

Figure 6: The prediction step of the active spectroscopic mapping model.
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3 Informative Path Planning

Planetary robotics research has historically been focused on risk-aware planning;

generating safe trajectories with an emphasis on hazard detection and avoidance

and formulating risk-bounded temporal plans. However, with the advancement

of space hardware capabilities [14] and the expectation for planetary rovers to

explore terrains with a greater degree of autonomy [61], research on integrat-

ing higher-level science goals into the robot planning has risen in significance.

The field of Science Autonomy focuses on developing robotic technologies that

improve a planetary rover’s interpretation of the environment and subsequently

makes decisions to maximize certain science objectives.

While work has been done in improving environmental models for science

autonomy, research on improving the planning algorithms that would directly

use these models for determining optimal sampling locations is still in its early

stages. Planners currently either rely on science-agnostic strategies or myopic

strategies that only attempt to maximize the immediate information content.

We now examine the field of Informative Path Planning and discuss how tech-

niques developed there can be translated to science autonomy.

The problem of guiding a robot autonomously, while intelligently selecting

sample locations is referred to as Informative Path Planning (IPP). This prob-

lem may seem very similar to sequential modelling and indeed, some of the

applications of sequential modelling can be brought under the umbrella of IPP

problems. However, traditionally IPP has only focused on scalar sensory mea-

surements like the temperature, salinity, or chlorophyll content of a body of

water [5] or the radio frequency signal intensity of a region [11]. We introduce

the additional nomenclature of informative path planning in order to distinguish

it from sequential modelling that also considers high-dimensional inputs such as

the spectra. Note that we will be forgoing a background on the basics of robot
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path planning, given the which can be readily found in [29].

3.1 Related Work

The concept of Informative Path Planning (IPP) was introduced by Binney et

al. [6] who used an exhaustive search strategy that exploited the monotonicity

of certain objective functions for faster convergence. Lim et al. [35] devel-

oped Recursive Adaptive Identification (RAId), a polynomial-time approxima-

tion adaptive IPP algorithm that chooses the next sample location based on all

information acquired at time of computation. RAId was tested on a number of

tasks, such as robot grasping a 2-star graph search, and was shown to outper-

form baseline policies in these tasks. Cao et al. [10] proposed two multi-agent

IPP algorithms based on entropy and mutual information as objective func-

tions and demonstrate that they perform better than previous state-of-the-art

algorithms with increasing planning horizons. Gautam et al. [21] employs an

exploration strategy based on Multi-Heuristic A∗, to handle the trade-off be-

tween exploration cost and information gain through Pareto-optimal solutions.

Morere et al. [41] developed a Bayesian Optimization based Partially Observ-

able Markov Decision Process framework used for finding approximate solutions

to trajectories to map scalar fields. Kodgule et al. [32] extended the use of

Markov Decision Processes for IPP using a Monte Carlo Tree Search method

to plan trajectories for spectroscopic mapping. Each of these IPP techniques

relies on prior discretization of either the robot state space, the robot action

space, the information state space, or all of the above. There are inherent losses

in the exploration vs. exploitation trade-off when discretizing information state

spaces, and the discretization of robot state and action space adds complexity

depending on robot dynamics.

IPP algorithms that are able to operate in continuous spaces provide a richer
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set of possible trajectories for monitoring the environment. Hollinger et al. [27]

extended sampling-based methods, combining ideas from asymptotically opti-

mal rapidly exploring random trees (RRT*), rapidly exploring random graphs

(RRG), and probabilistic roadmaps (PRM*) with insights from branch and

bound optimization. These strategies have been used for information gathering

and mapping of scalar fields with success but requires the re-sampling of the

information space with each new sample if an adaptive IPP approach is to be

used.

Optimization-based informative planning methods integrate the fields of er-

godic theory and optimal control. The use of ergodic coverage concepts for IPP

problems stems from the inherent submodularity of information [44]. Simply, if

you have covered and measured all states then you have all available information.

Ergodic trajectory optimization has not been exhaustively researched in infor-

mation gathering contexts and so far has only been used to localize the positions

of unknown objects [39], [51], or map a scalar field [1], [3], . Optimization-based

planning also benefits from operating in continuous spaces and allows for tight

integration with robot dynamics models. This permits the use of arbitrary

non-linear robot dynamics in many planner variants [38], [16], [3] and planners

are capable of directly computing control trajectories rather than waypoints

or motion primitives like search-based or sampling-based planning. Ergodic

optimization-based planners often extend naturally into multi-agent tasks [4],

[60], due to the formulation of the ergodicity metric that will be expanded on

below. We will be focusing on single agent planning in this work to keep the

scope in line with planetary robotics. We expand on the use of ergodic trajec-

tory optimization to plan trajectories for spectroscopic mapping and compare

against baseline methods for IPP.
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3.2 Information Representation

All Informative Path Planning (IPP) techniques require the quantification of in-

formation content in order to incorporate an informative metric into an objective

function. Integrating entropy or mutual information metrics in objective func-

tions has been used in several IPP works with success [21], [11], [36]. Entropy

is a measure of the uncertainty, therefore is directly correlated with expected

information. In a spectoscopic mapping context, Kodgule [32] and Candela [8]

demonstrated a strong correlation between entropy reduction and decreasing

spectral reconstruction error. Consequently, we utilize entropy based objective

functions in our approach to ergodic trajectory optimization.

We leverage the Gaussian Process (GP) representation of our spatial model

to efficiently compute spatial entropy and produce an entropy map. Our use of a

variational autoencoder (VAE) to reduce all spectral data into an uncorrelated

feature space of dimensionality D allows us to treat each of the D GPs as

independent. This allows us to compute the total differential entropy at each

location of the map by summing the entropy of each independent GP, using the

following equation:

H(v) =

D∑
d=1

1

2
ln[(2πe)D det(Σd)] (3)

This refers to the entropy at state, v, the GP input vector that contains the

spatial location (latitude, longitude) as well as the low-resolution raw spectral

data. Σd is a single GP covariance matrix of all states in the map computed

with a radial basis function (RBF) kernel described in Equation 2.

As the number of points in the map increases, this entropy computation

quickly becomes expensive and infeasible, especially on the limited computing

capacity of space-grade hardware. Specifically the calculation of the determinant

of the predicted covariance matrix, Σd. Therefore, we use the upper bound on
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the entropy Ĥ(v) instead, which is more efficiently computed with the main

diagonal of the predicted covariance:

H(v) ≤ Ĥ(v) =

D∑
d=1

1

2
ln[(2πe)Dσ2

d] (4)

where σ2
d is the predicted variance of each point in the map [8]. Therefore the

upper bound of the map entropy will be the information metric we will utilize

for informative path planning. The entropy at each map location is computed

in this way to generate a spatial representation, an entropy map.

3.3 Ergodic Trajectory Planning

Ergodic theory is a mathematical framework that studies the time-averaged

behaviour of dynamical systems. A system is said to exhibit ergodic dynamics

if it visits every subset of the state space with a probability equal to the measure

of that subset, essentially covering a space proportionally to a distribution [45].

The field of ergodic theory historically focuses on analyzing the ergodicity of

specific dynamical systems but more recent research focuses on the problem

of designing ergodic trajectories, often framed as coverage problems [28], [37],

however ergodic trajectory design can be used for IPP by using a measure of

expected information in the ergodicity metric.

3.3.1 Ergodicity Metric

In the context of IPP, ergodic trajectory optimization computes controls that

drive a dynamic system along trajectories such that the amount of time spent

in regions of the state space is proportional to the expected information gain

in those regions. This is built upon integrating an ergodicity metric into the

objective function to optimize. The ergodicity metric refers to the difference

between the time-averaged behavior of the robot trajectory and a spatial prob-
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ability density function representing the expected information density (EID).

We will be using the upper bound on entropy from Equation 4 as our EID.

We use an ergodicity metric proposed by Mathew and Mezić [37], which

provides distinct benefits balancing exploration and exploitation. The ergod-

icity metric is the distance of the time-averaged trajectory from being ergodic

with respect to the EID, φ(x). This distance can be quantified by defining a

norm on the Fourier coefficients of both distributions. This norm is the sum

of the weighted squared distance between the Fourier coefficients of the spatial

distribution, φk, and those of the distribution representing the time-averaged

trajectory, ck(x(t)). The ergodicity metric will be defined as E(x(t)), as follows:

E(x(t)) =

K∑
k=0

Λk|ck(x(t))− φk|2 (5)

where K is the number of basis functions and Λk is a weighting factor which

allows for preference of features by frequency due to the nature of the Fourier

decomposition. We will be using a Λk weighting factor defined by [37].

Λk =
1

(1 + ‖kπL ‖2)s
(6)

Such that s = m+1
2 , where m is the number of spatial dimensions in the

trajectory space. The Fourier basis used in the decomposition are defined as

follows:

Fk(x(t)) =
1

hk

∏
xi∈x(t)

cos (
kiπxi
Li

) (7)

where the boundaries of each spatial dimension of the distribution are defined

from 0 to Li, ki is the Fourier basis number, and hk is a normalization factor

defined in [37]. The Fourier decomposition of the time-averaged trajectory,

c(x(t)), and the EID, φ(x), are defined below:
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ck(x(t)) =
1

T

∫ T

0

Fk(x(t))dt (8)

φk =

∫
X

φ(x)Fk(x)dx (9)

with trajectory planning horizon final time, T .

3.3.2 Ergodic Spectral Multi-scale Coverage

The first of the ergodic trajectory planning algorithms we use is Ergodic Spectral

Multi-scale Coverage (SMC) proposed by [37]. This formulation assumes a

robotic agent with either first-order or second-order dynamics, we use the first-

order dynamics model as defined by:

ẋ(t) = f(x(t), u(t)) = u(t) (10)

The objective is to design a feedback law so that the agent has ergodic

dynamics with respect to the supplied EID. The objective function is designed

to maximize the rate of decay of the ergodicity metric at the end of a short time

horizon. This is referred to as receding horizon control [37], where the control

action is determined by solving a finite horizon optimal control problem. The

optimization problem leads to a control action that is used at the current time,

the beginning of each planning horizon. The computation of the control action

is then repeated at every time step. Mathew and Mezić [37] derive the SMC

feedback law to be the limit as the size of the receding horizon goes to zero. This

provides a closed form solution to the optimization problem and a feedback law

efficiently computed at every time step. The objective function to be optimized

is as follows:
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J(t,∆t) = Ė(x(t+ ∆t))

=

K∑
k=0

Λk(t+ ∆t)(ck(x(t+ ∆t))− φk)(Fk(x(t+ ∆t))− φk)
(11)

This optimal control problem is solved over the finite time horizon [t, t+∆t].

As shown in Equation 11, the objective function is the first time-derivative of

the ergodicity metric E(x(t)), at the end of the horizon. Note that the controls

are subject to the velocity constraint:

‖u(t)‖2 ≤ umax (12)

Mathew and Mezić [37] solve this optimal control problem in terms of the

Lagrange multipliers and the Hamiltonian. The details of which are outlined in

[37]. The optimal control solution u∗(t+∆t) is the value of an admissible control

u(t + ∆t) that minimizes the Hamiltonian, shown in Equation 13. Specifics

on deriving the Hamiltonian and Lagrange multiplier equations when solving

optimal control problems are provided in [31].

u∗(t+ ∆t) = arg min
‖u(t+∆t)‖2≤umax

H(x, u, t+ ∆t, ck, φk, Fk) (13)

The feedback control law at each time step, u∗(t), is derived from the solution

to this optimization problem and taking the limit as ∆t goes to zero.

u∗(t) = −umax
B(t)

‖B(t)‖2
if B(t) 6= 0,

where B(t) =

K∑
k=0

Λkt(ck(x(t))− φk)∇xFk(x(t))

(14)
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Figure 7: Example Spectral Multi-scale Coverage trajectory on a simulated
expected information density. Note that the amount of time spent in regions of
the state space is proportional to the expected information density.

The Spectral Multi-scale Coverage (SMC) optimal feedback control law is

then computed at each time step to produce ergodic trajectories. The SMC

algorithm is outlined below:

An example SMC trajectory is shown in Figure 7 on a simulated EID where

lighter color is correlated to greater expected information. Note the inherent

multi-scale nature of the trajectory, with large scale, low frequency features

being explored first followed by revisiting locations to capture small scale, high

frequency features.

Note the SMC algorithm does not inherently consider control effort cost and

at each time step moves in the direction to most quickly reduce ergodicity from

a given initial position. While SMC effectively covers regions proportional to

the EID, the observed behaviour of looping and backtracking is wasteful when

considered control cost in addition to information gathering.
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3.3.3 Ergodic Projection-based Trajectory Optimization

A second ergodic trajectory planning algorithm we investigate is Ergodic Projection-

based Trajectory Optimization (PTO) proposed by [38]. In this formulation, the

goal of ergodic trajectory optimization is to solve for the continuous trajectory

which minimizes an objective function based on both the ergodic metric and

the control effort over a time horizon. Thus PTO differs from SMC in that er-

godicity is directly optimized over the entire trajectory, compared to the rate of

change of ergodicity over a single step. PTO also allows use to intuitively tune

parameters to balance information gain and path length. The PTO objective

function is defined as follows:

J(x(t), u(t)) = qE(x(t)) +

∫ T

0

Ru(τ)2dτ + Jb(x(t))

s.t. ẋ(t) = f(x(t), u(t)) x(t0) = x0

(15)

where q ∈ R and R ∈ Rm×m are arbitrary parameters defining the relative

importance of minimizing ergodicity vs. control effort. Jb(x(t)) is a boundary

cost to penalize the trajectory leaving the designated region boundaries. We

used a boundary cost defined by [40].

Jb(x(t)) = cb

N∑
n=1

max(xn − L, 0)2 +min(xn, 0)2 (16)

where cb is an arbitrary parameter for weighting the cost of leaving the

bounded region. Minimization of the objective function is performed using a

projection-based steepest descent optimization method outlined in [25]. This

formulation provides distinct advantages over search based methods in that

general nonlinear systems can be controlled with dynamics of the following

form, without additional layers of controllers.
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ẋ(t) = f(x(t), u(t)) x(t0) = x0 (17)

For simplicity of comparing trajectory planners, we define our robot dynam-

ics as single integrator first order dynamics, defined as follows:

ẋ(t) = u(t) (18)

Unfortunately, this optimization problem is non-convex and there is no effi-

cient way to find the global optimum. However, we can use an iterative gradi-

ent descent method, specifically a projection-based descent [25]. The projection

method is attractive because nonlinear constraints are removed during calcula-

tion of the descent direction, making the computation much simpler. However,

the resulting trajectory might not be dynamically feasible, so it is projected back

into a feasible space with a projection operator. The projection operator [25]

takes the form of a stabilizing feedback control law which maps any trajectory,

whether feasible or infeasible, (α(t), µ(t)) to a feasible trajectory (x(t), u(t)).

P(α(t), µ(t)) =


u(t) = µ(t) +K(t)(α(t)− x(t))

ẋ(t) = f(x(t), u(t)) x(t0) = x0

(19)

The objective therefore is reformulated as the following, where the trajectory

is no longer constrained to the feasible trajectory manifold.

J(P(α(t), µ(t))) (20)

We can now solve for the descent direction, (z(t), v(t)), iteratively using a

Linear Quadratic (LQ) techniques. The LQ formulation of the descent direction

is derived in ([25]), and includes objective function gradients we name an and

bn for convenience of notation.
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arg min
(α(t),µ(t))

∫ T

0

a(t)T z(t) + b(t)T v(t) + z(t)TQz(t) + v(t)TRv(t)dt

s.t. ż(t) = f(z(t), v(t)) z(t0) = 0

(21)

We define the gradients need to determine the descent direction.

an = ∇xn
J(x(t), u(t))

= q∇xn
E(x(t)) +∇xn

Jb(x(t))

=
2q

T

K∑
k=0

Λk(ck(x(t))− φk) · ∇xn
Fk(x(t)) +∇xn

Jb(x(t))

(22)

For our 2D domain, the gradients are as follows.

∇xn
Fk(x(t)) = − π

hk

 k1L1
sin (k1πx1

L1
) cos (k2πx2

L2
)

k2
L2

cos (k1πx1

L1
) sin (k2πx2

L2
)

 (23)

∇xnJb(x(t)) = 2cb(max(xn − L, 0) +min(xn, 0)) (24)

The gradient with respect to the control input is as follows.

bn = ∇unJ(x(t), u(t))

= Runδt

(25)

Finally the step size, γ, to descend in the descent direction is computed using

an Armijo line search [2].

The projection-based ergodic trajectory optimization can be described by

Algorithm 1 [38].

An example PTO trajectory is shown in Figure 8 on a simulated EID where

lighter color is correlated to greater expected information. Note the inherent

multi-scale nature of the trajectory, with large scale, low frequency features
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Algorithm 1 Projection-based Ergodic Trajectory Optimization

1: Initialize EID with entropy map
2: Initialize trajectory
3: Initialize convergence criteria, ergodicity, directional derivative, max iterations
4: while not converged do
5: Compute state and control gradients along trajectory
6: Linearize dynamics w.r.t. trajectory
7: Solve Riccati equation and compute descent direction in projection space
8: Compute descent step size with Armijo line search
9: Descend and project the update

10: Compute convergence criteria, ergodicity, directional derivative, iterations

being explored first followed by revisiting locations to capture small scale, high

frequency features.

Note the PTO algorithm produces trajectories that are typically shorter and

involve fewer loops and less backtracking than SMC and other informative path

planners. This is expected with the incorporation of control effort into the ob-

jective function. Of course, the behavior of PTO is influenced by the relative

weighting of hyperparameters, the initialization trajectory, the convergence cri-

teria, number of optimization iterations, and initial position. It is possible to

get stuck in a local minimum due to the influence of any combination of these

factors. We therefore will explore the sensitivity of these parameters on the

performance of the PTO planner.
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Figure 8: Example Projection-based Trajectory Optimization trajectory on a
simulated expected information density. PTO is initialized with a trajectory
computed from SMC shown in blue. Note the dynamics are still highly ergodic
but the addition of a control effort cost allows us to better balance information
gathering and path length.
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4 Simulated Field Experiments

4.1 Data Sets

To perform our experiments we simulate a rover exploration scenario with real

spectroscopic data from a region of diverse mineralogy in Cuprite, Nevada [54].

We use high-resolution data to represent in situ rover samples and low-resolution

data to represent remote data. Specifically, we use the data obtained by Air-

borne Visible Near Infrared Spectrometer - New Generation (AVIRIS-NG) [22]

[23] as proxy for in situ spectra. For remote sensing measurements, we use

data obtained by the Advanced Spaceborne Thermal Emission and Reflection

Radiometer (ASTER) [18].

4.1.1 AVIRIS-NG

AVIRIS-NG measures reflectance in the range of [0.38 µm, 2.5 µm] at a spec-

tral resolution of 5nm and a high spatial resolution in the range of [0.3m, 4m].

Spectra are measured as hyper-spectral images with 600 cross-track elements,

providing it with > 95% cross-track spectral uniformity and ≥ 95% spectral

IFOV uniformity. The system also consists of an INS/GPS and an on-board

calibrator that performs automated calibration of raw spectra. AVIRIS-NG’s

navigation data is also used to access surface elevation information from a global

topographic dataset [22]. Previous studies have shown that AVIRIS-NG mea-

surements are an appropriate analog to in situ infrared spectra [55], with in-

ferences drawn on AVIRIS-NG data transferring well onto data collected by in

situ sensing instruments. The high spatial resolution also allows us to perform

simulated experiments using AVIRIS-NG data as in situ spectra. AVIRIS-NG

has been used in various science applications such as atmospheric correction

[19], ecology and vegetation classification [48], geology and mineralogy [53], as

well as coastal bathymetry. [49].
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4.1.2 ASTER

ASTER is an imaging spectrometer onboard the Terra spacecraft, a satellite

in NASA’s Earth Observation System. The instrument consists of multiple

cameras possessing three visible short-wave infrared (VSWIR) and six short-

wave infrared (SWIR) bands. Compared to AVIRIS-NG, ASTER has a lower

spatial resolution in the range of [15m, 90m]. This resolution is comparable to

other spectroscopic instruments such as the Compact Reconnaissance Imaging

Spectrometer for Mars (CRISM) on the Mars Reconnaissance Orbiter [42]. The

ASTER dataset is a nominal representation of remote data available to guide

the exploration of a in situ agent.

Several studies have used AVIRIS-NG and ASTER measurements as prox-

ies for low and high resolution spectral measurements, respectively [34], [58],

[56]. We evaluate our approach on measurements taken at a mining district

in Cuprite, Nevada; a well-studied site with high mineralogical diversity [54].

We were able to associate the two instruments’ observations by aligning them

with respect to both their spatial and spectral dimensions. We performed map

registration on both images with a planar homography approach. We then used

the empirical line method [52] to find the correspondence between the ASTER

and AVIRIS-NG reflectance values.

4.2 Spectral Reconstruction Experiments

The goal of these experiments is to evaluate and compare planning methods

that generate informative paths that reduce entropy and reduce the error of the

reconstructed high-resolution spectra. We now explain the experimental design

by which we evaluate the performance of our informative path planners. We

first define the test parameters and assumptions, then provide context on the

implementation details of the various types of planners to inform experimental
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design choices.

4.2.1 Experimental Design

The simulated experiments used to investigate our planners involves using real

spectroscopic data from a low-resolution remote instrument and a high-resolution

instrument representing the in situ data. Each of our path planners relies on

our Gaussian Process (GP) regression model to provide entropy information to

guide search but also the GP model allows us to reconstruct high-resolution

spectra from low-resolution remote data by incorporating information from the

collected in situ data. This is outlined in detail in Section 2.3. The reconstructed

spectra is compared to our ground truth dataset, the dataset representing in

situ measurments (AVIRIS-NG). The performance of our planners will be eval-

uated by the mean final entropy of the site and the mean final root mean square

reconstruction error (RMSE). In short, lower entropy and lower RMSE is better

performance. The results are dependent on GP model parameters however the

GP parameters are hand tuned prior to experiments on a withheld portion of

the dataset.

Average values for each experimental site are reported as well as statistical

analysis to determine if planner performance is statistically different with 95%

confidence. We use five unique sites from the Cuprite datasets. Figure 9 shows

the larger Cuprite region and the five subsections that are our experimental

sites. Sites A, B, and C were chosen for their mineralogical diversity and spec-

tral diversity. Site D was chosen for its lack of spectral diversity with large

homogeneous regions, providing insight into how the planners balance explo-

ration and exploitation. Finally, Site E was chosen to be a much larger region

to give insight into how the planners perform with longer trajectories. All plan-

ners are run on all sites from the same 36 initial positions. 36 uniformly spaced

initial positions are defined, deterministic planners are run once for each initial
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position while stochastic planners are run 5 times for each initial position with

the average of the 5 scores reported for that initial position.

4.2.2 Baseline Planners

We compare a variety of path planners’ ability to generate informative paths

to minimize total entropy of a region. We use a number of baseline compar-

ison planners in addition to the ergodic planners. Our comparison planners

include a random walk planner (Random), a greedy entropy planner (Greedy),

an information gain based Monte Carlo tree search planner (MCTS).

• Random: In this case, the sampling location is randomly selected within a

fixed radius of the robot’s current location. The next location is sampled

from a uniform distribution and does not require prior discretization of

the state space. This planner is uninformed, with no notion of information

or entropy and acts as a lower bound on planner performance.

• Greedy: The greedy entropy planner selects sampling locations that con-

tain the maximum entropy within a fixed radius from the current robot

location. The entropy at each map location is updated using a Gaussian

Process update step with each new sample taken and before the next sam-

ple location is computed. This planner also does not rely of discretization

of state space due to the continuous nature of Gaussian Processes. This

planner is functionally similar to the concept of Maximum Entropy Sam-

pling [50] but includes the constraint of a maximum step size from the

current location. This planner provides a better low bound comparison

with an informative planner, although a naive simple planner.

• MCTS: The information gain based Monte Carlo tree search planner was

developed by Kodgule et al. and is decribed in detail in [32]. This plan-

ner uses a Markov Decision Process formulation and a Monte Carlo Tree
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Figure 9: The boundaries for each experimental site in the Cuprite, Nevada
region. For site A we plan 10 samples, for sites B, C, and D we plan 20 samples,
and for site E we plan 50 samples.
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Search method as a solver. This approach integrates closely with our GP

model with a information gain metric based objective function. High-

resolution spectra is simulated by the planner and the change in entropy

is computed as an information gain metric. The planner uses a look-

ahead depth parameter we keep fixed at 5 steps. The planner will expand

branches to simulate the total information gain after 5 steps and return

the first step of the branch with the maximum information gain. With

each execution of a single step the Gaussian Processes are updated with

the new sample before a new step is planned. The formulation of the

MCTS planner does rely of discretization of the state space, the planner

utilizes an 8-connected grid who resolution is defined by the hyperspec-

tral image. It is important to note, MCTS has no conception of its total

path length during execution, just a look-ahead depth. Computation time

is also often orders of magnitude larger than other planners. Therefore,

MCTS is non-myopic and provides a high performance bound.

4.2.3 Ergodic Planners

We are interested in interrogating the performance of our various ergodic in-

formative path planners compared to the baseline planners. We explore two

types of ergodic path path planners, Spectral Multi-scale Coverage (SMC) and

Projection-based Trajectory Optimization (PTO). We describe in detail the

mathematical foundation of these ergodic planners in Section 3.3.2 and Section

3.3.3 for SMC and PTO respectively. We provide a higher level summary and

provide insights into implementation details to better express their distinction

from the baseline planners.

• SMC: Spectral Multi-scale Coverage is an implementation of a closed form

solution to the optimal control problem outlined in Section 3.3.2. The
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objective function to be optimized is the rate of decay of the ergodicity

metric described in Section 3.3.1. The solution in [37] is only derived for

first-order and second-order dynamic systems. We implement the first-

order system dynamics to plan paths as the other baseline planners do

not require a dynamics model. SMC plans one sample at a time but can

return a full trajectory as well, given that ergodic planners contain an

internal belief state, the Fourier decomposition of the provided entropy

map, φk(x). The only parameter is the maximum step size, which is

defined to match the baseline planners. The time averaged statistics of

the robot state, ck(x(t)), are compared against φk(x) to compute the next

optimal sample locations.

• PTO: Projection-based Trajectory Optimization, proposed by Miller [38],

optimizes over the entire trajectory using an objective function based on

both the ergodic metric and the control effort. This allows us to intuitively

tune the parameters q and R, the relative importance of reducing map

entropy and path length respectively. The mathematical details of PTO

are described in Section 3.3.3. The weighting parameters are hand tuned

to roughly estimate the average step size of the other planners for a fair

comparison. PTO optimizes over the entire trajectory, in other words

is only minimizing the final entropy of the scene once all samples in the

trajectory have been collected. Similar to the MCTS look ahead feature,

this allows the planner to more intelligently plan. For example, if the

planner has a conception of its planning horizon it may find a path is

more optimal if it moves through a less informative region to reach a

more informative region. This provides an advantage over myopic planners

but even non-myopic planners, like MCTS, which still require a shorter

look ahead to be computationally feasible [32]. PTO uses an iterative
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projection-based optimization approach that utilizes a gradient method

for optimization and therefore requires an initialization trajectory. We

explore initializing the PTO planner with and SMC trajectory and with a

random walk in cardinal directions. PTO also guarantees a dynamically

feasible trajectory for the given dynamics model but has the benefit of

being suitable for arbitrary non-linear dynamics.

It is important to note that the simulated field experiments are able to be run

without being constrained to a discretized grid by use of bilinear interpolation

[24]. The Random, Greedy, SMC, and PTO planners plan sub-pixel sample

locations that are approximated by bilinear interpolation. This approximates a

linear spectral mixture model [26].

Table 2: Planner Property Comparison

Planner Property Random Greedy MCTS SMC PTO
Fixed to grid X
Smooth paths X X
Optimal over trajectory X
Plans single step X X X X
Plans whole trajectory X X
Dynamically feasible paths X X
Non-linear dynamics X

4.2.4 Planning Horizon - Model Predictive Control

Each of the informative baseline planners Greedy and MCTS performs a Gaus-

sian Process (GP) update after each sample to then plan the next sample loca-

tion with an updated entropy map. Entropy across the scene will reduce with

each sample given the spatial and spectral correlation between of input data to

the GPs. This process is described in detail in Section 2.3. The ergodic planners

due to their internal belief state can plan whole trajectories using only the initial
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entropy map, and these trajectories are often competitive with high performance

baseline MCTS. It follows that the ergodic planners should be able to improve

performance by using a Model Predictive Control (MPC) framework and iter-

atively re-planning with shorter planning horizons. The ergodic planners can

plan a full trajectory of N samples from an initial entropy map, n steps of the

trajectory will be executed and the entropy map updated before re-planning the

remaining trajectory. This can be performed with arbitrary planning horizon n.

We therefore experiment with planning horizon and examine its effects on er-

godic planner performance. For all ergodic planners including SMC, PTO with

SMC initialization, and PTO with random initialization the planning horizon

is set to re-plan after 1 sample, 4 samples, 8 samples, and to plan the entire

trajectory only with the initial entropy map (no re-planning). For clarity, the

naming convention of the planners includes ”mpc” and a planning horizon (i.e.

smc-mpc-1 re-plans after every 1 sample) when iterative planning is used. When

the ”mpc” is excluded, this indicates no re-planning is performed.
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5 Results and Analysis

5.1 Planner Performance Overview

We evaluate the performance of the informative path planners by the mean final

mean entropy of the site and the mean final root mean square reconstruction

error (RMSE) of the map. In short, lower entropy and lower RMSE means

better performance. The mean entropy of all map locations is reported after

each sample is updated into the Gaussian Process (GP) spectroscopic model,

computed by Equation 4. The RMSE is computed by predicting spectra from

the GP spectroscopic model at every map location where there is in situ analog

data (AVIRIS-NG for Cuprite) and comparing against the real data as a ground

truth. Ultimately the entropy metric is more indicative of planner performance

as it is the metric that is directly being optimized by the planners, RMSE is more

sensitive to the tuning of the GP model. RMSE results show a high correlation

between entropy reduction and accuracy of reproducing high-resolution spectra

[8]. We compute an efficiency metric meant to express the average efficiency of

each planner to reduce entropy per a unit of path length, higher efficiency is

better. We also compute the average total computation time for planning each

trajectory and performing the GP model updates.

Table 3: Best Performing Planner by Site

Site Final Entropy Final RMSE Final Entropy Efficiency Computation
Time

A pto-rand-init-mpc-1 pto-rand-init-mpc-1 random smc
B pto-smc-init-mpc-1 pto-rand-init-mpc-1 pto-rand-init pto-smc-init
C pto-smc-init-mpc-1 pto-smc-init-mpc-1 smc-mpc-1 random
D pto-smc-init-mpc-1 pto-smc-init-mpc-1 pto-smc-init random
E pto-smc-init-mpc-1 pto-smc-init-mpc-1 pto-rand-init-mpc-8 smc

Best performing planner for each site for each performance criteria.
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The best performing informative path planner for each evaluation criteria is

shown in Table 3. PTO is shown to consistently perform best in terms of entropy

and RMSE. Although PTO-SMC-INIT-MPC-1 (PTO with SMC initialization)

and PTO-RAND-INIT-MPC-1 (PTO with random initialization) are shown to

be the best performing planners for entropy and RMSE, their performance dif-

ference is not statistically significant with 95% across all sites. This indicates

that either PTO initialization is the highest performing planner. However the

planning horizon of 1 sample clearly outperforms longer planning horizons across

all sites, and the performance difference between 1 sample planning horizon and

others is very often statistically significant.

The entropy efficiency varies with planning horizon, algorithm, and initial-

ization. Even Random performs best for site A, largely due to the small size of

the site and the short path lengths that often result from Random plans. On

average ergodic planners perform with the highest efficiency. There is also no

clear best planner for computation time but on average the closed form planners

performed quicker than those that require a solver or optimizer. We can deci-

sively state that MCTS is the slowest planner, consistently taking two orders of

magnitude longer than others.

On average Random performs poorly but provides a good low baseline that

shows entropy is reduced even when taking uninformed samples with a short

trajectory. The Greedy planner is highly susceptible to noise and often gets

stuck in sub-optimal minima. MCTS often produces rectilinear paths due to

being fixed to a grid. The paths also often cross back over themselves. All

ergodic planners produce smoother paths than non-ergodic planners. SMC often

is competitive with MCTS despite SMC only planning single steps and MCTS

having a look-ahead depth of 5 samples. For some sites SMC even outperforms

MCTS in terms of entropy and RMSE. Note that Figure 11 shows that both
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PTO planners only perform best after nearly all samples are collected. This

behavior is expected as the planners optimize over the whole trajectory not

each point individually.
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Figure 10: This example run shows typical path shapes that each planner
achieves. Note the smooth paths of the ergodic planners that efficiently cover
the region and the non-smooth MCTS path which backtracks. Random pro-
duces short, jagged, uninformed paths while Greedy often gets stuck in a local
minimum somewhere on the map.

Figure 11: Average of all runs reported, lower entropy is better performance.
Random performs the worst and performance improves as the planners become
less myopic. PTO performs 31.2% better than Random and 16.3% better than
Greedy in terms of entropy reduction. The two PTO initialization’s performance
is not statistically significantly different.
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5.2 Ergodic Planners

Ergodic planners in general provide particular advantages over the other base-

line planners. They notably do not require prior discretization of the state space,

like MCTS, yet consistently perform as well or better than MCTS. This greatly

improves the ability of the planner to collect informative samples independent

of spatial frequency. The computation times required are often on par with

Random and Greedy and are significantly faster than MCTS. The ergodic plan-

ners also generate smooth paths that are guaranteed to be dynamically feasible

based on the dynamics model used internally to the planner. This makes them

a strong candidate to be used with underactuated robots like AUVs and UAVs.

Shown in Figure 12 are example paths from site E, the ergodic planner path

is significantly smoother and therefore energy efficient for a number of robot

systems.

The PTO algorithm consistently performs the best in terms of entropy re-

duction and RMSE. This is expected as it is highly non-myopic, optimizing over

the entire trajectory. This also explains why in figures like Figure 11, the en-

tropy of PTO does not outperform all other planners until nearly all samples

have been collected. The optimization is performed with a projection-based

gradient method and therefore can place the sample locations optimally for a

given EID often without backtracking. The parameters allow the user to in-

tuitively balance the relative importance of minimizing ergodicity and control

effort. This allows for path length to be controlled indirectly.

The SMC algorithm displays multi-scale behavior driven by our formulation

of the ergodicity metric in Equation 5. The weighting vector in Equation 6 shows

larger weighting for low-frequency than high-frequency features. Therefore SMC

trajectories tend to first visit locations with low-frequency broad information

features then visit high-frequency features. The paths therefore are often smooth
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Figure 12: Ergodic planners produce smooth paths compared to baselines and
therefore are good candidates for use with AUVs and UAVs.

and become less smooth as the trajectories get longer. This is shown in Figure

13.

45



Figure 13: Example SMC trajectory displaying multi-scale behavior. The path
first visits locations with low-frequency information features and then priorities
high-frequency features.

5.3 Variation Between Sites

We report the final performance metrics for all planner types, initialization

types, and planning horizons for all sites below. We analyze the performance

of the planners in terms of the differences between site sizes, spectral diversity,

and spectral uniformity.

The sites vary by size as shown in Figure 9. Sites A, B, and C were selected

for their spectral and geologic diversity. They contain numerous mineral classes

with distinct spectral signatures and are strong candidates for evaluating plan-

ner performance under nominal conditions. Site D was selected to examine the

performance of planners on a site with low spectral diversity and large areas of

homogeneity. This allows us to examine the planner performance with a less

informative prior. Site E was chosen to be very large with numerous areas of

spectral diversity to investigate the effect of region size on planner performance.
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Table 4: Site A Planner Comparison

Planner Final
Entropy
(nats)

Final
RMSE

Final
Entropy
Efficiency

Computation
Time (sec)

random 6.921 0.2278 35.23 1.33
greedy 5.951 0.2084 33.65 1.39
mcts 5.618 0.1799 16.27 134.42
smc 5.504 0.1709 31.49 1.27
smc-mpc-8 5.497 0.1717 31.45 1.42
smc-mpc-4 5.542 0.1718 31.22 1.32
smc-mpc-1 5.515 0.1693 31.25 1.48
pto-smc-init 5.329 0.1577 27.31 2.51
pto-smc-init-mpc-8 5.329 0.1562 26.48 3.55
pto-smc-init-mpc-4 5.204 0.1522 25.35 4.66
pto-smc-init-mpc-1 5.088 0.1476 23.81 12.08
pto-rand-init 5.224 0.1511 29.73 2.49
pto-rand-init-mpc-8 5.201 0.1506 29.89 3.67
pto-rand-init-mpc-4 5.245 0.1518 27.84 4.84
pto-rand-init-mpc-1 5.053 0.1468 25.97 11.94

Site A, 10 samples, best performance in bold, final values after all samples are
collected for entropy, RMSE reconstruction error, computation time are

averaged, entropy efficiency is a measure of entropy vs. path length

On average PTO variants perform best across all sites. On average, Ran-

dom performs the worst, followed by Greedy, SMC, and MCTS. The results are

consistent across sites A, B, and C with the only notable difference is that in

site C the MCTS planner is much more competative with PTO. Site D shows

greater spread between the entropy performance of all planners, which is ex-

pected based on the uniformity of the region. SMC even outperforms MCTS

for site D which gives credence to the claim that ergodic planners are well suited

to balance exploration and exploitation. Site E performance also matches the

greater performance trend well with SMC notably performing nearly as well the

PTO variants.
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Table 5: Site B Planner Comparison

Planner Final
Entropy
(nats)

Final
RMSE

Final
Entropy
Efficiency

Computation
Time (sec)

random 7.672 0.2574 7.05 16.22
greedy 6.191 0.2068 7.49 18.76
mcts 5.498 0.1833 7.53 1112.66
smc 5.664 0.1858 6.70 16.04
smc-mpc-8 5.611 0.1848 6.75 19.22
smc-mpc-4 5.604 0.1842 6.75 17.74
smc-mpc-1 5.591 0.1845 6.76 19.61
pto-smc-init 5.621 0.1854 8.97 15.66
pto-smc-init-mpc-8 5.499 0.1798 8.02 20.44
pto-smc-init-mpc-4 5.519 0.1819 7.30 24.15
pto-smc-init-mpc-1 5.425 0.1807 6.60 51.42
pto-rand-init 5.647 0.1859 9.38 17.12
pto-rand-init-mpc-8 5.569 0.1854 8.44 21.70
pto-rand-init-mpc-4 5.538 0.1843 8.21 24.76
pto-rand-init-mpc-1 5.458 0.1795 6.98 52.57

Site B, 20 samples, best performance in bold, final values after all samples are
collected for entropy, RMSE reconstruction error, computation time are

averaged, entropy efficiency is a measure of entropy vs. path length
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Table 6: Site C Planner Comparison

Planner Final
Entropy
(nats)

Final
RMSE

Final
Entropy
Efficiency

Computation
Time (sec)

random 8.797 0.2921 10.53 14.46
greedy 6.349 0.1788 12.13 14.53
mcts 4.986 0.1416 8.21 1094.60
smc 5.583 0.1578 12.43 15.05
smc-mpc-8 5.564 0.1589 12.47 17.09
smc-mpc-4 5.537 0.1571 12.53 15.66
smc-mpc-1 5.532 0.1569 12.55 17.86
pto-smc-init 5.162 0.1444 11.23 15.71
pto-smc-init-mpc-8 5.112 0.1393 9.28 20.52
pto-smc-init-mpc-4 5.047 0.1429 8.50 24.41
pto-smc-init-mpc-1 4.970 0.1387 7.66 52.16
pto-rand-init 5.157 0.1470 10.56 18.20
pto-rand-init-mpc-8 5.168 0.1467 10.06 21.42
pto-rand-init-mpc-4 5.142 0.1468 9.70 25.90
pto-rand-init-mpc-1 4.995 0.1410 8.60 54.23

Site C, 20 samples, best performance in bold, final values after all samples are
collected for entropy, RMSE reconstruction error, computation time are

averaged, entropy efficiency is a measure of entropy vs. path length
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Table 7: Site D Planner Comparison

Planner Final
Entropy
(nats)

Final
RMSE

Final
Entropy
Efficiency

Computation
Time (sec)

random 9.547 0.2978 6.36 27.95
greedy 6.634 0.1856 7.21 32.77
mcts 5.141 0.1434 7.71 2269.47
smc 5.222 0.1452 8.30 31.94
smc-mpc-8 5.231 0.1454 8.32 38.60
smc-mpc-4 5.221 0.1444 8.34 34.87
smc-mpc-1 5.170 0.1423 8.39 40.41
pto-smc-init 5.138 0.1393 8.51 28.44
pto-smc-init-mpc-8 4.728 0.1334 7.51 36.50
pto-smc-init-mpc-4 4.686 0.1301 7.07 38.95
pto-smc-init-mpc-1 4.451 0.1229 6.33 71.80
pto-rand-init 4.712 0.1305 8.11 31.57
pto-rand-init-mpc-8 4.607 0.1267 7.34 36.00
pto-rand-init-mpc-4 4.556 0.1243 7.12 38.13
pto-rand-init-mpc-1 4.501 0.1237 7.07 69.97

Site D, 20 samples, best performance in bold, final values after all samples are
collected for entropy, RMSE reconstruction error, computation time are

averaged, entropy efficiency is a measure of entropy vs. path length
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Table 8: Site E Planner Comparison

Planner Final
Entropy
(nats)

Final
RMSE

Final
Entropy
Efficiency

Computation
Time (sec)

random 6.388 0.2082 1.30 154.59
greedy 5.077 0.1829 1.48 174.65
mcts 4.910 0.1686 3.21 27891.40
smc 4.786 0.1616 2.38 137.21
smc-mpc-8 4.714 0.1586 2.41 148.28
smc-mpc-4 4.682 0.1597 2.43 156.85
smc-mpc-1 4.702 0.1587 2.42 171.55
pto-smc-init 4.820 0.1630 3.86 138.99
pto-smc-init-mpc-8 4.895 0.1667 3.61 185.94
pto-smc-init-mpc-4 4.792 0.1649 3.28 206.57
pto-smc-init-mpc-1 4.607 0.1570 2.56 386.06
pto-rand-init 4.819 0.1651 3.58 144.88
pto-rand-init-mpc-8 5.207 0.1758 3.97 197.84
pto-rand-init-mpc-4 4.881 0.1665 3.51 216.53
pto-rand-init-mpc-1 4.632 0.1580 2.57 407.35

Site E, 50 samples, best performance in bold, final values after all samples are
collected for entropy, RMSE reconstruction error, computation time are

averaged, entropy efficiency is a measure of entropy vs. path length
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5.4 Planning Horizon

The SMC, PTO-SMC-INIT, and PTO-RAND-INIT planner variants were all

run with various planning horizons to investigate changes to performance. Across

all sites there is a clear trend that smaller planning horizons results in improved

performance. Figure 14 shows the final entropy result statistics for all planners.

The median value clearly decreases with planning horizon. This is consistent

across all sites as shown in the Appendix.

We also must determine if this difference in performance is statistically sig-

nificant. The statistical significance does vary more by site than median entropy

performance but we will report general trends. SMC variants are more often not

statistically different as shown in Figure 15. Dark cells indicate the performance

difference is statistically significant with 95% confidence. For the PTO-SMC-

INIT and PTO-RAND-INIT variants the 1 sample planning horizon is the only

variant that is consistently statistically different than the other planning hori-

zons. This result makes sense because as the planning horizon decreases, the

planner has access to more information. When the entropy map is updated

more frequently the planners have the most up to date information.

Therefore we conclude updating the entropy map after each sample, a plan-

ning horizon of 1 sample, will achieve the best performance. Computation time

does increase as a result but the time scales of the planning compared to execu-

tion is often negligible. A planning horizon of 4 samples is a favorable balance

between information gain and computation time, where in some cases the 4

sample and 1 sample horizon performance is not statistically different.

We will also examine planning horizon effects qualitatively. The paths are

less smooth with shorter planning horizons but the detours are intuitively energy

efficient. With more frequency entropy map updates more local regions of high

entropy are exposed and the planner can adjust accordingly and take detours
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Figure 14: The statistical variation of final entropy between runs is shown here.
There is a clear trend in median final entropy reducing as planning horizon
reduces.

Figure 15: 2-sided dependent t-test for paired samples, cells that are dark in-
dicate a statistically significant difference in final entropy performance between
planners with 95% confidence.
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Figure 16: Paths of multiple planning horizons from the same intial position.
Notice the paths diverge from each other as the plans execute and as the plan-
ning horizon is shortened. The paths get less smooth and have more turns with
the shorter horizons as the planners are seeing more localized bright entropy
spots with more entropy map updates.

from the previously planned actions. We see this behavior in Figure 16, which

also makes sense considering shorter planning horizons perform better in terms

of entropy and RMSE.

5.5 Summary

Informative path planning for science autonomy applications has been studied

in a limited context. Traditional planners often did not fully utilize prior infor-

mation available and continue to adaptively use new information. This thesis

presented two ergodic informative path planners, Spectral Multi-scale coverage

(SMC) and Projection-based Trajection Optimization (PTO), as viable plan-

ning methods for active spectroscopic mapping.
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Simulated field experiments were performed across regions of mineralogical

and spectral diversity, comparing ergodic path planning against various baseline

planners, random, greedy, and MCTS. Over 7000 simulations were performed

across 5 sites. The experiments show that PTO consistently outperforms all

other planning algorithms in entropy reduction and RMSE with a statistically

significant performance difference with 95% confidence. Ergodic planners per-

form with the best entropy efficiency in 4 out of 5 sites and the computation

time required is orders of magnitude lower than the next best baseline, MCTS.

We also investigated the planning horizon used for ergodic trajectory opti-

mization. We performed the simulated field experiments with no re-planning,

and re-planning with an updated entropy map after every 8 samples, 4 samples,

and 1 sample. Consistently the shortest planning horizon (1 sample) performed

best in entropy reduction and RMSE. For some sites, no re-planning and longer

planning horizons resulted in better entropy efficiency which suggests planning

horizon should be more thoroughly considered for efficiency critical applications.

Ergodic trajectory optimization ultimately is a strong candidate for science

autonomy applications. The SMC and PTO variants produce smoother paths

that would be ideal for AUV or UAV applications. They do not require dis-

cretization of the state space and are computationally efficient compared to

baselines. If the total path length is known, PTO is shown to be the best per-

forming planning. In applications where total number of samples is unknown

and compute is limited, SMC provides high performance where PTO is infeasi-

ble.
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6 Conclusion

Robotic explorers will require an increasing degree on autonomy to improve ex-

ploration efficiency and mitigate challenges like communication bandwidth and

delay. We aim to improve on robotic explorers’ ability to plan for scientific

discovery and automatically interpret measurements in the field. By encod-

ing belief of the spatial distribution of the information content of a region, we

can iteratively plan actions that will guide the robot toward more information

rich areas. Our context driven exploration strategy draws inspiration from and

captures the characteristics of geologic site survey. Sample interpretations are

sensitive to spatial relations. Rather than considering each sample indepen-

dently, field scientists incorporate each new observation into an evolving model

of geologic formation.

We compared the performance of ergodic planning techniques with baseline

informative search techniques in terms of entropy reduction, RMSE, computa-

tion time, and the sample efficiency of each trajectory. We have demonstrated

that the ergodicity metric that defines the objective functions of ergodic plan-

ners favorably balances exploration and exploitation of prior information. We

show competitive performance of the SMC and PTO planners even when using

little information and planning from an initial entropy map. We show that PTO

consistently outperforms all other planners in our experiments with a planning

horizon of 1 sample. We also conclude that re-planning with updated entropy

maps consistently improves performance with an optimal planning horizon of 1

sample.

6.1 Contributions

This thesis contributes to the field of planetary exploration in the following

ways:
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• Developed novel formulations for active spectroscopic mapping for use

with the Ergodic Spectral Multi-scale Coverage (SMC) algorithm and Er-

godic Projection-based Trajectory Optimization (PTO) algorithm.

• Designed and implemented a code base for further study using ergodic

planning in Python

• Produced datasets and test environment for simulated field experiments

• Validated the efficacy of ergodic trajectory optimization as a tool for in-

formative path planning compared state-of-the-art path planners.

6.2 Future Work

This research set up a foundation for applying ergodic trajectory optimization

to science autonomy, but there are many more questions to answer. Extending

ergodic trajectory optimization with terrain aware planning that allows robots

to avoid obstacles or locations of untraversable slopes would make for more

realistic and usable planning for ground robots.

Another research question would be exploring ergodic trajectory optimiza-

tion’s usefulness as a tool for continuous sampling. Camera sensors and smaller

spectrometer instruments allow robots to efficiently sample and analyze large

amounts of data on the fly. Because SMC and PTO can extend efficiently to

large numbers of sample points they effectively plan a continuous sample path

that is smooth.

Finally ergodic trajectory optimization’s practicality as a planning method

for UAVs suggests its ability to extend to planning ergodic trajectories in three

dimensions for information gathering. Leveraging an aerial robot’s ability to

change altitude to efficiently gather information at different scales should im-

prove entropy efficiency overall. Change in altitude allows the robot to quickly
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change the field of view and subsequently the information content measured

by a spectrometer instrument. The primary issue is the state space extends

to a third physical dimension yet the information space is still in two physical

dimensions. The ergodic path planning algorithms we used here require the

information space dimensions to match the state space dimensions. Heuristic

functions and sensor models may provide a method for computing gradients in

third dimension to better plan trajectories using PTO. More investigation into

the sensor model and how change of field of view and distance to target changes

the resultant signal will be required to develop this.

The question of updating the Gaussian Process model in our specific case is

also an open question. Adaptively changing the length scale kernel parameter of

the Gaussian Process model with altitude or signal noise may provide a solution

to updating the model with varying degrees of influence. Another potential

solution would be incorporating a non-stationary kernel function which is a

function of the full robot state.
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A Appendix

A.1 Site A
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Figure 17: Greedy, as expected, is more susceptible to noise and gets stuck
in a very sub-optimal minimum. All ergodic planners produce smoother paths
compared to non-ergodic. PTO and MCTS globally look to cover similar points
but the longer planning horizon of PTO allows it to perform best. Note the
irregular shape of the MCTS path due to being fixed to the grid, MCTS also
backtracks and repeats a sample location.

Figure 18: Examples like this show why Random often reports a high efficiency;
even though the entropy score is always the worst, the paths are typically much
shorter. MCTS again has a non-smooth path that crosses back over itself. Note
that PTO-SMC and PTO-RAND move in different directions with different path
shapes but consistently outperform baselines.
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Figure 19: Average of all runs reported, lower entropy is better performance.
Random performs the worst and performance improves as the planners become
less myopic. SMC is competitive with MCTS despite SMC only planning single
steps and MCTS has a look-ahead depth of 5 samples. Note that both PTO
planners only perform best after nearly all samples are collected, this is expected
as the planners optimize over the whole trajectory not each point individually.

Figure 20: Average of all runs reported, lower RMSE is better performance.
Note that signal trends are highly correlated between entropy and RMSE, there-
fore our entropy calculation is a reliable information metric for use in informative
path planning. Notably, the Greedy planner RMSE curve differs greatest from
the entropy curve. It is the most myopic of the informative planners and suscep-
tible to noise, i.e. it greatly favors exploitation over exploration. This suggests
there that while entropy and RMSE are highly correlated there is noise on the
entropy signal that must be accounted for.
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Figure 21: The statistical variation of final entropy between runs is shown here.
Greedy and SMC have similarly large IQR, this is expected given the single step
planning of each. SMC is ultimately able to perform better than Greedy because
the ergodicity metric it optimizes over is better able to balance exploration and
exploitation. The planning horizon changes between planners does not appear
to greatly effect statistical spread of planner performance.

Figure 22: 2-sided dependent t-test for paired samples, cells that are dark in-
dicate a statistically significant difference in final entropy performance between
planners with 95% confidence. MCTS and SMC variant performance are not
different. Notably, most PTO variants are different than all other planners,
while most PTO variants are not different than each other. PTO-RAND-INIT-
MPC-1 performs best and is statistically different almost all other planners.
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Figure 23: The statistical variation of final RMSE between runs is shown here.
Once again, trends of the entropy performance are matched in the RMSE per-
formance. The Greedy planner large IQR once again reflects the planner’s
susceptibility to noise.

Figure 24: 2-sided dependent t-test for paired samples, cells that are dark in-
dicate a statistically significant difference in final RMSE performance between
planners with 95% confidence. The entropy performance again is reflected. The
notable difference is that PTO-RAND-INIT-MPC-1 RMSE performance is not
different than most other PTO variants.
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A.2 Site B
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Figure 25: Greedy again is stuck in a local minimum. The multi-scale nature
of SMC is shown here, the path targets low frequency information features first
before revisiting areas for higher frequency features.

Figure 26: Note how PTO is able to achieve nearly all the same points as SMC
but without backtracking due to optimizing over the full trajectory. Given the
current science goals moving on a to a new site may or may not be desired,
however SMC is more likely to return to similar areas given its multi-scale
nature.
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Figure 27: Average of all runs reported, lower entropy is better performance.
Random performs the worst and performance improves as the planners become
less myopic. We once again see the PTO planners over taking others as the
samples approach the full trajectory due to their being highly non-myopic.

Figure 28: Average of all runs reported, lower RMSE is better performance.
Note that signal trends are highly correlated between entropy and RMSE, there-
fore our entropy calculation is a reliable information metric for use in informative
path planning.
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Figure 29: The statistical variation of final entropy between runs is shown here.
Greedy has a particularly large IQR indicating there are local minima that
myopic planners are susceptible to. SMC’s multi-scale nature allows it to avoid
the noisy local minima. There is a clear trend in median final entropy reducing
as planning horizon reduces.

Figure 30: 2-sided dependent t-test for paired samples, cells that are dark in-
dicate a statistically significant difference in final entropy performance between
planners with 95% confidence. MCTS is not statistically different than a few
ergodic variants but is notably different than the best performing planner, PTO-
SMC-INIT-MPC-1. The SMC variants are not statistically different from each
other as are many of the PTO-SMC variants.
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Figure 31: The statistical variation of final RMSE between runs is shown here.
Once again, trends of the entropy performance are matched in the RMSE per-
formance, particularly when comparing planning horizon within a planner type.
Greedy notably has a much smaller IQR for RMSE compared to entropy.

Figure 32: 2-sided dependent t-test for paired samples, cells that are dark in-
dicate a statistically significant difference in final RMSE performance between
planners with 95% confidence. The entropy results are reflected here with no-
table differences. The best performing planner, PTO-SMC-INIT-MPC-1, is no
longer statistically different than its competition, namely MCTS. This is more
a function of the spectroscopic mapping model as the planners directly optimize
over the entropy signal.
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A.3 Site C
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Figure 33: The smoothness of ergodic planner paths is shown well here. The
MCTS path by comparison has many sharp turns and crosses back over itself.
This example shows the Greedy planner performing well but the sharp back and
forth about half way into the path shows the sensitivity of the planner to noise.

Figure 34: This example highlights the difference between PTO-SMC-INIT and
PTO-RAND-INIT. Each planner converges to a different minima despite the
same initial position however both are very effective at reducing entropy.
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Figure 35: Average of all runs reported, lower entropy is better performance.
Random performs the worst and performance improves as the planners become
less myopic. Site C shows SMC not performing as closely to the best planners
compared to the other sites.

Figure 36: Average of all runs reported, lower RMSE is better performance.
Note that signal trends are highly correlated between entropy and RMSE, there-
fore our entropy calculation is a reliable information metric for use in informative
path planning.
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Figure 37: The statistical variation of final entropy between runs is shown here.
There is a clear trend in median final entropy reducing as planning horizon
reduces.

Figure 38: 2-sided dependent t-test for paired samples, cells that are dark in-
dicate a statistically significant difference in final entropy performance between
planners with 95% confidence. PTO-SMC-INIT-MPC-1 performs best and is
not statistically different than high performing planners MCTS, PTO-SMC-
INIT-MPC-1, and PTO-SMC-INIT-MPC-4.
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Figure 39: The statistical variation of final RMSE between runs is shown here.
Trends of the entropy performance are matched in the RMSE performance.

Figure 40: 2-sided dependent t-test for paired samples, cells that are dark in-
dicate a statistically significant difference in final RMSE performance between
planners with 95% confidence. The entropy performance again is reflected. The
statistical differences are similar only variants that differ by planning horizon
are no longer statistically different.
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A.4 Site D
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Figure 41: Site D is highly uniform in spectral diversity. The large white location
is homogeneous in mineral type and therefore spectra signature. Note that
planners effectively navigate the bi-model distribution. This site was chosen to
investigate performance on regions with more uniform belief state, i.e. a less
informative prior.

Figure 42: This example shows the planners spending more time in the grey
locations with more information. PTO and SMC appear to more favorably
balance exploration and exploitation buy not aggressively avoiding the white
location like MCTS.
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Figure 43: Average of all runs reported, lower entropy is better performance.
The performance difference between all planners is more pronounced in site D
due to the more uniform information distribution. Note that all ergodic planners
outperform other baselines indicating they do favorably balance exploration and
exploitation.

Figure 44: Average of all runs reported, lower RMSE is better performance.
Note that signal trends are highly correlated between entropy and RMSE, there-
fore our entropy calculation is a reliable information metric for use in informative
path planning.
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Figure 45: The statistical variation of final entropy between runs is shown
here. Greedy has a large IQR given the myopic nature of the planner and the
uniformity of the site. Note that the PTO-SMC-INIT variants contain more
outliers than usual due to local mimima in the uniform site.

Figure 46: 2-sided dependent t-test for paired samples, cells that are dark in-
dicate a statistically significant difference in final entropy performance between
planners with 95% confidence. Nearly all of the PTO variants are statistically
different from other baselines and outperform them including MCTS.
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Figure 47: The statistical variation of final RMSE between runs is shown here.
Once again, trends of the entropy performance are matched in the RMSE per-
formance.

Figure 48: 2-sided dependent t-test for paired samples, cells that are dark in-
dicate a statistically significant difference in final RMSE performance between
planners with 95% confidence. The entropy and RMSE statistical difference
is nearly identical with only PTO-SMC-INIT-MPC-8 no longer different than
SMC-MPC-1 and PTO-SMC-INIT.
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A.5 Site E
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Figure 49: Only the baseline planner paths are shown here due to the long
paths. Greedy is distracted by noise as is expected.

Figure 50: The ergodic planner paths are shown here. Their paths are notably
smoother than the baseline planner paths. There is path crossover in the PTO-
SMC-INIT path but the curves remain smooth. The SMC has sharp turns
which is explained by significant changes to the entropy map after the previous
sample.
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Figure 51: Average of all runs reported, lower entropy is better performance.
Random performs the worst and performance improves as the planners become
less myopic. Of significance here is SMC’s strong performance, outperforming
MCTS throughout the entire average of the trajectories.

Figure 52: Average of all runs reported, lower RMSE is better performance.
Note that signal trends are highly correlated between entropy and RMSE, there-
fore our entropy calculation is a reliable information metric for use in informative
path planning.
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Figure 53: The statistical variation of final entropy between runs is shown here.
Interestingly PTO-SMC-INIT-MPC-8, PTO-RAND-INIT-MPC-8, and SMC-
MPC-8 have large IQR or outliers while the other planning horizon variants do
not. This suggests there are local minima modes in the entropy mode that are
highlighted by updates after 8 steps but not finer or courser updates.

Figure 54: 2-sided dependent t-test for paired samples, cells that are dark in-
dicate a statistically significant difference in final entropy performance between
planners with 95% confidence. The majority of planner variants are statistically
different from one another. Notably, the best performing planner PTO-SMC-
INIT-MPC-1 is statistically different from all others except SMC-MPC-4 and
PTO-RAND-INIT-MPC-1.
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Figure 55: The statistical variation of final RMSE between runs is shown here.
Once again, trends of the entropy performance are mirrored in the RMSE per-
formance.

Figure 56: 2-sided dependent t-test for paired samples, cells that are dark in-
dicate a statistically significant difference in final RMSE performance between
planners with 95% confidence. Key differences between entropy performance
and RMSE performance include the high performance of SMC variants. They
are no longer statistically different from the highest performing planner, PTO-
SMC-INIT-MPC-1.
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